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Formulas for TMA982 Linjéra System och Transformer

Preface

The definitions and conventions used in this document comply with those used in Oppenheim and
Willsky [1]. Most of the material originates from [1] and [2].

1 Terminology
LTI Linear Time-Invariant
ROC Region Of Convergence

BIBO Bounded Input Bounded Output

2 Definitions
2.1 Linearity
A continuous-time system is linear if:
az1(t) + bxa(t) — ays(t) + bya(t)
A discrete-time system is linear if:

axi[n] + bxan] — ayi[n] + bya[n]

2.2 Causality

A system is said to be causal if the output of the system at any time depends only on present and
past inputs.
A continuous-time LTT system is causal if its impulse response satisfies

h(t) =0, for t <0

A discrete-time LTI system is causal if its impulse response satisfies

hin] =0, for n <0

2.3 Time-invariance

A system is time invariant if a time shift in the input signal results in an identical time shift in
the output signal:
z(t) = y(t) = x(t —to) = y(t —to)

z[n] = y[n] = x[n — ng] = yln — ng)
2.4 Periodicity
A continuous-time signal is periodic with period 7}, > 0 if and only if
z(t+T,) = x(t), forall ¢
A discrete-time signal is periodic with period N > 0 if and only if

z[n + N] = z[n], for all n
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2.5 Evenness and oddness

A continuous-time signal is said to be even if

A discrete-time signal is said to be even if

z[—n] = x[n]
A continuous-time signal is said to be odd if

z(—t) = —x(t)
A discrete-time signal is said to be odd if

x[—n] = —x[n]

Any signal can be broken into a sum of one even and one odd signal (Ev{-} even part and Od{-}
odd part):

Bofa(t)} = 5((t) + (1)

Bufaln]} = 3 (efn] + al-n])

Od{x(t)} = 5 (x(t) — z(-t))

Odfefn]} = 5 (xln] — ={-n))

2.6 Stability

An arbitrary relaxed system is said to be bounded input-bounded output (BIBO) stable if and
only if every bounded input produces a bounded output.

A continuous-time LTI system is stable if and only if its impulse response is absolutely integrable,
ie.

/mm@w<m

A discrete-time LTI system is stable if and only if its impulse response is absolutely summable, i.e.

> Jhlk])| < oo

k=—o0

3 Functions

3.1 The continuous-time unit impulse function

/mx®&ﬂﬁ:xm)

— 00

u(t):{o, t<0

1, t>0
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3.3 The discrete-time unit impulse sequence

LR

3.4 The discrete-time unit step sequence

uin] = {0, n<0

1, n>0

4 Convolution

4.1 Continuous-time convolution

z(t) x h(t) = /:’0 z(T)h(t — 7)dr

4.2 Discrete-time convolution

z[n] xhin] = > a[k]h[n — k]
k=—oc0
4.3 Circular convolution
N-1
n] ® xa[n le —k))nl, n=0,1,...
k=0

z[((n — k))n] = z[(n — k) mod N]

4.4 Properties of convolution

Property Relation

Linearity (az1(t) + bza(t)) * h(t) = a(z1(t) * h(t)) + b(x2(t) * h(t))
(az1[n] + bxz[n]) x h[n] = a(xz1[n] * h[n]) + b(z2[n] * hn])

]
Commutativity — z(t) * h(t) = h(t) * z(t)
]

z[n] = h[n] = h[n] * z[n]
Distributivity x(t) * (ha(t) + ha(t)) = z(t) * ha(t) + z(t) * ha(t)
x[n] = (hl[n] + ha[n]) = z[n] * ha[n] + z[n] * ha[n]
Associativity x(t) * (h1(t) * ha(t)) = (x(t) * h1(t)) * ha(t)
x[n] * (b [n] * ha[n]) = (z[n] * ha[n]) * ha[n]
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5 Correlation

