
Computer Architecture
DAT105

Exercise Session 2

M. WAQAR AZHAR
waqarm@chalmers.se

Chalmers University of Technology, Sweden

September 11, 2019

1 / 30

Agenda

I Problem 3.8

I Problem 3.10

I Problem 3.11

2 / 30

Agenda

I Problem 3.8

I Problem 3.10

I Problem 3.11

3 / 30

Problem 3.8

In this problem we evaluate the hardware needed to detect hazards in various
static pipelines with out-of-order instruction execution completion. We will
consider the floating point extension to 5-stage pipeline, displayed in figure 3.8.
Each pipeline register carries its destination register number, either
floating-point or integer. ME/WB carries two instructions, one from the integer
pipeline and one from the floating-point arithmetic pipeline.

4 / 30

Problem 3.8

Consider the following type of of instructions consecutively

I Integer arithmetic/logic/Store instructions (inputs: two integer registers)
and all Load instructions (input: one integer register)

I Floating-point arithmetic instructions (inputs: two floating-point registers)

I Floating-point Stores (inputs: one integer and one floating-point registers).

5 / 30

Problem 3.8 (part - a)

To solve RAW (Read after write) data hazards on registers (integer and/or
floating point), hardware checks (interlocks) between the current instructions
in ID and instructions in pipeline may stall instruction in ID. List first all
pipeline registers that must be checked in ID. Since ME/WB may have two
destination registers, list them as ME/WB (int) or ME/WB (fp). Do not list
pipeline stages, list pipeline registers, and make sure that the set of checks in
minimum.

6 / 30

Problem 3.8 (Part - a) Solution

I If an integer arithmetic/logic/store instruction or load is in ID, check
ID/EX for a load

I If an FP arithmetic instruction is in ID, check ID/EX (for FP loads),
ID/FP, FP1/FP2, FP2/FP3, and FP3/FP4.

I If an FP store is in ID, check ID/EX (for loads returning address register
or FP value), FP1/FP2, FP2/FP3, and FP3/FP4.

7 / 30

Problem 3.8 (part - b)

To solve WAW hazards on registers, we check the destination register in ID
with the destination register of instructions in various pipeline stages. Please
list the pipeline registers that must be checked. Make sure that the set of
checks is minimum. IMPORTANT: remember that there is a mechanism in ID
to avoid structural hazards on the write register ports of both register files.

8 / 30

Problem 3.8 (Part - b) Solution
.

I If an integer arithmetic/logic/store or integer load is in ID: No check is
necessary, since these instructions update integer registers only and follow
the integer pipeline path in process order.

I If an FP load is in ID, check ID/FP, and FP1/FP2 and FP2/FP3 (no need
to check FP3/FP4 because an FP load and an FP arithmetic instruction
cannot reach the FP register file in the same cycle. This is done in ID to
prevent structural hazards on the write port of the FP register file.)

I If an FP arithmetic instruction is in ID, there is no need to check any
pipeline stage because FP arithmetic instructions cannot bypass a previous
instruction.

I If an FP store is in ID, there is no need to check any pipeline stage
because stores do not write value in registers.

9 / 30

Agenda

I Problem 3.8

I Problem 3.10

I Problem 3.11

10 / 30

Problem 3.10 (Part-a)

In the pipeline of Figure 3.9 WAW data hazards on registers are eliminated and
exceptions can be handled in the WB stage where instructions complete in
process order as in the classic 5-stage pipeline. As always values are forwarded
to the input of the execution units.
a) List all required forwarding paths from pipeline registers to either EX or FP1
to fully forward values for all instructions. List them as
source −− > destination (e.g, FP2/FP1 −− > FP1)

11 / 30

Problem 3.10 (Part-a) Solution

We consider values forwarded to EX first.

EX/ME −− > EX

ME/FP3 −− > EX

FP3/FP4 −− > EX

FP4/FP5 −− > EX

FP5/WB −− > EX

12 / 30

Problem 3.10 (Part-a) Solution

Consider values forwarded to FP1.

ME/FP3 −− > FP1

FP5/WB −− > FP1

13 / 30

Problem 3.10 (Part b)

Given those forwarding paths, indicate all checks that must be done in the
hazard detection unit associated with ID to solve RAW hazards. Your solutions
specifying the hazard detection logic should be written as follows for RAW
hazards on registers:

I If Integer arithmetic/logic/Store or Load instruction in ID check <
pipeline registers >

I If FP arithmetic instruction in ID check < pipeline registers >

I If FP Store instruction in ID check < pipeline registers >

14 / 30

Problem 3.10 (Part b) Solution

If Integer arithmetic/logic/Store or Load instruction in ID

I check ID/EX(for preceding loads)

15 / 30

Problem 3.10 (Part b) Solution

If FP arithmetic instruction in ID

I check ID/EX (for preceding loads)

I check ID/FP1

I check FP1/FP2

I check FP2/FP3

I check FP3/FP4

16 / 30

Problem 3.10 (Part b) Solution

Remaining RAW hazards.

If FP Store instruction in ID check

I check ID/EX (for loads returning address)

I check ID/FP1

I check FP1/FP2

I check FP2/FP3

I check FP3/FP4

17 / 30

Problem 3.10 (Part c)

This architecture still has a subtle problem with respect to exception handling.
Namely Stores are executed early and modify memory before they retire in the
write-back stage. What is the problem.
Can you propose a solution to this problem? (Please do not propose the
solution of saving the memory value and then restoring it upon an exception.)

