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4 (27) Formulas for TMA982 Linjära System och Transformer

Preface

The definitions and conventions used in this document comply with those used in Oppenheim and
Willsky [1]. Most of the material originates from [1] and [2].

1 Terminology

LTI Linear Time-Invariant

ROC Region Of Convergence

BIBO Bounded Input Bounded Output

2 Definitions

2.1 Linearity

A continuous-time system is linear if:

ax1(t) + bx2(t)→ ay1(t) + by2(t)

A discrete-time system is linear if:

ax1[n] + bx2[n]→ ay1[n] + by2[n]

2.2 Causality

A system is said to be causal if the output of the system at any time depends only on present and
past inputs.
A continuous-time LTI system is causal if its impulse response satisfies

h(t) = 0, for t < 0

A discrete-time LTI system is causal if its impulse response satisfies

h[n] = 0, for n < 0

2.3 Time-invariance

A system is time invariant if a time shift in the input signal results in an identical time shift in
the output signal:

x(t)→ y(t)⇒ x(t− t0)→ y(t− t0)

x[n]→ y[n]⇒ x[n− n0]→ y[n− n0]

2.4 Periodicity

A continuous-time signal is periodic with period Tp > 0 if and only if

x(t+ Tp) = x(t), for all t

A discrete-time signal is periodic with period N > 0 if and only if

x[n+N ] = x[n], for all n
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2.5 Evenness and oddness

A continuous-time signal is said to be even if

x(−t) = x(t)

A discrete-time signal is said to be even if

x[−n] = x[n]

A continuous-time signal is said to be odd if

x(−t) = −x(t)

A discrete-time signal is said to be odd if

x[−n] = −x[n]

Any signal can be broken into a sum of one even and one odd signal (Ev{·} even part and Od{·}
odd part):

Ev{x(t)} =
1

2
(x(t) + x(−t))

Ev{x[n]} =
1

2
(x[n] + x[−n])

Od{x(t)} =
1

2
(x(t)− x(−t))

Od{x[n]} =
1

2
(x[n]− x[−n])

2.6 Stability

An arbitrary relaxed system is said to be bounded input-bounded output (BIBO) stable if and
only if every bounded input produces a bounded output.
A continuous-time LTI system is stable if and only if its impulse response is absolutely integrable,
i.e. ∫ ∞

−∞
|h(t)|dt <∞

A discrete-time LTI system is stable if and only if its impulse response is absolutely summable, i.e.

∞∑
k=−∞

|h[k]| <∞

3 Functions

3.1 The continuous-time unit impulse function∫ ∞
−∞

x(t)δ(t)dt = x(0)

3.2 The continuous-time unit step function

u(t) =

{
0, t < 0

1, t > 0
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6 (27) Formulas for TMA982 Linjära System och Transformer

3.3 The discrete-time unit impulse sequence

δ[n] =

{
0, n 6= 0

1, n = 0

3.4 The discrete-time unit step sequence

u[n] =

{
0, n < 0

1, n ≥ 0

4 Convolution

4.1 Continuous-time convolution

x(t) ∗ h(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ

4.2 Discrete-time convolution

x[n] ∗ h[n] =

∞∑
k=−∞

x[k]h[n− k]

4.3 Circular convolution

x1[n] ~ x2[n] =

N−1∑
k=0

x1[k]x2[((n− k))N ], n = 0, 1, . . . , N − 1

x[((n− k))N ] = x[(n− k) mod N ]

4.4 Properties of convolution

Property Relation

Linearity (ax1(t) + bx2(t)) ∗ h(t) = a(x1(t) ∗ h(t)) + b(x2(t) ∗ h(t))

(ax1[n] + bx2[n]) ∗ h[n] = a(x1[n] ∗ h[n]) + b(x2[n] ∗ h[n])

Commutativity x(t) ∗ h(t) = h(t) ∗ x(t)

x[n] ∗ h[n] = h[n] ∗ x[n]

Distributivity x(t) ∗ (h1(t) + h2(t)) = x(t) ∗ h1(t) + x(t) ∗ h2(t)

x[n] ∗ (h1[n] + h2[n]) = x[n] ∗ h1[n] + x[n] ∗ h2[n]