5.1 Continuous-time correlation

Gzy(t) = / z(t + 7)y(7)dr, cross-correlation

—0o0

oo
Du(t) = / x(t + 7)x(7)dr, autocorrelation

—0Q0

5.2 Discrete-time correlation

oo
Gzyln] = Z x[m + nly[m], cross-correlation
m=-—o00
[ee]
G [n] = Z x[m + n]x[m], autocorrelation
m=—o0

6 Energy and power

6.1 Continuous-time signal energy

T o]
Ey = lim |x(t)|2dt:/ |l (t)|?dt

T—o0 -7 —50

6.2 Discrete-time signal energy

2
Eoo = lgnoonz: |z[n] n;wlx[n]l
6.3 Continuous-time signal power
B )
Py = lim — |z (t)|°dt

T— o0 2T -T

1
Py = f/T\x(t)th

6.4 Discrete-time signal power

periodic signal with period T:

periodic signal with period N:

1 2
Py = N Z zn
n=(N)
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7 Sampling

7.1 Spectrum of sampled signals

Let z4[n] = 2.(nT), then the Fourier transform of the discrete-time signal, X4(e’*?), is related to
the Fourier transform of the analog signal, X.(jw), as

A 1 & )
Xa(e'?) = T k;@ Xe(j( = 27k)/T)
7.2 Sampling theorem

Let z(t) be a band-limited signal with X (jw) = 0 for |w| > wps. Then z(t) is uniquely determined
by its samples x(nT),n = 0,+1,£2, ..., if

ws > 2w

where
2w
s =T

Given these samples, we can reconstruct z(t) by generating a periodic impulse train in which
successive impulses have amplitudes that are successive sample values. This impulse train is then
processed through an ideal lowpass filter with gain 7" and cutoff frequency greater than wjy; and
less than ws — wps. The resulting output signal will exactly equal z(t).

7.3 Reconstruction

z(t)= ) x(nT)w;TSintgf(;(i;;?))

n=—oo

with
We = wg/2
8 General relations

8.1 Geometric series

finite:

infinite:

8.2 Euler’s formulas

Ve —jz
cos(z) = ¢ —;6
JjT _ p—JT
sin(z) = c 5 .e
J
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9 The Laplace transform

9.1 Definition

9.2 Inverse equation

o+joo
x(t) ! / X (s)eds

B 271—] o—joo

9.3 Properties of the Laplace transform

9 (27)

Property Signal Laplace Transform ROC
z(t) X(s) R
X1 (t) X1 (S) R1
Jiz(t) X2 (S) R2
Linearity az1(t) + bxa(t) aXi(s)+ bXa(s) At least Ri () Re
Time Shifting z(t — to) e~ X () R
Shifting in the s-Domain  e*°‘x(t) X (s — s0) Shifted version of R (i.e.
s is in the ROC if s — s¢
is in R)
Time Scaling x(at) |71L‘X (2) Scaled ROC (i.e. s in the
ROC if s/a is in R)
Conjugation z*(t) X*(s") R
Convolution x1(t) * w2 () X1(5)X2(s) At least Ri () Rz
Differentiation in the La(t) sX(s) At least R
Time Domain
Differentiation in the —tx(t) 24 X(s) R
s-Domain
¢
Integration in the Time / z(r)dr 1X(s) At least R({Re{s} > 0}
Domain -

Initial- and Final-Value Theorems

If (t) = 0 for t < 0 and z(t) contains no impulses or higher-order singularities at t=0, then

z(0%) = Shﬁn;o sX(s)
lim z(t) = lim sX (s)

t—o0 s—0
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9.4 Laplace transforms of elementary functions

Transform Signal Transform ROC

pair

1 o(t) 1 All s

2 u(t) 1 Re{s} >0

3 —u(—t) 1 Re{s} <0

4 %u(t) L Re{s} >0

5 - (flﬂfll)!u( t) L Re{s} <0

6 e tu(t) e Re{s} > -«
7 e “u(—t) T Re{s} < —a
8 % —aty(t) W Re{s} > -«
9 *(tnﬂ%l)y ~u(—t) (5+1a>n Re{s} < —a
10 o(t—=1T) e T All s

