

Seminar 3

Finite-difference time-domain scheme

Thomas Rylander

Department of Electrical Engineering
Chalmers University of Technology

February 8, 2022

Presentation Outline

FDTD scheme in 3D

Courant condition

Additional functionality

Yee cell

Discretize Maxwell's equations with centered finite differences.

Ampère's law

$$\epsilon \frac{\partial \vec{E}}{\partial t} = \nabla \times \vec{H} \Rightarrow \begin{cases} \epsilon \frac{\partial E_x}{\partial t} = \frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} \\ \epsilon \frac{\partial E_y}{\partial t} = \frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x} \\ \epsilon \frac{\partial E_z}{\partial t} = \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \end{cases}$$

Faraday's law

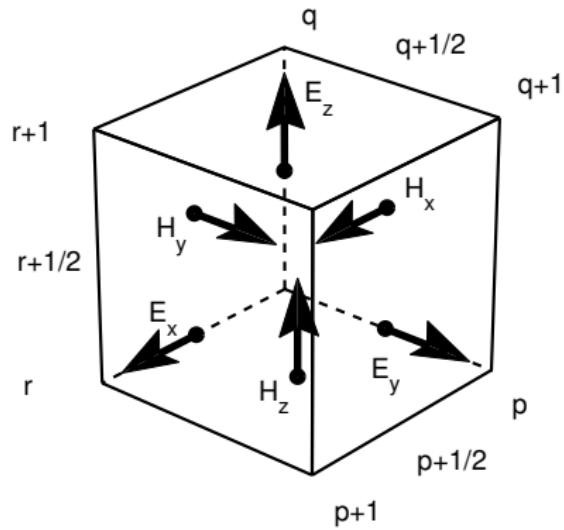
$$\mu \frac{\partial \vec{H}}{\partial t} = -\nabla \times \vec{E} \Rightarrow \begin{cases} \mu \frac{\partial H_x}{\partial t} = \frac{\partial E_y}{\partial z} - \frac{\partial E_z}{\partial y} \\ \mu \frac{\partial H_y}{\partial t} = \frac{\partial E_z}{\partial x} - \frac{\partial E_x}{\partial z} \\ \mu \frac{\partial H_z}{\partial t} = \frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} \end{cases}$$

Yee cell

The staggering to three dimensions with a special arrangement of all the components of \vec{E} and \vec{H} :

- ▶ Electric field components are computed at “integer” time-steps
- ▶ Magnetic field at “half-integer” time-steps
- ▶ Space is divided into bricks with sides Δx , Δy , and Δz (usually one uses cubes with $\Delta x = \Delta y = \Delta z = h$)
- ▶ The different field components are placed in the grid according to the Yee cell
- ▶ Use the notation $f|_{p,q,r}^n \equiv f(p\Delta x, q\Delta y, r\Delta z, n\Delta t)$ where p , q , r and n are integers

Yee cell



Ampère's law: x -component

Continuum form

$$\epsilon \frac{\partial E_x}{\partial t} = \frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z}$$

is discretized as

$$\epsilon \frac{E_x|_{p+\frac{1}{2},q,r}^{n+1} - E_x|_{p+\frac{1}{2},q,r}^n}{\Delta t} = \frac{H_z|_{p+\frac{1}{2},q+\frac{1}{2},r}^{n+\frac{1}{2}} - H_z|_{p+\frac{1}{2},q-\frac{1}{2},r}^{n+\frac{1}{2}}}{\Delta y} - \frac{H_y|_{p+\frac{1}{2},q,r+\frac{1}{2}}^{n+\frac{1}{2}} - H_y|_{p+\frac{1}{2},q,r-\frac{1}{2}}^{n+\frac{1}{2}}}{\Delta z}$$

Centered at $p + \frac{1}{2}$, q and r in space and $n + \frac{1}{2}$ in time.

