

Seminar 6

Thomas Rylander

Department of Electrical Engineering
Chalmers University of Technology

February 22, 2022

Presentation Outline

The Method of Moments – Basic method

Green's functions for electrostatics in 3D and 2D

The Method of Moments – General formulation

Solution by means of weighted residuals

Capacitance problem in 2D for an unbounded region

Poisson's equation and its solution

Poisson's equation is

$$\nabla^2 \phi = -\frac{\rho_v}{\epsilon_0}.$$

has the solution

$$\phi(\vec{r}) = \int_V \frac{\rho_v(\vec{r}')}{4\pi\epsilon_0|\vec{r} - \vec{r}'|} dV'$$

which is based on the superposition of contributions

$$d\phi(\vec{r}) = \frac{dq'}{4\pi\epsilon_0|\vec{r} - \vec{r}'|}$$

with point charges $dq' = \rho_v(\vec{r}')dV'$ at locations \vec{r}' .

Integral equations

Known potential $\phi(\vec{r}) = \phi_{\text{spec}}(\vec{r})$ on conductor surfaces S yields integral equation

$$\frac{1}{4\pi\epsilon_0} \int_S \frac{\rho_s(\vec{r}')}{|\vec{r} - \vec{r}'|} dS' = \phi_{\text{spec}}(\vec{r})$$

to solve for the unknown charge density $\rho_s(\vec{r}')$ on the surface of the conductor.

In 2D, the surface integral reduces to a line integral

$$-\frac{1}{2\pi\epsilon_0} \int_S \rho_l(\vec{r}') \ln |\vec{r} - \vec{r}'| dl' = \phi_{\text{spec}}(\vec{r}).$$

which is based on the superposition of the potential from a line charge

$$d\phi(\vec{r}) = -\frac{\rho_l(\vec{r}') dl'}{2\pi\epsilon_0} \ln |\vec{r} - \vec{r}'|$$

Presentation Outline

The Method of Moments – Basic method

Green's functions for electrostatics in 3D and 2D

The Method of Moments – General formulation

Solution by means of weighted residuals

Capacitance problem in 2D for an unbounded region

Green's function in 3D

The potential from a point charge in three dimensions satisfies Poisson's equation,

$$-\epsilon_0 \nabla^2 \phi(\vec{r}) = \delta^3(\vec{r} - \vec{r}').$$

where $\delta^3(\vec{r} - \vec{r}')$ is the 3D Dirac delta function.

In Cartesian coordinates, we have

$$\delta^3(\vec{r} - \vec{r}') = \delta(x - x')\delta(y - y')\delta(z - z')$$

where $\delta(\xi - \xi') = 0$ for $\xi \neq \xi'$ such that

$$\int_{\xi_1}^{\xi_2} \delta(\xi - \xi') d\xi = \begin{cases} 1 & \text{if } \xi_1 < \xi' < \xi_2 \\ 0 & \text{otherwise} \end{cases}$$

Green's function in 3D

The Green's function $G(\vec{r}, \vec{r}')$ satisfied

$$-\epsilon_0 \nabla_r^2 G(\vec{r}, \vec{r}') = \delta^3(\vec{r} - \vec{r}')$$

where ∇_r^2 acts on the \vec{r} argument.

By symmetry, we have $G(\vec{r}, \vec{r}') = G(R)$ with the distance $R = |\vec{r} - \vec{r}'|$ between the source and observation point.

For $R > 0$, we have

$$-\epsilon_0 \frac{1}{R^2} \frac{d}{dR} \left(R^2 \frac{dG}{dR} \right) = 0$$

in spherical coordinates with the origin at the point source.

Green's function in 3D

We have two possible solutions

$$G_1 = a_1 \text{ (rejected since no electric field)}$$

$$G_2 = \frac{a_2}{R}$$

where a_2 is a constant to be determined.