11 cos(wot)u(t) ﬁ Re{s} >0
12 sin(wot)u(t) 32’170%% Re{s} >0
13 e™ " cos(wot)u(t) Mzriﬁwg Re{s} > —«
14 e sin(wot)u(t) (s+a°;73+wé’ Re{s} > —a
15 un(t) = £56(t) s" All s

16 U—n(t) = u(t) *--- xu(t), n + Re{s} >0

10 The Z-transform

10.1 Definition

10.2 Inverse equation
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10.3 Properties of the Z-transform

11 (27)

Property Signal Z-Transform ROC
z[n] X(2) R
x1[n] Xi1(z) Ry
T2 [n] X2 (Z) Rz
Linearity az1[n] + bxa(n] aX1(z) + bXa(2) At least Ri () R2
Time Shifting z[n — no] 27" X (2) R, except for the possible
addition or deletion of
z=0
Scaling in the z-Domain eI z[n] X(e7I02) R
28 z[n) X (%) z20R
a™z[n] X (a7'z2) Scaled version of R (i.e.
|a|R = the set of points
{|a|z} for z in R)
Time Reversal x[—n] X(z™) Inverted R (i.e. R™ =
the set of points 271,
where z is in R)
=rk
Time Expansion Ty[n] = {x[r], ner X (2F) RY* (i.e. the set of
. 0, n#rk points zl/k7 where z is in
, T Integer R)
Conjugation z*[n] X*(=%) R
Convolution z1[n] * x2[n] X1(2)X2(z) At least Ri () Rz
First difference z[n] — z[n — 1] (1-2"HX(2) At least R({|z| > 0}
Accumulation Z z[k] ——X(z) At least R(N{|z| > 1}
k=—o00
Differentiation in the nzn| —2LX(2) R

z-Domain

Initial Value Theorem
If z[n] = 0 for n < 0 then
z[0] = lim X (z)

Z—0
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10.4 Some common Z-transform pairs

Transform Signal Transform ROC
pair
1 8[n] 1 All 2
2 uln] T 2] > 1
3 —u[—n —1] —T |z] <1
4 d[n — m] zm All z, except for
z=0m>0
z=o00,m<0

5 a™uln] l—alz_l |z| > |o
6 —a"u[—n —1] — |z] < |ef

-1
7 nouln] a1y |2 > o
8 —naul—n — 1] ﬁ |2 < e

—cos -1
9 cos(won)u[n] Tl 2| > 1

sin(wp)z !
10 sin(won)u[n] W |z| > 1

_ -1
11 r™ cos(won)u[n] I_Q:COZ(C:;SSZE)fMQZ_Q |z| >r

i -1

12 r™ sin(won)u[n] rsin(wo)z |z| > r

1—27r cos(wg)z—1+1r22—2

11 The Fourier series and transforms

11.1 The continuous-time Fourier series, CTFS

11.1.1 Definition

x(t): Z akejkwot: Z akejk(QTr/T)t

k=—o0 k=—o00
ap = l/ x(t)e Ikwotqr = l/ z(t)e IR/ T gy
T Jr T Jr

11.1.2 Power density spectrum

|ay|?

11.1.3 Convergence criterion

The Dirichlet conditions are:
Condition 1. Over any period, z(t) must be absolutely integrable; that is,

/ |z(t)|dt < oo.
T

Condition 2. In any finite interval of time, z(¢) is of bounded variation; that is, there are no
more than a finite number of maxima and minima during any single period of the signal.
Condition 3. In any finite interval of time, there are only a finite number of discontinuities.
Furthermore, each of these discontinuities is finite.
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11.1.4 Properties of continuous-time Fourier series

13 (27)

Property Periodic Signal Fourier Series Coefficients
z(t) periodic T, fundamental ak
frequency wop = %’T
y(t) periodic T, fundamental br
frequency wop = 2%
Linearity Az(t) + By(t) Aay + Bby

