a. Explain the rationale for these models (Hint: they are roughly based on the penalties in a 5-stage
pipeline.)

b. Show an equation for the expected instruction throughput as a function of the number of stages
K

c. Is there an optimum pipeline depth with optimum throughput? If so, what is the optimum pipe-
line depth, as a function of #;, r;, ¢, and «,,?

d. Take a practical case, with ¢; =0.2 (one out of every 5 instructions has a 1 cycle delay due to raw
hazards on registers), a; = 0.06 (one out of 5 instructions is a branch and the static branch predic-
tion success rate is 70%), and «,,=0.5 (0.05 Misses_Per_Instruction and 10 cycle miss penalty).
Assume also that T, the instruction latency time in the single cycle CPU is 10nsec and the pipeline
register overhead is 100ps. What is the optimum pipeline depth? What is the throughput of this
optimum pipeline depth and how does it compare with the 5-stage pipeline, under the same
assumptions?

Problem 3.13

In this problem we compare the performance of three dynamically scheduled processor architec-
tures on a simple piece of code computing Y=Y*X+Z, where X,Y and Z are (double-precision--
8bytes) floating-point vectors.

Using the core ISA of Table 3.3 in the notes, the loop body can be compiled as follows:

LOOP L.D F0,0(R1) /X[1] loaded in FO
L.D F2,0(R2) /Y[1i] loaded in F2
L.D F4,0(R3) /Z2[1] loaded in F4
MUL.D F6,F2,F0 /Multiply X by Y
ADD.D F8,F6,F4 /Add 2
ADDI R1,R1, #8 /update address registers

ADDI R2,R2, #8

ADDI R3,R3,#8

S.D F8, -8(R2) /store in Y[i]

BNE R4,R2,LOOP/ /(R4)-8 points to the last element of Y

The initial values in R1, R2, and R3 are such that the values are never equal during the entire exe-
cution (This is important for memory disambiguation.) The architectures are given in Figures 3.15,
3.23 and 3.27 and the same parameters apply. Branch BNE is always predicted taken (except in
Tomasulo, where branches are not predicted at all and stall in the dispatch stage until their outcome
is known).

Please keep in mind the following important rules (whenever they apply):
* Instructions are always fetched, decoded and dispatched in process order
* In speculative architectures, instructions always retire in process order
* In speculative architectures, Stores must wait until they reach the top of the ROB before they
can issue to cache.

a. Tomasulo algorithm--no speculation. Please fill Table 3.24 clock by clock for the first iteration
of the loop. Each entry should be the clock number when the event occurs, starting with clock 1.
Add comments as you see fit (This helps understand your thinking.)

b. Tomasulo algorithm with speculation. Please fill Table 3.25 clock by clock for the first itera-

Chapter 3-88

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

Table 3.24 Tomasulo algorithm--no speculation

Dispatch | Issue | Exec/ Exec/ Cache | CDB | COMMENTS
start complete

1 L.D FO,0(R1)
12 L.D F2,0(R2)

tion of the loop. Each entry should be the clock number when the event occurs, starting with clock
1. Please be attentive to the fact that (contrary to Tomasulo with no speculation) Stores cannot exe-
cute in cache until they reach the top of the ROB. Also branches are now predicted taken.

Table 3.25 Speculative Tomasulo algorithm

Dispatch | Issue | Exec Exec Cache | CDB | Retire | COMMENTS
start | complete

11 L.D FO,0(R1)

12 L.D F2,0(R2)

c. Speculative scheduling. Please fill Table 3.26 clock by clock for the first iteration of the loop,.
Each entry should be the clock number when the event occurs, starting with clock 1.

Table 3.26 Speculative scheduling

fetch start | complete

L.D FO,0(R1)

L.D F2,0(R2)

d. Compute the minimum possible execution time given by the delay of the critical path in the data-
flow graph of one iteration. Each node of the data flow graph is one instruction of the loop itera-
tion. Nodes in the data flow graph are connected by directed edges. Each directed edge corresponds
to a RAW dependency between two instructions, a parent and a child. An edge is labelled by the
execution time of the parent instruction (in cycles). Only data dependencies are considered (assum-
ing infinite amount of hardware resources, 100% cache hit rate and perfect branch prediction).

Draw the dataflow graph for the code of one iteration. Identify the critical path in the graph and
compute the best possible execution time given by the data flow graph. Compare it with the execu-
tion times of the first iteration of the loop in all three cases above. To compute the execution time
of the loop you can take the difference between the clock cycles when the first load issues in both
iterations.

Problem 3.14

This problem is complex because we now deal with aspects of speculative execution not dealt with
before, including multiple instruction dispatch, and structural hazards on the ROB.

