
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

-- Haskell is a functional programming language
-- Everything is immutable so once a value is set it is set forever
-- Functions can be passed as a parameter to other functions
-- Recursion is used often
-- Haskell has no for, while, or technically variables, but it does have
-- constants
-- Haskell is lazy in that it doesn't execute more then is needed and instead
-- just checks for errors

-- Best Free Haskell Book
-- http://learnyouahaskell.com/chapters

-- Type ghci to open it up in your terminal
-- Load script with :l haskelltut
-- :quit exits the GHCi

-- Import a module
import Data.List
import System.IO

{-
Beginning of multiline comment
-}

-- ---------- DATA TYPES ----------
-- Haskell uses type inference meaning it decides on the data type based on the -- value stored in it
-- Haskell is statically typed and can't switch type after compiling
-- Values can't be changed (Immutable)
-- You can use :t in the terminal to get the data type (:t value)

-- Int : Whole number -2^63 - 2^63
-- :: Int defines that maxInt is an Int
maxInt = maxBound :: Int
minInt = minBound :: Int

-- Integer : Unbounded whole number

-- Float : Single precision floating point number
-- Double : Double precision floating point number (11 pts precision)
bigFloat = 3.99999999999 + 0.00000000005

-- Bool : True or False
-- Char : Single unicode character denoted with single quotes
-- Tuple : Can store a list made up of many data types

-- You declare the permanent value of a variable like this
always5 :: Int
always5 = 5

-- ---------- MATH ----------
-- Something crazy to start
sumOfVals = sum [1..1000]

addEx = 5 + 4
subEx = 5 - 4
multEx = 5 * 4
divEx = 5 / 4

-- mod is a prefix operator
modEx = mod 5 4

-- With back ticks we can use it as an infix operator
modEx2 = 5 `mod` 4

-- Negative numbers must be surrounded with parentheses
negNumEx = 5 + (-4)

-- If you define an Int you must use fromIntegral to use it with sqrt
-- :t sqrt shows that it returns a floating point number

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

num9 = 9 ::Int
sqrtOf9 = sqrt (fromIntegral num9)

-- Built in math functions
piVal = pi
ePow9 = exp 9
logOf9 = log 9
squared9 = 9 ** 2
truncateVal = truncate 9.999
roundVal = round 9.999
ceilingVal = ceiling 9.999
floorVal = floor 9.999

-- Also sin, cos, tan, asin, atan, acos, sinh, tanh, cosh, asinh, atanh, acosh

trueAndFalse = True && False
trueOrFalse = True || False
notTrue = not(True)

-- Remember you use :t in the terminal to get the data type (:t value)
-- You can also see how functions use data types with :t

-- :t (+) = Num a => a -> a -> a
-- Type a is in the type class num, we receive 2 of them and return 1

-- :t truncate = (RealFrac a, Integral b) => a -> b

-- ---------- LISTS ----------
-- Lists are singly linked and you can only add to the front of it

-- Lists store many elements of the same type
primeNumbers = [3,5,7,11]

-- Concatenate lists (Can be slow if your using a large list)
morePrimes = primeNumbers ++ [13,17,19,23,29]

-- You can use the cons operator to construct a list
favNums = 2 : 7 : 21 : 66 : []

-- You can make a list of lists
multList = [[3,5,7],[11,13,17]]

-- Quick way to add 1 value to the front of a list
morePrimes2 = 2 : morePrimes

-- Get number of elements in the list
lenPrime = length morePrimes2

-- Reverse the list
revPrime = reverse morePrimes2

-- return True if list is empty
isListEmpty = null morePrimes2

-- Get the number in index 1
secondPrime = morePrimes2 !! 1

-- Gets the 1st value in a list
firstPrime = head morePrimes2

-- Gets the last value
lastPrime = last morePrimes2

-- Gets everything but the first value
primeTail = tail morePrimes2

-- Gets everything but the last value
primeInit = init morePrimes2

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

-- Get specified number of elements from the front of a list
first3Primes = take 3 morePrimes2

-- Return values left after removing specified values
removedPrimes = drop 3 morePrimes2

-- Check if value is in list
is7InList = 7 `elem` morePrimes2

-- Get max value
maxPrime = maximum morePrimes2

-- Get minimum value
minPrime = minimum morePrimes2

-- Sum values in list
sumPrimes = sum morePrimes2

-- Get product of values in list (Value all can evenly divide by)
newList = [2,3,5]
prodPrimes = product newList

-- Create list from 0 to 10
zeroToTen = [0..10]

-- Create list of evens by defining the step between the first 2 values
evenList = [2,4..20]

-- You can use letters as well
letterList = ['A','C'..'Z']

-- You can generate an infinite list and Haskell will only generate what you
-- need
infinPow10 = [10,20..]

