
%%%%%%%%%%%%%%%%%
% Problem Setup %
%%%%%%%%%%%%%%%%%

clear all
close all

% Physical constants
eps0 = 8.8541878e-12;
mu0  = 4e-7 * pi;
c0 = 299792458;

% Cell size
h = 0.0025;

% Waveguide dimensions
Lx = 0.040;
Ly = 0.0225;
Lz = 0.160;

% Number of cells in each direction
Nx = round(Lx / h);
Ny = round(Ly / h);
Nz = round(Lz / h);

% Length of time steps
Dt = h / (c0 * sqrt(3)); % Courant condition?

% Insignal data
t_max = 16e-9;
Nt    = ceil(t_max / Dt);
t     = (1:Nt)' * Dt;

f_min = 4e9;
f_max = 7e9;
f_mid = (f_max + f_min) / 2;
BWr   = (f_max - f_mid) / f_mid;
f     = ((0:Nt-1)'-floor(Nt/2)) / Nt / Dt;
s     = gauspuls(t-0.2e-8, f_mid, BWr, -12);

% Allocate field matrices
Ex = zeros(Nx,     Ny + 1, Nz + 1);
Ey = zeros(Nx + 1, Ny,     Nz + 1);
Ez = zeros(Nx + 1, Ny + 1, Nz    );

Hx = zeros(Nx + 1, Ny,     Nz    );
Hy = zeros(Nx    , Ny + 1, Nz    );
Hz = zeros(Nx    , Ny,     Nz + 1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initiation of boundary conditions %
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp(sprintf('Initiate boundary conditions...'))
NumModesTE = 7; % 01 10 11 20 21 30 31
NumModesTM = 3; % 11 21 31
NumModes   = NumModesTE + NumModesTM;

disp(sprintf('  Compute TE modes'))
[ExTE, EyTE, K2TE] = ComputeTEModes(NumModesTE, Nx, Ny, h, h);
disp(sprintf('  Compute TM modes'))
[ExTM, EyTM, K2TM] = ComputeTMModes(NumModesTM, Nx, Ny, h, h);

ModalEx = [ExTE ExTM];
ModalEy = [EyTE EyTM];
ModalK2 = [K2TE K2TM];
ModalNm = sum(ModalEx.^2) + sum(ModalEy.^2); % Normalizing constants

clear ExTE EyTE ExTM EyTM

% Compute Impulse response for the propagating mode
IR   = zeros(Nt, NumModes);  % Impulse response
s1R  = zeros(Nt, NumModes);  % Reflected signal at z = Dz
s1   = zeros(Nt, NumModes);  % Total signal at z = 0
s2T  = zeros(Nt, NumModes);  % Transmitted signal at z = Lz - Dz
s2   = zeros(Nt, NumModes);  % Total signal at z = Lz

for k = 1:NumModes
  disp(sprintf('  Computing Impulse response for Mode %d', k))
  IR(:,k) = ComputeIR(Dt, h, Nt, ModalK2(k));
end

%%%%%%%%%%%%%%
% Main Loop. %
%%%%%%%%%%%%%%
disp(sprintf('Start time stepping...'))
% Set initial source boundary conditions
sEy = Ey(2:Nx, :, 2);
sEx = Ex(:, 2:Ny, 2);
sEy(:) = s(1) * ModalEy(:,1);
sEx(:) = s(1) * ModalEx(:,1);
Ey(2:Nx, :, 1) = sEy;
Ex(:, 2:Ny, 1) = sEx;
s1(1,1) = s(1);

CH = Dt / (h * mu0);
CE = Dt / (h * eps0);

ks = 400;
for k = 2:Nt

  % if k > 250 & k < 600
  %   figure(99)
  %   mesh(0:Nz, 0:Nx, squeeze(0.5*Ey(:,6,:))), axis equal, axis([0 Nz 0 Nx 
-6 6])
  %   caxis([-6 6]), view(145,30)
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  %   drawnow
  % end

  %===================%
  % FDTD update loops %
  %===================%

  % -------------------------------------------------------------
  % | ADD FDTD UPDATE LOOPS                                     |
  % ----------------------------------------------------------  |
  %                                                          |  |
  %                                                         \    /
  %                                                          \  /
  %                                                           \/
  Dx = h; Dy = h; Dz = h;

  Hx = Hx + CH * (diff(Ey,1,3) - diff(Ez,1,2));
  Hy = Hy + CH * (diff(Ez,1,1) - diff(Ex,1,3));
  Hz = Hz + CH * (diff(Ex,1,2) - diff(Ey,1,1));

  Ex(: ,2:Ny, 2:Nz) = Ex(: ,2:Ny, 2:Nz) + CE * (diff(Hz(:,:,2:Nz),1,2) - 
diff(Hy(:,2:Ny,:),1,3));
  Ey(2:Nx ,: ,2:Nz) = Ey(2:Nx ,: ,2:Nz) + CE * (diff(Hx(2:Nx,:,:),1,3) - 
diff(Hz(:,:,2:Nz),1,1));
  Ez(2:Nx, 2:Ny, :) = Ez(2:Nx, 2:Ny, :) + CE * (diff(Hy(:,2:Ny,:),1,1) - 
diff(Hx(2:Nx,:,:),1,2));

