
Seminar 3
Finite-difference time-domain scheme

Thomas Rylander

Department of Electrical Engineering
Chalmers University of Technology

February 8, 2022



Presentation Outline

FDTD scheme in 3D

Courant condition

Additional functionality



Yee cell

Discretize Maxwell’s equations with centered finite differences.
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Yee cell

The staggering to three dimensions with a special arrangement
of all the components of E⃗ and H⃗:

▶ Electric field components are computed at “integer”
time-steps

▶ Magnetic field at “half-integer” time-steps

▶ Space is divided into bricks with sides ∆x, ∆y, and ∆z
(usually one uses cubes with ∆x = ∆y = ∆z = h)

▶ The different field components are placed in the grid
according to the Yee cell

▶ Use the notation f |np,q,r ≡ f(p∆x, q∆y, r∆z, n∆t) where p,
q, r and n are integers
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Ampère’s law: x-component

Continuum form
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Ampère’s law: y- and z-component

Similar for the two other components
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Faraday’s law: x-component

Continuum form
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Faraday’s law: y- and z-component

Similar for the two other components

µ
Hy|

n+ 1
2

p+ 1
2
,q,r+ 1

2

−Hy|
n− 1

2

p+ 1
2
,q,r+ 1

2

∆t

=
Ez|np+1,q,r+ 1

2

− Ez|np,q,r+ 1
2

∆x
−

Ex|np+ 1
2
,q,r+1

− Ex|np+ 1
2
,q,r

∆z

µ
Hz|

n+ 1
2

p+ 1
2
,q+ 1

2
,r
−Hz|

n− 1
2

p+ 1
2
,q+ 1

2
,r

∆t

=
Ex|np+ 1

2
,q+1,r

− Ex|np+ 1
2
,q,r

∆y
−

Ey|np+1,q+ 1
2
,r
− Ey|np,q+ 1

2
,r

∆x



Presentation Outline

FDTD scheme in 3D

Courant condition

Additional functionality



Courant condition

The time-step ∆t must fulfil the Courant condition

∆t ≤ 1
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For a cubic grid with ∆x = ∆y = ∆z = h, the stability
condition simplifies to
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Additional functionality

▶ Perfectly Matched Layer (PML) absorbs outward
propagating waves, which is used for free-space problems.
(Allows for grid truncation by a perfect electric conductor.)

▶ Incident wave created by a Huygen’s surface that divides
the computational domain into two sub-domains:
▶ Total-field region inside the Huygen’s surface
▶ Scattered-field region outside the Huygen’s surface

▶ Near-to-far-field transformation computes the radiated
far-field given the near-fields
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