Finite-differences in frequency domain

Hand-in assignment # 1 — SSY200

1 Problem description

Consider an electromagnetic plane wave that propagates towards a large flat window
of glass as shown in Fig. 1. We wish to compute the reflected and transmitted wave.
The glass window has the thickness 2a.

Et

Figure 1: Glass window of thickness 2a with an incident field £, the reflected field
ET and the transmitted field E?.

We have the material parameters €(x), pu(z) = o and o(x) in the glass, where
—a < x < a. The medium outside the window is air with e(x) = €y, pu(x) = po and
o = 0 for |x| > a. The total electric field satisfies the differential equation:

_%ng) + 1o [jwo(z) —w?e(x)] E(z) =0 (1)

2 Assignments

Here, we introduce some of the techniques used in electromagnetic scattering prob-
lems. One such technique is to formulate a boundary condition that “injects” the
incoming wave by matching an expression for the incoming wave to the numerical
solution in the air region. The matching is done in the air outside the scatterer,
where the incoming field is known analytically. In addition, the boundary condition
should be constructed such that the reflected wave (and the transmitted wave) is
“received” by the same boundary condition and, thus, appear to continue to prop-
agate in the infinite air-region outside the computational region. Again, we rely
on that the reflected wave (and transmitted wave) is know analytically in the air
region. Following this procedure for our 1D problem, we can do the matching at two
points x = £b where the discretized solution in the computational domain |z| < b is
related to the fields outside this region by means of the boundary conditions. Here,
we need to have b > a, so that the matching points are in the air.
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2.1 Formulate boundary condition

The first task is to derive the appropriate boundary conditions analytically for the
two free-space regions: (i) the region to the left of the dielectric plate described by
x < —a; and (ii) the region to the right of the dielectric plate described by z > a.

Let the incident field be Ei(z) = FEyexp(—jkor), which is useful in the region
x < —a only. Introduce the reflected field as EI(z) = E,exp(+jkor), which is
also useful in the region x < —a only. Also, introduce the transmitted field as
EY(z) = E,exp(—jkox), which is useful in the region > a only. You can use
Eq. (1) to get ko = w/cy where co = 1/,/€oflo.

What is a priori known and unknown in the expressions above? How can this
information be used to formulate the appropriate boundary conditions at x = —b
and x = b, respectively? The boundary condition should involve the total electric
field £, (x) and its first derivative only. (Note that b is quite arbitrary as long as it
is larger than a.)

Note that it is important to work with the region < —a and the region = > a
separately. Here are some practical hints on how to proceed:

1. Write down the expression for the total electric field (by means of superposition

if needed)
2. Differentiate the total electric field with respect to x

3. Use the two equations (from step 1 and 2 above) to eliminate the unknown
field (i.e. the reflected field or the transmitted field), which gives an equation
that is the sought boundary condition

4. Check that the only unknown quantity in the boundary condition is the
(sought) total electric field and, thus, that all other quantities are known

2.2 Generate grid and system matrix
We use two different grids:

G1 The first grid is chosen such that the material interfaces x = +a fall in-between
grid points. We use the grid points z, = (n+ 3)Axz with Az = 2a/N, an even
integer N >4 andn=-N—-1,—-N,...,N.

G2 The second grid is chosen such that the material interfaces + = 4a fall on grid
points. We use the grid points x,, = nAx with Az = 2a/N, an even integer
N>4andn=—-N,—-N+1,...,N.

These grids discretize a region of (roughly) length a in each air region outside the
glass window, where at least two grid points are placed in the air region.

Denote the unknowns on the grid by (,, i.e. E.(x,) = (,. Discretize the differ-
ential equation (1) and your boundary conditions using finite differences, both with
an error that is proportional to h%2. The boundary condition involving no higher
than first derivatives is best centered on the half-grid.

Using the boundary conditions and the differential equation, we have a system
of linear equations Az = b to solve, where z = [(1, (s, - .,Cng]T and Ng, is the
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number of grid points. Write down the matrix A and the right hand side b in the
special case when N = 4 for the discretization G1. Follow the same procedure for
the discretization G2. What are the similarities and differences when you compare
the discretization G1 and the discretization G27 What may the implications be and
how can you handle this?

Find a way of computing the reflection and transmission coefficients from the
numerical solution.

2.3 Numerical implementation

Implement your numerical algorithm in MATLAB for an arbitrary N and both dis-
cretizations G1 and G2.

2.4 Numerical tests

Test your implementation on the case when the glass window has constant relative
permittivity €, and conductivity o. The reflection and transmission coefficient can
be calculated analytically in this case and they are given by:

R = (k(Q] ; k%>€j2ak‘0 (€j4ak‘1 . 1)
koky =
T — —OA L 46-72a(k0+k1)

(2)

where A = (ko + k1)2e/% — (kg — k)2, ko = w/co and ky = \/e.k2 — jwugo.

Use the thickness a = 2 cm in combination with the constant material parameters
¢ = 2.5 and 0 = 0.02 S/m.

For the frequency w = 3 -10° rad/s, compute R and T numerically on the
discretization G1 for a set of appropriately chosen values of N. Do the numerically
computed values of R and T' converge towards the analytical values? Which order
of convergence do you find?

2.4.1 Optional problems

These problems give credit points if they are correctly solved.

5 credit points
Now repeat the above test for the discretization G2. Did this change the convergence
properties? If so, why? By the way, how do you choose ¢(£a)?

5 credit points

Also, compute R and T as functions of frequency between 0.1 and 10 GHz, where
you should use both the discretization G1 and G2 with a fixed value of N. How do
the solutions compare? How does the error change with respect to the frequency?
Explain your findings.



5 credit points
Compute R and T as a function of frequency between 0.1 and 10 GHz for an inho-
mogeneous window in the region |z| < a with the material parameters:

where

is a parabolic profile with p(+a) = 0.



