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Introduction

This Study Guide is designed to help you succeed in your linear algebra course. It
shows you how to study mathematics, to learn new material, and to prepare effective
review sheets for tests. Key Ideas and Study Notes guide you through each section,
with summaries of important ideas and tables that connect related ideas. Detailed solu-
tions to hundreds of exercises (usually every third odd exercise) allow you to check
your work or help you get started on a difficult problem. Also, complete explanations
are provided for each writing exercise whose answer in the text is only a “Hint.” Study
Tips point out important exercises, give hints about what to study, and sometimes high-
light potential exam questions. Frequent Warnings identify common student errors.
Don’t ever take an exam without reviewing these warnings!

The most important material in this Study Guide is on pages ix and x of this intro-
duction. Students who follow the strategies in How to Study Linear Algebra invariably
achieve remarkable results in this course. You can be one of those students.

If you are using technology with your course, you will need this Study Guide. Besides its
valuable support for the course material, the Guide includes “Lab Manuals” for three com-
puter programs and four graphic calculators. Everything you need to know about using this
technology with your text is here. New commands are introduced gradually, and detailed
instructions are given for their use. Also, data for more than 850 exercises from the text are
stored in electronic files for each type of technology. You’ll save hours of time and avoid
errors in typing. The files also contain special programs that reinforce basic concepts in the
course. If your class is using MATLAB, Maple, or Mathematica, your files are probably
already loaded on the school computer system or in specified labs. If you are using a TI-
83+, TI-86, TI-89, or HP-48G, your instructor may have plans to download the files to your
calculator. In any case, you can always download the files yourself from the Web site:

http://www.laylinalgebra.com

A ReadMe file with each data set describes how to incorporate the data into your soft-
ware or load it into your calculator. The files on the Web will always reflect the latest
versions available.

Special MATLAB boxes at the ends of many Study Guide sections explain how
to use MATLAB for your homework, introducing simple commands as they are needed
for the exercises. The first appendix at the back of the Guide contains a quick intro-
duction, Gerting Started with MATLAB, and an index of MATLAB commands. I
encourage you to try MATLAB—it is easy to learn.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. vi
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REVIEW MATERIALS
ON THE WEB

EB Brief Table of Contents || EB Table of Contents

Notes for the Maple and Mathematica computer algebra systems and for the
TI-83+/86/89 and HP-48G graphic calculators are included in the last four appendices
to this Study Guide. The notes correspond to the MATLAB boxes and translate MAT-
LAB commands into syntax appropriate for the other technologies. Each set of notes
has its own index. Whenever you see a MATLAB box in this Guide, turn to the appro-
priate appendix for help with your technology.

The following faculty members wrote the notes and developed the special pro-
grams:

Maple Douglas Meade, University of South Carolina, Columbia, SC
Mathematica Lyle Cochran, Whitworth College, Spokane, WA
TI-83+/86/89 Michael Miller, Western Baptist College, Salem, OR
HP-48G Thomas W. Polaski, Winthrop University, Rock Hill, SC

Also, Professor Jeremy Case, of Taylor University, Marion, IN, helped with the data
and other materials involving MATLAB. These colleagues have given good advice
based on teaching with our text and Study Guide. 1 appreciate their contributions to this
revision of the Study Guide.

In addition to the help in this Study Guide, I have provided some material on the Web
that my students really appreciate—review sheets and practice exams. Please heed the
advice below, because using these study aids in the wrong way can lead to a disaster at
exam time. I suggest four steps to prepare for each exam.

1. Assemble a review sheet. The Web review sheets reflect what I emphasize in my
courses. If possible, you need to find out what your instructor expects of you. The
three courses on the Web material vary somewhat in their content and approach,
and they organize the material differently. To construct a review sheet for one of
your exams, you may need to combine parts of two sheets from the Web.

2. Try to complete an initial review for an exam a day or two early. Hard to do, but
worth the effort. Don’t read the sample exams! Studying from an old exam is a big
mistake. Instead, study your lecture notes, looking for items that were emphasized
in class. Read over your homework and old quizzes. I insist that my students learn
key definitions, practically word for word. If they cannot write a definition prop-
erly, they don’t know what they are writing about.