Thus, we have the Green's function

$$G = G_2 = \frac{a_2}{R}$$

Green's function in 3D

Integrate $-\epsilon_0 \nabla_r^2 G(\vec{r}, \vec{r}') = \delta^3(\vec{r} - \vec{r}')$ over sphere of radius R_0

$$\begin{aligned}-\epsilon_0 \int_{R < R_0} \nabla \cdot \nabla G dV &= -\epsilon_0 \oint_{R=R_0} \nabla G \cdot \hat{n} dS \\ &= -\epsilon_0 \left(-\frac{a_2}{R_0^2} \right) \cdot 4\pi R_0^2 \\ &= 4\pi\epsilon_0 a_2 \text{ (left-hand side)} \\ &= 1 \text{ (right-hand side)}\end{aligned}$$

which gives $a_2 = 1/(4\pi\epsilon_0)$ and

$$G(R) = \frac{a_2}{R} = \frac{1}{4\pi\epsilon_0 R} \Rightarrow G(\vec{r}, \vec{r}') = \frac{1}{4\pi\epsilon_0 |\vec{r} - \vec{r}'|}$$

Green's function in 2D

Redo the derivation with cylindrical coordinates for $r > 0$, which gives

$$-\epsilon_0 \frac{1}{r} \frac{d}{dr} \left(r \frac{dG}{dr} \right) = 0$$

with the origin at the point/line source.

We get (after rejecting the constant solution $G_1 = a_1$) that

$$G = G_2 = a_2 \ln r$$

(Note that $G \rightarrow \infty$ as $r \rightarrow \infty$.)

Green's function in 2D

Integration of $-\epsilon_0 \nabla_r^2 G(\vec{r}, \vec{r}') = \delta^2(\vec{r} - \vec{r}')$ over a cylinder of radius r_0 and length L gives

$$\begin{aligned} -\epsilon_0 \int_{r < r_0} \nabla \cdot \nabla G dV &= -\epsilon_0 \oint_{r=r_0} \nabla G \cdot \hat{n} dS \\ &= -\epsilon_0 \frac{a_2}{r_0} \cdot 2\pi r_0 L \text{ (left-hand side)} \\ &= L \text{ (right-hand side)} \end{aligned}$$

which gives $a_2 = -1/(2\pi\epsilon_0)$ and we get

$$G(r) = -\frac{1}{2\pi\epsilon_0} \ln r \Rightarrow G(\vec{r}, \vec{r}') = -\frac{1}{2\pi\epsilon_0} \ln |\vec{r} - \vec{r}'|$$

Presentation Outline

The Method of Moments – Basic method

Green's functions for electrostatics in 3D and 2D

The Method of Moments – General formulation

Solution by means of weighted residuals

Capacitance problem in 2D for an unbounded region

General formulation

For a differential equation $L[f] = s$ with a field f related to a source s by means of a differential operator L , we have

$$L_r [G(\vec{r}, \vec{r}')] = \delta^3(\vec{r} - \vec{r}')$$
$$f(\vec{r}) = \int G(\vec{r}, \vec{r}') s(\vec{r}') dV'$$

Presentation Outline

The Method of Moments – Basic method

Green's functions for electrostatics in 3D and 2D

The Method of Moments – General formulation

Solution by means of weighted residuals

Capacitance problem in 2D for an unbounded region

FEM solution in 3D

Expand the unknown charge distribution $\rho_s(\vec{r})$ in terms of basis functions $\psi_j(\vec{r})$ and coefficients a_j (to be determined) as

$$\rho_s(\vec{r}) = \sum_{j=1}^N a_j \psi_j(\vec{r})$$

$$\begin{aligned} \frac{1}{4\pi\epsilon_0} \int_S \frac{\rho_s(\vec{r}')}{|\vec{r} - \vec{r}'|} dS' &= \frac{1}{4\pi\epsilon_0} \sum_{j=1}^N a_j \int_S \frac{\psi_j(\vec{r}')}{|\vec{r} - \vec{r}'|} dS' \\ &= \sum_{j=1}^N a_j \phi_j(\vec{r}) = \phi(\vec{r}) = \phi_{\text{spec}}(\vec{r}) \end{aligned}$$

where the potential ϕ_j due to ψ_j is

$$\phi_j(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_S \frac{\psi_j(\vec{r}')}{|\vec{r} - \vec{r}'|} dS'$$

Point matching or collocation

As an example, we subdivide surface into cells with piecewise constant basis functions $\psi_j(\vec{r})$.

