
Chapter 3-88

Copyright � 2011 Michel Dubois, Murali Annavaram and Per Stenström

a.�Explain the rationale for these models (Hint: they are roughly based on the penalties in a 5-stage

pipeline.)

b. Show an equation for the expected instruction throughput as a function of the number of stages

K.

c. Is there an optimum pipeline depth with optimum throughput? If so, what is the optimum pipe-

line depth, as a function of tl,
d �
b, and
m?

d. Take a practical case, with
d=0.2 (one out of every 5 instructions has a 1 cycle delay due to raw

hazards on registers)��
b = 0.06 (one out of 5 instructions is a branch and the static branch predic-

tion success rate is 70%), and
m=0.5 (0.05 Misses_Per_Instruction and 10 cycle miss penalty).

Assume also that T, the instruction latency time in the single cycle CPU is 10nsec and the pipeline

register overhead is 100ps. What is the optimum pipeline depth? What is the throughput of this

optimum pipeline depth and how does it compare with the 5-stage pipeline, under the same

assumptions?

Problem 3.13

In this problem we compare the performance of three dynamically scheduled processor architec-

tures on a simple piece of code computing Y=Y*X+Z, where X,Y and Z are (double-precision--

8bytes) floating-point vectors.

Using the core ISA of Table 3.3 in the notes, the loop body can be compiled as follows:

LOOP L.D F0,0(R1) /X[i] loaded in F0

L.D F2,0(R2) /Y[i] loaded in F2

L.D F4,0(R3) /Z[i] loaded in F4

MUL.D F6,F2,F0 /Multiply X by Y

ADD.D F8,F6,F4 /Add Z

ADDI R1,R1,#8 /update address registers

ADDI R2,R2,#8

ADDI R3,R3,#8

S.D F8, -8(R2) /store in Y[i]

BNE R4,R2,LOOP/ /(R4)-8 points to the last element of Y

The initial values in R1, R2, and R3 are such that the values are never equal during the entire exe-

cution (This is important for memory disambiguation.) The architectures are given in Figures 3.15,

3.23 and 3.27 and the same parameters apply. Branch BNE is always predicted taken (except in

Tomasulo, where branches are not predicted at all and stall in the dispatch stage until their outcome

is known).

Please keep in mind the following important rules (whenever they apply):

• Instructions are always fetched, decoded and dispatched in process order

• In speculative architectures, instructions always retire in process order

• In speculative architectures, Stores must wait until they reach the top of the ROB before they

can issue to cache.

a. Tomasulo algorithm--no speculation. Please fill Table 3.24 clock by clock for the first iteration

of the loop. Each entry should be the clock number when the event occurs, starting with clock 1.

Add comments as you see fit (This helps understand your thinking.)

b. Tomasulo algorithm with speculation. Please fill Table 3.25 clock by clock for the first itera-

Chapter 3-89

Copyright � 2011 Michel Dubois, Murali Annavaram and Per Stenström

tion of the loop. Each entry should be the clock number when the event occurs, starting with clock

1. Please be attentive to the fact that (contrary to Tomasulo with no speculation) Stores cannot exe-

cute in cache until they reach the top of the ROB. Also branches are now predicted taken.

c. Speculative scheduling. Please fill Table 3.26 clock by clock for the first iteration of the loop,.

Each entry should be the clock number when the event occurs, starting with clock 1.

d. Compute the minimum possible execution time given by the delay of the critical path in the data-

flow graph of one iteration. Each node of the data flow graph is one instruction of the loop itera-

tion. Nodes in the data flow graph are connected by directed edges. Each directed edge corresponds

to a RAW dependency between two instructions, a parent and a child. An edge is labelled by the

execution time of the parent instruction (in cycles). Only data dependencies are considered (assum-

ing infinite amount of hardware resources, 100% cache hit rate and perfect branch prediction).

Draw the dataflow graph for the code of one iteration. Identify the critical path in the graph and

compute the best possible execution time given by the data flow graph. Compare it with the execu-

tion times of the first iteration of the loop in all three cases above. To compute the execution time

of the loop you can take the difference between the clock cycles when the first load issues in both

iterations.

Problem 3.14

This problem is complex because we now deal with aspects of speculative execution not dealt with

before, including multiple instruction dispatch, and structural hazards on the ROB.

To simplify, we use the same architecture as in Problem 3.13, part b, i.e., Tomasulo with specula-

tion, in which the role of the ROB is to hold speculative values and track the thread order of

instructions.

We dispatch two instructions per clock.

The ROB’s size is 8 entries. When the ROB is full, dispatch is stalled. Dispatch waits until two

entries are freed in the ROB before it dispatches its two instructions, so that instructions are always

dispatched in pairs.

