

Seminar 5

Thomas Rylander

Department of Electrical Engineering
Chalmers University of Technology

February 16, 2022

Presentation Outline

Unstructured meshes

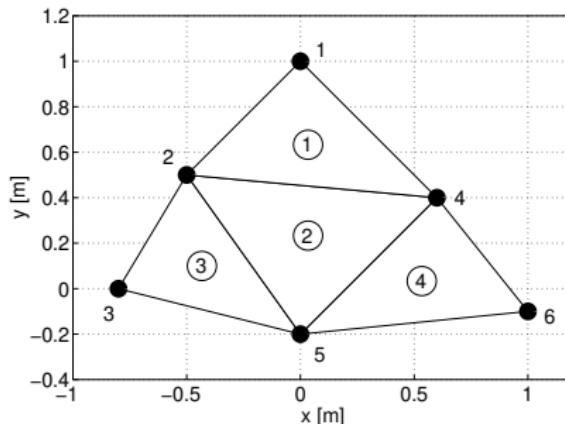
Assembling procedure

Local element

Element matrices

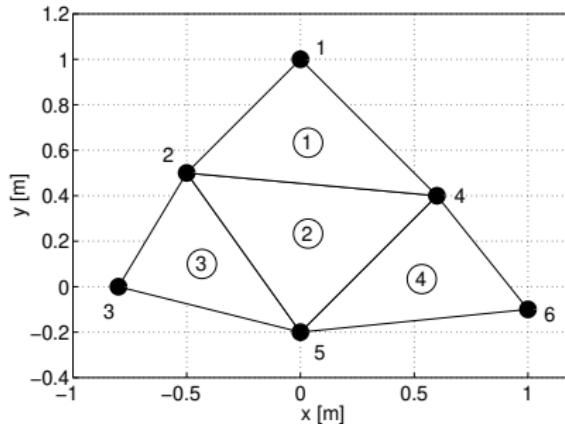
Waveguide modes (for hollow waveguides)

Unstructured mesh – nodes



Node	1	2	3	4	5	6
x	0.0	-0.5	-0.8	0.6	0.0	1.0
y	1.0	0.5	0.0	0.4	-0.2	-0.1

Unstructured mesh – elements



<i>Element</i>	1	2	3	4
<i>Node 1</i>	1	2	3	5
<i>Node 2</i>	2	5	5	6
<i>Node 3</i>	4	4	2	4

Unstructured mesh – Matlab

In Matlab, we store

- ▶ the coordinates of the nodes
- ▶ the nodes of the elements

in matrices as

```
>> no2xy
no2xy =
    0    -0.5000    -0.8000    0.6000      0    1.0000
    1.0000    0.5000        0    0.4000   -0.2000   -0.1000
>> el2no
el2no =
    1    2    3    5
    2    5    5    6
    4    4    2    4
```

Presentation Outline

Unstructured meshes

Assembling procedure

Local element

Element matrices

Waveguide modes (for hollow waveguides)

Assembling procedure

Sub-divide the integral for the entire domain Ω into the corresponding integrals for the separate elements $\Omega^{(e)}$

$$\begin{aligned} A_{ij} &= \int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j \, dS = \sum_{e=1}^{N_e} \int_{\Omega^{(e)}} \nabla \varphi_i \cdot \nabla \varphi_j \, dS \\ &= \sum_{e=1}^{N_e} \int_{\Omega^{(e)}} \nabla \varphi_i^{(e)} \cdot \nabla \varphi_j^{(e)} \, dS \end{aligned}$$

where N_e is the total number of elements. (Note: Some abuse of notation for i and j that are used for both local and global node numbers!)

Here, we have

$\varphi_i^{(e)}$ = (local) basis function restricted to element e

$i = 1, 2, 3$ = local node indices for element e

Assembling procedure

Introduce the element matrix

$$A_{i,j}^{(e)} = \int_{\Omega^{(e)}} \nabla \varphi_i^{(e)} \cdot \nabla \varphi_j^{(e)} \, dS$$

Addition to the global matrix (without abuse of notation)

$$A_{n_i, n_j} = A_{n_i, n_j} + A_{i,j}^{(e)}$$

for all elements $e = 1, 2, \dots, N_e$ and local node indices $i = 1, 2, 3$
(corresponds to global node indices n_1, n_2, n_3) and $j = 1, 2, 3$
(corresponds to global node indices n_1, n_2, n_3).

