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Definitions
Q (Charge) [C]
E E (Electric Field) [ﬂ] or [%]
(Electrlc Flux Density) [ =]
pi,s,0 (Charge Density) [S] (p1) or [;55] (ps) or [:5] (pv)
® (Electric Potential) [V] or [%]
J (Current Density) %]
C (Capacitance) [F|
Ug (Electric Potential Energy) [J]
B (Magnetic Field) [T] = [-2;] = |
— (1T = 10* G)
L (Inductance) [H] = [%]
®p (Magnetic Flux) [Wh]

k9, or [G]

Constants

€0 = 8.85 x 10712 [L] (Permittivity of Free Space)

po = 4 x 1077 [%] (Permeability of Free Space)

osp = 5.6703 x 10~8 [#] (Boltzmann’s Constant)
Q.- = —1.60217662 x 10719 [C] (Elementary Charge)
m,— = 9.11 x 10731 [kg] (Mass of an electron)

¢ =3 x 108%[2] (Universal Speed Limit)

No = \/% = 377 = 1207[€2] (Impedance of Free Space)

Vector Calculus

Gradient: V&

Cartesian: g—j: + ?9%17 + 6%73
Cylindrical: ?Ti)f + %g%qg + 5%2
sohical: $21-+ 1480 + oy 225

Divergence: V- A

. A
Cartesian: aA”” + o4y

9y
o 1 a(m ) 1 8A¢ 2A
Cylindrical: troe T o2
2
g a(r A) 1 9(Agsin0) 1944
Spherical: 2 or Tsin0 06 + Tsing Er

Curl: V x A

Cartesian: & (aaAy BAy) +9 (aéqz o4, ) + 2 (aAy — 24y

oz "oz ox

Cylindrical:

L (10A, 04, 2 (0A,  8A, 21 (2(ray) _ a4,

T(F% Bz)+¢<8z *W>+Z?( ar rra

Spherical:

7 [0(A¢sin9) _%} é[ 1 9A, B(TA(,,)} g[ (rAg) BAT]
T

rsinf a6 06 | " r|sinf 8¢  or or o9

Laplacian: V?®
%o

; % | 2%
Cartesian: .z t vl + 53
10(,68) 10 o0
Cylindrical: r0r "or r2 0¢? ' 022

lg 674) + 1 a s 9674) + 1 -
Spherical: 720r \' or) ' r2sin6 00 056 ) t 2o 062

Integrals
c dz cln(%)
/0 a+ 0y T b-a
o 1 1
b In % b(lnb — Ina)?

Stupid Stuff I Sometimes Forget

Surface area of a sphere: 4712

Volume of a sphere: %71'7"3

Surface area of a cylinder: 27rl

P
4me,r?

Potential from a point charge: ® = 47;:“

E field from a point charge: E=

How to Get Basic Stuff

Charge
Q= [If plz,y, 2)dV

Electric Field
D=¢E
Gauss’ Law:
¢ E E.-dS= (Integral Form)
V-E= 2 (leferentlal Form)
E =-Vo
(,y,2) = [If L5 i Dav
Dlelectrlc Strength: Epreakdown [%]

Electric Potential

o=—[E-dl
V2 = -2 £ (Poisson’s Equation)

General Form: — V - (eV®) = —p (works for non-constant e)

Potential Energy

From a charge distribution:
Up = 3 [If p(7)®(7)aV
Ug = 3 [[[ | E|?dV

Energy of a sphere of charge:

_ 47'rp2b5
UE T 15e,

Power

Pg = [[[J-EdV = VI_——IQR

Electric Force
Fp =qE

In terms of energy: F = :t%(UE(l))[

Capacitance

Parallel Plate (Special Case)

— pPs _ V
E= e — d

C = % where € = €,¢,

Boundary Conditions

Surface of a Conductor

A3 __ Ps
n- Esurface = ?‘5

n X Esurface =0

Ezxpressed in terms of potential...

_ 09 _ _ Ps
~on €

® = Constant
Dielectric Boundary
ﬁ'ﬁ161—ﬁ~5262 = Ps

n X El =n X EQ

Ezxpressed in terms of potential...

oD o
€15, — €252 = ps
L X v(I)1|su7‘face ="nx v(I)2|su7‘face

Conductors, Current, and Resistance

Current: [ = [f J-dS

Ohm'’s Law: J = cE

For Moving Charges: J= pU
— p s charge density

Conductivity : ¢ [Z]

m
Resistivity : p [ - m]

l l
Resistance: R = EZ =prz

< (1 is in the direction of current flow)

— (A is the cross-section which current is flowing through)

Drift Velocity: v = /LE

— (p 1is the electron mobility of a material)

Sheet Resistors

— Typically have a length (1), width (w) and thickness (t)

1011 .1
AT cwt  'shy

1
T Tsh = 5f

Series of sheet resistors: R = rsh(i — 0.44Ncorners)

Resistance: R =



Heat Transfer

Heat Capacity: Cp [%]

C J
mapss [7]

