
Seminar 6

Thomas Rylander

Department of Electrical Engineering
Chalmers University of Technology

February 22, 2022

1 / 28



Presentation Outline

The Method of Moments – Basic method

Green’s functions for electrostatics in 3D and 2D

The Method of Moments – General formulation

Solution by means of weighted residuals

Capacitance problem in 2D for an unbounded region

2 / 28



Poisson’s equation and its solution

Poisson’s equation is

∇2ϕ = −ρv
ϵ0
.

has the solution

ϕ(r⃗ ) =

∫
V

ρv(r⃗
′)

4πϵ0|r⃗ − r⃗ ′|
dV ′

which is based on the superposition of contributions

dϕ(r⃗ ) =
dq′

4πϵ0|r⃗ − r⃗ ′|

with point charges dq′ = ρv(r⃗
′)dV ′ at locations r⃗ ′.
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Integral equations

Known potential ϕ(r⃗ ) = ϕspec(r⃗ ) on conductor surfaces S yields
integral equation

1

4πϵ0

∫
S

ρs(r⃗
′)

|r⃗ − r⃗ ′|
dS′ = ϕspec(r⃗ )

to solve for the unknown charge density ρs(r⃗
′) on the surface of

the conductor.

In 2D, the surface integral reduces to a line integral

− 1

2πϵ0

∫
S
ρl(r⃗

′) ln |r⃗ − r⃗ ′|dl′ = ϕspec(r⃗ ).

which is based on the superposition of the potential from a line
charge

dϕ(r⃗ ) = −ρl(r⃗
′)dl′

2πϵ0
ln |r⃗ − r⃗ ′|
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Green’s function in 3D

The potential from a point charge in three dimensions satisfies
Poisson’s equation,

−ϵ0∇2ϕ(r⃗ ) = δ3(r⃗ − r⃗ ′).

where δ3(r⃗ − r⃗′) is the 3D Dirac delta function.

In Cartesian coordinates, we have

δ3(r⃗ − r⃗ ′) = δ(x− x′)δ(y − y′)δ(z − z′)

where δ(ξ − ξ′) = 0 for ξ ̸= ξ′ such that∫ ξ2

ξ1

δ(ξ − ξ′)dξ =

{
1 if ξ1 < ξ′ < ξ2
0 otherwise
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Green’s function in 3D

The Green’s function G(r⃗, r⃗ ′) satisfied

−ϵ0∇2
rG(r⃗, r⃗

′) = δ3(r⃗ − r⃗ ′)

where ∇2
r acts on the r⃗ argument.

By symmetry, we have G(r⃗, r⃗ ′) = G(R) with the distance
R = |r⃗ − r⃗ ′| between the source and observation point.

For R > 0, we have

−ϵ0
1

R2

d

dR

(
R2dG

dR

)
= 0

in spherical coordinates with the origin at the point source.
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Green’s function in 3D

We have two possible solutions

G1 = a1 (rejected since no electric field)

G2 =
a2
R

where a2 is a constant to be determined.

Thus, we have the Green’s function

G = G2 =
a2
R
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Green’s function in 3D

Integrate −ϵ0∇2
rG(r⃗, r⃗

′) = δ3(r⃗ − r⃗ ′) over sphere of radius R0

−ϵ0
∫
R<R0

∇ · ∇GdV = −ϵ0
∮
R=R0

∇G · n̂dS

= −ϵ0
(
− a2
R2

0

)
· 4πR2

0

= 4πϵ0a2 (left-hand side)

= 1 (right-hand side)

which gives a2 = 1/(4πϵ0) and

G(R) =
a2
R

=
1

4πϵ0R
⇒ G(r⃗, r⃗ ′) =

1

4πϵ0|r⃗ − r⃗ ′|
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Green’s function in 2D

Redo the derivation with cylindrical coordinates for r > 0,
which gives

−ϵ0
1

r

d

dr

(
r
dG

dr

)
= 0

with the origin at the point/line source.