Example: Element $e = 2$ with nodes $n_1 = 2, n_2 = 5$ and $n_3 = 4$.

Presentation Outline

Unstructured meshes

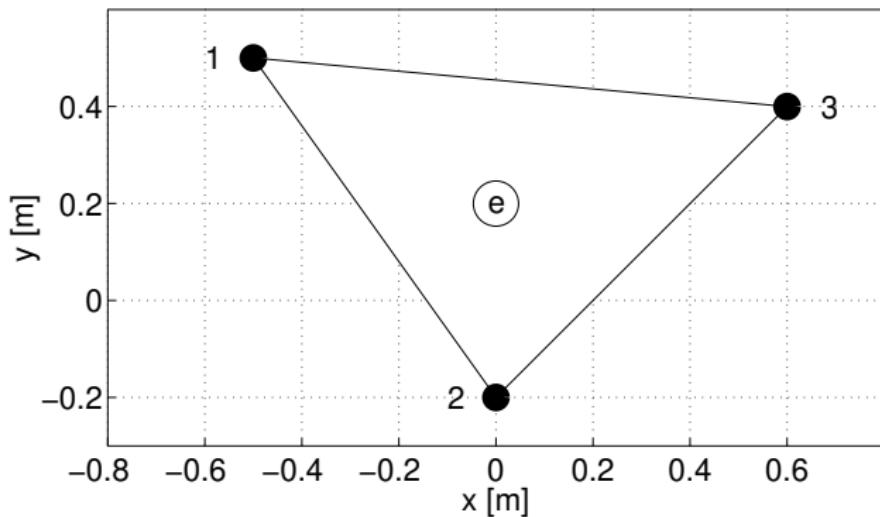
Assembling procedure

Local element

Element matrices

Waveguide modes (for hollow waveguides)

Local element numbering

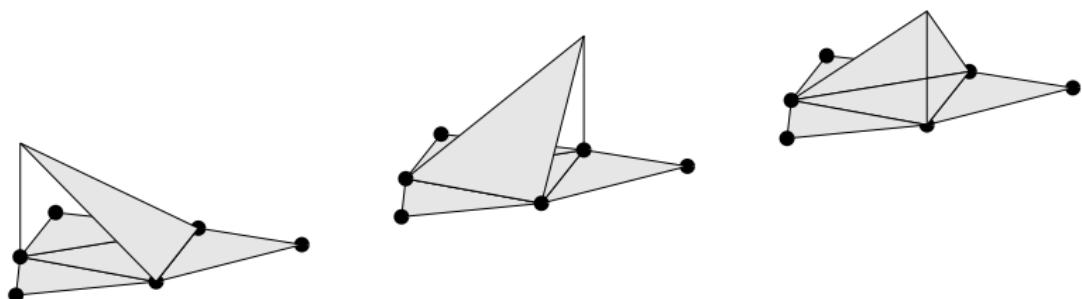


Local basis functions

On element e , we have the basis functions $\varphi_i^{(e)} = \varphi_i^{(e)}(x, y)$ given by

$$\varphi_i^{(e)} \left(x_j^{(e)}, y_j^{(e)} \right) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$
$$\varphi_i^{(e)}(x, y) = a_i^{(e)} + b_i^{(e)}x + c_i^{(e)}y$$

where i and j are local indices that take the values 1, 2 and 3.