  %                                                           /\
  %                                                          /  \
  %                                                         /    \
  %                                                          |  |
  % ----------------------------------------------------------  |
  % |                                                           |
  % -------------------------------------------------------------

  %==========================%
  % Metal Boudary Conditions %
  %==========================%

  % -------------------------------------------------------------
  % | ADD METAL OBJECTS FOR FILTERING                           |
  % ----------------------------------------------------------  |
  %                                                          |  |
  %                                                         \    /
  %                                                          \  /
  %                                                           \/
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  %                                                           /\
  %                                                          /  \
  %                                                         /    \
  %                                                          |  |
  % ----------------------------------------------------------  |
  % |                                                           |
  % -------------------------------------------------------------

  %==============================%
  % Boundary Conditions at Z = 0 %
  %==============================%

  % Extract transverse fields at z = dz %
  sEy = Ey(2:Nx, :, 2);
  sEx = Ex(:, 2:Ny, 2);

  % Compute modal voltages %
  s1R(k,:) = (sEy(:)' * ModalEy + sEx(:)' * ModalEx) ./ ModalNm;

  % The reflected modal amplitude at z = Dz is the difference between the
  % total modal amplitude and that of the incoming wave. The amplitude of
  % the incoming wave at z = Dz is a convolution of the insignal at z = 0
  % and the impulse response of the wave guide.
  s1R(k,1) = s1R(k,1) - s(1:k-1)' * IR(k-1:-1:1,1);

  % Port Amplitude: sum of insignal and convolution of the reflected
  % signal at z = Dz with the impulse response
  for l = 1:NumModes
    s1(k,l) = s1R(1:k-1, l)' * IR(k-1:-1:1, l);
  end
  s1(k,1) = s1(k,1) + s(k);

  % Set port 1  boundary conditions %
  sEy(:) = ModalEy * s1(k,:)';
  sEx(:) = ModalEx * s1(k,:)';
  Ey(2:Nx,:,1) = sEy;
  Ex(:,2:Ny,1) = sEx;

  %===============================%
  % Boundary Conditions at Z = Lz %
  %===============================%

  % Extract transverse fields at z = Lz - Dz %
  sEy = Ey(2:Nx, :, Nz);
  sEx = Ex(:, 2:Ny, Nz);

  % Compute modal voltage at z = Dz
  s2T(k,:) = (sEy(:)' * ModalEy + sEx(:)' * ModalEx) ./ ModalNm;
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  % Port Amplitude
  for l = 1:NumModes
    s2(k,l) = s2T(1:k-1, l)' * IR(k-1:-1:1, l);
  end

  % Set port 2  boundary conditions %
  sEy(:) = ModalEy * s2(k,:)';
  sEx(:) = ModalEx * s2(k,:)';
  Ey(2:Nx,:,Nz+1) = sEy;
  Ex(:,2:Ny,Nz+1) = sEx;

  if(mod(k,100) == 0)
    disp(sprintf('  step %5d of %5d', k, Nt))
  end

end;

% remove the incoming sigland from the total signal at port 1.
s1(:,1) = s1(:,1) - s;

figure(1)
T = t*1e9;
plot(T,s1(:,1),T,s2(:,1))
legend('s_1(t)','s_2(t)')
xlabel('t [ns]');

% -------------------------------------------------------------
% | ADD SCATTERING PARAMETERS AS FUNCTION OF FREQUENCY        |
% ----------------------------------------------------------  |
%                                                          |  |
%                                                         \    /
%                                                          \  /
%
%

f_of_interest = find(f>3e9 & f<7e9);

S11 = (S1./S);
S21 = (S2./S);

%                                                           /\
%                                                          /  \
%                                                         /    \
%                                                          |  |
% ----------------------------------------------------------  |
% |                                                           |
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% -------------------------------------------------------------

% timevec = 1:Nt
function [f, mag, phase] =  myfft(Dt, signal, timevec)
    Fs = 1/Dt;
    L = length(signal); % same as for s2
    ts = timevec; % time vector
    Y = fft(signal);
    P2 = abs(Y/L);
    P1 = P2(1:L/2+1);
    P1(2:end-1) = 2*P1(2:end-1);
    f = Fs/L*(0:L/2);

    mag = P1;
    phase = angle(Y);

end
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  step  2100 of  3324
  step  2200 of  3324
  step  2300 of  3324
  step  2400 of  3324
  step  2500 of  3324
  step  2600 of  3324
  step  2700 of  3324
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Unrecognized function or variable 'S1'.

Error in FdtdLab (line 254)
S11 = (S1./S);
       ^^
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