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-- Haskell is a functional programming language

-- Everything is immutable so once a value is set it is set forever

-- Functions can be passed as a parameter to other functions

-- Recursion is used often

-- Haskell has no for, while, or technically variables, but it does have

-- constants

-- Haskell is lazy in that it doesn't execute more then is needed and instead
-- just checks for errors

-- Best Free Haskell Book
-- http://learnyouahaskell.com/chapters

-- Type ghci to open it up in your terminal
-- Load script with :1 haskelltut
-- :quit exits the GHCi

-- Import a module
import Data.List
import System.IO

{_

Beginning of multiline comment

———————————— DATA TYPES ----------

-- Haskell uses type inference meaning it decides on the data type based on the -- value store
-- Haskell is statically typed and can't switch type after compiling

-- Values can't be changed (Immutable)

-- You can use :t in the terminal to get the data type (:t value)

-- Int : Whole number -2A63 - 2463

-- :: Int defines that maxInt is an Int
maxInt = maxBound :: Int

minInt minBound :: Int

-- Integer : Unbounded whole number

-- Float : Single precision floating point number
-- Double : Double precision floating point number (11 pts precision)
bigFloat = 3.99999999999 + 0.00000000005

-- Bool : True or False
-- Char : Single unicode character denoted with single quotes
-- Tuple : Can store a list made up of many data types

-- You declare the permanent value of a variable like this
always5 :: Int
always5 = 5

———————————— MATH ----------
-- Something crazy to start
sumOfVals = sum [1..1000]

addEx =5 + 4
SsubEx =5 - 4
multEx = 5 * 4
divEx =5 / 4

-- mod is a prefix operator
modEx = mod 5 4

-- With back ticks we can use it as an infix operator
modEx2 = 5 "mod” 4

-- Negative numbers must be surrounded with parentheses
negNumkEx = 5 + (-4)

-- If you define an Int you must use fromIntegral to use it with sqgrt
-- :t sgrt shows that it returns a floating point number




70 num9 =9 ::Int

71 sqrt0f9 = sqrt (fromIntegral num9)
72

73 -- Built in math functions
74 piVal = pi

75 ePow9 = exp 9

76 1og0f9 = log 9

77 squared9 = 9 ** 2

78 truncateVal = truncate 9.999
79 roundVal = round 9.999

80 ceilingVal = ceiling 9.999
81 floorVal = floor 9.999

82

83 -- Also sin, cos, tan, asin, atan, acos, sinh, tanh, cosh, asinh, atanh, acosh
84

85 trueAndFalse = True && False

86 trueOrFalse = True || False

87 notTrue = not(True)

88

89 -- Remember you use :t in the terminal to get the data type (:t value)
99 -- You can adlso see how functions use data types with :t

91

92 -t (+) =Numa=>a ->a ->a

93 -- Type a is in the type class num, we receive 2 of them and return 1
94

95 -- :t truncate = (ReadlFrac a, Integral b) =>a -> b

96

97 - - LISTS ----—-----

98 -- Lists are singly linked and you can only add to the front of it

99

100 -- Lists store many elements of the same type

101 primeNumbers = [3,5,7,11]

102

103 -- Concatenate lists (Can be slow if your using a large list)

104 morePrimes = primeNumbers ++ [13,17,19,23,29]

105

106 -- You can use the cons operator to construct a list

107 favNums = 2 : 7 : 21 : 66 : []

108

109 -- You can make a list of lists

110 multList = [[3,5,71,[11,13,17]]

111

112 -- Quick way to add 1 value to the front of a list
113 morePrimes2 = 2 : morePrimes

114

115 -- Get number of elements in the list
116 lenPrime = length morePrimes?2

117

118 -- Reverse the list

119 revPrime = reverse morePrimes?2

120

121 -- return True if list is empty

122 1islListEmpty = null morePrimes2

123

124 -- Get the number in index 1
125 secondPrime = morePrimes2 !! 1
126

127 -- Gets the 1st value in a list

128 firstPrime = head morePrimes?2

129

130 -- Gets the last value

131 lastPrime = last morePrimes?2

132

133 -- Gets everything but the first value
134 primeTail = tail morePrimes?2

135

136 -- Gets everything but the last value
137 primelInit = init morePrimes?2

138




139 -- Get specified number of elements from the front of a list
140 first3Primes = take 3 morePrimes2

