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Abstract

From echolocation used in SONAR to ant colony optimization techniques used
in artificial intelligence, engineers have always tried to incorporate natural phe-
nomena for innovative solutions. This project is one such example where the
system designed detects ultrasonic sources in two dimensional space using lin-
ear arrays of MEMS microphones. It uses a signal-processing technique called
beamforming which is implemented on an Artix-7 FPGA. The array in its cur-
rent implementation consists of 4 microphones with a sampling frequency of 3.2
MHz and a source frequency of 25 kHz.

Signal-energy corresponding to particular directions is computed onboard the
FPGA, but currently suffers from implementation-specific data discrepancies,
which prevents further analysis.
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CHAPTER

1 Introduction

The main aim of this project is to locate an ultrasonic acoustic source in two
dimensional space using a linear array of MEMS microphone sensors. This is
done using a technique called beamforming, in order to achieve directionality in
signal reception.

The project was executed according to SCRUM principles, in order to deliver
a product of the highest possible value. The entire duration of the project was
divided into 5 sprints, each with a duration of approximately three weeks, where
goals were set at the beginning of each sprint and at the end of each sprint,
a Sprint Restrospective was conducted, where the success and shortcomings
of the sprint were analyzed in order to improve efficiency for the subsequent
sprint. This iterative methodology is intended to quickly force teams to develop.
Version control for all software developed in the project was done with git.

The most common application that comes to mind when discussing ultrasonic
source localization is how bats use ultrasonic sound waves [1] to locate objects in
space. This concept was adapted in SONAR [2], used by submarines to navigate
underwater and communicate by determining the direction and distance of the
transmitter. The problem in this project is similar, but does not use echolocation
or radar (it is strictly source to receiver) and does not detect distance.

1.1 Problem description

The task in this project is to design an FPGA-based Digital Signal Processing
(DSP) system that tracks the location of a mobile acoustic source in two di-
mensions using a technique known as beamforming. The final application of the
system is to track robots equipped with such an acoustic source. A beamformer
is, in essence, a spatial filter that boosts the signal from the look-direction while
attenuating signals from all other directions. The system to be designed should
operate in real time and the direction of the beamformer should dynamically
change to locate the source.
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CHAPTER 1. INTRODUCTION

1.2 System Requirement Specifications

The system to be designed should not contain any movable parts and should be
able to :

• track the source in two dimenstional space.

• detect change in position of the source with a latency of less than one
second.

• detect the source movements of more than two degrees within the cone of
interest.

• display the real time co-ordinates of the source on a PC.

The system may assume a fixed-frequency audio source.

1.3 Scope

In this project, the goal is to implement beamforming using the delay-and-sum
technique first and foremost. If that is successful and there is a reasonable
amount of time left before the final evaluation, other techiniques may be taken
into consideration.
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CHAPTER

2 Background

2.1 Beamforming

Beamforming is a type of spatial filtering in which a signal receiver is more
sensitive to signals from certain directions, while attenuating signals from other
directions. It uses an array of smaller omnidirectional sensors to, in essence,
emulate a larger, directional sensor.

This is in contrast to an omnidirectional receiver which is equally sensitive to
signals from all directions, and hence performs no spatial filtering whatsoever.
The basic principle of operation is that the receiver is configured in some way (in
terms of DSP operations and physical geometry of the sensor) to constructively
interfere signals from the desired direction while destructively interfering signals
from all others.

By configuring the DSP part of the receiver, the direction of sensitivity can
be steered without physically moving the sensor array. In one dimension, the
sensitivity can conveniently be represented in a polar plot showing gain versus
incident angle ψ. This is referred to as a beam pattern and an example can be
seen in fig. 2.1.
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Figure 2.1: Beampattern illustration showing mainlobe, sidelobes for a source
frequency of 25kHz and 24 microphones
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CHAPTER 2. BACKGROUND

The beam in the direction of sensitivity is referred to as the mainlobe. There
are usually prominent, but attenuated, side-lobes on either side and, in the case
of aliasing, which is discussed below, so-called grating-lobes which are unatten-
uated.

The main lobe is characterised by its beamwidth, which is the range of values for
which it is largely unattenuated, and which will affect the accuracy of a system
designed to locate a signal source.