Associativity x(t) ∗ (h1(t) ∗ h2(t)) = (x(t) ∗ h1(t)) ∗ h2(t)

x[n] ∗ (h1[n] ∗ h2[n]) = (x[n] ∗ h1[n]) ∗ h2[n]
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5 Correlation

5.1 Continuous-time correlation

φxy(t) =

∫ ∞
−∞

x(t+ τ)y(τ)dτ, cross-correlation

φxx(t) =

∫ ∞
−∞

x(t+ τ)x(τ)dτ, autocorrelation

5.2 Discrete-time correlation

φxy[n] =

∞∑
m=−∞

x[m+ n]y[m], cross-correlation

φxx[n] =

∞∑
m=−∞

x[m+ n]x[m], autocorrelation

6 Energy and power

6.1 Continuous-time signal energy

E∞ = lim
T→∞

∫ T

−T
|x(t)|2dt =

∫ ∞
−∞
|x(t)|2dt

6.2 Discrete-time signal energy

E∞ = lim
N→∞

N∑
n=−N

|x[n]|2 =

∞∑
n=−∞

|x[n]|2

6.3 Continuous-time signal power

P∞ = lim
T→∞

1

2T

∫ T

−T
|x(t)|2dt

periodic signal with period T:

P∞ =
1

T

∫
T

|x(t)|2dt

6.4 Discrete-time signal power

P∞ = lim
N→∞

1

2N + 1

N∑
n=−N

|x[n]|2

periodic signal with period N:

P∞ =
1

N

∑
n=〈N〉

|x[n]|2
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8 (27) Formulas for TMA982 Linjära System och Transformer

7 Sampling

7.1 Spectrum of sampled signals

Let xd[n] = xc(nT ), then the Fourier transform of the discrete-time signal, Xd(e
jΩ), is related to

the Fourier transform of the analog signal, Xc(jω), as

Xd(e
jΩ) =

1

T

∞∑
k=−∞

Xc(j(Ω− 2πk)/T )

7.2 Sampling theorem

Let x(t) be a band-limited signal with X(jω) = 0 for |ω| > ωM . Then x(t) is uniquely determined
by its samples x(nT ), n = 0,±1,±2, . . ., if

ωs > 2ωM

where

ωs =
2π

T

Given these samples, we can reconstruct x(t) by generating a periodic impulse train in which
successive impulses have amplitudes that are successive sample values. This impulse train is then
processed through an ideal lowpass filter with gain T and cutoff frequency greater than ωM and
less than ωs − ωM . The resulting output signal will exactly equal x(t).

7.3 Reconstruction

xr(t) =

∞∑
n=−∞

x(nT )
ωcT

π

sin(ωc(t− nT ))

ωc(t− nT )

with
ωc = ωs/2

8 General relations

8.1 Geometric series

finite:
n−1∑
k=0

xk =

{
1−xn
1−x , x 6= 1

n, x = 1

infinite:
∞∑
k=0

xk =
1

1− x
, |x| < 1

8.2 Euler’s formulas

cos(x) =
ejx + e−jx

2

sin(x) =
ejx − e−jx

2j
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9 The Laplace transform

9.1 Definition

X(s) =

∫ ∞
−∞

x(t)e−stdt

9.2 Inverse equation

x(t) =
1

2πj

∫ σ+j∞

σ−j∞
X(s)estds

9.3 Properties of the Laplace transform

Property Signal Laplace Transform ROC

x(t) X(s) R

x1(t) X1(s) R1

x2(t) X2(s) R2

Linearity ax1(t) + bx2(t) aX1(s) + bX2(s) At least R1

⋂
R2

Time Shifting x(t− t0) e−st0X(s) R

Shifting in the s-Domain es0tx(t) X(s− s0) Shifted version of R (i.e.
s is in the ROC if s− s0
is in R)

Time Scaling x(at) 1
|a|X

(
s
a

)
Scaled ROC (i.e. s in the
ROC if s/a is in R)

