

Seminar 4

Thomas Rylander

Department of Electrical Engineering
Chalmers University of Technology

February 8, 2022

Presentation Outline

Finite element method – General recipe

1D Finite Element Analysis

2D Finite Element Analysis

General recipe

Solve partial differential equation $L[f] = s$ with differential operator L , sought field f and source s by the procedure:

- ▶ Subdivide the solution domain Ω into cells, or *elements*.
- ▶ Approximate the solution by an expansion in a finite number of *basis functions*, i.e., $f(\vec{r}) \approx \sum_{i=1}^n f_i \varphi_i(\vec{r})$, where f_i are (unknown) coefficients multiplying the basis functions $\varphi_i(\vec{r})$.
- ▶ Form the residual $r = L[f] - s$, which we want to make as small as possible.
- ▶ Choose *test*, or *weighting*, functions w_i , $i = 1, 2, \dots, n$ for weighting the residual r . Galerkin's method: $w_i = \varphi_i$
- ▶ Set the weighted residuals to zero and solve for the unknowns f_i , i.e. solve $\langle w_i, r \rangle = \int_{\Omega} w_i r d\Omega = 0$, $i = 1, 2, \dots, n$.

Presentation Outline

Finite element method – General recipe

1D Finite Element Analysis

2D Finite Element Analysis

Model problem

Model problem in 1D given by

$$-\frac{d}{dx} \left(\alpha \frac{df}{dx} \right) + \beta f = s \quad \text{for } a < x < b$$

$$f = p \quad \text{at } x = a$$

$$\alpha \frac{df}{dx} + \gamma f = q \quad \text{at } x = b$$

with

- ▶ $f = f(x)$ = sought field
- ▶ $\alpha = \alpha(x)$ and $\beta = \beta(x)$ = coefficients that involve material parameters, frequency, etc
- ▶ $s = s(x)$ = source differential equation

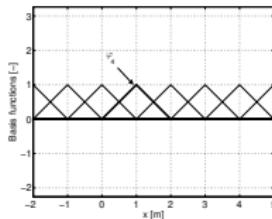
Boundary conditions

- ▶ Dirichlet boundary condition $f = p$
 - ▶ Specifies the value of f on the boundary of the domain
 - ▶ $p = 0 \Rightarrow$ homogeneous Dirichlet boundary condition
 - ▶ $p \neq 0 \Rightarrow$ inhomogeneous Dirichlet boundary condition
- ▶ Robin boundary condition $\alpha df/dx + \gamma f = q$
 - ▶ Specifies a linear combination of the value of f and its derivative on the boundary of the domain
 - ▶ Special case with $\gamma = 0$ is referred to as a Neumann boundary condition, which only specifies the derivative of f
 - ▶ $q = 0 \Rightarrow$ homogeneous Robin/Neumann boundary condition
 - ▶ $q \neq 0 \Rightarrow$ inhomogeneous Robin/Neumann boundary condition

Example – first hand-in assignment

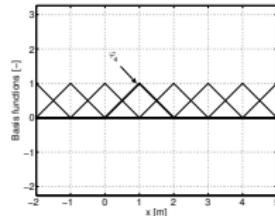
- ▶ $f = f(x) = E_z(x)$
- ▶ $\alpha = 1$
- ▶ $\beta = \beta(x) = \mu_0[j\omega\sigma(x) - \omega^2\epsilon(x)]$
- ▶ $s = 0$
- ▶ Boundary condition at the left boundary: inhomogeneous Robin boundary condition ($\alpha df/dx + \gamma f = q$)
 - ▶ $\gamma = -jk_0$
 - ▶ $q = q(x) = -2jk_0E_0 \exp(-jk_0x)$
- ▶ Boundary condition at the right boundary: homogeneous Robin boundary condition ($\alpha df/dx + \gamma f = q$)
 - ▶ $\gamma = +jk_0$
 - ▶ $q = 0$
- ▶ (Another problem: metal boundary at the right boundary gives homogeneous Dirichlet boundary condition with $f = p = 0$.)