141

142 -- Return values left after removing specified values
143 removedPrimes = drop 3 morePrimes2
144

145 -- Check if value is in list

146 1is7InList = 7 “elem” morePrimes?2
147

148 -- Get max value

149 maxPrime = maximum morePrimes?2

150

151 -- Get minimum value

152 minPrime = minimum morePrimes2

153

154 -- Sum values in list

155 sumPrimes = sum morePrimes?2

156

157 -- Get product of values in list (Value all can evenly divide by)

158 newlList = [2,3,5]

159 prodPrimes = product newlList

160

161 -- Create list from @ to 10

162 zeroToTen = [0..10]

163

164 -- Create list of evens by defining the step between the first 2 values
165 evenlList = [2,4..20]

166

167 -- You can use letters as well

168 letterList = ['A','C'.."'Z"]

169

170 -- You can generate an infinite list and Haskell will only generate what you
171 -- need

172 infinPowl@ = [10,20..]

173

174 -- repeat repeats a value a defined number of times

175 many2s = take 10 (repeat 2)

176

177 -- replicate generates a value a specified number of times
178 many3s = replicate 10 3

179

180 -- cycle replicates the values in a list indefinitely

181 cyclelist = take 10 (cycle [1,2,3,4,5])

182

183 -- You could perform operations on all values in a list

184 -- Cycle through the 1list storing each value in x which is multiplied by 2 and
185 -- then stored in a new list
186 1listTimes2 = [x * 2 | x <- [1..10]]

187

188 -- We can filter the results with conditions
189 1listTimes3 = [x * 3 | x <- [1..20], x*3 <= 50]
190

191 -- Return all values that are divisible by 13 and 9

192 divisBy9N13 = [x | x <- [1..500], x "mod" 13 == 0, x ‘mod” 9 == 0]
193

194 -- Sort a list

195 sortedlList = sort [9,1,8,3,4,7,6]

196

197 -- zipwith can combine lists using a function

198 sumOflLists = zipWith (+) [1,2,3,4,5] [6,7,8,9,10]

199

200 -- Filter returns a list of items that match a condition

201 1listBiggerThen5 = filter (>5) sumOflLists

202

203 -- takeWhile returns list items until the condition is false
204 evensUpTo20 = takeWhile (<=20) [2,4..]

205

206 -- foldl applies the operation on each item of a list
207 -- foldr applies these operations from the right




208 multOfList = foldl (*) 1 [2,3,4,5]

209

210 -- ---------- LIST COMPREHENSION ----------

211

212 -- We can generate a list from 1 to 10 to the power of 3
213 pow3lList = [3An | n <- [1..10]]

214

215 -- We can filter the results to only show values divisible by 9
216 pow3ListDiv9 = [3An | n <- [1..10], 3An "mod” 9 == 0]
217

218 -- Generate a multiplication table by multiplying x * y where y has the values
219 -- 1 through 10 and where x does as well

220 multTable = [[x * vy | vy <- [1..10]] | x <- [1..10]]

221

222 -- ---———---- TUPLES ----------

223 -- Stores list of multiple data types, but has a fixed size
224

225 randTuple = (1,"Random tuple™)

226

227 -- A tuple pair stores 2 values

228 bobSmith = ("Bob Smith",52)

229

230 -- Get the first value

231 bobsName = fst bobSmith

232

233 -- Get the second value

234 bobsAge = snd bobSmith

235

236 -- zip can combine values into tuple pairs

237 names = ["Bob","Mary","Tom"]

238 addresses = ["123 Main","234 North","567 South"]

239

240 namesNAddress = zip names addresses

241

242 -- ---------- FUNCTIONS ----------

243 -- ghc --make haskelltut compiles your program and executes the main function
244

245 -- Functions must start with lowercase letters

246

247 -- We can define functions and values in the GHCi with let

248 -- let num7 =7
249 -- let getTriple x = x * 3

250

251 -- getTriple num7 = 21

252

253 -- main is a function that can be called in the terminal with main
254 main = do

255 -- Prints the string with a new line

256 putStrLn "What's your name: "

257

258 -- Gets user input and stores it in name

259 -- <- Pulls the name entered from an I0 action

260 name <- getline

261

262 putStrLn ("Hello " ++ name)

