
Finite element method

Hand-in assignment # 4 – SSY200

1 Problem description

A ridge waveguide has a cross section designed to allow a single mode of propagation
over larger bandwidths than a rectangular waveguide. A typical cross section of a
ridge waveguide is shown in Fig. 1.

Figure 1: The cross section of a ridge waveguide discretized by triangular finite
elements.

To compute the cut-off frequencies, we solve the eigenvalue problem

−∇2Hz = k2tHz in S (1)

n̂ · ∇Hz = 0 on L (2)

for the transverse electric (TE) modes. For the transverse magnetic (TM) modes,
we solve

−∇2Ez = k2tEz in S (3)

Ez = 0 on L (4)

where S is the interior of the waveguide and L its boundary. The transverse
wavenumber is denoted kt and the longitudinal wavenumber kz, i.e. k

2 = (ω/c0)
2 =

k2t + k2z . For more information on the theory of waveguides can be found in the
literature, cf. [1].

To apply FEM to the eigenvalue problems given above we derive the weak form.
The weak form for the two eigenvalue problems are shown below.

∫

S

∇wi · ∇Hz dS = k2t

∫

S

wiHz dS
∫

S

∇wi · ∇Ez dS = k2t

∫

S

wiEz dS

The z-component of the electric and magnetic fields are expanded in and tested
by nodal basis functions φi. The testing must be done in accordance with the
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boundary conditions. Observe that for the TE-modes we have a Neumann boundary
condition while for the TM-modes we have a Dirichlet boundary condition.

To assemble the matrices of the right and left hand sides we sum contributions
from each triangle, i.e. we need to compute the following integrals

Ae
ij =

∫

Se

∇φi · ∇φj dS

Be
ij =

∫

Se

φiφj dS

2 Assignments

Derive the weak formulations and calculate analytical expressions for Ae
ij and Be

ij .
The derivations must be included in the report. You might find the following formula
useful

∫

Se

(φe
1
)α(φe

2
)β(φe

3
)γ dS = 2Se α!β!γ!

(α + β + γ + 2)!
(5)

where Se is the area of element e and the constants α, β and γ take the integer values
0, 1, 2, . . ., where you may choose useful combinations of these integers yourself.

2.1 Numerical implementation

The tar-file contains the following files:

• Main.m : Reads the grid, assembles the matrices and solves the eigenvalue
problem.

• CmpElMtx.m : Implement your computation of the element matrices here.

• ReadGrid.m : Implement your reading of the meshes here.

• VisualizeMode.m : Implement your visualization of the eigenmode in this
function. This function should visualize two fields: (i) ψ(x, y) by means of
colors; and (ii) ∇ψ(x, y) and/or ẑ × ∇ψ(x, y) by vectors. Here, ψ(x, y) =
Ez(x, y) for the TM-modes and ψ(x, y) = Hz(x, y) for the TE-modes. (These
expressions are related to the actual electromagnetic fields for TM- and TE-
modes, which are listed in the Appendix A.)

2.2 Meshes

The directory contains meshes stored in text files. The meshes discretize both a
rectangular waveguide and a ridge waveguide. For each geometry, there is three
discretizations that can be used for convergence studies.

• Meshes for rectangular waveguide of width lx = 2 cm and height ly = 1 cm.

– grid rectangular res1.txt – coarse mesh

– grid rectangular res2.txt – once hierarchically refined mesh
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– grid rectangular res3.txt – twice hierarchically refined mesh

• Mesh for a ridge waveguide of outer dimensions 2 cm and 1 cm. The spacing
between teeth is 0.1 cm and their width is 1 cm. The mesh is shown in Fig. 1.

– grid ridge res1.txt – coarse mesh

– grid ridge res2.txt – once hierarchically refined mesh

– grid ridge res3.txt – twice hierarchically refined mesh

2.3 Numerical tests

Compute the 20 lowest kt and their corresponding cut-off frequencies ωco for the
rectangular waveguide and compare to the analytical expression

kt =
ωco

c0
=

√

(

πnx

lx

)

2

+

(

πny

ly

)

2

(6)

where nx = 0, 1, . . . and ny = 0, 1, . . . excluding nx = ny = 0.

• Perform a convergence test for the lowest eigenmode. Does this cut-off fre-
quency converge to the analytical value? What’s the order of convergence?

• Visualize the five lowest eigenmodes. Do the eigenmodes compare well with
their analytical counterparts? (The analytical results are shown in Ap-
pendix B.)

2.3.1 Optional problems

These problems give credit points if they are correctly solved.

5 credit points

Compute the 20 lowest kt and their corresponding cut-off frequencies f co for the ridge
waveguide. Compare the ratio f co

2
/f co

1
between the two lowest cut-off frequencies

(f co

2
> f co

1
) for the ridge and rectangular waveguides. Is the bandwidth larger for

the ridge waveguide?

5 credit points

Perform a convergence test for the lowest eigenmode. What’s the extrapolated cut-
off frequency? What’s the order of convergence? Do you achieve optimal order of
convergence? If not, why is the order of convergence reduced?

5 credit points

Visualize both the longitudinal and transverse field components for the five lowest
eigenmodes. Comment on how your visualizations relate to the cut-off frequencies.
How does the eigenmodes compare with the rectangular waveguide modes?
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3 Report

Compare and explain your findings in the report. It is important that you try to
provide mathematical arguments to support your conclusions. Do not forget to

• describe your numerical schemes (and suitable derivations) and their imple-
mentation by MATLAB-program,

• results for the numerical investigations above.
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A Electromagnetic fields for waveguide modes

For the m-th transverse electric (TE) mode, we have computed Hz(x, y) and, then,
the corresponding electromagnetic field (that propagates in the ±ẑ-direction) is
given by

~E(x, y, z) = H±
0

[

+
jωµ0

k2t
ẑ ×∇Hz(x, y)

]

e∓jkzz (7)

~H(x, y, z) = H±
0

[

∓
jkz
k2t

∇Hz(x, y) + ẑHz(x, y)
]

e∓jkzz (8)

where the amplitude H±
0

is associated with the magnetic field and it has the unit
A/m.

For the m-th transverse magnetic (TM) mode, we have computed Ez(x, y) and,
then, the corresponding electromagnetic field (that propagates in the ±ẑ-direction)
is given by

~E(x, y, z) = E±
0

[

∓
jkz
k2t

∇Ez(x, y) + ẑEz(x, y)
]

e∓jkzz (9)

~H(x, y, z) = E±
0

[

−
jωǫ0
k2t

ẑ ×∇Ez(x, y)
]

e∓jkzz (10)

where the amplitude E±
0
is associated with the electric field and it has the unit V/m.

B Longitudinal field for rectangular waveguide

Consider a rectangular waveguide with a cross section of width lx and height ly that
occupies the region described by 0 ≤ x ≤ lx and 0 ≤ y ≤ ly for a plane with constant
z-coordinate.

The longitudinal magnetic field component of the TEmn-mode is given by

Hz(x, y) = H0 cos

(

nxπ

lx
x

)

cos

(

nyπ

ly
y

)

. (11)
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where nx = 0, 1, 2, . . . and ny = 0, 1, 2, . . . excluding the combination nx = ny = 0.
The longitudinal electric field component of the TMmn-mode is given by

Ez(x, y) = E0 sin

(

nxπ

lx
x

)

sin

(

nyπ

ly
y

)

. (12)

where nx = 1, 2, 3, . . . and ny = 1, 2, 3, . . . for any combinations of nx and ny.
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