
Finite-difference time-domain scheme

Hand-in assignment # 2 – SSY200

1 Problem description

Waveguides and filters are important components of many complex microwave sys-
tems. Here, we consider the characteristic features for some relatively simple struc-
tures that provide a filtering functionality in waveguides. The quantities of interest
is the reflection and transmission coefficient as a function of frequency. In the fol-
lowing, we will limit the discussion to waveguide structures with rectangular cross
section and the finite-difference time-domain (FDTD) scheme [1, 2].

The FDTD model deals with the part of the waveguide that contains the filtering
structure. At each of the two ends of the filter, a shorter section of a rectangular
waveguide is attached and truncated by a port for computational modeling purposes.
(The physical waveguide would normally extend beyond the ports but that part is
not included in the computational model considered here.)

1.1 Modal representation for a rectangular waveguide

In an air-filled rectangular waveguide with the transverse dimensions Lx and Ly,
we can decompose the electric and magnetic fields into transverse electric (TEmn)
and transverse magnetic (TMmn) modes, see Ref. [3] for a detailed discussion. Each
mode has its own propagation constant

γmn =

√

h2
mn −

(ω

c

)2

(1)

where h2
mn are the eigenvalues of the transverse problem for Hz (TE case) or Ez

(TM case), i.e.

h2

mn =

(

mπ

Lx

)2

+

(

nπ

Ly

)2

. (2)

For TE modes, m and n are non-negative integers and also m + n > 0. For TM
modes, both m and n are positive integers.

Numbering the modes from 1 to ∞, we can express the electric field in the
waveguide as a superposition of both TE and TM modes as

~E(x, y, z, t) =

∞
∑

n=1

Vm(z, t) ~em(x, y) (3)

where Vm(z, t) is the modal amplitude, or voltage, of mode m (which can be either
a TE or a TM mode) and ~em(x, y) is its modal field. The modal field, ~em(x, y), for
the TE10 mode is shown in Fig. 1.

In the following, we will consider situations where the frequency range of interest
and the dimensions (Lx, Ly) of the waveguide are chosen so that γmn is real for all
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Figure 1: Modal field of the TE10 mode.

modes except one, namely the TE10 mode. Consequently, only the TE10 mode
will propagate and exist far away from any source or irregularity in the waveguide,
since the other modes are evanescent and decay exponentially according to Vm ∝
exp(−γz).

1.2 Computation of the S-parameters

A filter can be characterized in terms of its reflection and transmission coefficient
and, in a more general setting, these are often referred to as the scattering parame-
ters or simply the S-parameters. Figure 2 shows a rectangular waveguide (without
the filtering structure) that is truncated at two ports for computational modeling
purposes. The S-parameters can be computed given the relation between the am-
plitudes of the TE10 mode at the ports: (i) an incident wave is launched at one port,
(ii) the reflected wave is recorded at the same port, and (iii) the transmitted wave
is recorded at the other port.

1,ins

1,outs

2,outs

Port 1 Port 2

Figure 2: Illustration of incoming and outgoing waves.

Let s1,in(t) be the amplitude of the incoming TE10 wave at port 1 and and let
s1,out(t) and s2,out(t) be the amplitudes of the outgoing TE10 waves at port 1 and
2, respectively. The Fourier transform of these signals gives S1,in(ω), S1,out(ω) and
S2,out(ω). The relation between the amplitudes at the two ports are usually described
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by the so-called S-parameters:

S11(ω) =
S1,out(ω)

S1,in(ω)
(4)

S21(ω) =
S2,out(ω)

S1,in(ω)
(5)

The scattering parameter S11 is recognized as the reflection coefficient and S21

as the transmission coefficient. A further extension to an n-port network is rather
straightforward and for such cases it is convenient to represent the S-parameters in
matrix form, an n× n scattering matrix S with the elements Sij.

1.3 Numerical modeling

The interior of the waveguide is discretized by an FDTD grid [1, 2]. A wave can
be launched at one of the ports and then propagated through the waveguide by
means of Maxwell’s equations represented by the FDTD scheme applied to the grid
in-between the ports. Consequently, a filtering structure can be modeled in detail
by the FDTD scheme and its reflection and transmission coefficient be computed
from the fields at the ports.

The special type of boundary condition that is required at the ports is already
implemented in the MATLAB program provided as a starting point for the tasks below.
The algorithm is briefly summarized in Appendix A.

2 Assignments

You are given a MATLAB program that should be used as a starting point when
you work with the tasks listed below. The implementation provided allocates the
required memory areas for the electric and magnetic fields for an empty waveguide
with the dimensions:

Lx = 40.0 mm, Ly = 22.5 mm and Lz = 160.0 mm. (6)

It also contains parts that deal with an incoming signal, a Gaussian-modulated
sinusoidal pulse, that contains energy in the frequency interval from 3.9 to 6.5 GHz.
The waveguide ports (that impose the incident wave and absorbs the reflected and
transmitted wave) are located at z = 0 mm and z = 160.0 mm. Given this program,
solve the problems that follow below, where some are optional as indicated in the
text.

2.1 Numerical implementation

Implement the update loops for Faraday’s and Ampère’s law according to the FDTD
scheme in 3D for an empty rectangular waveguide.
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2.2 Numerical tests

What is the expected reflected s1,out(t) and transmitted s2,out(t) solution for an
empty waveguide given the Gaussian excitation pulse? Test your code and see if
the result is what you expected. What is the cut-off frequency of the TE10 mode?
Which mode has the second lowest cut-off frequency and what frequency is that?