2.2 Beamforming Techniques

There are two types of beamforming technique: fixed and adaptive beam-
forming. Fixed techniques are based on the fixed elements whereas adaptive
techniques include a feedback mechanism which can adapt to the surround-
ing environment. Fixed beamformers are easier to implement in comparison.
Some adaptive beamforming algorithms are Least Mean Square (LMS), Nor-
malized Least Mean Square (NLMS), Sample Matrix Inversion (SMI), Recursive
Least Square (RLS) and Hybrid Least Mean Square/Sample Matrix Inversion
(LMS/SMI). In these algorithms, the signals are assigned weights and they are
updated based on the error signal which is the difference between the desired
value and actual signal value [3]. In a fixed beamformer, a main lobe in the
desired direction is created and attenuates undesired signals from other angles.
The filters are tuned to a particular value and do not adapt to external infor-
mation. The delay-and-sum (DAS) technique is a fixed beamforming technique
and was chosen for this project due to its relatively low complexity.

2.3 Delay-and-Sum (DAS)

DAS is a technique for steering the directional sensitivity of a sensor array. In
terms of waves, an incident wavefront will reach each individual sensor in a linear
array at a different time (provided the signal does not originate perpendicular
to the array axis, in which case all sensors receive the wavefront at once). In
order to steer the directional sensitivity, the signal that each sensor receives
is delayed by an amount of time corresponding to the desired direction. By
doing this, the physical delay between sensors for a given incident angle can be
compensated for. The delayed signal samples are then summed to give either
constructive or destructive interference. If the delays match the incident angle
(i.e. the sensor array is configured to "look" in that direction), each sensor will
delay its received signal such that they are all in phase and maximum value is
obtained when they are constructively summed.

Weights may also be used in conjunction with delay shifts, affecting the beam
pattern, though that is out-of-scope for this project.

2.3.1 Sensor Arrays
Sensor arrays are receivers with multiple sensors arranged in a specific way. The
most basic type of sensor array is a equidistant linear array, in which sensor
elements are positioned along an axis with equidistant spacing between them.

4



CHAPTER 2. BACKGROUND

Figure 2.2: In a linear array of sensors, a plane wavefront will reach each adjacent
sensor with a time, and correspondingly, phase offset. Source in [4].

In this type of sensor array, an incident wavefront will reach each sensor element
at a different time, resulting in a phase shift on each. This is illustrated in fig.
2.2. A linear array can only direct its sensitivity in one dimension.

By combining multiple linear arrays, placed orthogonally to each other, it is
possible to extend directionality to two or three spatial dimensions.

Other types of sensor array also exist, in particular composite arrays which
are a simple way of partitioning a source signal containing multiple frequencies
(broadband) into sub-bands that can be filtered individually [5].

Likewise, several algorithms exist for the DSP part of the beamformer. A simple,
but naive, approach is delay-and-sum (DAS). This approach is the one adopted
for this project. DAS is naive in the sense that it does not use the values it
produces.

More adaptive approaches, for example using a least-squares error minimization
technique, use the values produced by the receiver as feedback to try to optimize
some particular variable, such as signal strength, by steering the directional
sensitivity. Ostensibly superior in terms of system performance, such algorithms
come at a cost of significantly more difficult theoretical and implementation
challenges.

2.3.2 Spatial Aliasing
As previously mentioned, the spatial separation of sensor elements in a partic-
ular sensor array results in a relative phase shift in the received wavefront in
each sensor. When the incident angle and spatial separation are such that the
phase shift is one wavelength λ or a multiple thereof, the direction becomes
ambiguous. This is shown in fig. 2.3.

5
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Figure 2.3: Incident angles that result in a phase shift of a wavelength multiple
result in spatial aliasing. These appear as grating lobes in the beampattern.

Aliasing is obvious in a beam pattern as the lobes are unattenuated.

2.4 Audio Location

In order to know from which direction a signal is strongest (and thus, in all like-
lihood, determine the direction of the source), DAS beamforming is not enough.
The summed output signal will be a sinusoid with a magnitude correspond-
ing the beampattern for a given configuration. To be able to compare these
magnitudes, the signal energy must be calculated.

