Ooo~NOUT P WN -

-- Haskell is a functional programming language

-- Everything is immutable so once a value is set it is set forever

-- Functions can be passed as a parameter to other functions

-- Recursion is used often

-- Haskell has no for, while, or technically variables, but it does have

-- constants

-- Haskell is lazy in that it doesn't execute more then is needed and instead
-- just checks for errors

-- Best Free Haskell Book
-- http://learnyouahaskell.com/chapters

-- Type ghci to open it up in your terminal
-- Load script with :1 haskelltut
-- :quit exits the GHCi

-- Import a module
import Data.List
import System.IO

{_

Beginning of multiline comment

———————————— DATA TYPES ----------

-- Haskell uses type inference meaning it decides on the data type based on the -- value store
-- Haskell is statically typed and can't switch type after compiling

-- Values can't be changed (Immutable)

-- You can use :t in the terminal to get the data type (:t value)

-- Int : Whole number -2A63 - 2463

-- :: Int defines that maxInt is an Int
maxInt = maxBound :: Int

minInt minBound :: Int

-- Integer : Unbounded whole number

-- Float : Single precision floating point number
-- Double : Double precision floating point number (11 pts precision)
bigFloat = 3.99999999999 + 0.00000000005

-- Bool : True or False
-- Char : Single unicode character denoted with single quotes
-- Tuple : Can store a list made up of many data types

-- You declare the permanent value of a variable like this
always5 :: Int
always5 = 5

———————————— MATH ----------
-- Something crazy to start
sumOfVals = sum [1..1000]

addEx =5 + 4
SsubEx =5 - 4
multEx = 5 * 4
divEx =5 / 4

-- mod is a prefix operator
modEx = mod 5 4

-- With back ticks we can use it as an infix operator
modEx2 = 5 "mod” 4

-- Negative numbers must be surrounded with parentheses
negNumkEx = 5 + (-4)

-- If you define an Int you must use fromIntegral to use it with sqgrt
-- :t sgrt shows that it returns a floating point number

70 num9 =9 ::Int

71 sqrt0f9 = sqrt (fromIntegral num9)
72

73 -- Built in math functions
74 piVal = pi

75 ePow9 = exp 9

76 1og0f9 = log 9

77 squared9 = 9 ** 2

78 truncateVal = truncate 9.999
79 roundVal = round 9.999

80 ceilingVal = ceiling 9.999
81 floorVal = floor 9.999

82

83 -- Also sin, cos, tan, asin, atan, acos, sinh, tanh, cosh, asinh, atanh, acosh
84

85 trueAndFalse = True && False

86 trueOrFalse = True || False

87 notTrue = not(True)

88

89 -- Remember you use :t in the terminal to get the data type (:t value)
99 -- You can adlso see how functions use data types with :t

91

92 -t (+) =Numa=>a ->a ->a

93 -- Type a is in the type class num, we receive 2 of them and return 1
94

95 -- :t truncate = (ReadlFrac a, Integral b) =>a -> b

96

97 - - LISTS ----—-----

98 -- Lists are singly linked and you can only add to the front of it

99

100 -- Lists store many elements of the same type

101 primeNumbers = [3,5,7,11]

102

103 -- Concatenate lists (Can be slow if your using a large list)

104 morePrimes = primeNumbers ++ [13,17,19,23,29]

105

106 -- You can use the cons operator to construct a list

107 favNums = 2 : 7 : 21 : 66 : []

108

109 -- You can make a list of lists

110 multList = [[3,5,71,[11,13,17]]

111

112 -- Quick way to add 1 value to the front of a list
113 morePrimes2 = 2 : morePrimes

114

115 -- Get number of elements in the list
116 lenPrime = length morePrimes?2

117

118 -- Reverse the list

119 revPrime = reverse morePrimes?2

120

121 -- return True if list is empty

122 1islListEmpty = null morePrimes2

123

124 -- Get the number in index 1
125 secondPrime = morePrimes2 !! 1
126

127 -- Gets the 1st value in a list

128 firstPrime = head morePrimes?2

129

130 -- Gets the last value

131 lastPrime = last morePrimes?2

132

133 -- Gets everything but the first value
134 primeTail = tail morePrimes?2

135

136 -- Gets everything but the last value
137 primelInit = init morePrimes?2

138

139 -- Get specified number of elements from the front of a list
140 first3Primes = take 3 morePrimes2