At the center \vec{r}_i of each cell i , we require that

$$\phi(\vec{r}_i) = \phi_{\text{spec}}(\vec{r}_i)$$

for $i = 1, 2, \dots, N$.

This gives a system of linear equations

$$\begin{bmatrix} \phi_1(\vec{r}_1) & \phi_2(\vec{r}_1) & \dots & \phi_N(\vec{r}_1) \\ \phi_1(\vec{r}_2) & \phi_2(\vec{r}_2) & \dots & \phi_N(\vec{r}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(\vec{r}_N) & \phi_2(\vec{r}_N) & \dots & \phi_N(\vec{r}_N) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{bmatrix} = \begin{bmatrix} \phi_{\text{spec}}(\vec{r}_1) \\ \phi_{\text{spec}}(\vec{r}_2) \\ \vdots \\ \phi_{\text{spec}}(\vec{r}_N) \end{bmatrix}$$

Weighted residual

Choose weighting functions $w_i = w_i(\vec{r})$ and require that

$$\int_S w_i(\vec{r}) [\phi(\vec{r}) - \phi_{\text{spec}}(\vec{r})] dS = 0$$
$$\Rightarrow \langle w_i, \phi \rangle = \langle w_i, \phi_{\text{spec}} \rangle$$

for $i = 1, 2, \dots, N$.

Galerkin's method: $w_i = \psi_i$

Petrov-Galerkin's method: $w_i \neq \psi_i$

Point matching: $w_i = \delta^2(\vec{r}_i)$

Weighted residual

This gives a system of linear equations $\mathbf{Ax} = \mathbf{b}$ with

$$\mathbf{A} = \begin{bmatrix} \langle w_1, \phi_1 \rangle & \langle w_1, \phi_2 \rangle & \dots & \langle w_1, \phi_N \rangle \\ \langle w_2, \phi_1 \rangle & \langle w_2, \phi_2 \rangle & \dots & \langle w_2, \phi_N \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle w_N, \phi_1 \rangle & \langle w_N, \phi_2 \rangle & \dots & \langle w_N, \phi_N \rangle \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} \langle w_1, \phi_{\text{spec}} \rangle \\ \langle w_2, \phi_{\text{spec}} \rangle \\ \vdots \\ \langle w_N, \phi_{\text{spec}} \rangle \end{bmatrix}$$

Weighted residual

We have the matrix entries

$$\begin{aligned} A_{ij} &= \langle w_i, \phi_j \rangle = \int_S w_i(\vec{r}) \phi_j(\vec{r}) dS \\ &= \int_S w_i(\vec{r}) \left[\frac{1}{4\pi\epsilon_0} \int_S \frac{\psi_j(\vec{r}')}{|\vec{r} - \vec{r}'|} dS' \right] dS \\ &= \frac{1}{4\pi\epsilon_0} \int_S \int_S w_i(\vec{r}) \psi_j(\vec{r}') \frac{1}{|\vec{r} - \vec{r}'|} dS' dS \end{aligned}$$

and the vector entries

$$b_i = \langle w_i, \phi_{\text{spec}} \rangle = \int_S w_i(\vec{r}) \phi_{\text{spec}}(\vec{r}) dS$$