The energy of a signal is calculated using the following formula:

Ec =

∞∫
−∞

| xc(t) |2 dt (2.1)

where xc(t) is a continuous signal. Equivalently, for a discrete signal

Ed =

∞∑
−∞
|x[n]|2 (2.2)

This could be calculated for every angle, with the one which has the highest
energy value being the direction of arrival. After a full sweep across the entire
range of values from two microphone arrays placed perpendicular to each other
are multiplied to get the highest energy signal and locate the source.[6]

6
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3 Hardware Design

3.1 Xilinx FPGA Artix-7 AC701

Field-Programmable Gate Array (FPGA) is a semiconductor integrated circuit
consisting of configurable logic blocks and interconnects [7]. The logic blocks
consist of components like flip-flops and lookup-tables (LUTs) as well as spe-
cialised Digital Signal Processing (DSP) circuits such as multiply-accumulators.
The application range for FPGA is very wide because of its flexibility. They are
programmed by hardware description languages to achieve the desired function.

Figure 3.1: FPGA Artix-7 AC701

FPGAs are inherently parallel and hence suited to carrying out various func-
tions independant of each other without having to contend for resources (such
as a single processor) [8]. The hardware platform used in this project is the
Xilinx AC701 Evaluation Kit (shown in fig. 3.1), using an XC7A200T FPGA
and various peripheral devices such as DDR3 RAM. Xilinx Vivado is the main
Electronic Design Automation (EDA) tool used for design and synthesis.

3.1.1 FPGA: inherent advantages and disadvantages
The inherent parallel computing of FPGA’s make it faster and more efficient
than other serial processors where the computation speed is low when compared

7



CHAPTER 3. HARDWARE DESIGN

to the former. It is flexible because of the logic blocks which can be programmed
to carry out the desired function. FPGA’s can be reprogrammed easily without
the need to rewire and the functionality can be changed faster. This feature also
enables downloading algorithms and change them just like a computer changes
program [9]. They are reusable and hence is very cost efficient and makes them
ideal for prototyping. It eases up the product development and takes less time
to market. They can be implemented in various real time systems because of
its efficient architecture and high computation speed [10].

FPGAs have a comparatively expensive unit price and designing for them is
inarguably more cumbersome than a purely software approach. Some FPGA de-
vices include processor cores on-chip, enabling a traditional software envionment
(such as a Linux based operating system) to interface with the reconfigurable
FPGA fabric. This approach tries to leverage the ease of programmability of an
established hard-core processor (such as an ARM core) along with the extreme
design flexibility of the FPGA.

The FPGA used in this project does not have a built-in processor, though there
exists Xilinx IP modules (Microblaze) to instantiate "soft" cores, processors that
are constructed from the FPGA fabric directly. These are generally slower and
consume area depending on their configuration, but otherwise fulfil the same
purpose.

Furthermore, FPGAs have many IO connections (the XC7A200T-2FBG676C
FPGA onboard the AC701 Evaluation Kit has 400 such pins), making them
ideal for applications requiring many peripheral sensors and devices.

3.2 Microphone Array

The microphone array used in this project, shown in fig. 3.2, is designed by
Syntronic and it consists of a linear array of 24 MEMS microphones.The dis-
tance between the microphones play a vital role in determining the frequency
it can be optimized for. In the array used in this project the microphones are

Figure 3.2: Microphone array

spaced 11.43mm apart. The microphone used is SPH0641LU4H-1, which can
be clocked at different frequencies to get different bandwidth. It is a miniature
high performance microphone with one bit PDM output. This has to be filtered
inorder to get a PCM output. It has RF immunity, has a high SNR of 64.3dB
and supports ultrasonic applications [11].

8
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3.3 Breakout board

The breakout board, shown in fig. 3.3, designed by Syntronic, acts as a bridge
between the FPGA and the sensor-array board. It uses the High-Speed Mezza-
nine Card (HSMC) connector on the AC701 to route data signals and a single
clock signal to 4 sensor-array breakout connectors.

The breakout board includes a PI6C49X0206T fanout-buffer that drives the clock
signal to all four sensor arrays.

Since each sensor-array has 24 sensors, the FPGA must potentially drive 97
pins (accounting for the single clock signal), for which the density of the HSMC
connector is particularly suited.

Figure 3.3: FMC Breakout board

3.4 Ultrasonic Audio Source

The audio source used in this project is a commercial "dog-whistle", a handheld
tone-generator with a directional beam that produces a relatively pure 25 kHz
frequency. This tone, though great in volume, is imperceptible to humans but
within the audible range for dogs, hence the name.