Time Shifting
Frequency Shifting
Conjugation

Time Reversal
Time Scaling

Periodic Convolution
Multiplication

Differentiation

Integration

Conjugate Symmetry for Real
Signals

Real and Even Signals
Real and Odd Signals

Even-Odd Decomposition of Real
Signals

:U(t — to)

ej]\{wotx(t)

z(at), a >0

/T:E(T)y(t —T)dr
z(t)y(t)

La(t)

t
/ z(7)dr (finite and periodic

only if ap = 0)
z(t) real

z(t) real and even
z(t) real and odd

{a:e(t) = Ev{z(t)}

zo(t) = 0d{z(t)} x(t) real

akefjkwoio

Gk —M

aik

a—i

ag

T

arbi

oo

Z arbr—1

l=—c0

jkwoa

Jkwo

1 ak

ar = (ltk

Re{ar} = Re{a_x}
Im{ar} = —Im{a—_x}
lak| = |a—|

éak = —Za,k

ay real and even

ar purely imaginary and odd

{

Re{ar}
jIm{ax}

Parseval’s Relation for Periodic Signals

oo

7 [la@ra= 3 o

k=—o00

11.2 The continuous-time Fourier transform, CTFT

11.2.1 Definition

1 [ :
x(t) = %/ X(jw)el“ dw

X(jw) = /oo x(t)e I@tdt

— 00

Doc. no.: TMA982/ext:01, rev.: A, date: January 8, 2009, file: formulas_a_TMA982.tex



14 (27) Formulas for TMA982 Linjara System och Transformer

11.2.2 Energy density spectrum
X (jw)I?

11.2.3 Convergence criterion

The Dirichlet conditions are:
Condition 1. z(t) must be absolutely integrable; that is,

/Z |z(t)|dt < oo.

Condition 2. z(t) have a finite number of maxima and minima within any finite interval.
Condition 3. z(t) have a finite number of discontinuities within any finite interval. Furthermore,
each of these discontinuities must be finite.
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11.2.4 Properties of the continuous-time Fourier transform

15 (27)

Property Aperiodic Signal Fourier transform
(1) X (jw)
y(t) Y (jw)
Linearity az(t) + by(t) aX (jw) + bY (jw)
Time Shifting z(t — to) e~ 990 X (jw)
Frequency Shifting eIty (t) X (j(w — wo))
Conjugation " (t) X*(—jw)
Time Reversal z(—t) X(—jw)
Time and Frequency Scaling z(at) ﬁX (&)
Convolution z(t) * y(t) ( w)Y (jw)
Multiplication z(t)y(t) X (jw) * Y (jw)
Differentiation in Time 4 (t) ij( jw)
Integration /t z(T)dr 1 X (jw) +7X(0)d(w)
Differentiation in Frequency tx(t) JiX (jw)
X(jw) = X (—jw)
Re{X(jw)} = Re{X(—jw)}
Conjugate Symmetry for Real x(t) real Im{X (jw)} = — Im{X(—jw)}

Signals

Real and Even Signals
Real and Odd Signals

Even-Odd Decomposition of Real
Signals

z(t) real and even
z(t) real and odd

{:Ee(t) = Ev{z(1)} , z(t) real
zo(t) =

Od{z(t)}

X (jw)| = [ X (—jw)]
X (juw) = X (—jw)
X (jw) real and even
X (jw) purely imaginary and odd
Re{X (jw)}
JIm{X (jw)}

Parseval’s Relation for Aperiodic Signals

[P =5 [ XG0 a
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11.3 Basic continuous-time Fourier transform pairs