Conjugation x∗(t) X∗(s∗) R

Convolution x1(t) ∗ x2(t) X1(s)X2(s) At least R1

⋂
R2

Differentiation in the
Time Domain

d
dt
x(t) sX(s) At least R

Differentiation in the
s-Domain

−tx(t) d
ds
X(s) R

Integration in the Time
Domain

∫ t

−∞
x(τ)dτ 1

s
X(s) At least R

⋂
{Re{s} > 0}

Initial- and Final-Value Theorems

If x(t) = 0 for t < 0 and x(t) contains no impulses or higher-order singularities at t=0, then

x(0+) = lim
s→∞

sX(s)

lim
t→∞

x(t) = lim
s→0

sX(s)
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10 (27) Formulas for TMA982 Linjära System och Transformer

9.4 Laplace transforms of elementary functions

Transform
pair

Signal Transform ROC

1 δ(t) 1 All s

2 u(t) 1
s

Re{s} > 0

3 −u(−t) 1
s

Re{s} < 0

4 tn−1

(n−1)!
u(t) 1

sn
Re{s} > 0

5 − tn−1

(n−1)!
u(−t) 1

sn
Re{s} < 0

6 e−αtu(t) 1
s+α

Re{s} > −α

7 −e−αtu(−t) 1
s+α

Re{s} < −α

8 tn−1

(n−1)!
e−αtu(t) 1

(s+α)n
Re{s} > −α

9 − tn−1

(n−1)!
e−αtu(−t) 1

(s+α)n
Re{s} < −α

10 δ(t− T ) e−sT All s

11 cos(ω0t)u(t)
s

s2+ω2
0

Re{s} > 0

12 sin(ω0t)u(t)
ω0

s2+ω2
0

Re{s} > 0

13 e−αt cos(ω0t)u(t)
s+α

(s+α)2+ω2
0

Re{s} > −α

14 e−αt sin(ω0t)u(t)
ω0

(s+α)2+ω2
0

Re{s} > −α

15 un(t) =
dn

dtn
δ(t) sn All s

16 u−n(t) = u(t) ∗ · · · ∗ u(t), n
times

1
sn

Re{s} > 0

10 The Z-transform

10.1 Definition

X(z) =

∞∑
n=−∞

x[n]z−n

10.2 Inverse equation

x[n] =
1

2πj

∮
X(z)zn−1dz
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10.3 Properties of the Z-transform

Property Signal Z-Transform ROC

x[n] X(z) R

x1[n] X1(z) R1

x2[n] X2(z) R2

Linearity ax1[n] + bx2[n] aX1(z) + bX2(z) At least R1

⋂
R2

Time Shifting x[n− n0] z−n0X(z) R, except for the possible
addition or deletion of
z = 0

Scaling in the z-Domain ejω0nx[n] X(e−jω0z) R

zn0 x[n] X
(
z
z0

)
z0R

anx[n] X
(
a−1z

)
Scaled version of R (i.e.
|a|R = the set of points
{|a|z} for z in R)

Time Reversal x[−n] X(z−1) Inverted R (i.e. R−1 =
the set of points z−1,
where z is in R)

Time Expansion x(k)[n] =

{
x[r], n = rk

0, n 6= rk
, r integer

X(zk) R1/k (i.e. the set of
points z1/k, where z is in
R)

Conjugation x∗[n] X∗(z∗) R

Convolution x1[n] ∗ x2[n] X1(z)X2(z) At least R1

⋂
R2

First difference x[n]− x[n− 1] (1− z−1)X(z) At least R
⋂
{|z| > 0}

Accumulation
n∑

k=−∞

x[k] 1
1−z−1X(z) At least R

⋂
{|z| > 1}

Differentiation in the
z-Domain

nx[n] −z d
dz
X(z) R

Initial Value Theorem

If x[n] = 0 for n < 0 then

x[0] = lim
z→∞

X(z)
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12 (27) Formulas for TMA982 Linjära System och Transformer