9



CHAPTER

4 Implementation

A reference HDL design was provided, which implements a number of essential
hardware structures, laying the basis for the rest of the project. Most notably, a
modified version of the Cobham-Gaisler Leon3 processor is implemented, along
with peripheral devices such as various controllers for busses, RAM and ethernet
as well as a debug interface that is accessable using the debug monitor GRMON,
also from Cobham-Gaisler. All hardware IPs are provided via the GRLIB IP
library.

Additionally, the reference design implements a filter-cascade that converts raw
Pulse-Density Modulation (PDM) data from the microphones to 16-bit PCM
data , as well as a FIFO to buffer data until it can be written to onboard RAM.

The intended data flow of the reference design is that data is sampled from
the microphones, processed in some way that implements beamforming and
then stored sequentially in RAM. This stored data is then accessed from a
conventional PC via ethernet using the GRMON debug monitor, which directly
accesses RAM contents.

4.1 System Architecture

The system is built on the already given reference design responsible for si-
multaneously taking multiple input from four microphones and implementing
acoustic source localization.

The multiple signals are transmitted through one channel via a multiplexer
(mux), in 1-bit Pulse Density Modulation (PDM) format, to be converted into
a 16-bit Pulse-Code Modulation (PCM) signal before it can be processed as
shown in fig. 4.1 below. After conversion, the interleaved data is separated
using a demulitplexer (demux) and a bitstream containing the number of clock
cycles corresponding to the delay values for each scanning angle is driven to
the input address of the shift register. These delay values of microphones for
each angle are pre-calculated and saved in Read-Only Memory (ROM). After
summing the delayed waveforms, the pressure-energy of the signal is calculated,
finding the peak value (in order to obtain the total energy) and sending it to
the PC for further analysis to get the acoustic source direction.

10



CHAPTER 4. IMPLEMENTATION

Figure 4.1: System architecture diagram. For details, see text.

4.2 PDM to PCM conversion

The given reference design implements the conversion from PDM to PCM using
one cascaded integrator-comb decimating filter(CIC filter), one half-band FIR
filter, one low-pass FIR filter and one high-pass filter to output the 16-bit filtered
data at a 100 kHz rate.

As the fig. 4.2 shown, CIC Filter IP block is used to decimate the PDM input
by a factor of 16 and to convert it into a PCM format, Halfband FIR Filter IP
block decreases the sample rate of CIC output by 2 and compensates for the
passsband of CIC filter which is not flat [6]. Low-pass FIR filter IP block passes
the low frequency signal components and removes the high frequency noise and
high-pass filter is the final stage to remove any DC component induced by the
sigma-delta modulator or the microphone itself (offset error).

Since the input sampling rate of filters depends on the input clock of the micro-
phone system, the design has to generate appropriate clock inside the FPGA.
The sampling frequency of PDM is 3.2 MHz(100 Khz*32) based on the PCM
sampling rate of 100 KHz of this design but because of the hardware limita-
tions, it cannot generate 3.2 MHz clock directly from 100 MHz as the input
clock from Microphone system. Therefore, clock dividers are used to generate
a clock frequency of 3.2 MHz. Now this design is extended to 4 microphones by
using the multichannel mode of the CIC and FIR filters.

CIC Filter Lown Pass
FIR Filter FIFO

Clock Clock
division

DATA

CLK

100
MHz

1 
PDM

16
PCM

3.2
MHz

16

Halfband
FIR Filter

2

100
KHz

Figure 4.2: Design clocking
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4.3 Multi-channel implementation

4.3.1 Filters
The reference design is extended for 4 microphones by using the multiple channel
mode of the CIC and FIR filters, so that the muxed signal can be processed in
a serial manner.

4.3.2 Accesing multiple Channels of the CIC and FIR fil-
ters

The muxed PDM data from multiple microphones is sent as input to the CIC
filter Data Input Channel. From CIC filter schematic (fig 4.3), there are two
channels, the channel master and the channel slave, to control CIC Compiler
core’s processing of data. TVALID is driven by the channel master to show
that it has data to transfer and TREADY is given by the channel slave to show
that it is ready to accept data. The transfer happens until both TVALID and
TREADY are high [12].

s_axis_data_tdata[7:0]

s_axis_data_tlast

CIC_compiler

s_axis_data_tready

s_axis_data_tvalid

aclk

m_axis_data_tdata[23:0]

m_axis_data_tready

m_axis_data_tvalid

Figure 4.3: CIC filter schematic symbol

TDATA is the Data Input Channel and carries the unprocessed sample data.
TLAST is also for the Data Input Channel and it is only used in multichannel
mode, asserted by the sample data corresponding to the last channel. The
TLAST of the input channel is set to 1 after data from all the channels is sent.
All of these use the AXI4-Stream protocol [12]. Fig. 4.4 shows this protocol of
CIC filter input with four channels. The design of multiple channels IP block
mainly depends on it. The same technique is used for FIR filters also.