Follow the recipe



- ▶ Subdivide the solution domain Ω into elements:
 - ▶ Introduce nodes x_i for $i = 1, 2, \dots, n$
(Consider a small example with $n = 8$, see figure above.)
 - ▶ Form elements on sub-intervals $[x_i, x_{i+1}]$ for $i = 1, 2, \dots, n - 1$
- ▶ Approximate the solution by $f(x) \approx \sum_{j=1}^n f_j \varphi_j(x)$, where f_j are (unknown) coefficients multiplying the basis functions $\varphi_j(x)$. (Here, piecewise linears.)

Lowest-order basis functions



Piecewise linear basis functions $\varphi_j(x)$ that fulfill

$$\varphi_j(x_i) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

which implies that

$$\varphi_j(x) = \begin{cases} \frac{x-x_{j-1}}{x_j-x_{j-1}} & \text{if } x_{j-1} \leq x \leq x_j \\ \frac{x_{j+1}-x}{x_{j+1}-x_j} & \text{if } x_j \leq x \leq x_{j+1} \\ 0 & \text{otherwise} \end{cases}$$

Follow the recipe

- ▶ Form the residual $r = L[f] - s$, which we want to make as small as possible. Here, we have

$$r = L[f] - s = -\frac{d}{dx} \left(\alpha \frac{df}{dx} \right) + \beta f - s$$

- ▶ Choose *test*, or *weighting*, functions w_i , $i = 1, 2, \dots, n$ for weighting the residual r . (Here, Galerkin's method with $w_i = \varphi_i$.)
- ▶ Set the weighted residuals to zero and solve for the unknowns f_i , i.e. solve $\langle w_i, r \rangle = \int_{\Omega} w_i r \, d\Omega = 0$, $i = 1, 2, \dots, n$.

Integration by parts

$$\begin{aligned}\langle w_i, r \rangle &= \int_{\Omega} w_i r \, d\Omega = \int_a^b w_i \left[-\frac{d}{dx} \left(\alpha \frac{df}{dx} \right) + \beta f - s \right] dx \\ &= \int_a^b \left[-w_i \frac{d}{dx} \left(\alpha \frac{df}{dx} \right) + \beta w_i f - w_i s \right] dx\end{aligned}$$

Integration by parts

$$\int_a^b u(x)v'(x)dx = [u(x)v(x)]_a^b - \int_a^b u'(x)v(x)dx$$

$$u(x) = w_i(x)$$

$$v(x) = -\alpha(x) \frac{df(x)}{dx}$$

Integration by parts

We get

$$\int_a^b \left[-w_i \frac{d}{dx} \left(\alpha \frac{df}{dx} \right) \right] dx = - \left[w_i \left(\alpha \frac{df}{dx} \right) \right]_a^b + \int_a^b \alpha \frac{dw_i}{dx} \frac{df}{dx} dx$$

and

$$\langle w_i, r \rangle = \int_a^b \left[\alpha \frac{dw_i}{dx} \frac{df}{dx} + \beta w_i f - w_i s \right] dx - \left[w_i \left(\alpha \frac{df}{dx} \right) \right]_a^b = 0$$

Recall the boundary conditions

$$f = p \quad \text{at } x = a$$

$$\alpha \frac{df}{dx} + \gamma f = q \quad \text{at } x = b$$

Boundary conditions

The Dirichlet boundary condition at $x = a$ implies that all weighting functions are zero there $\Rightarrow w_i(a) = 0$. The solution is already known at $x = a$ so there is no need for weighting.

At $x = b$, we have

$$\alpha \frac{df}{dx} + \gamma f = q \quad \Rightarrow \quad \alpha \frac{df}{dx} = q - \gamma f$$

This gives

$$\left[w_i \left(\alpha \frac{df}{dx} \right) \right]_a^b = w_i \left(\alpha \frac{df}{dx} \right) \Big|_{x=b} - \underbrace{w_i \left(\alpha \frac{df}{dx} \right) \Big|_{x=a}}_{=0} = w_i (q - \gamma f) \Big|_{x=b}$$

Weak form

We get the weak form

$$\langle w_i, r \rangle = \int_a^b \left[\alpha \frac{dw_i}{dx} \frac{df}{dx} + \beta w_i f - w_i s \right] dx - w_i (q - \gamma f) \Big|_{x=b} = 0$$

for all $i = 2, \dots, n$ given that f is known at $x = a$.