-- repeat repeats a value a defined number of times
many2s = take 10 (repeat 2)

-- replicate generates a value a specified number of times
many3s = replicate 10 3

-- cycle replicates the values in a list indefinitely
cycleList = take 10 (cycle [1,2,3,4,5])

-- You could perform operations on all values in a list
-- Cycle through the list storing each value in x which is multiplied by 2 and
-- then stored in a new list
listTimes2 = [x * 2 | x <- [1..10]]

-- We can filter the results with conditions
listTimes3 = [x * 3 | x <- [1..20], x*3 <= 50]

-- Return all values that are divisible by 13 and 9
divisBy9N13 = [x | x <- [1..500], x `mod` 13 == 0, x `mod` 9 == 0]

-- Sort a list
sortedList = sort [9,1,8,3,4,7,6]

-- zipwith can combine lists using a function
sumOfLists = zipWith (+) [1,2,3,4,5] [6,7,8,9,10]

-- Filter returns a list of items that match a condition
listBiggerThen5 = filter (>5) sumOfLists

-- takeWhile returns list items until the condition is false
evensUpTo20 = takeWhile (<=20) [2,4..]

-- foldl applies the operation on each item of a list
-- foldr applies these operations from the right

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

multOfList = foldl (*) 1 [2,3,4,5]

-- ---------- LIST COMPREHENSION ----------

-- We can generate a list from 1 to 10 to the power of 3
pow3List = [3^n | n <- [1..10]]

-- We can filter the results to only show values divisible by 9
pow3ListDiv9 = [3^n | n <- [1..10], 3^n `mod` 9 == 0]

-- Generate a multiplication table by multiplying x * y where y has the values
-- 1 through 10 and where x does as well
multTable = [[x * y | y <- [1..10]] | x <- [1..10]]

-- ---------- TUPLES ----------
-- Stores list of multiple data types, but has a fixed size

randTuple = (1,"Random tuple")

-- A tuple pair stores 2 values
bobSmith = ("Bob Smith",52)

-- Get the first value
bobsName = fst bobSmith

-- Get the second value
bobsAge = snd bobSmith

-- zip can combine values into tuple pairs
names = ["Bob","Mary","Tom"]
addresses = ["123 Main","234 North","567 South"]

namesNAddress = zip names addresses

-- ---------- FUNCTIONS ----------
-- ghc --make haskelltut compiles your program and executes the main function

-- Functions must start with lowercase letters

-- We can define functions and values in the GHCi with let
-- let num7 = 7
-- let getTriple x = x * 3

-- getTriple num7 = 21

-- main is a function that can be called in the terminal with main
main = do
 -- Prints the string with a new line
 putStrLn "What's your name: "

 -- Gets user input and stores it in name
 -- <- Pulls the name entered from an IO action
 name <- getLine

 putStrLn ("Hello " ++ name)

-- Create function addMe
-- x is a parameter and the operation follows the equals sign
-- The data type passed in will work if it makes sense
-- Every function must return something
-- A function name can't begin with a capital letter
-- A function that doesn't receive parameters is called a definition or name

-- You can define a type declaration for functions
-- funcName :: param1 -> param2 -> returnType
addMe :: Int -> Int -> Int

-- funcName param1 param2 = operations (Returned Value)
-- Execute with : addMe 4 5

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

addMe x y = x + y

-- Without type declaration you can add floats as well
sumMe x y = x + y

-- You can also add tuples : addTuples (1,2) (3,4) = (4,6)
addTuples :: (Int, Int) -> (Int, Int) -> (Int, Int)
addTuples (x, y) (x2, y2) = (x + x2, y + y2)

-- You can perform different actions based on values
whatAge :: Int -> String
whatAge 16 = "You can drive"
whatAge 18 = "You can vote"
whatAge 21 = "You're an adult"

-- The default
whatAge x = "Nothing Important"

-- Define that we expect an Int in and out
factorial :: Int -> Int

-- If 0 return a 1 (Recursive Function)
factorial 0 = 1
factorial n = n * factorial (n - 1)

-- 3 * factorial (2) : 6
-- 2 * factorial (1) : 2
-- 1 * factorial (0) : 1

-- You could also use product to calculate factorial
productFactorial n = product [1..n]

-- We can use guards that provide different actions based on conditions
isOdd :: Int -> Bool
isOdd n
 -- if the modulus using 2 equals 0 return False
 | n `mod` 2 == 0 = False

 -- Else return True
 | otherwise = True

-- This could be shortened to
isEven n = n `mod` 2 == 0

-- Use guards to define the school to output
whatGrade :: Int -> String
whatGrade age
 | (age >= 5) && (age <= 6) = "Kindergarten"
 | (age > 6) && (age <= 10) = "Elementary School"
 | (age > 10) && (age <= 14) = "Middle School"
 | (age > 14) && (age <= 18) = "High School"
 | otherwise = "Go to college"