Transform Signal

Fourier transform

Fourier series

pair coefficients (if
periodic)
1 Z ape’Fwot o Z ard(w — kwo) ak
k=—o00 k=—oc0
jwot ay = 1
2 e’ 276 (w — wo) .
ax = 0, otherwise
a; =a—-1 = %
3 cos(wot) m[0(w — wo) + 6(w + wo)] .
ar = 0, otherwise
— g =1
4 sin(wot) Z[6(w — wo) — 8w + wo)] o= an 2
J ar, = 0, otherwise
=1
5 1 276 (w) ao _
ar = 0, otherwise
17 ‘t| <T PN G Sin(kWOTl) sin(kwoT7)
6 z(t) = eriodic T 2———— 5 (w — kw L
( ) {07 Tl < ‘t| S % 1% k;w k ( 0) km
= 2 2nk 1
7 n:z_ma(t ) n ; 5 (w - T) ar = Lvk
] :c(t) _ 17 ‘t| <T 2sin(wTy) o
0,[t] >t @
1, |w| < W
9 sin(W't) X(iw) = ’ —
e U =30, 10| > W
10 5(t) 1 -
11 u(t) 5o +mo(w) -
12 5(t — to) emiwto -
—at 1
13 (& U(t), Re{a} >0 atjw -
14 te”“"u(t), Re{a} >0 m -
n—1 —a
15 e “ult), Re{a} >0 i _

11.4 The discrete-time Fourier series, DTFS

11.4.1 Definition

§ ag e]kwgn _ E akejk 27 /N)n

k=(N)
ap = i Z 7jkwon —
N —
11.4.2 Power density spectrum

|ay|?

Doc. no.:

k=
1
N

$ 6 —jk(27/N)n

n=(N)
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11.4.3 Properties of the discrete-time Fourier series

17 (27)

Property Periodic Signal Fourier Series Coefficients
z[n] periodic N, fundamental ay, periodic N
frequency wop = QW”

y[n] periodic N, fundamental by periodic N
frequency wop = %’T

Linearity Az[n] + Byn] Aay, + Bby

Time Shifting z[n — no] ape~Ikwomno

Frequency Shifting eIMwongin) l—M

Conjugation z*[n] a’y

Time Reversal z[—n] a_g

Time Scaling Z(my[n] = L ay, periodic mN

Periodic Convolution
Multiplication

First Difference

Running Sum

Conjugate Symmetry for Real
Signals

Real and Even Signals
Real and Odd Signals

Even-Odd Decomposition of Real
Signals

z[n/m],n multiple of m
0, otherwise
periodic mN

> alrlyln —v]

r=<N>

z[nly[n]

z[n] — z[n — 1]
Z z[k] (finite and periodic only

k=—oc0

if apg = 0)
z[n] real

z[n] real and even

z[n] real and odd

{xe[n Ev{z[n]}
Zo[n] = Od{z[n]}

, x[n] real

Nakbk

Z arbi—;

I=<N>
(1 — e=7F0)qy

l_e—jkwo ag

ap = aik

Re{ar} = Re{a—_r}
Im{ar} = —Im{a_.}
lak| = la—k|

Zak = 7Za_k

ar real and even

ay purely imaginary and odd

{Re{ak}

jIm{ax}

Parseval’s Relation for Periodic Signals

1 2
v 2 el =

n=<N>

D laxf?

k=<N>

11.5 The discrete-time Fourier transform, DTFT

11.5.1 Definition

z[n] =

1

— X(ew)ew"dw
27
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oo

X(ed¥) = Z x[n]e I

n=—oo

11.5.2 Energy density spectrum

11.5.3 Properties of the discrete-time Fourier transform

X (e7)?