10.4 Some common Z-transform pairs

Transform
pair

Signal Transform ROC

1 δ[n] 1 All z

2 u[n] 1
1−z−1 |z| > 1

3 −u[−n− 1] 1
1−z−1 |z| < 1

4 δ[n−m] z−m All z, except for{
z = 0,m > 0

z =∞,m < 0

5 αnu[n] 1
1−αz−1 |z| > |α|

6 −αnu[−n− 1] 1
1−αz−1 |z| < |α|

7 nαnu[n] αz−1

(1−αz−1)2
|z| > |α|

8 −nαnu[−n− 1] αz−1

(1−αz−1)2
|z| < |α|

9 cos(ω0n)u[n]
1−cos(ω0)z

−1

1−2 cos(ω0)z−1+z−2 |z| > 1

10 sin(ω0n)u[n]
sin(ω0)z

−1

1−2 cos(ω0)z−1+z−2 |z| > 1

11 rn cos(ω0n)u[n]
1−r cos(ω0)z

−1

1−2r cos(ω0)z−1+r2z−2 |z| > r

12 rn sin(ω0n)u[n]
r sin(ω0)z

−1

1−2r cos(ω0)z−1+r2z−2 |z| > r

11 The Fourier series and transforms

11.1 The continuous-time Fourier series, CTFS

11.1.1 Definition

x(t) =

∞∑
k=−∞

ake
jkω0t =

∞∑
k=−∞

ake
jk(2π/T )t

ak =
1

T

∫
T

x(t)e−jkω0tdt =
1

T

∫
T

x(t)e−jk(2π/T )tdt

11.1.2 Power density spectrum

|ak|2

11.1.3 Convergence criterion

The Dirichlet conditions are:
Condition 1. Over any period, x(t) must be absolutely integrable; that is,∫

T

|x(t)|dt <∞.

Condition 2. In any finite interval of time, x(t) is of bounded variation; that is, there are no
more than a finite number of maxima and minima during any single period of the signal.
Condition 3. In any finite interval of time, there are only a finite number of discontinuities.
Furthermore, each of these discontinuities is finite.
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11.1.4 Properties of continuous-time Fourier series

Property Periodic Signal Fourier Series Coefficients

x(t) periodic T , fundamental
frequency ω0 = 2π

T

ak

y(t) periodic T , fundamental
frequency ω0 = 2π

T

bk

Linearity Ax(t) +By(t) Aak +Bbk

Time Shifting x(t− t0) ake
−jkω0t0

Frequency Shifting ejMω0tx(t) ak−M

Conjugation x∗(t) a∗−k

Time Reversal x(−t) a−k

Time Scaling x(αt), α > 0 ak

Periodic Convolution
∫
T

x(τ)y(t− τ)dτ Takbk

Multiplication x(t)y(t)

∞∑
l=−∞

albk−l

Differentiation d
dt
x(t) jkω0ak

Integration
∫ t

−∞
x(τ)dτ (finite and periodic

only if a0 = 0)

1
jkω0

ak

Conjugate Symmetry for Real
Signals

x(t) real



ak = a∗−k

Re{ak} = Re{a−k}
Im{ak} = − Im{a−k}
|ak| = |a−k|
∠ak = −∠a−k

Real and Even Signals x(t) real and even ak real and even

Real and Odd Signals x(t) real and odd ak purely imaginary and odd

Even-Odd Decomposition of Real
Signals

{
xe(t) = Ev{x(t)}
xo(t) = Od{x(t)}

, x(t) real

{
Re{ak}
j Im{ak}

Parseval’s Relation for Periodic Signals
1

T

∫
T

|x(t)|2dt =
∞∑

k=−∞

|ak|2

11.2 The continuous-time Fourier transform, CTFT

11.2.1 Definition

x(t) =
1

2π

∫ ∞
−∞

X(jω)ejωtdω

X(jω) =

∫ ∞
−∞

x(t)e−jωtdt
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11.2.2 Energy density spectrum

|X(jω)|2

11.2.3 Convergence criterion

The Dirichlet conditions are:
Condition 1. x(t) must be absolutely integrable; that is,∫ ∞

−∞
|x(t)|dt <∞.