141

142 -- Return values left after removing specified values
143 removedPrimes = drop 3 morePrimes2
144

145 -- Check if value is in list

146 1is7InList = 7 “elem” morePrimes?2
147

148 -- Get max value

149 maxPrime = maximum morePrimes?2

150

151 -- Get minimum value

152 minPrime = minimum morePrimes2

153

154 -- Sum values in list

155 sumPrimes = sum morePrimes?2

156

157 -- Get product of values in list (Value all can evenly divide by)

158 newlList = [2,3,5]

159 prodPrimes = product newlList

160

161 -- Create list from @ to 10

162 zeroToTen = [0..10]

163

164 -- Create list of evens by defining the step between the first 2 values
165 evenlList = [2,4..20]

166

167 -- You can use letters as well

168 letterList = ['A','C'.."'Z"]

169

170 -- You can generate an infinite list and Haskell will only generate what you
171 -- need

172 infinPowl@ = [10,20..]

173

174 -- repeat repeats a value a defined number of times

175 many2s = take 10 (repeat 2)

176

177 -- replicate generates a value a specified number of times
178 many3s = replicate 10 3

179

180 -- cycle replicates the values in a list indefinitely

181 cyclelist = take 10 (cycle [1,2,3,4,5])

182

183 -- You could perform operations on all values in a list

184 -- Cycle through the 1list storing each value in x which is multiplied by 2 and
185 -- then stored in a new list
186 1listTimes2 = [x * 2 | x <- [1..10]]

187

188 -- We can filter the results with conditions
189 1listTimes3 = [x * 3 | x <- [1..20], x*3 <= 50]
190

191 -- Return all values that are divisible by 13 and 9

192 divisBy9N13 = [x | x <- [1..500], x "mod" 13 == 0, x ‘mod” 9 == 0]
193

194 -- Sort a list

195 sortedlList = sort [9,1,8,3,4,7,6]

196

197 -- zipwith can combine lists using a function

198 sumOflLists = zipWith (+) [1,2,3,4,5] [6,7,8,9,10]

199

200 -- Filter returns a list of items that match a condition

201 1listBiggerThen5 = filter (>5) sumOflLists

202

203 -- takeWhile returns list items until the condition is false
204 evensUpTo20 = takeWhile (<=20) [2,4..]

205

206 -- foldl applies the operation on each item of a list
207 -- foldr applies these operations from the right

208 multOfList = foldl (*) 1 [2,3,4,5]

209

210 -- ---------- LIST COMPREHENSION ----------

211

212 -- We can generate a list from 1 to 10 to the power of 3
213 pow3lList = [3An | n <- [1..10]]

214

215 -- We can filter the results to only show values divisible by 9
216 pow3ListDiv9 = [3An | n <- [1..10], 3An "mod” 9 == 0]
217

218 -- Generate a multiplication table by multiplying x * y where y has the values
219 -- 1 through 10 and where x does as well

220 multTable = [[x * vy | vy <- [1..10]] | x <- [1..10]]

221

222 -- ---———---- TUPLES ----------

223 -- Stores list of multiple data types, but has a fixed size
224

225 randTuple = (1,"Random tuple™)

226

227 -- A tuple pair stores 2 values

228 bobSmith = ("Bob Smith",52)

229

230 -- Get the first value

231 bobsName = fst bobSmith

232

233 -- Get the second value

234 bobsAge = snd bobSmith

235

236 -- zip can combine values into tuple pairs

237 names = ["Bob","Mary","Tom"]

238 addresses = ["123 Main","234 North","567 South"]

239

240 namesNAddress = zip names addresses

241

242 -- ---------- FUNCTIONS ----------

243 -- ghc --make haskelltut compiles your program and executes the main function
244

245 -- Functions must start with lowercase letters

246

247 -- We can define functions and values in the GHCi with let

248 -- let num7 =7
249 -- let getTriple x = x * 3

250

251 -- getTriple num7 = 21

252

253 -- main is a function that can be called in the terminal with main
254 main = do

255 -- Prints the string with a new line

256 putStrLn "What's your name: "

257

258 -- Gets user input and stores it in name

259 -- <- Pulls the name entered from an I0 action

260 name <- getline

261

262 putStrLn ("Hello " ++ name)