Form equations according to

$$\langle w_2, r \rangle = 0$$

$$\langle w_3, r \rangle = 0$$

⋮

$$\langle w_n, r \rangle = 0$$

System of linear equations

The small problem with $n = 8$ (with piecewise linears) gives

$$\int_a^b \left[\alpha \frac{dw_2}{dx} \frac{df}{dx} + \beta w_2 f - w_2 s \right] dx = 0$$

$$\int_a^b \left[\alpha \frac{dw_3}{dx} \frac{df}{dx} + \beta w_3 f - w_3 s \right] dx = 0$$

⋮

$$\int_a^b \left[\alpha \frac{dw_7}{dx} \frac{df}{dx} + \beta w_7 f - w_7 s \right] dx = 0$$

$$\int_a^b \left[\alpha \frac{dw_8}{dx} \frac{df}{dx} + \beta w_8 f - w_8 s \right] dx - (q - \gamma f) \Big|_{x=b} = 0$$

System of linear equations

The small problem with $n = 8$ gives

$$\int_a^b \left[\alpha \frac{dw_2}{dx} \frac{df}{dx} + \beta w_2 f \right] dx = \int_a^b w_2 s dx$$

$$\int_a^b \left[\alpha \frac{dw_3}{dx} \frac{df}{dx} + \beta w_3 f \right] dx = \int_a^b w_3 s dx$$

⋮

$$\int_a^b \left[\alpha \frac{dw_7}{dx} \frac{df}{dx} + \beta w_7 f \right] dx = \int_a^b w_7 s dx$$

$$\int_a^b \left[\alpha \frac{dw_8}{dx} \frac{df}{dx} + \beta w_8 f \right] dx + \gamma f \Big|_{x=b} = \int_a^b w_8 s dx + q \Big|_{x=b}$$

System of linear equations

The solution is expanded as

$$f(x) = \sum_{j=1}^n f_j \varphi_j(x)$$

where it is known that $f(a) = p$ or

$$f(a) = \sum_{j=1}^n f_j \varphi_j(a) = f_1 = p \quad \Rightarrow \quad f_1 = p$$

For the small problem with $n = 8$, we have also (on the right boundary) that

$$f(b) = \sum_{j=1}^n f_j \varphi_j(b) = f_8$$

System of linear equations

The solution is expanded as $f(x) = \sum_{j=1}^n f_j \varphi_j(x)$.

Galerkin's method implies $w_i(x) = \varphi_i(x)$, which yields

$$\sum_{j=1}^8 f_j \int_a^b \left[\alpha \frac{d\varphi_2}{dx} \frac{d\varphi_j}{dx} + \beta \varphi_2 \varphi_j \right] dx = \int_a^b \varphi_2 s dx$$

$$\sum_{j=1}^8 f_j \int_a^b \left[\alpha \frac{d\varphi_3}{dx} \frac{d\varphi_j}{dx} + \beta \varphi_3 \varphi_j \right] dx = \int_a^b \varphi_3 s dx$$

⋮

$$\sum_{j=1}^8 f_j \int_a^b \left[\alpha \frac{d\varphi_7}{dx} \frac{d\varphi_j}{dx} + \beta \varphi_7 \varphi_j \right] dx = \int_a^b \varphi_7 s dx$$

$$\sum_{j=1}^8 f_j \int_a^b \left[\alpha \frac{d\varphi_8}{dx} \frac{d\varphi_j}{dx} + \beta \varphi_8 \varphi_j \right] dx + \gamma(b) f_8 = \int_a^b \varphi_8 s dx + q(b)$$