Condition 2. x(t) have a finite number of maxima and minima within any finite interval.
Condition 3. x(t) have a finite number of discontinuities within any finite interval. Furthermore,
each of these discontinuities must be finite.
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11.2.4 Properties of the continuous-time Fourier transform

Property Aperiodic Signal Fourier transform

x(t) X(jω)

y(t) Y (jω)

Linearity ax(t) + by(t) aX(jω) + bY (jω)

Time Shifting x(t− t0) e−jωt0X(jω)

Frequency Shifting ejω0tx(t) X(j(ω − ω0))

Conjugation x∗(t) X∗(−jω)

Time Reversal x(−t) X(−jω)

Time and Frequency Scaling x(at) 1
|a|X

(
jω
a

)
Convolution x(t) ∗ y(t) X(jω)Y (jω)

Multiplication x(t)y(t) 1
2π
X(jω) ∗ Y (jω)

Differentiation in Time d
dt
x(t) jωX(jω)

Integration
∫ t

−∞
x(τ)dτ 1

jω
X(jω) + πX(0)δ(ω)

Differentiation in Frequency tx(t) j d
dω
X(jω)

Conjugate Symmetry for Real
Signals

x(t) real



X(jω) = X∗(−jω)
Re{X(jω)} = Re{X(−jω)}
Im{X(jω)} = − Im{X(−jω)}
|X(jω)| = |X(−jω)|
∠X(jω) = −∠X(−jω)

Real and Even Signals x(t) real and even X(jω) real and even

Real and Odd Signals x(t) real and odd X(jω) purely imaginary and odd

Even-Odd Decomposition of Real
Signals

{
xe(t) = Ev{x(t)}
xo(t) = Od{x(t)}

, x(t) real

{
Re{X(jω)}
j Im{X(jω)}

Parseval’s Relation for Aperiodic Signals∫ ∞
−∞
|x(t)|2dt = 1

2π

∫ ∞
−∞
|X(jω)|2dω
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11.3 Basic continuous-time Fourier transform pairs

Transform
pair

Signal Fourier transform Fourier series
coefficients (if
periodic)

1
∞∑

k=−∞

ake
jkω0t 2π

∞∑
k=−∞

akδ(ω − kω0) ak

2 ejω0t 2πδ(ω − ω0)

{
a1 = 1

ak = 0, otherwise

3 cos(ω0t) π[δ(ω − ω0) + δ(ω + ω0)]

{
a1 = a−1 = 1

2

ak = 0, otherwise

4 sin(ω0t)
π
j
[δ(ω − ω0)− δ(ω + ω0)]

{
a1 = −a−1 = 1

2j

ak = 0, otherwise

5 1 2πδ(ω)

{
a0 = 1

ak = 0, otherwise

6 x(t) =

{
1, |t| < T1

0, T1 < |t| ≤ T
2

periodic T
∞∑

k=−∞

2
sin(kω0T1)

k
δ(ω − kω0)

sin(kω0T1)
kπ

7
∞∑

n=−∞

δ(t− nT ) 2π

T

∞∑
k=−∞

δ

(
ω − 2πk

T

)
ak = 1

T
∀k

8 x(t) =

{
1, |t| < T1

0, |t| > t1

2 sin(ωT1)
ω

−

9 sin(Wt)
πt

X(jω) =

{
1, |ω| < W

0, |ω| > W
−

10 δ(t) 1 −

11 u(t) 1
jω

+ πδ(ω) −

12 δ(t− t0) e−jωt0 −

13 e−atu(t), Re{a} > 0 1
a+jω

−

14 te−atu(t), Re{a} > 0 1
(a+jω)2

−

15 tn−1

(n−1)!
e−atu(t), Re{a} > 0 1

(a+jω)n
−

11.4 The discrete-time Fourier series, DTFS
11.4.1 Definition

x[n] =
∑
k=〈N〉

ake
jkω0n =

∑
k=〈N〉

ake
jk(2π/N)n

ak =
1

N

∑
n=〈N〉

x[n]e−jkω0n =
1

N

∑
n=〈N〉

x[n]e−jk(2π/N)n

11.4.2 Power density spectrum

|ak|2
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11.4.3 Properties of the discrete-time Fourier series