Property Aperiodic Signal Fourier transform

z[n] X (e*) periodic 27

y[n] Y (e’*) periodic 27
Linearity az(n] + by[n] aX(e?) + bY (e7*)
Time Shifting z[n — no] e dvmo X (&%)
Frequency Shifting e x[n) X (e(wmwo))
Conjugation x*[n] X*(e™%)
Time Reversal z[—n] X(e™7¥)
Time Scaling T(my[n] = X (e7™)

z[n/m], n multiple of m
0, otherwise
Convolution z[n] * y[n] X (7)Y (1)
Multiplication z[n]y[n] % XY (e“=9)do
Differentiation in Time z[n] — z[n — 1] (1 —e 7YX ()
Accumulation k;w z[k] 1_2].WXO£6W) +
X (e°) Z d(w — 27k)
Differentiation in Frequency nzn] Ji (e]“’)
X(E) =X ()
Re{X (e’“)} = Re{X (e77%)}

Conjugate Symmetry for Real z[n] real Im{X(e/*)} = —Im{X(e™%*)}
Signals |X ()] = | X (e77%)|

Real and Even Signals
Real and Odd Signals

Even-Odd Decomposition of Real
Signals

z[n] real and even

z[n] real and odd

{we[n Ev{z[n]}
zo[n] = Od{z[n]}

z[n] real

/X (&%) = /X (e77¥)
X (e“) real and even

X (e’*) purely imaginary and odd

{Re{xwf‘ﬂ}
JIm{X (")}

Parseval’s Relation for Aperiodic Signals

S el :7/ X () Pdw

n=-—oo
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11.6 Basic discrete-time Fourier transform pairs

19 (27)

Transform Signal

Fourier transform

Fourier series coefficients (if

pair periodic)
1 Z akejkw‘)", wo = QW" s Z ard(w — kwo) ak
k=<N> k——o0
2 eIwon wo — m pational 276 (w — wo) periodic 2 ar = Lk=m periodic
Pam o N 0, otherwise
N
3 e/“0™ 20 jrrational (aperiodic) — 27d(w — wo) periodic 2 —
w m . %, k=+m Lo
4 cos(won), 52 = % rational m[0(w — wo) + 6(w + wo)] ak = i periodic
periodic 27 0, otherwise
N
5 cos(won), $2 irrational 7[0(w — wo) + 6(w + wo)] -
(aperiodic) periodic 27
%, k=m
J
6 sin(won), 2 = 2 rational g[él(w - wo) — 6(w + wo)] ax = =55 k=—m
periodic 27 0, otherwise
periodic N
7 sin(won), $2 irrational Z10(w — wo) — 0(w + wo)] -
(aperiodic) periodic 27
1,k=0
8 1 278 (w) periodic 2w ag =14 ) periodic
0, otherwise
N
Ln| <N - 2
9 z[n] = Il < M N o Z ard <w — Lk) ar =
0,N1 < |n| <5 N N sir)[(ka/]\(f)(]\/fl-gl/Q)] k0
. . N sin(wk/N ’
periodic N 2N]{]+1 k=0
periodic N
> 2 — 27k
10 > 6[n—kN] ~ > 5@-7) a, = Lk
k=—o00 k=—oc0
1,|n] < Ny infw(N1+1/2)]
11 z[n] = - sin[w(N1+1/2)] -~
[ ] {0, |n| >N sin(w/2)
; . 1 <Ww
12 sinWn) g « W < 1 X (%) = ol < _
o 0,W<|wl <7
periodic 27
13 d[n] 1 -
14 u[n] =55 +mé(w), periodic 2 —
15 d[n — no] e dwno —
16 a"u[n], |a| <1 ﬁ -
17 (n+1)a”u[n], |a| <1 [rrerH -
n+r—1)! n
18 btr=llamuln), |a] < 1 Ty -
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11.7 The discrete Fourier transform, DFT
11.7.1 Definition

N—1
X[k =" anle ¥ k=0,1,...,N~1

n=0
11.7.2 Inverse equation
1 N1
S 27
oln] = % ;0 X[k ¥ n=0,1,...,N -1

11.7.3 Properties of the discrete Fourier transform

All DFTs in the table below are N-point DF'Ts. Thus, all signals in the left-hand side column are
zero for n < 0 and n > N — 1. Likewise, the transforms in the right-hand side column are zero for
k<Oand k>N -1