System of linear equations

On matrix form $\mathbf{Ax} = \mathbf{b}$, we have

$$\underbrace{\begin{bmatrix} \xi_{22} & \xi_{23} & 0 & 0 & 0 & 0 & 0 \\ \xi_{32} & \xi_{33} & \xi_{34} & 0 & 0 & 0 & 0 \\ 0 & \xi_{43} & \xi_{44} & \xi_{45} & 0 & 0 & 0 \\ 0 & 0 & \xi_{54} & \xi_{55} & \xi_{56} & 0 & 0 \\ 0 & 0 & 0 & \xi_{65} & \xi_{66} & \xi_{67} & 0 \\ 0 & 0 & 0 & 0 & \xi_{76} & \xi_{77} & \xi_{78} \\ 0 & 0 & 0 & 0 & 0 & \xi_{87} & \xi_{88} + \gamma \end{bmatrix}}_{=\mathbf{A}} \underbrace{\begin{bmatrix} f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ f_8 \end{bmatrix}}_{=\mathbf{x}} = \underbrace{\begin{bmatrix} \zeta_2 - \xi_{21}p \\ \zeta_3 \\ \zeta_4 \\ \zeta_5 \\ \zeta_6 \\ \zeta_7 \\ \zeta_8 + q \end{bmatrix}}_{=\mathbf{b}}$$

where $p = p(a)$, $\gamma = \gamma(b)$, $q = q(b)$ and

$$\xi_{ij} = \int_a^b \left[\alpha \frac{d\varphi_i}{dx} \frac{d\varphi_j}{dx} + \beta \varphi_i \varphi_j \right] dx$$

$$\zeta_i = \int_a^b \varphi_i s dx$$

Presentation Outline

Finite element method – General recipe

1D Finite Element Analysis

2D Finite Element Analysis

Model problem

Model problem in 2D given by

$$-\nabla \cdot (\alpha \nabla f) + \beta f = s \quad \text{in } \Omega$$

$$f = p \quad \text{at } \partial\Omega_D$$

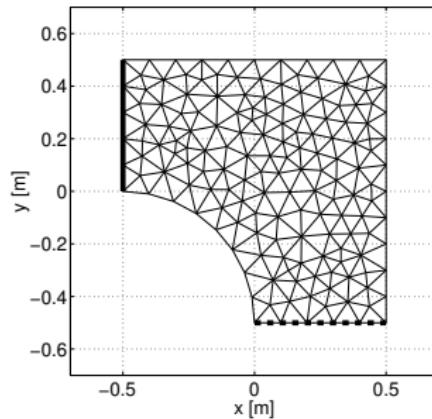
$$\hat{n} \cdot (\alpha \nabla f) + \gamma f = q \quad \text{at } \partial\Omega_R$$

with

- ▶ $f = f(x, y)$ = sought field
- ▶ $\alpha = \alpha(x, y)$ and $\beta = \beta(x, y)$ = coefficients that involve material parameters, frequency, etc
- ▶ $s = s(x, y)$ = source differential equation

Triangular discretization – an example

Sub-divide the domain Ω into triangles

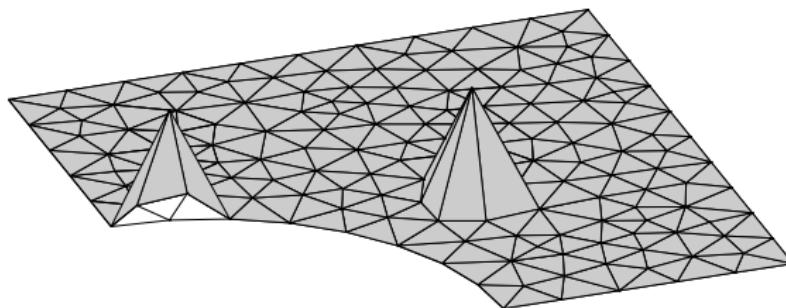


Dirichlet boundary conditions $\partial\Omega_D$ on the thick solid and dashed part of the boundary.