Property Periodic Signal Fourier Series Coefficients

x[n] periodic N , fundamental
frequency ω0 = 2π

N

ak periodic N

y[n] periodic N , fundamental
frequency ω0 = 2π

N

bk periodic N

Linearity Ax[n] +By[n] Aak +Bbk

Time Shifting x[n− n0] ake
−jkω0n0

Frequency Shifting ejMω0nx[n] ak−M

Conjugation x∗[n] a∗−k

Time Reversal x[−n] a−k

Time Scaling x(m)[n] ={
x[n/m], n multiple of m
0, otherwise

,

periodic mN

1
m
ak periodic mN

Periodic Convolution
∑

r=<N>

x[r]y[n− r] Nakbk

Multiplication x[n]y[n]
∑

l=<N>

albk−l

First Difference x[n]− x[n− 1] (1− e−jkω0)ak

Running Sum
n∑

k=−∞

x[k] (finite and periodic only

if a0 = 0)

1

1−e−jkω0
ak

Conjugate Symmetry for Real
Signals

x[n] real



ak = a∗−k

Re{ak} = Re{a−k}
Im{ak} = − Im{a−k}
|ak| = |a−k|
∠ak = −∠a−k

Real and Even Signals x[n] real and even ak real and even

Real and Odd Signals x[n] real and odd ak purely imaginary and odd

Even-Odd Decomposition of Real
Signals

{
xe[n] = Ev{x[n]}
xo[n] = Od{x[n]}

, x[n] real

{
Re{ak}
j Im{ak}

Parseval’s Relation for Periodic Signals
1

N

∑
n=<N>

|x[n]|2 =
∑

k=<N>

|ak|2

11.5 The discrete-time Fourier transform, DTFT

11.5.1 Definition

x[n] =
1

2π

∫
2π

X(ejω)ejωndω
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X(ejω) =

∞∑
n=−∞

x[n]e−jωn

11.5.2 Energy density spectrum

|X(ejω)|2

11.5.3 Properties of the discrete-time Fourier transform

Property Aperiodic Signal Fourier transform

x[n] X(ejω) periodic 2π

y[n] Y (ejω) periodic 2π

Linearity ax[n] + by[n] aX(ejω) + bY (ejω)

Time Shifting x[n− n0] e−jωn0X(ejω)

Frequency Shifting ejω0nx[n] X(ej(ω−ω0))

Conjugation x∗[n] X∗(e−jω)

Time Reversal x[−n] X(e−jω)

Time Scaling x(m)[n] ={
x[n/m], n multiple of m
0, otherwise

X(ejmω)

Convolution x[n] ∗ y[n] X(ejω)Y (ejω)

Multiplication x[n]y[n]
1

2π

∫
2π

X(ejθ)Y (ej(ω−θ))dθ

Differentiation in Time x[n]− x[n− 1] (1− e−jω)X(ejω)

Accumulation
n∑

k=−∞

x[k]
1

1− e−jωX(ejω) +

πX(ej0)

∞∑
k=−∞

δ(ω − 2πk)

Differentiation in Frequency nx[n] j d
dω
X(ejω)

Conjugate Symmetry for Real
Signals

x[n] real



X(ejω) = X∗(e−jω)

Re{X(ejω)} = Re{X(e−jω)}
Im{X(ejω)} = − Im{X(e−jω)}
|X(ejω)| = |X(e−jω)|
∠X(ejω) = −∠X(e−jω)

Real and Even Signals x[n] real and even X(ejω) real and even

Real and Odd Signals x[n] real and odd X(ejω) purely imaginary and odd

Even-Odd Decomposition of Real
Signals

{
xe[n] = Ev{x[n]}
xo[n] = Od{x[n]}

, x[n] real

{
Re{X(ejω)}
j Im{X(ejω)}

Parseval’s Relation for Aperiodic Signals
∞∑

n=−∞

|x[n]|2 =
1

2π

∫
2π

|X(ejω)|2dω
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11.6 Basic discrete-time Fourier transform pairs

Transform
pair

Signal Fourier transform Fourier series coefficients (if
periodic)