12
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Figure 4.4: Timing diagram of CIC filter input

4.3.3 De-Multiplexer
After the PDM data is successfully converted to PCM, we separate the data from
their muxed form by using a demux. The interleaved data is seperated at the
rising edge of the clock cycle again and stored in registers for DAS beamforming.

4.4 DAS beamforming

The delay values for each microphone with angles from 30 degrees to 150 degrees
are pre-calculated in MATLAB. Assuming the source is in the far field and sound
speed c is 343 m/s, d is the space distance between two neighboring sensors. The
souce wave arrives one microphone with an angle of θ. The delay values between
the n:th microphone and the reference sensors is decribed by the flowing fomula
[4].

Delay =
(N − 1) d

c
cos θ

Using the calculation ofNclk = ceil (Delay ∗ fclk), fclk is the sampling frequency
of PDM of 3.2 MHz, to convert these daly values to a number of clock cycles
and saving them in a COE file as the initialization of ROMs IP block in Vivado.

In the next experiment step, the clock frequency will be divided to drive the
shift register IP blocks and using an adder IP block to add the maximum delay
with the shift registers traversed by enable signals of FIR filters.

The formula below is used to obtain the plot of beam pattern with 24 micro-
phones and sound frequency. W is the array’s reponse to a signal, f is the sound
frequency and Ψ is a directional angle from 30 to 150 degree (the incident angle
of the wavefront) and θ is the look-direction of the beamformer[4].

|W (ψ, θ)| =

∣∣∣∣∣∣
sin
(
Nπ fd(cosψ−cos θ)c

)
N sin

(
π fd(cosψ−cos θ)

c

)
∣∣∣∣∣∣ (4.1)

The array beam pattern can be seen in MATLAB with different numbers of
microphones and value of source frequency, under the premise of fixed distance
between two neighboring sensors, in order to help us analyse how the beam-
former infected by the spatial aliasing. As we known, if the sidelobes are as low
as possible, the signals from other directions except the source direction would
be attenuated as much as possible so that we can determine the range of source

13
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sound frequency, it is about from 27 kHz to 30 kHz by using dog whistle to
avoid spatial aliasing.

In our system disgn we used four micros and dog wistle to test the sound loca-
tion, the theoretical value of beamforming is showed below Fig. 4.5.

This figure plots the beam pattern for 4 microphones with 90◦ and f = 30 kHz.
The mainlobe is from the sound direction properly at 90◦.
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Figure 4.5: Beamforming of 4 microphones with frequency of 25 kHz at 90◦

However, changing the direction of sound location, the beam pattern will ad-
just the angle of the mainlobe but also introduce new aliasing issues into the
beamforming.
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Figure 4.6: Beamforming of 4 microphones with frequency of 25 kHz at 30◦
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4.5 RAM based shift register and Block memory
generator

The RAM based shift registers are used to delay the input signals by the values
pre-calculated in matlab using the formula for finding the delays. It has an
active high clock enable and the data from the demux is sent as the parallel
data input. The delay values are stored in a single port ROM using a block
memory generator in a .coe file. The values are accessed by the memory address
and then outputted to the shift register. The delayed signals are then sent to
the adder.

4.6 Finite state machine of scanning block

In the previous work, we already calculated the delay values of four microphones
for the angels from 30◦ to 150◦ and we get the number of clock cycle to delay
in shift registers for 120 angles, the maximum value of them is 278 (we use 300
as the mux cycle in the code of scanning block), which are saved in ROMs.
Therefore, for the purpose of getting the directional energy of sound source, we
have to adjust the delay at each angle, sample some data, add them together,
square them to get the energy for directions and compare them to get the
maximum value, which will be the direction of arrival. In order to control the
shift register and energy calculation block, we need to use finite state machine,
the design is shown below.