Local basis functions

On element e , we have the coefficients for basis functions $\varphi_1^{(e)} = \varphi_i^{(e)}(x, y)$ given by

$$\varphi_1^{(e)} \left(x_1^{(e)}, y_1^{(e)} \right) = a_1^{(e)} + b_1^{(e)} x_1^{(e)} + c_1^{(e)} y_1^{(e)} = 1$$

$$\varphi_1^{(e)} \left(x_2^{(e)}, y_2^{(e)} \right) = a_1^{(e)} + b_1^{(e)} x_2^{(e)} + c_1^{(e)} y_2^{(e)} = 0$$

$$\varphi_1^{(e)} \left(x_3^{(e)}, y_3^{(e)} \right) = a_1^{(e)} + b_1^{(e)} x_3^{(e)} + c_1^{(e)} y_3^{(e)} = 0$$

or

$$\begin{bmatrix} 1 & x_1^{(e)} & y_1^{(e)} \\ 1 & x_2^{(e)} & y_2^{(e)} \\ 1 & x_3^{(e)} & y_3^{(e)} \end{bmatrix} \begin{bmatrix} a_1^{(e)} \\ b_1^{(e)} \\ c_1^{(e)} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Local basis functions

Similar for the two other basis functions, gives the general formula

$$\begin{bmatrix} 1 & x_1^{(e)} & y_1^{(e)} \\ 1 & x_2^{(e)} & y_2^{(e)} \\ 1 & x_3^{(e)} & y_3^{(e)} \end{bmatrix} \begin{bmatrix} a_1^{(e)} & a_2^{(e)} & a_3^{(e)} \\ b_1^{(e)} & b_2^{(e)} & b_3^{(e)} \\ c_1^{(e)} & c_2^{(e)} & c_3^{(e)} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

which gives

$$\begin{bmatrix} a_1^{(e)} & a_2^{(e)} & a_3^{(e)} \\ b_1^{(e)} & b_2^{(e)} & b_3^{(e)} \\ c_1^{(e)} & c_2^{(e)} & c_3^{(e)} \end{bmatrix} = \begin{bmatrix} 1 & x_1^{(e)} & y_1^{(e)} \\ 1 & x_2^{(e)} & y_2^{(e)} \\ 1 & x_3^{(e)} & y_3^{(e)} \end{bmatrix}^{-1}$$

Local element – Simplex coordinates



Basis functions can be formulated as

$$\varphi_i^{(e)}(x, y) = \frac{A_i^{(e)}}{A_{\text{tot}}}$$

which is identical to the i -th Simplex coordinate.

Local element – Simplex coordinates

Area expressions

$$A_1^{(e)} = \frac{1}{2} \hat{z} \cdot \left(\vec{r}_3^{(e)} - \vec{r}_2^{(e)} \right) \times \left(\vec{r} - \vec{r}_2^{(e)} \right),$$

$$A_2^{(e)} = \frac{1}{2} \hat{z} \cdot \left(\vec{r}_1^{(e)} - \vec{r}_3^{(e)} \right) \times \left(\vec{r} - \vec{r}_3^{(e)} \right),$$

$$A_3^{(e)} = \frac{1}{2} \hat{z} \cdot \left(\vec{r}_2^{(e)} - \vec{r}_1^{(e)} \right) \times \left(\vec{r} - \vec{r}_1^{(e)} \right),$$

with $A_{\text{tot}}^{(e)} = A_1^{(e)} + A_2^{(e)} + A_3^{(e)}$. More compactly

$$A_i^{(e)} = \frac{1}{2} \left(\vec{r} - \vec{r}_{i+1}^{(e)} \right) \cdot \left(\hat{z} \times \vec{s}_i^{(e)} \right)$$

$$A_{\text{tot}}^{(e)} = \frac{1}{2} \hat{z} \cdot \left(\vec{s}_2^{(e)} \times \vec{s}_3^{(e)} \right)$$

where

$$\vec{s}_i^{(e)} = \vec{r}_{i-1}^{(e)} - \vec{r}_{i+1}^{(e)}$$

Gradient of the basis function

The gradient is

$$\nabla \varphi_i^{(e)} = \frac{\hat{z} \times \vec{s}_i^{(e)}}{2A_{\text{tot}}^{(e)}},$$

which is constant on the triangle.