263

264 -- Create function addMe

265 -- x is a parameter and the operation follows the equals sign
266 -- The data type passed in will work if it makes sense

267 -- Every function must return something

268 -- A function name can't begin with a capital letter

269 -- A function that doesn't receive parameters is called a definition or name
270

271 -- You can define a type declaration for functions

272 -- funcName :: paraml -> param2 -> returnType

273 addMe :: Int -> Int -> Int

274

275 -- funcName paraml param2 = operations (Returned Value)

276 -- Execute with : addMe 4 5




277 addMe x y = x +y

278

279 -- Without type declaration you can add floats as well
280 sumMe Xy = X + Yy

281

282 -- You can also add tuples : addTuples (1,2) (3,4) = (4,6)
283 addTuples :: (Int, Int) -> (Int, Int) -> (Int, Int)
284 addTuples (x, y) (x2, y2) = (X + X2, y + y2)

285

286 -- You can perform different actions based on values
287 whatAge :: Int -> String

288 whatAge 16 = "You can drive"

289 whatAge 18 = "You can vote"

290 whatAge 21 = "You're an adult"

291

292 -- The default

293 whatAge x = "Nothing Important"

294

295 -- Define that we expect an Int in and out
296 factorial :: Int -> Int

297

298 -- If @ return a 1 (Recursive Function)

299 factorial 0 =1

300 factorial n = n * factorial (n - 1)
301

302 -- 3 * factorial (2) : 6

303 -- 2 * factorial (1) : 2

304 -- 1 * factorial (@) : 1

305

306 -- You could also use product to calculate factorial
307 productFactorial n = product [1..n]

308

309 -- We can use guards that provide different actions based on conditions
310 1is0dd :: Int -> Bool

311 1is0dd n

312 -- if the modulus using 2 equals @ return False
313 [ n "'mod” 2 == @ = False

314

315 -- Else return True

316 | otherwise = True

317

318 -- This could be shortened to

319 iskEven n = n "mod’ 2 ==

320

321 -- Use guards to define the school to output
322 whatGrade :: Int -> String

323 whatGrade age

324 | Cage >= 5) && (age <= 6) = "Kindergarten"

325 | (age > 6) && (age <= 10) = "Elementary School"

326 | (age > 10) && (age <= 14) = "Middle School"

327 | Cage > 14) && (age <= 18) = "High School"

328 | otherwise = "Go to college"

329

330 -- The where clause keeps us from having to repeat a calculation

331 batAvgRating :: Double -> Double -> String
332 batAvgRating hits atBats

333 | avg <= 0.200 = "Terrible Batting Average"

334 | avg <= 0.250 = "Average Player"

335 | avg <= 0.280 = "Your doing pretty good"

336 | otherwise = "You're a Superstar"

337 where avg = hits / atBats

338

339 -- You can access list items by separating letters with : or get everything but

340 -- the first item with xs

341 getlListItems :: [Int] -> String

342 getlListItems [] = "Your list is empty"

343 getlListItems (x:[]) = "Your list contains " ++ show x

344 getlListItems (x:y:[]) = "Your list contains " ++ show x ++
345 getlListItems (x:xs) = "The first item is " ++ show x ++ "

and " ++ show y
and the rest are "
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++ show xs

-- We can also get values with an As pattern

getFirstItem :: String -> String

getFirstItem [] = "Empty String"

getFirstItem all@(x:xs) = "The first letter in " ++ all ++ " is
++ [x]

———————————— HIGHER ORDER FUNCTIONS ----------
-- Passing of functions as if they are variables

times4 :: Int -> Int
times4 x = x * 4

-- map applies a function to every item in the list
listTimes4 = map times4 [1,2,3,4,5]

-- Let's make map
multBy4 :: [Int] -> [Int]
multBy4 [] = []

-- Takes the 1st value off the list x, multiplies it by 4 and stores it in the

-- new list

-- xs is then passed back into multBy4 until there is nothing left of the list -- to process (
multBy4 (x:xs) = times4 x : multBy4 xs

-- Check if strings are equal with recursion

areStringskq :: [Char] -> [Char] -> Bool

areStringskq [] [] = True

areStringskEq (x:xs) (y:ys) = x == y && areStringsEq xs ys
areStringskq _ _ = False