1
∑

k=<N>

ake
jkω0n, ω0 = 2π

N
2π

∞∑
k=−∞

akδ(ω − kω0) ak

2 ejω0n, ω0
2π

= m
N

rational 2πδ(ω − ω0) periodic 2π ak =

{
1, k = m

0, otherwise
periodic

N

3 ejω0n, ω0
2π

irrational (aperiodic) 2πδ(ω − ω0) periodic 2π −

4 cos(ω0n), ω0
2π

= m
N

rational π[δ(ω − ω0) + δ(ω + ω0)]
periodic 2π

ak =

{
1
2
, k = ±m

0, otherwise
periodic

N

5 cos(ω0n), ω0
2π

irrational
(aperiodic)

π[δ(ω − ω0) + δ(ω + ω0)]
periodic 2π

−

6 sin(ω0n), ω0
2π

= m
N

rational π
j
[δ(ω − ω0)− δ(ω + ω0)]

periodic 2π
ak =


1
2j
, k = m

− 1
2j
, k = −m

0, otherwise
periodic N

7 sin(ω0n), ω0
2π

irrational
(aperiodic)

π
j
[δ(ω − ω0)− δ(ω + ω0)]

periodic 2π
−

8 1 2πδ(ω) periodic 2π ak =

{
1, k = 0

0, otherwise
periodic

N

9 x[n] =

{
1, |n| ≤ N1

0, N1 < |n| ≤ N
2

periodic N

2π

∞∑
k=−∞

akδ

(
ω − 2πk

N

)
ak ={

sin[(2πk/N)(N1+1/2)]
N sin(πk/N)

, k 6= 0
2N1+1
N

, k = 0
periodic N

10
∞∑

k=−∞

δ[n− kN ]
2π

N

∞∑
k=−∞

δ

(
ω − 2πk

N

)
ak = 1

N
∀k

11 x[n] =

{
1, |n| ≤ N1

0, |n| > N1

sin[ω(N1+1/2)]
sin(ω/2)

−

12 sin(Wn)
πn

, 0 < W < π X(ejω) =

{
1, |ω| ≤W
0,W < |ω| ≤ π

,

periodic 2π

−

13 δ[n] 1 −

14 u[n] 1
1−e−jω + πδ(ω), periodic 2π −

15 δ[n− n0] e−jωn0 −

16 anu[n], |a| < 1 1
1−ae−jω −

17 (n+ 1)anu[n], |a| < 1 1
(1−ae−jω)2

−

18 (n+r−1)!
n!(r−1)!

anu[n], |a| < 1 1
(1−ae−jω)r

−
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11.7 The discrete Fourier transform, DFT
11.7.1 Definition

X[k] =

N−1∑
n=0

x[n]e−j
2π
N nk, k = 0, 1, . . . , N − 1

11.7.2 Inverse equation

x[n] =
1

N

N−1∑
k=0

X[k]ej
2π
N nk, n = 0, 1, . . . , N − 1

11.7.3 Properties of the discrete Fourier transform

All DFTs in the table below are N -point DFTs. Thus, all signals in the left-hand side column are
zero for n < 0 and n > N − 1. Likewise, the transforms in the right-hand side column are zero for
k < 0 and k > N − 1

Property N -Point Signal N -Point DFT

x[n], x1[n], x2[n] X[k], X1[k], X2[k]

Linearity a1x1[n] + a2x2[n] a1X1[k] + a2X2[k]

Duality X[n] Nx[((−k))N ]

Circular Time-Shift x[((n−m))N ] X[k]e−j2π
m
N
k

Modulation x[n]ej2π
m
N
k X[((k −m))N ]

Circular Folding x[((−n))N ] X[((−k))N ]

Circular Convolution
N−1∑
k=0

x1[k]x2[((n− k))N ] X1[k]X2[k]

Conjugation x∗[n] X∗[((−k))N ]

Conjugate Symmetry xe[n] =
1
2
{x[n] + x∗[((−n))N ]} Re{X[k]}

Conjugate Antisymmetry xo[n] =
1
2
{x[n]− x∗[((−n))N ]} j Im{X[k]}

The following properties apply when x[n] is real

Symmetries any real signal x[n] X[k] = X∗[((−k))N ]
Re{X[k]} = Re{X[((−k))N ]}
Im{X[k]} = − Im{X[((−k))N ]}
|X[k]| = |X[((−k))N ]|
arg{X[k]} = − arg{X[((−k))N ]}