Robin boundary condition $\partial\Omega_R$ on the other parts of $\partial\Omega$.

Basis functions (and weighting functions)

Two different piecewise linear basis functions $\varphi_j(\vec{r})$



that fulfill

$$\varphi_j(\vec{r}_i) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Weak form

Multiply the partial differential equation (PDE) with weighting function w_i and integrate over Ω

$$\int_{\Omega} w_i [-\nabla \cdot (\alpha \nabla f) + \beta f] dS = \int_{\Omega} w_i s dS$$

Integrate by parts by means of product rule and Gauss' theorem

$$\nabla \cdot [w_i (\alpha \nabla f)] = \alpha \nabla w_i \cdot \nabla f + w_i \nabla \cdot (\alpha \nabla f)$$

$$\int_{\Omega} \nabla \cdot \vec{F} dS = \oint_{\partial\Omega} \hat{n} \cdot \vec{F} dl$$

Weak form

We get

$$\begin{aligned}\int_{\Omega} w_i [-\nabla \cdot (\alpha \nabla f)] dS &= \int_{\Omega} (\alpha \nabla w_i \cdot \nabla f - \nabla \cdot [w_i(\alpha \nabla f)]) dS \\ &= \int_{\Omega} \alpha \nabla w_i \cdot \nabla f dS - \oint_{\partial\Omega} \hat{n} \cdot [w_i(\alpha \nabla f)] dl\end{aligned}$$

Recall the boundary conditions

$$\begin{aligned}f &= p && \text{at } \partial\Omega_D \\ \hat{n} \cdot (\alpha \nabla f) + \gamma f &= q && \text{at } \partial\Omega_R\end{aligned}$$

where $\partial\Omega = \partial\Omega_D + \partial\Omega_R$.

Weak form

The boundary term yields

$$\oint_{\partial\Omega} \hat{n} \cdot [w_i(\alpha \nabla f)] dl = \int_{\partial\Omega_D} \hat{n} \cdot [\underbrace{w_i}_{=0} (\alpha \nabla f)] dl + \int_{\partial\Omega_R} \hat{n} \cdot [w_i(\alpha \nabla f)] dl$$
$$= \int_{\partial\Omega_R} w_i [\hat{n} \cdot (\alpha \nabla f)] dl = \int_{\partial\Omega_R} w_i [q - \gamma f] dl$$

We get the weak form

$$\int_{\Omega} [\alpha \nabla w_i \cdot \nabla f + \beta w_i f] dS + \int_{\partial\Omega_R} w_i \gamma f dl = \int_{\Omega} w_i s dS + \int_{\partial\Omega_R} w_i q dl$$

System of linear equations

Expansion $f(\vec{r}) = \sum_{j=1}^n f_j \varphi_j(\vec{r})$ and Galerkin's method $w_i(\vec{r}) = \varphi_i(\vec{r})$ gives

$$\begin{aligned} \sum_{j=1}^n f_j \left[\int_{\Omega} [\alpha \nabla \varphi_i \cdot \nabla \varphi_j + \beta \varphi_i \varphi_j] dS + \int_{\partial \Omega_R} \gamma \varphi_i \varphi_j dl \right] \\ = \int_{\Omega} \varphi_i s dS + \int_{\partial \Omega_R} \varphi_i q dl \end{aligned}$$

for all $i = 1, 2, \dots, n - n_{\partial \Omega_D}$ with $n_{\partial \Omega_D}$ is the number of nodes where we have a Dirichlet boundary condition $f = p$.

System of linear equations

We get

$$\sum_{j=1}^n A_{ij} f_j = b_i \quad \Rightarrow \quad \mathbf{Ax} = \mathbf{b}$$

with

$$A_{ij} = \int_{\Omega} [\alpha \nabla \varphi_i \cdot \nabla \varphi_j + \beta \varphi_i \varphi_j] dS + \int_{\partial \Omega_R} \gamma \varphi_i \varphi_j dl$$
$$b_i = \int_{\Omega} \varphi_i s dS + \int_{\partial \Omega_R} \varphi_i q dl$$

Note that \mathbf{A} has more columns than rows if we have a Dirichlet boundary condition!