We get (after rejecting the constant solution G1 = a1) that

G = G2 = a2 ln r

(Note that G→ ∞ as r → ∞.)
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Green’s function in 2D

Integration of −ϵ0∇2
rG(r⃗, r⃗

′) = δ2(r⃗ − r⃗ ′) over a cylinder of
radius r0 and length L gives

−ϵ0
∫
r<r0

∇ · ∇GdV = −ϵ0
∮
r=r0

∇G · n̂dS

= −ϵ0
a2
r0

· 2πr0L (left-hand side)

= L (right-hand side)

which gives a2 = −1/(2πϵ0) and we get

G(r) = − 1

2πϵ0
ln r ⇒ G(r⃗, r⃗ ′) = − 1

2πϵ0
ln |r⃗ − r⃗ ′|
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General formulation

For a differential equation L[f ] = s with a field f related to a
source s by means of a differential operator L, we have

Lr

[
G(r⃗, r⃗ ′)

]
= δ3(r⃗ − r⃗ ′)

f(r⃗ ) =

∫
G(r⃗, r⃗ ′)s(r⃗ ′)dV ′
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FEM solution in 3D

Expand the unknown charge distribution ρs(r⃗ ) in terms of basis
functions ψj(r⃗ ) and coefficients aj (to be determined) as

ρs(r⃗ ) =

N∑
j=1

ajψj(r⃗)

1

4πϵ0

∫
S

ρs(r⃗
′)

|r⃗ − r⃗ ′|
dS′ =

1

4πϵ0

N∑
j=1

aj

∫
S

ψj(r⃗
′)

|r⃗ − r⃗ ′|
dS′

=

N∑
j=1

ajϕj(r⃗ ) = ϕ(r⃗ ) = ϕspec(r⃗ )

where the potential ϕj due to ψj is

ϕj(r⃗ ) =
1

4πϵ0

∫
S

ψj(r⃗
′)

|r⃗ − r⃗ ′|
dS′
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Point matching or collocation

As an example, we subdivide surface into cells with piecewise
constant basis functions ψj(r⃗ ).

At the center r⃗i of each cell i, we require that

ϕ(r⃗i) = ϕspec(r⃗i)

for i = 1, 2, . . . , N .

This gives a system of linear equations
ϕ1(r⃗1) ϕ2(r⃗1) . . . ϕN (r⃗1)
ϕ1(r⃗2) ϕ2(r⃗2) . . . ϕN (r⃗2)

...
...

. . .
...

ϕ1(r⃗N ) ϕ2(r⃗N ) . . . ϕN (r⃗N )



a1
a2
...
aN

 =


ϕspec(r⃗1)
ϕspec(r⃗2)

...
ϕspec(r⃗N )


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Weighted residual

Choose weighting functions wi = wi(r⃗ ) and require that∫
S
wi(r⃗ ) [ϕ(r⃗ )− ϕspec(r⃗ )] dS = 0

⇒ ⟨wi, ϕ⟩ = ⟨wi, ϕspec⟩

for i = 1, 2, . . . , N .

Galerkin’s method: wi = ψi

Petrov-Galerkin’s method: wi ̸= ψi

Point matching: wi = δ2(r⃗i)
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Weighted residual

This gives a system of linear equations Ax = b with

A =


⟨w1, ϕ1⟩ ⟨w1, ϕ2⟩ . . . ⟨w1, ϕN ⟩
⟨w2, ϕ1⟩ ⟨w2, ϕ2⟩ . . . ⟨w2, ϕN ⟩

...
...

. . .
...

⟨wN , ϕ1⟩ ⟨wN , ϕ2⟩ . . . ⟨wN , ϕN ⟩



x =


a1
a2
...
aN

 and b =


⟨w1, ϕspec⟩
⟨w2, ϕspec⟩

...
⟨wN , ϕspec⟩


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Weighted residual

We have the matrix entries

Aij = ⟨wi, ϕj⟩ =
∫
S
wi(r⃗ )ϕj(r⃗ )dS

=

∫
S
wi(r⃗ )