Implement a post-processing step that transforms the time-domain scattering
amplitudes s1,out(t) and s2,out(t) to their corresponding frequency-domain quantities
and provide code that evaluates the scattering parameters (4) and (5). Verify that
your implementation works as expected for the empty waveguide. You can calculate
the analytical scattering parameters (4) and (5), which makes a careful comparison
feasible. Comment on your findings by an interpretation of the numerical errors.

2.2.1 Optional problems

These problems give credit points if they are correctly solved.

5 credit points

For the first optional problem, change the MATLAB program so that you can analyze
a waveguide that has a somewhat more narrow mid-section as shown in Fig. 3. The
dimensions are a = w = 4 cm, b = 6 cm and d = 3 cm. The walls are perfectly
conducting and the geometry is independent on the y-coordinate. Compute |S11(ω)|
and |S21(ω)| for this modified geometry. Comment on your findings and provide an
explanation to the transfer function that you find.
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Figure 3: Waveguide with a narrow mid-section.

10 credit points

The more challenging optional problem is to model a lossy dielectric block placed
“on the floor” of the waveguide as shown in Fig. 4, which contains a top and side
view of the dielectric block indicated by the shaded region. The dimensions in Fig. 4
are a = 2 cm, b = 7 cm, d = 2 cm and h = 1 cm. (Note that the dielectric block
in the figure is not to scale.) The relative permittivity of the dielectric block is 5
and its conductivity is 0.07 S/m. Here, it is necessary to modify Ampère’s law in
the implementation of the FDTD update scheme to incorporate an inhomogeneous
dielectric together with the eddy currents that result from a non-zero conductivity.
Note that Ampère’s law is evaluated at half-integer time-steps (i.e. n+1/2) and, thus,
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the eddy currents are best evaluated according to the (semi-implicit) approximation

~J(~r, t = (n+ 1/2)∆t) = σ(~r )
~E(~r, t = (n + 1)∆t) + ~E(~r, t = n∆t)

2
which produces a numerically stable and accurate time-stepping scheme for all values
of σ from zero to infinity. How do you deal with the update of the electric field for
this problem? Report on your new (explicit) update formulas that give the electric
field according to Ampère’s law. In particular, comment on how the electric field
tangential to the surface between the dielectric and the air is updated. Compute
|S11(ω)| and |S21(ω)| for this modified problem. How much power is reflected and
transmitted as a function of frequency? How much power is absorbed in the dielectric
medium as a function of frequency? Can you use the visualized fields to interpret
your findings?
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Figure 4: Waveguide with a lossy dielectric block placed “on the floor”.

A Waveguide ports

The algorithm is briefly summarized as follows (see Ref. [4] for further details):

• At each time step, n, we extract the transverse electric field one cell away from
the port boundary. Let’s denote this with ~Et|

n
p,q,Nz−1. Clearly, this field can be

represented as a superposition of waveguide modes that propagate along both
directions of the waveguide. Below, we consider for simplicity a port that does
not have an incident wave.

• With this result, we can compute the voltages Vm|
n
Nz−1 of the different modes1

m, one cell away from the boundary.

Vm|
n
Nz−1 =

∑

p,q

∆x∆y ~Et|
n
p,q,Nz−1 · ~em|p,q (7)

1The number of required modes depends on how close to any discontinuities the ports are

placed; the further away from any discontinuities, the more decayed are the higher order modes.
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Since it is known that there is no incident mode at this port, the decomposed
field only consists of waveguide modes that are propagating out from the com-
putational domain. (For a port with an incident field, this could easily be
compensated for since the user knows what incident field is used and, thus,
the incident field can be subtracted from the total field to yield the reflected
field.)

• Each mode can be modeled by a one-dimensional wave equation

∂2Vm

∂z2
−

1

c20

∂2Vm

∂t2
− h2

mVm = 0, (8)

which can be discretized as

Vm|
n+1

r = AVm|
n
r +B(Vm|

n
r+1 + Vm|

n
r−1)− Vm|

n−1

r (9)

where Vm|
n
r ≡ Vm(r∆z, n∆t) and

B =

(

c0∆t

∆z

)2

A = 2− 2B − (c0∆t hm)
2 .

The impulse response Im|
n = Vm|

n
1 for this one-dimensional wave equation can

be computed from Eq. (9). Provided this impulse response, we can use a
one dimensional convolution to compute the voltages on the boundary that
coincides with the port:

Vm|
n
Nz

= Vm|
n
Nz−1 ∗ Im|

n =

n
∑

j=1

Vm|
n−j

Nz−1
· Im|

j (10)

• Now, we know the modal voltages on the port boundary. The total electric
field on the boundary is a linear combination of the modal fields

~E|np,q,Nz

=
M
∑

m=1

Vm|
n
Nz

~em|p,q, (11)

and this solution is explicitly written into the FDTD grid before the next
update of the interior grid points that are located inside the computational
domain.

References

[1] K. S. Yee, “Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat.,
vol. AP-14, pp. 302–307, May 1966.

[2] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-
Difference Time-Domain Method (2nd Edition). Norwood, MA: Artech House,
2000.

6



[3] D. K. Cheng, Field and Wave Electromagnetics. Reading, MA: Addison-Wesley,
2 ed., 1989.

[4] F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “A revised formu-
lation of model absorbing and matched modal source boundary conditions for
the efficient FDTD analysis of waveguide structures,” IEEE Trans. Microwave
Theory Tech., vol. 48, pp. 50–59, January 2000.

7