263

264 -- Create function addMe

265 -- x is a parameter and the operation follows the equals sign
266 -- The data type passed in will work if it makes sense

267 -- Every function must return something

268 -- A function name can't begin with a capital letter

269 -- A function that doesn't receive parameters is called a definition or name
270

271 -- You can define a type declaration for functions

272 -- funcName :: paraml -> param2 -> returnType

273 addMe :: Int -> Int -> Int

274

275 -- funcName paraml param2 = operations (Returned Value)

276 -- Execute with : addMe 4 5

277 addMe x y = x +y

278

279 -- Without type declaration you can add floats as well
280 sumMe Xy = X + Yy

281

282 -- You can also add tuples : addTuples (1,2) (3,4) = (4,6)
283 addTuples :: (Int, Int) -> (Int, Int) -> (Int, Int)
284 addTuples (x, y) (x2, y2) = (X + X2, y + y2)

285

286 -- You can perform different actions based on values
287 whatAge :: Int -> String

288 whatAge 16 = "You can drive"

289 whatAge 18 = "You can vote"

290 whatAge 21 = "You're an adult"

291

292 -- The default

293 whatAge x = "Nothing Important"

294

295 -- Define that we expect an Int in and out
296 factorial :: Int -> Int

297

298 -- If @ return a 1 (Recursive Function)

299 factorial 0 =1

300 factorial n = n * factorial (n - 1)
301

302 -- 3 * factorial (2) : 6

303 -- 2 * factorial (1) : 2

304 -- 1 * factorial (@) : 1

305

306 -- You could also use product to calculate factorial
307 productFactorial n = product [1..n]

308

309 -- We can use guards that provide different actions based on conditions
310 1is0dd :: Int -> Bool

311 1is0dd n

312 -- if the modulus using 2 equals @ return False
313 [n "'mod” 2 == @ = False

314

315 -- Else return True

316 | otherwise = True

317

318 -- This could be shortened to

319 iskEven n = n "mod’ 2 ==

320

321 -- Use guards to define the school to output
322 whatGrade :: Int -> String

323 whatGrade age

324 | Cage >= 5) && (age <= 6) = "Kindergarten"

325 | (age > 6) && (age <= 10) = "Elementary School"

326 | (age > 10) && (age <= 14) = "Middle School"

327 | Cage > 14) && (age <= 18) = "High School"

328 | otherwise = "Go to college"

329

330 -- The where clause keeps us from having to repeat a calculation

331 batAvgRating :: Double -> Double -> String
332 batAvgRating hits atBats

333 | avg <= 0.200 = "Terrible Batting Average"

334 | avg <= 0.250 = "Average Player"

335 | avg <= 0.280 = "Your doing pretty good"

336 | otherwise = "You're a Superstar"

337 where avg = hits / atBats

338

339 -- You can access list items by separating letters with : or get everything but

340 -- the first item with xs

341 getlListItems :: [Int] -> String

342 getlListItems [] = "Your list is empty"

343 getlListItems (x:[]) = "Your list contains " ++ show x

344 getlListItems (x:y:[]) = "Your list contains " ++ show x ++
345 getlListItems (x:xs) = "The first item is " ++ show x ++ "

and " ++ show y
and the rest are "

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

++ show xs

-- We can also get values with an As pattern

getFirstItem :: String -> String

getFirstItem [] = "Empty String"

getFirstItem all@(x:xs) = "The first letter in " ++ all ++ " is
++ [x]

———————————— HIGHER ORDER FUNCTIONS ----------
-- Passing of functions as if they are variables

times4 :: Int -> Int
times4 x = x * 4

-- map applies a function to every item in the list
listTimes4 = map times4 [1,2,3,4,5]

-- Let's make map
multBy4 :: [Int] -> [Int]
multBy4 [] = []

-- Takes the 1st value off the list x, multiplies it by 4 and stores it in the

-- new list

-- xs is then passed back into multBy4 until there is nothing left of the list -- to process (
multBy4 (x:xs) = times4 x : multBy4 xs

-- Check if strings are equal with recursion

areStringskq :: [Char] -> [Char] -> Bool

areStringskq [] [] = True

areStringskEq (x:xs) (y:ys) = x == y && areStringsEq xs ys
areStringskq _ _ = False