[
1

4πϵ0

∫
S

ψj(r⃗
′)

|r⃗ − r⃗ ′|
dS′

]
dS

=
1

4πϵ0

∫
S

∫
S
wi(r⃗ )ψj(r⃗

′)
1

|r⃗ − r⃗ ′|
dS′dS

and the vector entries

bi = ⟨wi, ϕspec⟩ =
∫
S
wi(r⃗ )ϕspec(r⃗ )dS
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Geometry of parallel plate capacitor

w

w

a

y

x

-V / 2, -Q

+V / 2, +Q
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Geometry of parallel plate capacitor

The potential is given by

ϕ(r⃗ ) = − 1

2πϵ0
ρl(r⃗

′) ln |r⃗ − r⃗ ′|

⇒ dϕ(r⃗ ) = − 1

2πϵ0

[
ρs(r⃗

′)dl′
]
ln |r⃗ − r⃗ ′|

⇒ ϕ(r⃗ ) = − 1

2πϵ0

∫
L
ρs(r⃗

′) ln |r⃗ − r⃗ ′|dl′

and here we get

ϕ(x, y) = − 1

2πϵ0

∫ w/2

−w/2
ρs

(
x′,

a

2

)
ln

√
(x− x′)2 +

(
y − a

2

)2
dx′

− 1

2πϵ0

∫ w/2

−w/2
ρs

(
x′,−a

2

)
ln

√
(x− x′)2 +

(
y +

a

2

)2
dx′
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Symmetries and discretization

The surface charge density fulfills

ρs(−x′, a/2) = ρs(x
′, a/2)

ρs(x
′,−a/2) = −ρs(x′, a/2)

It is enough to discretize only the right half of the upper plate.
Use N elements and ρs(x, a/2) =

∑
j ρj+ 1

2
ψj+ 1

2
(x) for x > 0.

Discretize each capacitor plate by

▶ Introduce nodes at xj = jh with h = (w/2)/N and
j = 0, 1, . . . , N

▶ Define elements on [xj , xj+1] with j = 0, 1, . . . , N − 1

▶ Piecewise constant basis functions ψj+ 1
2
(x)

(equal to one on element j and zero otherwise)

▶ Point matching xtest,i = xi+ 1
2
= 1

2(xi + xi+1)
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Potential from one basis functions
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ξ

s e

element
charge

observation point

The potential is given by

I(ξs, ξe, d) = − 1

2πϵ0

∫ ξe

ξs

ln
√
ξ2 + d2 dx

= − 1

2πϵ0

[
1

2
ξ ln(ξ2 + d2)− ξ + d arctan(ξ/d)

]ξe
ξs

for a basis function ψj+ 1
2
(ξ′) that is equal to one on the interval

ξs < ξ′ < ξe and zero otherwise.
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System of linear equations

We have

ϕ(xi+ 1
2
, y) =

N−1∑
j=0

Aij ρj+ 1
2

for the testing points xi+ 1
2
for i = 0, 1, . . . , N − 1.

The matrix elements are given by

Aij = I(xj − xi+ 1
2
, xj+1 − xi+ 1

2
, 0) upper right quadrant

+ I(−xj+1 − xi+ 1
2
,−xj − xi+ 1

2
, 0) upper left quadrant

− I(xj − xi+ 1
2
, xj+1 − xi+ 1

2
, a) lower right quadrant

− I(−xj+1 − xi+ 1
2
,−xj − xi+ 1

2
, a) lower left quadrant

and the right-hand side bi = ϕspec(xi+ 1
2
, a/2) = U0/2.

25 / 28



Compute the capacitance

We have the capacitance per unit length as

C

L
=
Q/L

U0
=

h

U0

N−1∑
j=0

ρj+ 1
2

Linear convergence in h and a = w = 1m gives (no symm.)

4N [-] h [m] C/L [pF/m]

10 0.20000 18.0313850
20 0.10000 18.3729402
30 0.06666 18.4910121
50 0.04000 18.5869926
70 0.02857 18.6285417
100 0.02000 18.6598668
140 0.01428 18.6808279
200 0.01000 18.6965895
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Charge distribution – Uniform discretization
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Charge distribution – Adaptively refined discretization
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