-- The where clause keeps us from having to repeat a calculation
batAvgRating :: Double -> Double -> String
batAvgRating hits atBats
 | avg <= 0.200 = "Terrible Batting Average"
 | avg <= 0.250 = "Average Player"
 | avg <= 0.280 = "Your doing pretty good"
 | otherwise = "You're a Superstar"
 where avg = hits / atBats

-- You can access list items by separating letters with : or get everything but
-- the first item with xs
getListItems :: [Int] -> String
getListItems [] = "Your list is empty"
getListItems (x:[]) = "Your list contains " ++ show x
getListItems (x:y:[]) = "Your list contains " ++ show x ++ " and " ++ show y
getListItems (x:xs) = "The first item is " ++ show x ++ " and the rest are "

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

 ++ show xs

-- We can also get values with an As pattern
getFirstItem :: String -> String
getFirstItem [] = "Empty String"
getFirstItem all@(x:xs) = "The first letter in " ++ all ++ " is "
 ++ [x]

-- ---------- HIGHER ORDER FUNCTIONS ----------
-- Passing of functions as if they are variables

times4 :: Int -> Int
times4 x = x * 4

-- map applies a function to every item in the list
listTimes4 = map times4 [1,2,3,4,5]

-- Let's make map
multBy4 :: [Int] -> [Int]
multBy4 [] = []

-- Takes the 1st value off the list x, multiplies it by 4 and stores it in the
-- new list
-- xs is then passed back into multBy4 until there is nothing left of the list -- to process (Recursion)
multBy4 (x:xs) = times4 x : multBy4 xs

-- Check if strings are equal with recursion
areStringsEq :: [Char] -> [Char] -> Bool
areStringsEq [] [] = True
areStringsEq (x:xs) (y:ys) = x == y && areStringsEq xs ys
areStringsEq _ _ = False

-- PASSING A FUNCTION INTO A FUNCTION
-- (Int -> Int) says we expect a function that receives an Int and returns an
-- Int
doMult :: (Int -> Int) -> Int

-- We receive the function and pass 3 into it
doMult func = func 3

-- We pass in the function that multiplies by 4
num3Times4 = doMult times4

-- RETURNING A FUNCTION FROM A FUNCTION
getAddFunc :: Int -> (Int -> Int)

-- We can pass in the values to the function
getAddFunc x y = x + y

-- We could also get a function that adds 3 for example
adds3 = getAddFunc 3

fourPlus3 = adds3 4

-- We could use this function with map as well
threePlusList = map adds3 [1,2,3,4,5]

-- ---------- LAMBDA ----------
-- How we create functions without a name
-- \ represents lambda then you have the arguments -> and result

dbl1To10 = map (\x -> x * 2) [1..10]

-- ---------- CONDITIONALS ----------

-- Comparison Operators : < > <= >= == /=
-- Logical Operators : && || not

-- Every if statement must contain an else

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

doubleEvenNumber y =
 if (y `mod` 2 /= 0)
 then y
 else y * 2

-- We can use case statements
getClass :: Int -> String
getClass n = case n of
 5 -> "Go to Kindergarten"
 6 -> "Go to elementary school"
 _ -> "Go some place else"

-- ---------- MODULES ----------
-- You can group functions into modules. I showed previously how to load them
-- You can create your own module by creating a file that contains all your
-- functions and then list the functions at the top like this
-- module SampFunctions (getClass, doubleEvenNumber) where
-- They can then be imported with import SampFunctions

-- ---------- ENUMERATION TYPES ----------
-- Used when you want a list of possible types
-- Provide name, a list and then Show converts into a String for printing

data BaseballPlayer = Pitcher
 | Catcher
 | Infield
 | Outfield
 deriving Show

barryBonds :: BaseballPlayer -> Bool
barryBonds Outfield = True

barryInOF = print(barryBonds Outfield)

-- ---------- CUSTOM TYPES ----------
-- You can store multiple values sort of like a struct to create custom types
data Customer = Customer String String Double
 deriving Show

-- Define Customer and its values
tomSmith :: Customer
tomSmith = Customer "Tom Smith" "123 Main St" 20.50

-- Define how we'll find the right customer (By Customer) and the return value
getBalance :: Customer -> Double
getBalance (Customer _ _ b) = b

tomSmithBal = print (getBalance tomSmith)

-- We can define a type with all possible values
data RPS = Rock | Paper | Scissors

shoot :: RPS -> RPS -> String
shoot Paper Rock = "Paper Beats Rock"
shoot Rock Scissors = "Rock Beats Scissors"
shoot Scissors Paper = "Scissors Beat Paper"
shoot Scissors Rock = "Scissors Loses to Rock"
shoot Paper Scissors = "Paper Loses to Scissors"
shoot Rock Paper = "Rock Loses to Paper"
shoot _ _ = "Error"