Table 3.24 Tomasulo algorithm--no speculation

Dispatch Issue Exec/
start

Exec/
complete

Cache CDB COMMENTS

I1 L.D F0,0(R1)

I2 L.D F2,0(R2)

Table 3.25 Speculative Tomasulo algorithm

Dispatch Issue Exec
start

Exec
complete

Cache CDB Retire COMMENTS

I1 L.D F0,0(R1)

I2 L.D F2,0(R2)

Table 3.26 Speculative scheduling

Dispatch Issue Register
fetch

Exec
start

Exec
complete

Cache CDB Retire COMMENTS

I1 L.D F0,0(R1)

I2 L.D F2,0(R2)

Chapter 3-90

Copyright � 2011 Michel Dubois, Murali Annavaram and Per Stenström

In the dispatch column, show the number of entries left in the ROB AT THE END OF THE

CYCLE when it is dispatched between parentheses, just after the clock cycle number. An ROB

entry is occupied in the cycle after a new instruction has dispatched. An ROB entry is freed in the

same cycle an instruction enters the retire stage, and is available to a new instruction in the same

cycle.

To see the effects of ROB hazards, we track two loop iterations. Please fill Table 3.27. The first two

rows have been filled.

As in the previous problem, estimate the loop iteration time by the difference in cycle times

between the issue clocks of the first load of the second iteration and of the first load of the third

iteration. Does dual dispatch improve performance? Where are the bottlenecks?

Problem 3.15

In this problem we explore the effect of memory disambiguation using a very simple move in

memory:

for (i=0;i<100;i++)

A[i] = B[i];

In this code vector A and B are in different areas of memory so that they don’t have common ele-

ments. The assembly code is:

LOOP L.D F2,0(R1)

ADDI R1,R1,#8

ADDI R2,R2,#8

S.D F2,-8(R2)

BNEQ R1,R3,LOOP

The architecture is the architecture of Problem 3.14 (Tomasulo with speculation and two-way dis-

patch). Fill Table 3.28. Fill the table for two cases: 1) Conservative (a Load is not issued to cache

until the addresses of all previous Stores are known and 2) Speculative (a Load is issued to cache

optimistically when addresses of prior Stores are unknown). Remember that Stores can only issue

to cache once they are at the top of the ROB.

Table 3.27 Tomasulo algorithm with speculation (two way superscalar)

Dispatch Issue Exec
start

Exec
complete

Cache CDB Retire Comment

I1 L.D F0,0(R1) 1(7) 2 (3) 3 (4) (5) 6

I2 L.D F2,0(R2) 1(6) 3 (4) 4 (5) (6) 7

Table 3.28 Tomasulo algorithm with speculation (two way superscalar)

Dispatch Issue Exec
start

Exec
complete

Cache CDB Retire Comment

I1 L.D F2,0(R1) 1(7) 2 (3) 3 (4) (5) 6

I2 ADDI R1,R1,#8 1(6) 2 (3) 3 -- (4) 7

I19 L.D F2,0(R1)

Chapter 3-91

Copyright � 2011 Michel Dubois, Murali Annavaram and Per Stenström

Problem 3.16

Consider the following code segment for a loop:

if (x is odd) then <-(branch b1)

increment a <-(b1 untaken)

if (x is a multiple of 5) then <-(branch b2)

increment b <-(b2 untaken)

Assume that the following list of 9 values of x is processed by 9 iterations of this loop:

8, 9, 10, 11, 7, 20, 29, 30, 31.

a. Assume that a one-bit state machine (see Figure 3.46(a)) is used as the prediction algorithm for

predicting the execution of the two branches in this loop.

Show the predicted and actual branch directions of both b1 and b2 branch instructions for each iter-

ation of this loop. Assume the initial state is 0, i.e. NT (not taken), for the predictor.

What are the prediction accuracies for b1 and for b2?

What is the overall prediction accuracy for both branches?

b. Assume now a two-level branch prediction scheme is used. In addition to the one-bit predictor, a

one-bit global history register (g) is used. g stores the direction of the last executed branch (which

may or may not be the same branch as the branch currently being predicted) and is used to index

into two separate one-bit predictor tables as shown Figure 3.46(b).

Depending on the value of g, one of the two predictor table is selected and used for the normal one-

bit prediction. Again, fill in the predicted and actual branch directions of b1 and b2 for nine itera-

tions of the loop. Assume the initial value of g=0, i.e. NT. For each prediction, depending on the

current value of g, only one of the two predictor tables is accessed and updated.

For each iteration of the loop show the value of g, the predicted and the actual branch directions of

both b1 and b2 branch instructions. The initial state of the predictor tables is all 0’s.

What are the prediction accuracies for b1 and b2?

What is the overall prediction accuracy?

c. What is the prediction success rate for branch b2 when g=0? Explain why this is.

Branch Prediction Buffer

b1

b2

1

0

1

0 0 1

0 = NT

1 = T

b1

b2

b1

b2
g

g = 0 g = 1

(a) BPB with 1-bit predictor

(b) BPB with 1-bit predictors and 1-bit global history

Figure 3.46. Branch prediction Buffers