Ampère's law: y - and z -component

Similar for the two other components

$$\begin{aligned} & \epsilon \frac{E_y|_{p,q+\frac{1}{2},r}^{n+1} - E_y|_{p,q+\frac{1}{2},r}^n}{\Delta t} \\ &= \frac{H_x|_{p,q+\frac{1}{2},r+\frac{1}{2}}^{n+\frac{1}{2}} - H_x|_{p,q+\frac{1}{2},r-\frac{1}{2}}^{n+\frac{1}{2}}}{\Delta z} - \frac{H_z|_{p+\frac{1}{2},q+\frac{1}{2},r}^{n+\frac{1}{2}} - H_z|_{p-\frac{1}{2},q+\frac{1}{2},r}^{n+\frac{1}{2}}}{\Delta x} \\ & \epsilon \frac{E_z|_{p,q,r+\frac{1}{2}}^{n+1} - E_z|_{p,q,r+\frac{1}{2}}^n}{\Delta t} \\ &= \frac{H_y|_{p+\frac{1}{2},q,r+\frac{1}{2}}^{n+\frac{1}{2}} - H_y|_{p-\frac{1}{2},q,r+\frac{1}{2}}^{n+\frac{1}{2}}}{\Delta x} - \frac{H_x|_{p,q+\frac{1}{2},r+\frac{1}{2}}^{n+\frac{1}{2}} - H_x|_{p,q-\frac{1}{2},r+\frac{1}{2}}^{n+\frac{1}{2}}}{\Delta y} \end{aligned}$$

Faraday's law: x -component

Continuum form

$$\mu \frac{\partial H_x}{\partial t} = \frac{\partial E_y}{\partial z} - \frac{\partial E_z}{\partial y}$$

is discretized as

$$\begin{aligned} & \mu \frac{H_x|_{p,q+\frac{1}{2},r+\frac{1}{2}}^{n+\frac{1}{2}} - H_x|_{p,q+\frac{1}{2},r+\frac{1}{2}}^{n-\frac{1}{2}}}{\Delta t} \\ &= \frac{E_y|_{p,q+\frac{1}{2},r+1}^n - E_y|_{p,q+\frac{1}{2},r}^n}{\Delta z} - \frac{E_z|_{p,q+1,r+\frac{1}{2}}^n - E_z|_{p,q,r+\frac{1}{2}}^n}{\Delta y} \end{aligned}$$

Centered at $p, q + \frac{1}{2}$ and $r + \frac{1}{2}$ in space and n in time.

Faraday's law: y - and z -component

Similar for the two other components

$$\begin{aligned} & \mu \frac{H_y|_{p+\frac{1}{2},q,r+\frac{1}{2}}^{n+\frac{1}{2}} - H_y|_{p+\frac{1}{2},q,r+\frac{1}{2}}^{n-\frac{1}{2}}}{\Delta t} \\ &= \frac{E_z|_{p+1,q,r+\frac{1}{2}}^n - E_z|_{p,q,r+\frac{1}{2}}^n}{\Delta x} - \frac{E_x|_{p+\frac{1}{2},q,r+1}^n - E_x|_{p+\frac{1}{2},q,r}^n}{\Delta z} \\ & \mu \frac{H_z|_{p+\frac{1}{2},q+\frac{1}{2},r}^{n+\frac{1}{2}} - H_z|_{p+\frac{1}{2},q+\frac{1}{2},r}^{n-\frac{1}{2}}}{\Delta t} \\ &= \frac{E_x|_{p+\frac{1}{2},q+1,r}^n - E_x|_{p+\frac{1}{2},q,r}^n}{\Delta y} - \frac{E_y|_{p+1,q+\frac{1}{2},r}^n - E_y|_{p,q+\frac{1}{2},r}^n}{\Delta x} \end{aligned}$$

Presentation Outline

FDTD scheme in 3D

Courant condition

Additional functionality

Courant condition

The time-step Δt must fulfil the Courant condition

$$\Delta t \leq \frac{1}{c\sqrt{1/(\Delta x)^2 + 1/(\Delta y)^2 + 1/(\Delta z)^2}}$$

For a cubic grid with $\Delta x = \Delta y = \Delta z = h$, the stability condition simplifies to

$$\Delta t \leq \frac{h}{c\sqrt{3}}.$$

Presentation Outline

FDTD scheme in 3D

Courant condition

Additional functionality

Additional functionality

- ▶ Perfectly Matched Layer (PML) absorbs outward propagating waves, which is used for free-space problems.
(Allows for grid truncation by a perfect electric conductor.)
- ▶ Incident wave created by a Huygen's surface that divides the computational domain into two sub-domains:
 - ▶ Total-field region inside the Huygen's surface
 - ▶ Scattered-field region outside the Huygen's surface
- ▶ Near-to-far-field transformation computes the radiated far-field given the near-fields