-- PASSING A FUNCTION INTO A FUNCTION
-- (Int -> Int) says we expect a function that receives an Int and returns an

-- Int
doMult :: (Int -> Int) -> Int

-- We receive the function and pass 3 into it
doMult func = func 3

-- We pass in the function that multiplies by 4
num3Times4 = doMult times4

-- RETURNING A FUNCTION FROM A FUNCTION
getAddFunc :: Int -> (Int -> Int)

-- We can pass in the values to the function
getAddFunc x y = X +y

-- We could also get a function that adds 3 for example
adds3 = getAddFunc 3

fourPlus3 = adds3 4

-- We could use this function with map as well
threePluslList = map adds3 [1,2,3,4,5]

———————————— LAMBDA ----------
-- How we create functions without a name

-- \ represents lambda then you have the arguments -> and result
db11To1® = map (\x -> x * 2) [1..10]

------------ CONDITIONALS ----------

-- Comparison Operators : < > <= >= == /=
-- Logical Operators : & || not

-- Every if statement must contain an else




415 doubleEvenNumber y =

416 if ¢y "'mod” 2 /= 0)

417 then y

418 elsey * 2

419

420 -- We can use case statements

421 get(Class :: Int -> String
422 getClass n = case n of

423 5 -> "Go to Kindergarten"

424 6 -> "Go to elementary school"

425 _ -> "Go some place else"

426

427 -- —————————- MODULES ----------

428 -- You can group functions into modules. I showed previously how to load them
429 -- You can create your own module by creating a file that contains all your
43Q0 -- functions and then list the functions at the top like this

431 -- module SampFunctions (getClass, doubleEvenNumber) where

432 -- They can then be imported with import SampFunctions

433

434 - —————————- ENUMERATION TYPES ----------

435 -- Used when you want a list of possible types

436 -- Provide name, a list and then Show converts into a String for printing
437

438 data BaseballPlayer = Pitcher

439 | Catcher

440 | Infield

441 | Qutfield

442 deriving Show

443

444 barryBonds :: BaseballPlayer -> Bool
445 barryBonds Outfield = True

446

447 barryInOF = print(barryBonds Outfield)

448

449 -- —---oo--—- CUSTOM TYPES ----------

450 -- You can store multiple values sort of like a struct to create custom types
451 data Customer = Customer String String Double

452 deriving Show

453

454 -- Define Customer and its values

455 tomSmith :: Customer

456 tomSmith = Customer "Tom Smith" "123 Main St" 20.50

457

458 -- Define how we'll find the right customer (By Customer) and the return value
459 getBalance :: Customer -> Double

460 getBalance (Customer _ _ b) = b

4601

462 tomSmithBal = print (getBalance tomSmith)
463

464 -- We can define a type with all possible values
465 data RPS = Rock | Paper | Scissors

466

467 shoot :: RPS -> RPS -> String

468 shoot Paper Rock = "Paper Beats Rock"

469 shoot Rock Scissors = "Rock Beats Scissors”

470 shoot Scissors Paper = "Scissors Beat Paper"

471 shoot Scissors Rock = "Scissors Loses to Rock"

472 shoot Paper Scissors = "Paper Loses to Scissors"

473 shoot Rock Paper = "Rock Loses to Paper"

474 shoot _ _ = "Error"

475

476 -- We could define 2 versions of a type

477 -- First 2 floats are center coordinates and then radius for Circle

478 -- First 2 floats are for upper left hand corner and bottom right hand corner

479 -- for the Rectangle

480 data Shape = Circle Float Float Float | Rectangle Float Float Float Float
481 deriving (Show)

482

483 -- :t Circle = Float -> Float -> Float -> Shape




484

485 -- (Create a function to calculate area of shapes

486 area :: Shape -> Float

487 area (Circle _ _r) =pi * r A2

488 area (Rectangle x y x2 y2) = (abs (x2 - x)) * (abs (y2 -y))

489

499 -- Could also be area (Rectangle x y x2 y2) = (abs $ x2 - x) * (abs $ y2 -y)
491 -- $ means that anything that comes after it will take precedence over anything
492 -- that comes before (Alternative to adding parentheses)

493

494 -- The . operator allows you to chain functions to pass output on the right to

495 -- the input on the left

496 -- sumValue = putStrLn (show (1 + 2)) becomes
497 sumValue = putStrLn . show $ 1 + 2

498

499 -- Get area of shapes

500 areaOfCircle = area (Circle 50 60 20)

501 areaOfRectangle = area $ Rectangle 10 10 100 100

502

503 -- ---------- TYPE CLASSES ----------

504 -- Num, Eq, Ord and Show are type classes

505 -- Type classes correspond to sets of types which have certain operations
506 -- defined for them.