To simplify, we use the same architecture as in Problem 3.13, part b, i.e., Tomasulo with specula-
tion, in which the role of the ROB is to hold speculative values and track the thread order of
instructions.

We dispatch two instructions per clock.

The ROB’s size is 8 entries. When the ROB is full, dispatch is stalled. Dispatch waits until two
entries are freed in the ROB before it dispatches its two instructions, so that instructions are always
dispatched in pairs.

Chapter 3-89

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

Dispatch | Issue | Register | Exec Exec Cache | CDB | Retire | COMMENTS

Table 3.27 Tomasulo algorithm with speculation (two way superscalar)

Dispatch | Issue | Exec Exec Cache CDB Retire Comment
start complete
" L.D FO,0(R1) 1(7) 2 3) 3 () (5)
12 L.D F2,0(R2) 1(6) 3 (4) 4 (5) (6)
In the dispatch column, show the number of entries left in the ROB AT THE END OF THE
CYCLE when it is dispatched between parentheses, just after the clock cycle number. An ROB
entry is occupied in the cycle after a new instruction has dispatched. An ROB entry is freed in the
same cycle an instruction enters the retire stage, and is available to a new instruction in the same
cycle.
To see the effects of ROB hazards, we track two loop iterations. Please fill Table 3.27. The first two
rows have been filled.
As in the previous problem, estimate the loop iteration time by the difference in cycle times
between the issue clocks of the first load of the second iteration and of the first load of the third
iteration. Does dual dispatch improve performance? Where are the bottlenecks?
Problem 3.15
In this problem we explore the effect of memory disambiguation using a very simple move in
memory:
for (i=0;i<100;i++)
A[i] = B[1i];
In this code vector A and B are in different areas of memory so that they don’t have common ele-
ments. The assembly code is:
LOOP L.D F2,0(R1)
ADDI R1,R1,#8
ADDI R2,R2,#8
S.D F2,-8(R2)
BNEQ R1,R3,LOOP
The architecture is the architecture of Problem 3.14 (Tomasulo with speculation and two-way dis-
patch). Fill Table 3.28. Fill the table for two cases: 1) Conservative (a Load is not issued to cache
until the addresses of all previous Stores are known and 2) Speculative (a Load is issued to cache
optimistically when addresses of prior Stores are unknown). Remember that Stores can only issue
to cache once they are at the top of the ROB.
Table 3.28 Tomasulo algorithm with speculation (two way superscalar)
Dispatch | Issue | Exec Exec Cache CDB Retire Comment
start complete
11 L.D F2,0(R1) 1(7) 2 3) 3 () (5)
12 ADDI R1,R1,#8 1(6) 2 3) 3 - (4)
119 L.D F2,0(R1)

Chapter 3-90

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

Problem 3.16

Consider the following code segment for a loop:

if (x is odd) then <-(branch bl)
increment a <- (bl untaken)
if (x is a multiple of 5) then <-(branch b2)
increment b <- (b2 untaken)

Assume that the following list of 9 values of x is processed by 9 iterations of this loop:
8,9, 10,11, 7, 20,29, 30, 31.

Branch Prediction Buffer 1
1 0=NT

b1 (0 Ye—— (1)
0 5 =T

b2

(a) BPB with 1-bit predictor

g=0 g=1
b2 b2

(b) BPB with 1-bit predictors and 1-bit global history

Figure 3.46. Branch prediction Buffers

a. Assume that a one-bit state machine (see Figure 3.46(a)) is used as the prediction algorithm for
predicting the execution of the two branches in this loop.

Show the predicted and actual branch directions of both b1 and b2 branch instructions for each iter-
ation of this loop. Assume the initial state is 0, i.e. NT (not taken), for the predictor.

What are the prediction accuracies for bl and for b2?

What is the overall prediction accuracy for both branches?

b. Assume now a two-level branch prediction scheme is used. In addition to the one-bit predictor, a
one-bit global history register (g) is used. g stores the direction of the last executed branch (which
may or may not be the same branch as the branch currently being predicted) and is used to index
into two separate one-bit predictor tables as shown Figure 3.46(b).

Depending on the value of g, one of the two predictor table is selected and used for the normal one-
bit prediction. Again, fill in the predicted and actual branch directions of b1 and b2 for nine itera-
tions of the loop. Assume the initial value of g=0, i.e. NT. For each prediction, depending on the
current value of g, only one of the two predictor tables is accessed and updated.

For each iteration of the loop show the value of g, the predicted and the actual branch directions of
both b1 and b2 branch instructions. The initial state of the predictor tables is all 0’s.
What are the prediction accuracies for bl and b2?

What is the overall prediction accuracy?

c. What is the prediction success rate for branch b2 when g=0? Explain why this is.

Chapter 3-91

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

