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Presentation Outline

Unstructured meshes
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Unstructured mesh — nodes
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Unstructured mesh — elements
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Unstructured mesh — Matlab

In Matlab, we store
» the coordinates of the nodes

» the nodes of the elements

in matrices as

>> no2xy
no2xy =
0 -0.5000 -0.8000 0.6000 0 1.0000
1.0000 0.5000 0 0.4000 -0.2000 -0.1000
>> el2no
el2no =
1 2 3 5
2 5 5 6
4 4 2 4
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Presentation Outline

Assembling procedure
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Assembling procedure

Sub-divide the integral for the entire domain €2 into the
corresponding integrals for the separate elements ()

A= | Vi Vg, dS = ViV, dS
J/Qw ©; Zﬂ(e)w ©;

Qle)

where N, is the total number of elements. (Note: Some abuse of
notation for ¢ and j that are used for both local and global node
numbers!)
Here, we have

goge) = (local) basis function restricted to element e

i =1,2,3 = local node indices for element e
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Assembling procedure

Introduce the element matrix

Addition to the global matrix (without abuse of notation)

— (e)
Ani,nj - Ani,nj + A ]

i?

for all elements e = 1,2,..., N, and local node indices 1 = 1,2, 3
(corresponds to global node indices n1,n2,n3) and j = 1,2,3
(corresponds to global node indices ni, ng,n3).

Example: Element e = 2 with nodes ny = 2, no =5 and n3 = 4.
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Local element
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Local element numbering
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Local basis functions

On element e, we have the basis functions <p§e) = <p£e) (x,y)

given by
(€) () (e) 1 iti=y
¥i ( Ti Y ) _{ 0 otherwise

o () = o 4 89z 1 Oy

where ¢ and j are local indices that take the values 1, 2 and 3.

a2
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Local basis functions

On element e, we have the coefficients for basis functions

o' = ol (2, y) given by

A0 (542, 047) = o9 U0 4 0l =
e (wga,yée))
(6) ( (e )7 yé ))

0@ 4 55 4 (Oy0)
at” + 072§ + ey =0

or

1) 0 | |0 | =

[an)

(e)  (e) (e)

1y g ] [ e {1]
1 3 Y3 cy
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Local basis functions

Similar for the two other basis functions, gives the general

formula
1 a:ge) yge) age) age) a:())e) 100
1 xée) yge) bge) bge) bge) 01 0
1 :L‘ge) yée) cge) cée) cée) 0 01
which gives
e e e e e -1
RO G
I CIN [P [P O O
cge) cge) c:(')e) 1 ‘T:(')e) y:ge)
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Local element — Simplex coordinates
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Basis functions can be formulated as

14(6)

)

Al

o (a,y) =

which is identical to the i-th Simplex coordinate.

14 /25



Local element — Simplex coordinates

Area expressions

N RN =N

with A9 = A

where

N>

N>

N>

(7 =) < (F= 7))
(77 =) < (7= 7).,
(7:’2(3) o 7—,'1(6)> % (7—: 7—.*1(6)> ,
+ Age). More compactly
(e 2)- (<o)
%2- (55“” X 5?,("’))

20 =7 )

15 /25



Gradient of the basis function

The gradient is
(e)

() _ 2XSi °

Vo,
2A%)

i

which is constant on the triangle.

It can also be expressed as

V(pl(-e) (v,y) =V (a§6) + bge)x + c(e)y>
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Element matrices
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Stiffness matrix for the Laplacian operator

For the Laplacian, the local stiffness element-matrix is
—*'(6) . 5{(6)

S
Ale) = R .vspg,e) o = 2

1
Qe 4A°)

which requires a constant material parameter .

It can also be expressed as

Ay = /Q o (@ i) - (a0 +967) a0

= (B + ) ()
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Mass matrix

For the identity operator, the local mass element-matrix is

which requires a constant material parameter 3.

Here, the following result is useful

/Q . <¢§e))a (wée))ﬁ <<p§e)>"/ dQ = 24 @ +Z!i!7y! o)
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Waveguide modes (for hollow waveguides)
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Transverse electric (TE) modes

For a transverse electric (TE) mode, we have computed
H,(x,y) and, then, the corresponding electromagnetic field
(that propagates in the +2-direction) is given by

E(z,y,2) = [—i— jle;oé X VHz(av,y)}e;jkzz
1

o ik A -
A(a,y,2) = | F 55 VH.(a.y) + 2. (w,) |7
t
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Transverse magnetic (TM) modes

For a transverse magnetic (TM) mode, we have computed
E.(x,y) and, then, the corresponding electromagnetic field
(that propagates in the +2-direction) is given by

B ik ) .
E(z,y,z) = [:F Jk—QVEz(wvy) + zEz(w,y)} eTik=2
t

H(z,y,z) = [— ‘7:2602 X VEZ(x,y)}eijkzz
t
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Rectangular waveguide

Consider a rectangular waveguide with a cross section of
width a and height b that occupies the region described by
0<z<aand0<y<b for a plane with constant z-coordinate.

We have the transverse wavenumber

= (22) + ()’

where m and n are integers.
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Longitudinal magnetic field component

Consider a rectangular waveguide that occupies the region
described by 0 <z <aand 0 <y < b.

The longitudinal magnetic field component of the TE,,,,-mode
is given by

H,(x,y) = Hycos (?) cos (L;m)

where m =0,1,2,... and n =0, 1,2, ... excluding the
combination m =n = 0.
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Longitudinal electric field component

Consider a rectangular waveguide that occupies the region
described by 0 <z <aand 0 <y < b.

The longitudinal electric field component of the TM,,,-mode is

given by
E.(z,y) = Epsin <m7rm) sin (mry) .
a b
where m =1,2,3,... and n = 1,2,3,... for any combinations of
m and n.
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