IDLE

DELAY

IDLE

start=1

DEGREE

start=0

SUM

demux_finish =1
clock cycle of delay <300

enable adder =1

enable adder =0

start=0

angle<120

Figure 4.7: The state diagram for FSM to control DAS and compare the energy

The IDLE state is to wait for the switch on the FPGA turns on and all the
data is finished to demux. The delay state is used for all the four microphones
propagated out of the shift registers at each degree and the sum state is to add
the amplitude together. Every time the system changes to the next four address
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of next angle, the number of delay clock cycle is already saved in ROMs, it will
return to delay value to assert a counter and read the new delay from ROMs.

In our system design, there are actullay 120 sets of number of delay clock cycle
corresponding to a scan between 30◦ to 150◦. Thus, the counter needs to incre-
ment 119 times to finish the entire scan for the angles in a system. We use a
flag signal of scan_finish to indicate that all dalay values are implemented for
four microphones and another flag signal of adder_enable to control the energy
calculation blcok. The figure showed below illustrates how the micros are prop-
agated out of the shift registers and energy calculation block is controlled by
scaning block.

Demux

RAM-based Shift
Register

RAM-based Shift
Register

RAM-based Shift
Register

RAM-based Shift
RegisterD

D

D

D

ROM

A

A

A

A

Adder and multiply

Scaning
demux finish

control the address of daly values in ROMs

Energy compare

Figure 4.8: Diagram of how the micros are propagated out of the shift registers
and energy calculation blcok is controlled by scaning blcok

4.7 Energy calculation and source location

The code for energy calculation is written in vhdl with sum and multiplication
together and initialised as a block in vivado, which squares the input signal and
the squared signals are compared to get the mux energy in order to identify
the location of the sound source. The signal with highest energy (amplitude
squared) is the desired ultrasonic source. The formula to calculate energy is
showed in chapter 1 of background theory and prior work.

4.8 Data storage and communication (to PC)

As the system archtecture shown above, the PCM samples are saved in DDR
on the board and read them from PC by Ethernet.
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Therefore the memory controller, Ethernet controller and AHB bus are used to
connect to FIFO IP block.

4.9 GRLIB and APB BUS

GRLIB is Gaisler Research Library to use for set reusable IP cores fro system-
on-chip development using Gaisler’s LEON3 processor, which is provided in the
reference design.

It includes VHDL code for processor core, peripherals, bus and memory con-
trollers and debug support unit to simulation and synthesis. LEON3 system is
shown as following fig 4.9.

AHB
BUS

Memory
Controller DDR Memory

Ethernet
Controller Ethernet

JTAG
Debug

Link
JTAG

LEON3
Processor

Figure 4.9: LEON3 based system

AHB Bus is AMBA High-performance Bus, which is multi-master bus for con-
necting peripherals with high data rates and variable latency. The structure is
shown as fig 4.10.
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Master1

Master2

Master3

BUS
CONTROL

SLAVE1

SLAVE2

Figure 4.10: The structure of AHB Bus
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5 Experiments

5.1 Implementing multiple data channels and ver-
ifying in Audacity

All the microphones on the sensor array are clocked synchronously and thus out-
put data in parallel. Multiple data channels were implemented to support this
using time-multiplexing/demultiplexing (also known as interleaving/deinterleaving).
The filter-cascade is composed of IP modules that can be configured to receive
time-multiplexed data, and so only one filter-cascade needs to be instantiated.

Correct functionality was verified by recording a known frequency, importing the
sampled data into Audacity (which also interprets multiple channels as time-
multiplexed) and using the built-in spectrum analyzer to verify that the known
frequency is reproduced in each channel.

5.2 Implemented support for ultrasonic mode in
sensors with verification using spectrum an-
alyzer in Audacity

To implement ultrasonic support, the data rate of the PCM signal on the output
of the PDM-to-PCM filter-cascade must be increased to at least twice that of
the ultrasonic audio source. Furthermore, the microphones require a minimum
clock-rate of 3.072MHz in order to sample ultrasonic frequencies. The PDM
clock was adjusted to 3.2MHz, which after decimation gives a PCM data-rate
of 100 kHz, which is adequate to sample the 25 kHz audio source.

This necessitated computing new filter coefficients for the filter cascade, using
the new sample rate with the existing decimation rates.