System of linear equations

Partition the matrix \mathbf{A} and the vector \mathbf{x}

$$\left(\begin{array}{c|c} \mathbf{A}_n & \mathbf{A}_e \end{array} \right) \left[\begin{array}{c} \mathbf{x}_n \\ \mathbf{x}_e \end{array} \right] = \mathbf{A}_n \mathbf{x}_n + \mathbf{A}_e \mathbf{x}_e = \mathbf{b}$$

- ▶ \mathbf{x}_n contains to the unknowns associated with the interior nodes or nodes on the Robin boundary
- ▶ \mathbf{x}_e contains the known coefficients on the Dirichlet boundary

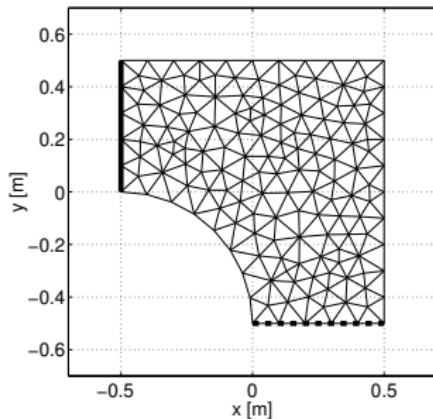
Here, \mathbf{A}_n is a square matrix (invertable) and \mathbf{A}_e is a rectangular matrix.

This gives

$$\mathbf{A}_n \mathbf{x}_n = \mathbf{b} - \mathbf{A}_e \mathbf{x}_e \quad \Rightarrow \quad \mathbf{x}_n = \mathbf{A}_n^{-1}(\mathbf{b} - \mathbf{A}_e \mathbf{x}_e)$$

Example

Sub-divide the domain Ω into triangles



Dirichlet boundary conditions on (i) $\partial\Omega_{D,1}$ – the thick solid part of the boundary and (ii) $\partial\Omega_{D,2}$ – the thick solid part of the boundary

Robin boundary condition $\partial\Omega_R$ on the other parts of $\partial\Omega$.

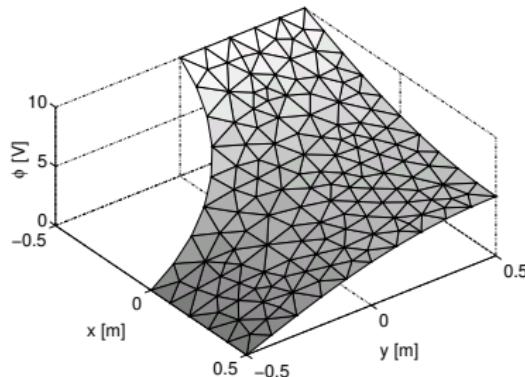
Example

Compute the resistance between the left and bottom edges of the conducting plate

- ▶ $f(x, y)$ = the electrostatic potential $\phi = \phi(x, y)$
- ▶ $\alpha(x, y)$ = the conductivity σ (constant here)
- ▶ $\beta = 0$
- ▶ $s = 0$
- ▶ $f = 10 \text{ V}$ on $\partial\Omega_{D,1}$ (thick solid line)
- ▶ $f = 0 \text{ V}$ on $\partial\Omega_{D,2}$ (thick dashed line)
- ▶ $\hat{n} \cdot \nabla f = 0$ on $\partial\Omega_R$
(Insulating material: a homogeneous Neumann boundary condition – no flux of charge across the boundary)

Example

Electrostatic potential $\phi = \phi(x, y)$ on the domain Ω



For a plate of height h , we have

$$P = \int_V \vec{J} \cdot \vec{E} dV = \int_V \sigma |\nabla \phi|^2 dV = h \mathbf{x}^T \mathbf{A} \mathbf{x} = h \mathbf{x}^T \mathbf{b} \Rightarrow R = \frac{U^2}{P}$$