Even Symmetry xe[n] =
1
2
{x[n] + x[((−n))N ]} Re{X[k]}

Odd Symmetry xo[n] =
1
2
{x[n]− x[((−n))N ]} j Im{X[k]}
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11.8 Summary of Fourier series and transform expressions

Fourier series Fourier transform

Time domain Frequency domain Time domain Frequency domain

CTFS CTFT

x(t) =

∞∑
k=−∞

ake
jkω0t,

ω0 = 2π
T

ak =
1

T

∫
T

x(t)e−jkω0tdt x(t) =
1

2π

∫ ∞
−∞

X(jω)ejωtdω

X(jω) =∫ ∞
−∞

x(t)e−jωtdt

C
on

ti
nu

ou
s
ti
m
e

continuous, periodic discrete, aperiodic continuous, aperiodic continuous, aperiodic

DTFS DTFT

x[n] =
∑

k=<N>

ake
jkω0n,

ω0 = 2π
N

ak =
1

N

∑
n=<N>

x[n]e−jkω0n

x[n] =
1

2π

∫
2π

X(ejω)ejωndω

X(ejω) =
∞∑

n=−∞

x[n]e−jωn

D
is
cr
et
e
ti
m
e

discrete, periodic discrete, periodic discrete, aperiodic continuous, periodic

12 Continuous-time LTI filter

12.1 Frequency response

H(jω) =

∫ ∞
−∞

h(t)e−jωtdt = |H(jω)|ej∠X(jω)

12.2 Magnitude response

|H(jω)|

12.3 Phase response

∠H(jω)

12.4 Phase delay

τp(ω) = −∠H(jω)

ω

12.5 Group delay

τg(ω) = − d

dω
∠H(jω)

13 Discrete-time LTI filter

13.1 Frequency response

H(ejω) =

∞∑
n=−∞

h[n]e−jωn = |H(ejω)|ej∠H(ejω)
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13.2 Magnitude response
|H(ejω)|

13.3 Phase response
∠H(ejω)

13.4 Phase delay

τp(ω) = −∠H(ejω)

ω

13.5 Group delay

τg(ω) = − d

dω
∠H(ejω)

14 Window functions

14.1 Definitions

Name of window Time-domain sequence, h[n], 0 ≤ n ≤M − 1

Rectangular 1

Bartlett (triangular) 1− 2
|n−M−1

2 |
M−1

Blackman 0.42− 0.5 cos
(

2πn
M−1

)
+ 0.08 cos

(
4πn
M−1

)
Hamming 0.54− 0.46 cos

(
2πn
M−1

)
Hanning 1

2

[
1− cos

(
2πn
M−1

)]
Kaiser(α)

I0

(
α
[
(M−1

2 )2−(n−M−1
2 )2

] 1
2

)
I0(αM−1

2 )

I0(·) is the zero:th order Bessel function.
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14.2 Time plots of some window functions
In the plots, M = 31 is assumed.
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14.3 Frequency response plots of some window functions
In the plots, M = 31 is assumed.

0 0.1 0.2 0.3 0.4 0.5
−150

−100

−50

0

50

f

Ma
gn

itu
de

rectangular
bartlett   
blackman   

0 0.1 0.2 0.3 0.4 0.5
−150

−100

−50

0

50

f

Ma
gn

itu
de

hamming           
hanning           
kaiser(α=2.0)
kaiser(α=9.0)

Doc. no.: TMA982/ext:01, rev.: A, date: January 8, 2009, file: formulas_a_TMA982.tex



24 (27) Formulas for TMA982 Linjära System och Transformer

14.4 Frequency-domain characteristics of some window functions

Name of window Approximate transition width of main lobe
(M window length)

Peak sidelobe (dB)

Rectangular 4π
M

−13

Bartlett 8π
M

−27

Hanning 8π
M

−32

Hamming 8π
M

−43

Blackman 12π
M

−58
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15 Own notes
On this and the next page you have extra space for your own notes.
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Own notes cont.
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