The correct functionality was verified by importing sampled data (without any
processing) into Audacity and using the built-in spectrum analyzer. The result is
shown in fig. 5.1, which shows a relatively pure tone with its peak at 24.985 kHz.

The figure of system design is showed as fig 5.2
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Figure 5.1: Frequency spectrum of sampled ultrasonic signal source. Peak at
24.985 kHz.

Figure 5.2: The partial design of mux and demux in vivado

5.3 Summation of multiple sensor inputs without
delays (equivalent to look-direction of 90◦)

The demultiplxed signals for four microphones are added together using adder
IP blocks to test the look-direction of 90◦. The sampling frequency of PDM is
1.4112 Mhz and the sampling frequency of PCM is 44100 hz according to the ref-
erence design first, which is verified to ultrasonic frequency of 3.2 Mhz next.The
figures of system design and recorded raw data(human voice)in AUDACITY is
showed as following.
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Figure 5.3: The partial design of demux and adders in vivado

Figure 5.4: Raw data of 44100 hz of PCM implemented by demux and adder
IP block in vivado

5.4 Summation of multiple sensor inputs with spe-
cific delays (equivalent to look-direction with
several specfiec different angles)

After demuxltipling one signal to four 16-bit signals, adding four shift register
blocks, four ROMs and three adders in the system design to point to the specific
address in the ROMs of each angle. Firstly, seven angles were chosen, which are
30◦, 50◦, 70◦, 90◦, 110◦, 130◦and 150◦. The sampling frequency of PDM was
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also changed to 3.2 MHz corresponding to the sampling frequency of PCM of
100 kHzm and used different direction to record the dog whistle. The figure of
system design is showed below.

Figure 5.5: The partial design of system design of fixed several angles delay in
vivado

5.5 Summation of multiple sensor inputs with scan-
ing delays (120 angles totally from 30◦to 150◦)

Adding scanning block to control the delay lines in system design in vivado.
There are 120 sets of delays corresponding to a sweep from 30◦to 150◦for four
microphones, use enable_adder and scan_finish flag signal to control the energy
calculation block for each angle. The figure of partial design of scaning and
energy calculation is showed in fig 5.6 below.

The final energy data was imported in Matlab, and there were negative values in
the result, which was unexpected. Attempting to output debug values through
the FIFO generator, such as all zeroes, was also unsuccessful, suggesting an
issue with the implementation.

The report in vivado also showed a large negative timing slack in the path of
hardware after the implementation , indicating a latch in demux part. The
demux code was modified to remove the latches and since it used combinatorial
process, all the input signals in the sensitivity list were not included. However,
another source of slack was due to the multiple adders (which was used to
add the delayed input signals) which also resulted in layout problem(fanout).
To remove the slack due to multiple adders, the code was written in VHDL
and implemented as a single IP block. The larger negative slack became small
eventually. The figure of timing slack is showed in fig 5.7
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Figure 5.6: The partial of system design of scaning angle block in vivado

Figure 5.7: There is still small negative timing slack in vivado

5.6 Simulating System Functionality in Questasim

Designing iteratively in actual hardware is both inflexible and time-consuming,
with sythesis runs often exceeding 15 minutes for the design described in this
report. This is partly due to the fact that a significant amount of supporting
hardware is needed to make it implementable and to interface with external
devices.

This motivates the use of simulation to test for correct functionality under ide-
alized conditions, without including the aforementioned supporting hardware.
This allows much faster design iteration, as results can be generated in very
little time, and can quickly eliminate issues that do not depend on the imple-
mentation itself.
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This allows experimenting and gauging the effects of system parameters and
different component implementations.

To this end, a model of the core functionality (delay-and-sum processing, mul-
tiplexing/demultiplexing, energy computation and angle-scanning) was con-
structed in VHDL and simulated in Questasim. Initally, a purely behavioural,
non-synthesizable model was written with the goal of trying to produce results
that match the theoretical results produced in MATLAB. This model was suc-
cessively modified to exchange behavioural components for synthesizable coun-
terparts.

Since the model does not have a real input signal, this too had to be simulated.
The inputs, representing parallel data channels coming from the sensors, we
simulated as pure, full-range sine waves with the same frequency as the ultra-
sonic audio source. These could be phase-offset, in order to simulate the effects
of different incident angles

The end result was a model that is synthesizable (though perhaps not imple-
mentable due to timing requirements) that produces results that align with
theoretical beam pattern plots, as seen in fig. 5.8.