Presentation Outline

The Method of Moments – Basic method

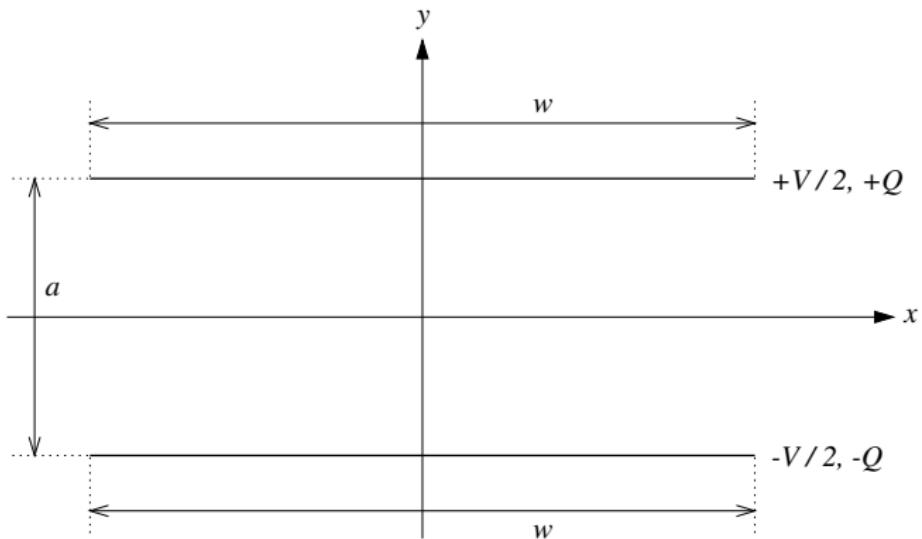
Green's functions for electrostatics in 3D and 2D

The Method of Moments – General formulation

Solution by means of weighted residuals

Capacitance problem in 2D for an unbounded region

Geometry of parallel plate capacitor



Geometry of parallel plate capacitor

The potential is given by

$$\begin{aligned}\phi(\vec{r}) &= -\frac{1}{2\pi\epsilon_0} \rho_l(\vec{r}') \ln |\vec{r} - \vec{r}'| \\ \Rightarrow d\phi(\vec{r}) &= -\frac{1}{2\pi\epsilon_0} [\rho_s(\vec{r}') dl'] \ln |\vec{r} - \vec{r}'| \\ \Rightarrow \phi(\vec{r}) &= -\frac{1}{2\pi\epsilon_0} \int_L \rho_s(\vec{r}') \ln |\vec{r} - \vec{r}'| dl'\end{aligned}$$

and here we get

$$\begin{aligned}\phi(x, y) &= -\frac{1}{2\pi\epsilon_0} \int_{-w/2}^{w/2} \rho_s \left(x', \frac{a}{2} \right) \ln \sqrt{(x - x')^2 + \left(y - \frac{a}{2} \right)^2} dx' \\ &\quad - \frac{1}{2\pi\epsilon_0} \int_{-w/2}^{w/2} \rho_s \left(x', -\frac{a}{2} \right) \ln \sqrt{(x - x')^2 + \left(y + \frac{a}{2} \right)^2} dx'\end{aligned}$$

Symmetries and discretization

The surface charge density fulfills

$$\rho_s(-x', a/2) = \rho_s(x', a/2)$$

$$\rho_s(x', -a/2) = -\rho_s(x', a/2)$$

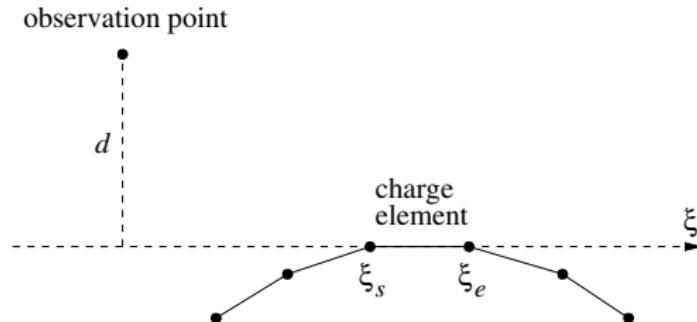
It is enough to discretize only the right half of the upper plate.

Use N elements and $\rho_s(x, a/2) = \sum_j \rho_{j+\frac{1}{2}} \psi_{j+\frac{1}{2}}(x)$ for $x > 0$.