It can also be expressed as

$$\begin{aligned}\nabla \varphi_i^{(e)}(x, y) &= \nabla \left(a_i^{(e)} + b_i^{(e)}x + c_i^{(e)}y \right) \\ &= \hat{x}b_i^{(e)} + \hat{y}c_i^{(e)}\end{aligned}$$

Presentation Outline

Unstructured meshes

Assembling procedure

Local element

Element matrices

Waveguide modes (for hollow waveguides)

Stiffness matrix for the Laplacian operator

For the Laplacian, the local stiffness element-matrix is

$$A_{ij}^{(e)} = \int_{\Omega^{(e)}} \nabla \varphi_i^{(e)} \cdot \nabla \varphi_j^{(e)} \, d\Omega = \frac{\vec{s}_i^{(e)} \cdot \vec{s}_j^{(e)}}{4A_{\text{tot}}^{(e)}}.$$

which requires a constant material parameter α .

It can also be expressed as

$$\begin{aligned} A_{ij}^{(e)} &= \int_{\Omega^{(e)}} \left(\hat{x}b_i^{(e)} + \hat{y}c_i^{(e)} \right) \cdot \left(\hat{x}b_j^{(e)} + \hat{y}c_j^{(e)} \right) \, d\Omega \\ &= \left(b_i^{(e)}b_j^{(e)} + c_i^{(e)}c_j^{(e)} \right) A_{\text{tot}}^{(e)} \end{aligned}$$

Mass matrix

For the identity operator, the local mass element-matrix is

$$B_{ij}^{(e)} = \int_{\Omega^{(e)}} \varphi_i^{(e)} \varphi_j^{(e)} \, d\Omega$$

which requires a constant material parameter β .

Here, the following result is useful

$$\int_{\Omega^{(e)}} \left(\varphi_1^{(e)} \right)^\alpha \left(\varphi_2^{(e)} \right)^\beta \left(\varphi_3^{(e)} \right)^\gamma \, d\Omega = 2A_{\text{tot}}^{(e)} \frac{\alpha! \beta! \gamma!}{(\alpha + \beta + \gamma + 2)!}$$

Presentation Outline

Unstructured meshes

Assembling procedure

Local element

Element matrices

Waveguide modes (for hollow waveguides)

Transverse electric (TE) modes

For a transverse electric (TE) mode, we have computed $H_z(x, y)$ and, then, the corresponding electromagnetic field (that propagates in the $\pm\hat{z}$ -direction) is given by

$$\vec{E}(x, y, z) = \left[+ \frac{j\omega\mu_0}{k_t^2} \hat{z} \times \nabla H_z(x, y) \right] e^{\mp jk_z z}$$

$$\vec{H}(x, y, z) = \left[\mp \frac{jk_z}{k_t^2} \nabla H_z(x, y) + \hat{z} H_z(x, y) \right] e^{\mp jk_z z}$$

Transverse magnetic (TM) modes

For a transverse magnetic (TM) mode, we have computed $E_z(x, y)$ and, then, the corresponding electromagnetic field (that propagates in the $\pm\hat{z}$ -direction) is given by

$$\vec{E}(x, y, z) = \left[\mp \frac{jk_z}{k_t^2} \nabla E_z(x, y) + \hat{z} E_z(x, y) \right] e^{\mp jk_z z}$$

$$\vec{H}(x, y, z) = \left[- \frac{j\omega\epsilon_0}{k_t^2} \hat{z} \times \nabla E_z(x, y) \right] e^{\mp jk_z z}$$

Rectangular waveguide

Consider a rectangular waveguide with a cross section of width a and height b that occupies the region described by $0 \leq x \leq a$ and $0 \leq y \leq b$ for a plane with constant z -coordinate.

We have the transverse wavenumber

$$k_t = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$

where m and n are integers.

Longitudinal magnetic field component

Consider a rectangular waveguide that occupies the region described by $0 \leq x \leq a$ and $0 \leq y \leq b$.

The longitudinal magnetic field component of the TE_{mn} -mode is given by

$$H_z(x, y) = H_0 \cos\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)$$

where $m = 0, 1, 2, \dots$ and $n = 0, 1, 2, \dots$ excluding the combination $m = n = 0$.

Longitudinal electric field component

Consider a rectangular waveguide that occupies the region described by $0 \leq x \leq a$ and $0 \leq y \leq b$.

The longitudinal electric field component of the TM_{mn} -mode is given by

$$E_z(x, y) = E_0 \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right).$$

where $m = 1, 2, 3, \dots$ and $n = 1, 2, 3, \dots$ for any combinations of m and n .