Figure 5.8: Questasim simulation of the HDL model of the core system. The-
oretical MATLAB model overlaid for comparison. The HDL model adjusts its
delay values to sweep between [0, π] rad.
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6 Results

The following results were obtained :

• The delay values for each microphone for every angle within the range of
30◦to 150◦is calculated by using the MATLAB script.

• By using the multi-channel mode in the CIC and FIR filter blocks given in
the reference design, audio was recorded with multiple microphones. We
listened to the recorded audio using AUDACITY and confirmed that the
signals were sampled properly.

• Implementing delay values of seven angles for four microphones by RAM-
based shift register and ROMs, whcih can be selected to point to an adrress
for a specific angle and test it in the different location of sound direction
to see the sound signal resul in AUDACITY.

• For getting the derectional energy we have to change the delays to point
the beam in the set of angles by implementing FSM to finish the sweep of
delay values for each angle.

• Calculating energy of the audio for each angle and compare the muximum
value to get the directional energy, dump it from board to analyze in
Matlab.

6.1 Discussion and Analysis

Even though we get the delay values for all angles, spatial aliasing occurs at the
extremes i.e, 0◦and 180◦. But with increasing number of microphones, spatial
aliasing decreases as shown in figure 6.1.
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Figure 6.1: Spectral aliasing with varying number of microphones (horizontal
axis) and increased spacing between adjacent sensors (vertical axis). Each plot
shows frequency response vs. incident angle for 0 to 40 kHz.

As the FPGA hardware design was iterated upon throughout the project, the
synthesized and implemented design continually failed to meet timing require-
ments. This was already apparent in the unmodified reference design, and the
failing signal paths were traced to the ethernet controller, rather than anything
implemented in this project. In practice, the design did not seem to be af-
fected by this and so no attempts were made to correct it, as it was deemed
out-of-scope. There is, however, the possibility that, as the design became more
complex, this negative timing slack was exacerbated, leading to timing issues in
other parts of the design. For any future development, the negative timing slack
in the ethernet controller should be corrected. One possible way in which this
might be achieved is through explicit floorplanning, as described in a Xilinx tu-
torial video [13]. This involves isolating critical parts of the design so that they
meet the timing requirements and then "locking" their implementation in place.
When subsequently implementing the design as a whole, the tool will take into
account the "locked" elements and design around them. This may clearly result
in sub-optimal placement of some parts of the design, but hopefully guarantee
that all timing requirements are met.
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7
Conclusion & Future
Work

7.1 Conclusion

Although we initially aimed to achieve a fully functioning system to track the
source, we were not able to use the data that was recorded for further analysis.
But all those efforts were not in vain because we learned a lot about tackling
the difficulties of designing a system in Vivado and ultrasonics, more specifically
about the spectral aliasing and how it affects the design considerations. For a
system to work in real time and be reliable, the most important factors are
latency and accuracy which can be drasticlally improved in the future.

7.2 Future Experiments

7.2.1 Identify the reason for timing slack in the system
design in vivado

There is still a small negative timing slack in the system design in vivado, hence
the source of the slack must be found and fixed in the future, to think further
about how to write the code to prioritise the final design and layout.

7.2.2 Verifying scaning 120 angles in ROMs to 24 micro-
phones

Output signal should still be sinusoidal but amplitude should conform to spatial
filtering function.

7.2.3 Computing approximate energy at each angle from
summed signals

On FPGA or in MATLAB; might be better to do in MATLAB as the formula
(at least in the naive, direct implementation) requires a lot of resources and
very wide data words to maintain precision (precision that may not be needed)

Implementing beamforming (using shift registers etc) and:

• Manual verification of sound source at fixed angle using fixed delay-values.
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CHAPTER 7. CONCLUSION & FUTURE WORK

Change angle manually using buttons.(get respective pre-computed
delays from a source file for each increment/decrement in angle )

Potentially use LCD for debug information (angle of beam etc...)

• Sweeping along one dimension at fixed rate

What factors will limit the sweep rate/refresh rate?

7.2.4 Extend to implement 2 microphone array
The system, as it is currently designed, only implements 4 microphones in the
sensor array, though extending it to support all 24 microphones requires only
minimal design effort due to the generic nature of the design. The same is
largely true of implementing support for a second sensor array in order to scan
along an orthoganol dimension.
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