18 / 30

Problem 3.10 (Part c) Solution

I Stores update machine state early

I One simple solution is to stall stores in ID until it is determined that no
previous instruction currently in the pipeline can trigger an exception.

19 / 30

Agenda

I Problem 3.8

I Problem 3.10

I Problem 3.11

20 / 30

Problem 3.11 (a)

Consider the super-scalar architecture of Figure 3.45. Two consecutive instructions are
fetched at a time, incrementing PC by 8. To simplify pipeline interlocks, we split the
decode stage into two stages ID1 and ID2. A switch with two settings (straight and
across) separates ID1 and ID2. Upper ID2 must be an integer/branch instruction or
an FP Load/Store. Lower ID2 must be an arithmetic FP instruction.
Let I1 be the upper instruction and I2 be the lower instruction in ID1. I1 must proceed
to ID2 before or at the same time as I2 is allowed to proceed in order to adhere to
process order. The following is done in ID1:

21 / 30

Problem 3.11 (a)

I If I1 is an integer branch instruction or an FP Load Store or a NOOP and I2 does

not depend on I1 then set switch to straight.

I If I1 is an FP Load and I2 is an instruction using the value returned by the Load,

stall I2 in ID1 and move I1 to ID2 with switch set to straight (Lower ID2 is

NOOPed).

I If I1 is an FP arithmetic instruction, stall I2, and move I1 to ID2 with switch set

to across (Upper ID2 is NOOPed).

I If I1 and I2 are both an integer/branch instruction or an FP Load/Store, stall I2

in ID1 and move I1 to ID2 with switch set to straight.(Lower ID2 is NOOPed)

I If I2 is an integer/branch instruction or an FP Load/Store and I1 is a NOOP,

move I1, I2 to ID2 with switch set to across.

22 / 30

Problem 3.11 (a)

Thus if the two fetched instructions are dependent or are the wrong pair, they are
serialized in ID1. Instructions in ID2 are subject to stalls due to pipeline hazard as in
the single issue processor and proceed if they have no data hazard with previous
instructions still in the pipeline. We deploy the same forwarding paths as in Figure 3.8.
When instruction(s) are stalled in ID2, then instructions in IF and ID1 are stalled as
well.

Describe briefly the function of the HDU associated with ID2 ?

23 / 30

Problem 3.11 (a)

Question: Describe briefly the function of the HDU associated with ID2 ?

Awnser: The HDU associated with ID2 simply checks for hazards with
instructions currently in the pipeline for both instructions in ID2.

24 / 30

Problem 3.11 (b)

Question : Explain how a branch is processed (consider both cases when the
branch is upper or lower in ID1), assuming that branches are always predicted
untaken by the hardware. ?

25 / 30

Problem 3.11 (b)

Question : Explain how a branch is processed (consider both cases when the
branch is upper or lower in ID1), assuming that branches are always predicted
untaken by the hardware. ?

Awnser :

I A branch is resolved in EX

I Branches are always predicted untaken so if its evaluates to be taken we
need to flush pipeline

I Following instructions are in IF, ID1, ID2 and FP1

I Total 7 instructions

26 / 30

Problem 3.11 (c)

LOOP:
L.D F2,0(R1)
ADD.D F4,F2,F4
L.D F6, -8(R1)
ADD.D F8,F6,F4
S.D F8, 0(R1)
SUBI R1,R1,16
BNEZ R1, LOOP

Compare the execution times of one iteration of this loop (not the last
iteration) on this machine and the machines of Problem 3.8 and 3.9. For the
machine of Problem 3.9 assume that branches can be resolved in EX1.

27 / 30

Problem 3.11 (c)

Upper ID2 Lower ID2 Cycles Comments

L.D F2,0(R1) (NOOP) 1
(NOOP) ADD.D F4,F2,F4 2 Rule2: Serialize in ID1,Wait for F2 in ID2

L.D F6, -8(R1) (NOOP) 1
(NOOP) ADD.D F8,F6,F4 4 Rule2: Serialize in ID1,Waiting for F4 & F6

S.D F8, 0(R1) (NOOP) 5 Rule 4,5: Serialize in ID1,Waiting for F8
SUBI R1,R1,16 (NOOP) 1

BNEZ R1, LOOP (NOOP) 1+3 Waiting for R1,+3 cycles for miss-prediction
18

28 / 30

Problem 3.11 (c) Pipeline from problem 3.8

Instruction Cycles Comments

L.D F2,0(R1) 1
ADD.D F4,F2,F4 2 Waiting for F2
L.D F6, -8(R1) 1

ADD.D F8,F6,F4 4 Waiting for F4 & F6
S.D F8, 0(R1) 5 Waiting for F8, Avoiding Structural hazard on ME, WB
SUBI R1,R1,16 1

BNEZ R1, LOOP 1+2 +2 cycles for miss-prediction
17

29 / 30

Problem 3.11 (c) Pipeline from problem 3.9

Instruction Cycles Comments

L.D F2,0(R1) 1
ADD.D F4,F2,F4 4 Waiting for F2
L.D F6, -8(R1) 1

ADD.D F8,F6,F4 4 Waiting for F4 & F6
S.D F8, 0(R1) 5 Waiting for F8
SUBI R1,R1,16 1

BNEZ R1, LOOP 2+3 Waiting for R1, +3 cycles for miss-prediction
21

30 / 30