Discretize each capacitor plate by

- ▶ Introduce nodes at $x_j = jh$ with $h = (w/2)/N$ and $j = 0, 1, \dots, N$
- ▶ Define elements on $[x_j, x_{j+1}]$ with $j = 0, 1, \dots, N - 1$
- ▶ Piecewise constant basis functions $\psi_{j+\frac{1}{2}}(x)$
(equal to one on element j and zero otherwise)
- ▶ Point matching $x_{\text{test},i} = x_{i+\frac{1}{2}} = \frac{1}{2}(x_i + x_{i+1})$

Potential from one basis functions



The potential is given by

$$\begin{aligned} I(\xi_s, \xi_e, d) &= -\frac{1}{2\pi\epsilon_0} \int_{\xi_s}^{\xi_e} \ln \sqrt{\xi^2 + d^2} \, dx \\ &= -\frac{1}{2\pi\epsilon_0} \left[\frac{1}{2} \xi \ln(\xi^2 + d^2) - \xi + d \arctan(\xi/d) \right]_{\xi_s}^{\xi_e} \end{aligned}$$

for a basis function $\psi_{j+\frac{1}{2}}(\xi')$ that is equal to one on the interval $\xi_s < \xi' < \xi_e$ and zero otherwise.

System of linear equations

We have

$$\phi(x_{i+\frac{1}{2}}, y) = \sum_{j=0}^{N-1} A_{ij} \rho_{j+\frac{1}{2}}$$

for the testing points $x_{i+\frac{1}{2}}$ for $i = 0, 1, \dots, N - 1$.

The matrix elements are given by

$$\begin{aligned} A_{ij} &= I(x_j - x_{i+\frac{1}{2}}, x_{j+1} - x_{i+\frac{1}{2}}, 0) && \text{upper right quadrant} \\ &+ I(-x_{j+1} - x_{i+\frac{1}{2}}, -x_j - x_{i+\frac{1}{2}}, 0) && \text{upper left quadrant} \\ &- I(x_j - x_{i+\frac{1}{2}}, x_{j+1} - x_{i+\frac{1}{2}}, a) && \text{lower right quadrant} \\ &- I(-x_{j+1} - x_{i+\frac{1}{2}}, -x_j - x_{i+\frac{1}{2}}, a) && \text{lower left quadrant} \end{aligned}$$

and the right-hand side $b_i = \phi_{\text{spec}}(x_{i+\frac{1}{2}}, a/2) = U_0/2$.

Compute the capacitance

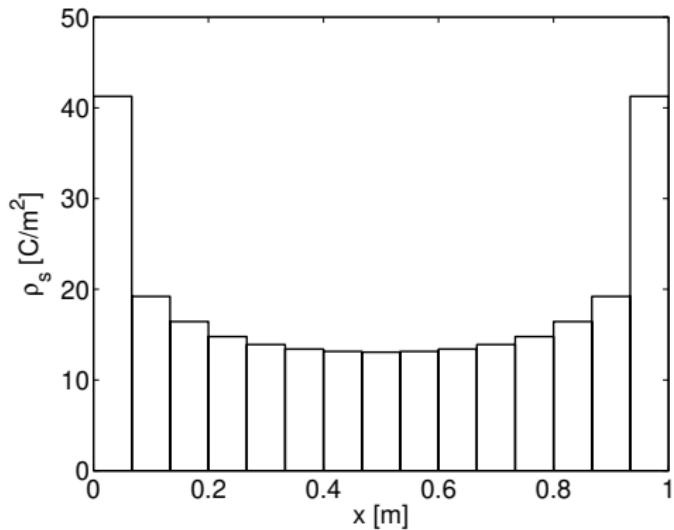
We have the capacitance per unit length as

$$\frac{C}{L} = \frac{Q/L}{U_0} = \frac{h}{U_0} \sum_{j=0}^{N-1} \rho_{j+\frac{1}{2}}$$

Linear convergence in h and $a = w = 1$ m gives (no symm.)

$4N$ [-]	h [m]	C/L [pF/m]
10	0.20000	18.0313850
20	0.10000	18.3729402
30	0.06666	18.4910121
50	0.04000	18.5869926
70	0.02857	18.6285417
100	0.02000	18.6598668
140	0.01428	18.6808279
200	0.01000	18.6965895

Charge distribution – Uniform discretization



Charge distribution – Adaptively refined discretization