Property N-Point Signal N-Point DFT

z[n], z1[n], x2[n] X k], X1[k], X2[K]
Linearity a121[n] + azx2[n] a1 X1[k] + a2 X2[k]
Duality X|[n] Nz[((=k))n~]
Circular Time-Shift z[((n — m))n] X[kle 72m ik
Modulation z[n)e?? R E X[((k=m))n]
Circular Folding jcv[ (rn))N] X[((=k))n]
Circular Convolution kz z1[k]z2[((n — k))N] X1[k] X2[k]
Conjugation x*[n] X*[((—k))n~]
Conjugate Symmetry Ze[n] = %{m[n] +z*[((—n))~n]} Re{X[k]}

]

Conjugate Antisymmetry — z,[n] = 3{z[n] — 2*[((—n))~]} jIm{X[k]}
The following properties apply when z[n] is real

Symmetries any real signal z[n] X[k] = X*[((—k))N]
Re{X[k]} = Re{X[((—k))~]}
Im{ X[k]} = — Im{X[((=F))~]}
| XTK]| = | X[((=F))n]]
arg{X[k]} = —arg{X[((=k))~]}
Even Symmetry ze[n] = ${z[n] + z[((—n))n]}  Re{X[k]}

0Odd Symmetry zo[n] = ${x[n] — z[((—n))~]}  jIm{X[k]}
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11.8 Summary of Fourier series and transform expressions

Fourier series Fourier transform

Time domain Frequency domain Time domain Frequency domain
g CTFS CTFT
e S 1
2| z(t) = Z ape’ "ot ar = — [ x(t)e ?"dt || x(t) = X(jw) =
g k=— T Jr 1 oo . o0 .
= om0 —/ X (jw)e’ dw / z(t)e I dt
g || wo=7 27 J o —oo
3
o continuous, periodic discrete, aperiodic continuous, aperiodic continuous, aperiodic

DTFS DTFT

] N n
E |l z[n] = Z are’® o | ay = x[n] = X)) =
: k=<N> i x[n]e—jkwon i X(ejW)ejwndw > —jwn
5|l w=2 N 2 2 o D> alnle
8 n—-—oo
A discrete, periodic discrete, periodic discrete, aperiodic continuous, periodic

12 Continuous-time LTI filter

12.1 Frequency response

H(jw) = / h(t)e “tdt = |H (jw)|e?“X %)

—0o0

12.2 Magnitude response

[H (jw)|
12.3 Phase response
ZH (jw)
12.4 Phase delay
rplte) = — )
12.5 Group delay
o) = L ZH (ju)

13 Discrete-time LTI filter

13.1 Frequency response

H(e™) = 3" hlnje™7em = [H(e7)[e/“H ()

n=—oo
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13.2 Magnitude response

[H ()|
13.3 Phase response
ZH(e)
13.4 Phase delay
ZH (%)
Tp(w) = — w
13.5 Group delay
d jw
o) = e LH ()
14 Window functions
14.1 Definitions
Name of window Time-domain sequence, h[n], 0 <n < M —1
Rectangular 1
‘n7 M—1
Bartlett (triangular) 1 —2-—F—2—
Blackman 0.42 — 0.5 cos (272 ) +0.08 cos (472 )
Hamming 0.54 — 0.46 cos (272 )
Hanning % [1 — cos (51"_”1 )]
M—1)\2 M—1\2 %
) IU(“{(T) —(n—2432) ] )
Kaiser(a) Io(a 1Y

Iy(+) is the zero:th order Bessel function.
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14.2 Time plots of some window functions

In the plots, M = 31 is assumed.

23 (27)
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14.3 Frequency response plots of some window functions

In the plots, M = 31 is assumed.
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14.4 Frequency-domain characteristics of some window functions

Name of window Approximate transition width of main lobe Peak sidelobe (dB)
(M window length)

Rectangular % —13
Bartlett % 27
Hanning i—}’ —32
Hamming % —43
Blackman 12z —58

M
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15 Own notes

On this and the next page you have extra space for your own notes.
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Own notes cont.
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