-- PASSING A FUNCTION INTO A FUNCTION
-- (Int -> Int) says we expect a function that receives an Int and returns an

-- Int
doMult :: (Int -> Int) -> Int

-- We receive the function and pass 3 into it
doMult func = func 3

-- We pass in the function that multiplies by 4
num3Times4 = doMult times4

-- RETURNING A FUNCTION FROM A FUNCTION
getAddFunc :: Int -> (Int -> Int)

-- We can pass in the values to the function
getAddFunc x y = X +y

-- We could also get a function that adds 3 for example
adds3 = getAddFunc 3

fourPlus3 = adds3 4

-- We could use this function with map as well
threePluslList = map adds3 [1,2,3,4,5]

———————————— LAMBDA ----------
-- How we create functions without a name

-- \ represents lambda then you have the arguments -> and result
db11To1® = map (\x -> x * 2) [1..10]

------------ CONDITIONALS ----------

-- Comparison Operators : < > <= >= == /=
-- Logical Operators : & || not

-- Every if statement must contain an else

415 doubleEvenNumber y =

416 if ¢y "'mod” 2 /= 0)

417 then y

418 elsey * 2

419

420 -- We can use case statements

421 get(Class :: Int -> String
422 getClass n = case n of

423 5 -> "Go to Kindergarten"

424 6 -> "Go to elementary school"

425 _ -> "Go some place else"

426

427 -- —————————- MODULES ----------

428 -- You can group functions into modules. I showed previously how to load them
429 -- You can create your own module by creating a file that contains all your
43Q0 -- functions and then list the functions at the top like this

431 -- module SampFunctions (getClass, doubleEvenNumber) where

432 -- They can then be imported with import SampFunctions

433

434 - —————————- ENUMERATION TYPES ----------

435 -- Used when you want a list of possible types

436 -- Provide name, a list and then Show converts into a String for printing
437

438 data BaseballPlayer = Pitcher

439 | Catcher

440 | Infield

441 | Qutfield

442 deriving Show

443

444 barryBonds :: BaseballPlayer -> Bool
445 barryBonds Outfield = True

446

447 barryInOF = print(barryBonds Outfield)

448

449 -- —---oo--—- CUSTOM TYPES ----------

450 -- You can store multiple values sort of like a struct to create custom types
451 data Customer = Customer String String Double

452 deriving Show

453

454 -- Define Customer and its values

455 tomSmith :: Customer

456 tomSmith = Customer "Tom Smith" "123 Main St" 20.50

457

458 -- Define how we'll find the right customer (By Customer) and the return value
459 getBalance :: Customer -> Double

460 getBalance (Customer _ _ b) = b

4601

462 tomSmithBal = print (getBalance tomSmith)
463

464 -- We can define a type with all possible values
465 data RPS = Rock | Paper | Scissors

466

467 shoot :: RPS -> RPS -> String

468 shoot Paper Rock = "Paper Beats Rock"

469 shoot Rock Scissors = "Rock Beats Scissors”

470 shoot Scissors Paper = "Scissors Beat Paper"

471 shoot Scissors Rock = "Scissors Loses to Rock"

472 shoot Paper Scissors = "Paper Loses to Scissors"

473 shoot Rock Paper = "Rock Loses to Paper"

474 shoot _ _ = "Error"

475

476 -- We could define 2 versions of a type

477 -- First 2 floats are center coordinates and then radius for Circle

478 -- First 2 floats are for upper left hand corner and bottom right hand corner

479 -- for the Rectangle

480 data Shape = Circle Float Float Float | Rectangle Float Float Float Float
481 deriving (Show)

482

483 -- :t Circle = Float -> Float -> Float -> Shape

484

485 -- (Create a function to calculate area of shapes

486 area :: Shape -> Float

487 area (Circle _ _r) =pi * r A2

488 area (Rectangle x y x2 y2) = (abs (x2 - x)) * (abs (y2 -y))

489

499 -- Could also be area (Rectangle x y x2 y2) = (abs $ x2 - x) * (abs $ y2 -y)
491 -- $ means that anything that comes after it will take precedence over anything
492 -- that comes before (Alternative to adding parentheses)

493

494 -- The . operator allows you to chain functions to pass output on the right to

495 -- the input on the left

496 -- sumValue = putStrLn (show (1 + 2)) becomes
497 sumValue = putStrLn . show $ 1 + 2

498

499 -- Get area of shapes

500 areaOfCircle = area (Circle 50 60 20)

501 areaOfRectangle = area $ Rectangle 10 10 100 100

502

503 -- ---------- TYPE CLASSES ----------

504 -- Num, Eq, Ord and Show are type classes

505 -- Type classes correspond to sets of types which have certain operations
506 -- defined for them.