3. After the review, take the sample exam whose subject material most closely fits
what your exam will cover. Find a quiet place and time when you can work the
entire exam without stopping , and without looking at the text or your notes. (Of
course, skip any questions that are inappropriate for your course.) Write your
answers. Time yourself.

4. Finally, after you have completed the test, look at the solutions. Identify the areas

that need further review. If possible, find an example in the text related to an area
in which you are weak. Cover up the solution to the example and try to write out
the solution yourself. Peek, if necessary. Don’t be reluctant to ask for help.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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How to Study
Linear Algebra

A first course in linear algebra is dramatically different from most mathematics courses
that precede it. The focus shifts from learning computational procedures to digesting
and mastering basic concepts that underlie the computations. To survive, you may need
to learn a new way to study mathematics. That’s why I wrote this Study Guide—to
show you how to succeed in the course and to give you tools to do this.

Because you are likely to use linear algebra later in your career, you need to learn
the material at a level that will carry you far beyond the final exam. I believe that the
strategies below are crucial to success.

STRATEGIES FOR SUCCESS

IN LINEAR ALGEBRA

1. Study before you start to work on exercises. Most students don’t do this in
courses that precede linear algebra. They survive by looking at the examples when
they cannot solve an exercise. That simply will not work in linear algebra. If you
“copy” an example (with necessary modifications), you may think you understand
the problem, but very little true learning has taken place. (You’ll find that out on
your first exam.) For this course, in addition to knowing how to carry out a certain
procedure, you must learn when that procedure is appropriate and (most impor-
tantly) why it works.

For success with homework, read the text section first, perhaps taking a few
notes. Then, read the Key Ideas or Study Notes in the Study Guide for that sec-
tion. Finally, start to work on the assigned exercises. In the long run, this approach
will improve your performance and save you time. The preparation time spent here
will greatly reduce your exam preparation.

2. Prepare for each class period as you would for a language class. Mastery of the
subject requires that you learn a rich vocabulary. Your goal now is to become so
familiar with concepts that you can use them easily (and correctly) in conversation
and in writing. For homework, try to write complete sentences, such as you’ll find
in the Study Guide solutions. Pay attention, too, to the warnings here about misuse
of terminology.

ix
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This course resembles a language course because of the preparation needed
between class meetings, to avoid falling behind. Most sections in the text build on
preceding sections. Once you are behind, catching up with the class is often
difficult. The fact that concepts may seem “simple” does not mean that you can
afford to postpone your study until the weekend. The homework may be harder
than you expect. The most valuable advice I can give is to keep up with the course.

Concentrate more on learning definitions, facts, and concepts than on practic-
ing routine computations or algorithms. See connections between concepts. Many
theorems and boxed “facts” describe such connections. For examples, see Theorem
2 in Section 1.2, and Theorems 3 and 4 in Section 1.4. Your goal is to think in gen-
eral terms, to imagine typical computations without performing any arithmetic, and
to focus on the principles behind the computations.

Review frequently. Review and reflection are key ingredients for success in learn-
ing the material. At strategic points in this Guide, I have inserted special subsec-
tions labeled “Mastering Linear Algebra Concepts.” They provide specific help for
your review of each main concept. I urge you to prepare the review sheets
described as you reach each review point. Later, you may choose to add further
notes. Of course, use the sheets to review for exams. A Glossary Checklist at the
end of each chapter in the Guide may help you learn important definitions.

CAUTION Because you can find complete solutions here to many exercises, you
will be tempted to read the explanations before you really try to write out the solu-
tions yourself. Don’t do it! If you merely think a bit about a problem and then check
to see if your idea is basically correct, you are likely to overestimate your under-
standing. Some of my students have done this and miserably failed the first exam.
By then the damage was done, and they had great difficulty catching up with the
class. Proper use of the Study Guide, however, will help you to succeed and enjoy
the course at the same time.

Students who have used this material have told me how much it helped them learn lin-
ear algebra and prepare for tests. The first time my students used the Study Guide notes,
they had already taken one exam. Grades on the next exam were substantial. For some
students, the improvement was dramatic. I hope the Study Guide will encourage you to
master linear algebra and to perform at a level higher than you ever dreamed possible.