507 -- Polymorphic functions, which work with multiple parameter types, define
508 -- the types it works with through the use of type classes

509 -- For example (+) works with parameters of the type Num

510 -- :t (+) =Numa =>a ->a ->a

511 -- This says that for any type a, as long as a is an instance of Num, + can take
512 -- 2 values and return an a of type Num

513

514 -- Create an Employee and add the ability to check if they are equal
515 data Employee = Employee { name :: String,

516 position :: String,
517 idNum :: Int

518 } deriving (Eq, Show)
519

520 samSmith = Employee {name = "Sam Smith", position = "Manager", idNum = 1000}
521 pamMarx = Employee {name = "Pam Marx", position = "Sales", idNum = 1001}

522

523 isSamPam = samSmith == pamMarx

524

525 -- We can print out data because of show

526 samSmithData = show samSmith

527

528 -- Make a type instance of the typeclass Eq and Show

529 data ShirtSize =S I M| L

530

531 1instance Eq ShirtSize where
532 S == S = True

533 M == M = True

534 L ==L = True

535 _ == _ = False

536

537 1instance Show ShirtSize where
538 show S = "Small"

539 show M = "Medium"

540 show L = "Large"

541

542 -- Check if S is in the list

543 smallAvail = S “elem” [S, M, L]
544

545 -- Get string value for ShirtSize
546 theSize = show S

547

548 -- Define a custom typeclass that checks for equality

549 -- a represents any type that implements the function areEqual
550 class MyEq a where

551 areEqual :: a -> a -> Bool

552




553 -- Allow Bools to check for equality using areEqual
554 1instance MyEq ShirtSize where

555 arekEqual S S = True

556 areEqual M M = True

557 arekEqual L L = True

558 arekEqual _ _ = False

559

560 newSize = areEqual M M

561

562 -- -------—--- I/0 ---—--—---

563

564 sayHello = do

565 -- Prints the string with a new line

566 putStrLn "What's your name: "

567

568 -- Gets user input and stores it in name
569 name <- getline

570

571 -- $ is used instead of the parentheses
572 putStrLn $ "Hello " ++ name

573

574 -- File IO

575 -- Write to a file

576 writeToFile = do

577

578 -- Open the file using WriteMode

579 theFile <- openFile "test.txt" WriteMode
580

581 -- Put the text in the file

582 hPutStrLn theFile ("Random line of text")
583

584 -- Close the file

585 hClose theFile

586

587 readFromFile = do

588

589 -- Open the file using ReadMode

590 theFile2 <- openFile "test.txt" ReadMode
591

592 -- Get the contents of the file

593 contents <- hGetContents theFile2

594 putStr contents

595

596 -- Close the file

597 hClose theFile2

598

599 -- —--mmmo--- EXAMPLE : FIBONACCI SEQUENCE ----------
600

601 -- Calculate the Fibonacci Sequence

602 -- 1, 1, 2, 3, 5, 8,

603

604 -- 1 : 1 : says to add 2 1s to the beginning of a list
605 -- | for every (a, b) add them

606 -- <- stores a 2 value tuple in a and b

607 -- tail : get all list items minus the first
608 -- zip creates pairs using the contents from 2 lists being the lists fib and the
609 -- list (tail fib)

010

611 fib =1 : 1 : [a+ b | (a, b) <- zip fib (tail fib) ]
612

613 -- First time through fib = 1 and (tail fib) =1

614 -- The 1list is now [1, 1, 2] because a: 1 + b: 1 =2
615

616 -- The second time through fib = 1 and (tail fib) =
617 -- The list is now [1, 1, 2, 3] because a: 1 + b: 2
618

619 fib30@ = fib !! 300 -- Gets the value stored in index 300 of the list
620

621 -- take 20 fib returns the first 20 Fibonacci numbers

2
=3