507 -- Polymorphic functions, which work with multiple parameter types, define
508 -- the types it works with through the use of type classes

509 -- For example (+) works with parameters of the type Num

510 -- :t (+) =Numa =>a ->a ->a

511 -- This says that for any type a, as long as a is an instance of Num, + can take
512 -- 2 values and return an a of type Num

513

514 -- Create an Employee and add the ability to check if they are equal
515 data Employee = Employee { name :: String,

516 position :: String,
517 idNum :: Int

518 } deriving (Eq, Show)
519

520 samSmith = Employee {name = "Sam Smith", position = "Manager", idNum = 1000}
521 pamMarx = Employee {name = "Pam Marx", position = "Sales", idNum = 1001}

522

523 isSamPam = samSmith == pamMarx

524

525 -- We can print out data because of show

526 samSmithData = show samSmith

527

528 -- Make a type instance of the typeclass Eq and Show

529 data ShirtSize =S I M| L

530

531 1instance Eq ShirtSize where
532 S == S = True

533 M == M = True

534 L ==L = True

535 _ == _ = False

536

537 1instance Show ShirtSize where
538 show S = "Small"

539 show M = "Medium"

540 show L = "Large"

541

542 -- Check if S is in the list

543 smallAvail = S “elem” [S, M, L]
544

545 -- Get string value for ShirtSize
546 theSize = show S

547

548 -- Define a custom typeclass that checks for equality

549 -- a represents any type that implements the function areEqual
550 class MyEq a where

551 areEqual :: a -> a -> Bool

552

553 -- Allow Bools to check for equality using areEqual
554 1instance MyEq ShirtSize where

555 arekEqual S S = True

556 areEqual M M = True

557 arekEqual L L = True

558 arekEqual _ _ = False

559

560 newSize = areEqual M M

561

562 -- -------—--- I/0 ---—--—---

563

564 sayHello = do

565 -- Prints the string with a new line

566 putStrLn "What's your name: "

567

568 -- Gets user input and stores it in name
569 name <- getline

570

571 -- $ is used instead of the parentheses
572 putStrLn $ "Hello " ++ name

573

574 -- File IO

575 -- Write to a file

576 writeToFile = do

577

578 -- Open the file using WriteMode

579 theFile <- openFile "test.txt" WriteMode
580

581 -- Put the text in the file

582 hPutStrLn theFile ("Random line of text")
583

584 -- Close the file

585 hClose theFile

586

587 readFromFile = do

588

589 -- Open the file using ReadMode

590 theFile2 <- openFile "test.txt" ReadMode
591

592 -- Get the contents of the file

593 contents <- hGetContents theFile2

594 putStr contents

595

596 -- Close the file

597 hClose theFile2

598

599 -- —--mmmo--- EXAMPLE : FIBONACCI SEQUENCE ----------
600

601 -- Calculate the Fibonacci Sequence

602 -- 1, 1, 2, 3, 5, 8,

603

604 -- 1 : 1 : says to add 2 1s to the beginning of a list
605 -- | for every (a, b) add them

606 -- <- stores a 2 value tuple in a and b

607 -- tail : get all list items minus the first
608 -- zip creates pairs using the contents from 2 lists being the lists fib and the
609 -- list (tail fib)

010

611 fib =1 : 1 : [a+ b | (a, b) <- zip fib (tail fib)]
612

613 -- First time through fib = 1 and (tail fib) =1

614 -- The 1list is now [1, 1, 2] because a: 1 + b: 1 =2
615

616 -- The second time through fib = 1 and (tail fib) =
617 -- The list is now [1, 1, 2, 3] because a: 1 + b: 2
618

619 fib30@ = fib !! 300 -- Gets the value stored in index 300 of the list
620

621 -- take 20 fib returns the first 20 Fibonacci numbers

2
=3