Specific Heat Capacity: Csp = oK

AUpear = CpAT
Resistivity w/ Temperature: p(T) = po[l + arcr(T — To)]

— po = resistivity at room temperature

— arcr = temperature coefficient of resistance

Methods of Heat Transfer

Energy Balance: Pin = Pstored + Peond + Peonv + Prad

Pstored = Ch% (Zero for steady statel!!l)
Conduction: Puypq = Li—Le
Gth

Convection: Peony = hAs(T — Tb)
— h = convection coefficient
— As = surface area
Steady State: AT = fLZ}Z
Radiation: P,,q = ecgpAs(T* — T)
— e = emissivity (0<e<1)

Elementary Magnetostatics

Ampere’s Law:
f B.dS = tolinside (Integral form)
VxB= uoj (Differential Form)
Magnetic Field Strength (H): B = pH
Force on a wire: F_;g =I'xB
Lorentz’s Force Law: F = q(E + @ x B)
< Fg = qU X B

Magnetic Fields from Different Objects

Field from a wire: B = g—"l
™r

Field inside a solenoid: B = unl

— n = turn density = %

Field inside a toroid: B = *;NI
™r

Field from an infinite current sheet: B

-,

Vector Potential (A)

Faraday’s Law and Induction
Magnetic Flux: &g = ]/E -dS

Faraday’s Law: Ve, p = _%
— For EMF induced in a coil: Vep,p = 7N7d§t3

Inductance

In general...
L= N [y
— Sanity Check: L should have a factor of N2
Magnetic Energy from Inductance: Ug = %Lﬂ
Magnetic Force: Fp = i%(UB ()i
For a 2-circuit system (Mutual Inductance):

Flux from Ckt 1 in Ckt 2: ®9; = [[ By - dSs

Induced voltage in Ckt 2: Vi, = — [;1221 = Lgl%
Mutual Inductance: Lo = q}—zll

Self-Inductance:

Flux from Ckt 1 in Ckt 1: ®11 = [[ By - d$,

11

Self-Inductance: L1 = i

In general...
Loy = L12, but L11 # Loa
We must include both mutual and self-inductance terms!
1= L11ddit1 + LlQ%

dI dr
Vo = Lao g2 + Lo1°3}

Magnetic Flux Circuits
Analogous to Resistive Circuits!
For an N-turn Coil On a High-p Core...
V=NI
R=R= u% (Reluctance)
— (1 is in the direction of flux flow)

< (A is the cross-section which fluz is flowing through)

r=op =

Ideal Transformers (Perfect Flux Sharing)

.Y _Np
Voltage and Turns: v =5

— (p = primary, s = secondary)
Current and Turns: NplIp = Nsls

Phasors

f(t) = Acos (wt + ¢) => F = Ael?
f(t) = Asin (wt + ¢) = F = —jAel®
Euler’s Identity: e?? = cos@ + jsin@
R[eI?] = cosx

3[ed?] = sinx

Plane Waves
Source-Free Wave Equations: V2E + kgE_" =0& V2H + kgﬁ =0

Solutions are linear combinations of:
E/ﬁ = Ej/ﬁje’jﬂ? (Forward Propagating Wave)
E/H = E; /H‘JeﬂLﬂg'F (Reverse Propagating Wave)

— k points in direction of wave propagation (kz& -+ kyg + kz2)

— 7 is a generic position vector (zi + yy + 22)
— e.g. for a wave moving in the +Z2 direction, k-7=kz

General form of an EM Wave: H,/E, cos /sin (wt + k/Bz + ¢)

Typical Parameters of Plane Waves
. — rad
Angular Frequency: w = 2nf [F5¢]
Wavenumber: k/8 = w,/pe = % - QTW
— Free Space Wavenumber: ko, = wy/lio€o = % =2z

Impedance: n = \/557:: 770\/% No

— Impedance of Free Space = 1, = \/% = 3772 = 1207
To go from H to E: E = —n(an x H)
To go from E to H: H = %(dn x E)

— an 48 a unit vector in the direction of propagation

— E and H point in the direction of polarization

Propagation Through Lossy Media

General form for an attenuated wave: Ey = E,e~%%e—i5%
— wave propagating in +2 direction
— wave polarized in & direction
Attenuation factor: e™*#
— how much the amplitude has shrunk through distance z
Phase Constant : 8 (similar to k)

— tells us how much phase changes as wave propagates
Low-Loss Medium (Djielectric): tand = = << 1

Attenuation Constant: o = %\/E [&]
€ m
— 1502 = 868642
m m
Phase Constant: 8 = w, /1€

w

Phase Velocity: vy = &

Intrinsic Impedance: 1. = \/E(l + ]%)
Skin Depth: § = L [m]

[e3

Lossy Medium (Good Conductor): tand = = >> 1

Attenuation and Phase Constant: o = 8 = /7w fuo
G w2

Phase Velocity: vp = 4 = ’/T(;
A= 2m — Yp _ T

Wavelength: A\ = =5 = 2 /furf

Intrinsic Impedance: 1. = (1 +37)

Skin Depth: § = é = % = % [m]
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