SSY200 Assignment 2

Set up environment

format compact
clear
EM_constants
close all

Parameters, as given in 82.4

%% Assignment parameters

omega = 3e9; %

ko = omega/cO; % Wavenumber for given frequency (in vacuum).
sigm = 0.02; % conductance sigma for glass [S/m]

er = 2.5; % Relative permittivity for glass.
eps_glass = e@*er; % Abs. permittivity for glass.

EOi = 1; % Magnitude of incident wave. Arbitrary?
iter = 1
iter =

for N=4% = (1:10).*10

Generate grid

1. Glass boundaries (-a,+a) fall between grid points.
2. Glass boundaries fall exactly on grid points.

%N = 4; % Assert N >= 4 and even.

assert(N >= 4, "Assert failed: N must be >4")
assert(mod(N,2) == 0, "Assert failed: N must be even!")
a = 2e-2; % Half-thickness of glass. 2cm. Given in §2.4

for grid_type=["G1" "G2"]
switch grid_type

case "G1"
%% Gl: Glass boundaries between grid-points.
n = -N-1:N;
h = 2*a/N;

xn = (n + 1/2)*h; % Grid-points.

N_gp = length(xn); % Number of grid points.
case "G2"

%% G2: Glass boundaries on grid points!

n = -N:N;

h = 2*a/N;

Xn = n*h;

N_gp = length(xn); % Number of grid points.

end

Create system of linear equations for the 1D Helmholtz equation
Create square tri-diagonal A matrix.

Each row corresponds to a position along the x-axis.

_like 1k
h 2 h 2
_# %"‘#0['

0

h2

A = zeros(N_gp, N_gp); % Initialize

% Helmholtz (non-boundary cases)

% Initialize main diagonal.
for i = 1:N gp-1
if (abs(xn(i)) <= a) % Inside glass!!

d = 2/h*2 + mu@*(-omega”2*ed);

d =
else
end
A(i,i) = d;
end
S =
for 1 = 1:N_gp-1

A(i,i+1) = s; % Upper diagonal.
A(i+1,i) = s; % Lower diagonal.

end

Insert boundary conditions in A matrix.

A(1,1:2) = [-1/h - j*k@/2, 1/h - j*k@/2];
A(N_gp, end-1:end) = [-1/h + j*k@/2, 1/h + j*ke/2];

z+ﬂo["']3

, ie. row 1 is the left boundary.

2/h~2 + mu@*(j*omega*sigm - omega”2*eps_glass);
% Else in air.

-1/h~2;% Upper and lower diagonal entries.

% Left boundary condition.
% Right boundary condition.

Construct b column vector (right hand side at each point in space).

ik, (X1 + Xo)
2
b= 0
i 0

b = [-2*j*ke*(E@i*exp(-j*ko*(xn(2)+xn(1))/2)); zeros(N_gp-1,1)];

Solve

z = A\b; % Solve system.

Plot total electric field E_(x)

subplot(211)

plot(xn, angle(z))

grid on

ylabel('Phase')

xlabel('x")

hold on

plot([-a -a],[min(angle(z)) max(angle(z))], 'r--', 'LineWidth',2.0) % Draw (-a,+a) on plot.
plot([+a +a],[min(angle(z)) max(angle(z))], 'r--', 'LineWidth',2.0) % Draw (-a,+a) on plot.

title(['N = ' num2str(N)])
subplot(212)

plot(xn, abs(z))

grid on

hold on

%legend('G1l")

ylabel('Magnitude")

xlabel('x")

plot([-a -a],[min(abs(z)) max(abs(z))], 'r--', 'LineWidth',2.0) % Draw (-a,+a) on plot.
plot([+a +a],[min(abs(z)) max(abs(z))], 'r--', 'LineWidth',2.0) % Draw (-a,+a) on plot.

Analytical values for k,, R, T

kil = sqrt(er*ke”2 - j*omega*mu@*sigm)
Delta = (ko + kl)~2*exp(j*4*a*kl) - (ke - k1)72; % Intermediate value (not used elsewhere)

R = (ke”2 - ki1~2)/Delta * exp(j*2*a*ke) * (exp(j*4*a*kl)-1);
T = (ke*kl)/Delta * 4 *exp(j*2*a*(ke+kl));

a_idx = (ceil(N_gp*1/4)); % Index corresponding to coordinate of -a in grid. Rounded down.
Rnum = (z(a_idx)-exp(-j*ke*xn(a_idx)))/exp(-j*k0*xn(a_idx));

a_idx = (floor(N_gp*3/4)); % Index corresponding to coordinate of +a in grid. Rounded down.
Tnum = z(a_idx)/exp(-j*ke*xn(a_idx));

RnumVec(iter)
TnumVec(iter)
iter = iter + 1;

Rnum;
Tnum;

ki =

15.996876574092919 - 2.3566545424330871

ki =

15.996876574092919 - 2.3566545424330871

0.4

0.2
O_

Phase

-0.2r

-0.4

-0.6

-0.05

-0.04

-0.03

-0.02

-0.01

0.01

0.02

0.03

Il
0.04

0.84
0.82

0.8
0.78
=

0.76
0.74

nitude
T

-0.05

-0.04

-0.03

-0.02

-0.01

0.01

.
|
|
|
l
|
|
I
0

0.02

0.03

0.04

0.05

0.4
0.2
O_

T

Phase

-0.2

-0.4
0.6

-0.05

-0.04

-0.03

-0.02

-0.01

0.01

0.02

0.03

0.04

0.05

0.85

Magnitude
o
~ o
(&)] (o]
T T

o
]
T

0.65
-0.05

-0.04

-0.03

-0.02

-0.01

o

0.01

0.02

0.03

0.04

0.05

end % Grid selection loop
end % end grid refinement loop

Fit curve

Reflection coeff. R

figure

h = 2*a./(10:10:100);

hcont = linspace(0, 2*a/10, 1000);

RVec = repmat(abs(R),length(hcont),1);% For illustrating analytical solution
plot(hcont.”~2, RVec, 'R--')

hold on

plot(h.”~2, abs(Rnumvec), 'b-+")

p = polyfit(h,abs(RnumVec),2);

fitted poly = polyval(p,hcont);

plot(hcont.”2, fitted poly)

legend('Analytical (fixed)', 'Numerical', 'Extrapolated')

hold off

title('|R| vs h”2")
grid on
xlabel('h”2");ylabel('|R|")

Transmission coeff. T

figure

h = 2*¥a./(10:10:100);

hcont = linspace(0, 2*a/10, 1000);

TVec = repmat(abs(T),length(hcont),1);% For illustrating analytical solution
plot(hcont.”2, TVec, 'R--")

hold on

plot(h.”2, abs(TnumVec), 'b-+")

p = polyfit(h,abs(TnumVec),2);

fitted_poly = polyval(p,hcont);

plot(hcont.”2, fitted poly)

legend('Analytical (fixed)', 'Numerical', 'Extrapolated')

hold off

title('|T| vs h~2")
grid on

Transmission coeff phase

figure

h = 2*¥a./(10:10:100);

hcont = linspace(0, 2*a/10, 1000);

TVec = repmat(angle(T),length(hcont),1);% For illustrating analytical solution
plot(hcont.”2, TVec, 'R--')

hold on

plot(h.”2, angle(TnumVec), 'b-+")

p = polyfit(h,angle(TnumVec),2);

fitted_poly = polyval(p,hcont);

plot(hcont.”2, fitted poly)

legend('Analytical (fixed)', 'Numerical', 'Extrapolated')
hold off

title('angle(T) vs h”2")
grid on

xlabel('h”2");ylabel('angle(T)")