-- We could define 2 versions of a type
-- First 2 floats are center coordinates and then radius for Circle
-- First 2 floats are for upper left hand corner and bottom right hand corner
-- for the Rectangle
data Shape = Circle Float Float Float | Rectangle Float Float Float Float
 deriving (Show)

-- :t Circle = Float -> Float -> Float -> Shape

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

-- Create a function to calculate area of shapes
area :: Shape -> Float
area (Circle _ _ r) = pi * r ^ 2
area (Rectangle x y x2 y2) = (abs (x2 - x)) * (abs (y2 -y))

-- Could also be area (Rectangle x y x2 y2) = (abs $ x2 - x) * (abs $ y2 -y)
-- $ means that anything that comes after it will take precedence over anything
-- that comes before (Alternative to adding parentheses)

-- The . operator allows you to chain functions to pass output on the right to
-- the input on the left
-- sumValue = putStrLn (show (1 + 2)) becomes
sumValue = putStrLn . show $ 1 + 2

-- Get area of shapes
areaOfCircle = area (Circle 50 60 20)
areaOfRectangle = area $ Rectangle 10 10 100 100

-- ---------- TYPE CLASSES ----------
-- Num, Eq, Ord and Show are type classes
-- Type classes correspond to sets of types which have certain operations
-- defined for them.
-- Polymorphic functions, which work with multiple parameter types, define
-- the types it works with through the use of type classes
-- For example (+) works with parameters of the type Num
-- :t (+) = Num a => a -> a -> a
-- This says that for any type a, as long as a is an instance of Num, + can take
-- 2 values and return an a of type Num

-- Create an Employee and add the ability to check if they are equal
data Employee = Employee { name :: String,
 position :: String,
 idNum :: Int
 } deriving (Eq, Show)

samSmith = Employee {name = "Sam Smith", position = "Manager", idNum = 1000}
pamMarx = Employee {name = "Pam Marx", position = "Sales", idNum = 1001}

isSamPam = samSmith == pamMarx

-- We can print out data because of show
samSmithData = show samSmith

-- Make a type instance of the typeclass Eq and Show
data ShirtSize = S | M | L

instance Eq ShirtSize where
 S == S = True
 M == M = True
 L == L = True
 _ == _ = False

instance Show ShirtSize where
 show S = "Small"
 show M = "Medium"
 show L = "Large"

-- Check if S is in the list
smallAvail = S `elem` [S, M, L]

-- Get string value for ShirtSize
theSize = show S

-- Define a custom typeclass that checks for equality
-- a represents any type that implements the function areEqual
class MyEq a where
 areEqual :: a -> a -> Bool

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

-- Allow Bools to check for equality using areEqual
instance MyEq ShirtSize where
 areEqual S S = True
 areEqual M M = True
 areEqual L L = True
 areEqual _ _ = False

newSize = areEqual M M

-- ---------- I/O ----------

sayHello = do
 -- Prints the string with a new line
 putStrLn "What's your name: "

 -- Gets user input and stores it in name
 name <- getLine

 -- $ is used instead of the parentheses
 putStrLn $ "Hello " ++ name

-- File IO
-- Write to a file
writeToFile = do

 -- Open the file using WriteMode
 theFile <- openFile "test.txt" WriteMode

 -- Put the text in the file
 hPutStrLn theFile ("Random line of text")

 -- Close the file
 hClose theFile

readFromFile = do

 -- Open the file using ReadMode
 theFile2 <- openFile "test.txt" ReadMode

 -- Get the contents of the file
 contents <- hGetContents theFile2
 putStr contents

 -- Close the file
 hClose theFile2

-- ---------- EXAMPLE : FIBONACCI SEQUENCE ----------

-- Calculate the Fibonacci Sequence
-- 1, 1, 2, 3, 5, 8, ...

-- 1 : 1 : says to add 2 1s to the beginning of a list
-- | for every (a, b) add them
-- <- stores a 2 value tuple in a and b
-- tail : get all list items minus the first
-- zip creates pairs using the contents from 2 lists being the lists fib and the
-- list (tail fib)

fib = 1 : 1 : [a + b | (a, b) <- zip fib (tail fib)]

-- First time through fib = 1 and (tail fib) = 1
-- The list is now [1, 1, 2] because a: 1 + b: 1 = 2

-- The second time through fib = 1 and (tail fib) = 2
-- The list is now [1, 1, 2, 3] because a: 1 + b: 2 = 3

fib300 = fib !! 300 -- Gets the value stored in index 300 of the list

-- take 20 fib returns the first 20 Fibonacci numbers