David C. Lay

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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Linear Equations
in Linear Algebra

As you work through this chapter and the next, your experience may resemble several walks
through a village at different seasons of the year. The surroundings will be familiar, but the
landscape will change. You will examine various mathematical concepts from several points of
view, and a major problem will be to learn all the new terminology and the many connections
between the concepts. In Chapter 4, you will see these ideas in a more abstract setting. Diligent
work now will make the trip through Chapter 4 just another walk through the same village.

1.1 SYSTEMS OF LINEAR EQUATIONS

The fundamental concepts presented in this section and the next must be mastered for they will be
used throughout the course.

STUDY NOTES

Please read How to Study Linear Algebra, on the preceding two pages, before you continue.

The text uses boldface type to identify important terms the first time they appear. You need
to learn them; some students write selected terms on 3 X 5 cards, for review. At the end of each
chapter in this Study Guide, a glossary checklist may help you learn definitions.

The text defines the size of a matrix. Don’t use the term dimension, even though that appears
in some computer programming languages, because in linear algebra, dimension refers to another
concept (in Section 4.5).

The first few examples are so simple that they could be solved by a variety of techniques.
But it is important to learn the systematic method presented here, because it easily handles more
complicated linear systems, and it works in all cases.

The calculations in this section are based on the following important fact:

When elementary row operations are applied to a linear system, the new system
has exactly the same solution set.

1-1
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(See the text.) The steps in the summary below will be modified slightly in Section 1.2.

Summary of the Elimination Method (for This Section)

1. The first equation must contain an x;. Interchange equations, if necessary.
This will create a nonzero entry in the first row, first column, of the augmented
matrix.

2. Eliminate x; terms in the other equations. That is, use replacement operations
to create zeros in the first column of the matrix below the first row.

3. Obtain an x, term in the second equation. (Interchange the second equation
with one below, if needed, but don’t touch the first equation.) You may scale
the second equation, if desired, to create a 1 in the second column and second
row of the matrix.

4. Eliminate x, terms in equations below the second equation, using replacement
operations.

5. Continue with x; in the third equation, x; in the fourth equation, etc.,
eliminating these variables in the equations below. This will produce a
“triangular” system (at least for systems in this section).

6. Check if the system in triangular form is consistent. If it is, a solution is found
by starting with the last nonzero equation and working back up to the first
equation. Each variable on the “diagonal” is used to eliminate the terms in that
variable above it. The solution to the system becomes apparent when the
system is finally transformed into “diagonal” form.

7. Check any solutions you find by substituting them into the original system.

The solution set of a system of linear equations either is empty, or contains one solution, or
contains infinitely many solutions. When asked to “solve” a system, you may write “incon-
sistent” if the system has no solution.

As you will see later, determining the number of solutions in the solution set is sometimes
more important than actually computing the solution or solutions. For that reason, pay close
attention to the subsection on existence and uniqueness questions. Key Exercises: 19-22 and 25.

SOLUTIONS TO EXERCISES

Get into the habit now of working the Practice Problems before you start the exercises. Probably,
you should attempt all the Practice Problems before checking the solutions at the end of the
exercise set, because once you start reading the first solution, you might tend to read on through
the other solutions and spoil your chance to benefit from those problems.

For brevity, the symbols R1, R2, . . ., stand for row 1 (or equation 1), row 2 (or equation 2),
and so on.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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1.1« Systems of Linear Equations 1-3
1 x +5x, =17 1 5 7
" 2x, - Tx, = -5 -2 -7 -5
Replace R2 by R2 + (2)R1 Hot X, =T L5 7]
epliace .
P y 3x, = 03 9
X +5x, =17 1 5 7
Scale R2 by 1/3:
x, =3 0 1 3
Replace R1 by R1 + (-5)R2 * =8 Lo -8
eplace —. .
P y =13 [0 1 3

-8 +53)=-8+15= 7

The solution is (x1, x;) = (-8, 3), or simply (-8, 3). Check: 2(-8) = 7(3) = 16 — 21 = 5

1 7 3 4
0 1 -1 3 . .

7. o0 o0 11 Ordinarily, the next step would be to interchange R3 and R4, to put a 1
0 0 1 2

in the third row and third column. But in this case, the third row of the augmented matrix
corresponds to the equation Ox; + Ox; + Ox; = 1, or simply, 0 = 1. A system containing this
condition has no solution. Further row operations are unnecessary once an equation such as
0 =1 is evident.

The solution set is empty.

Study Tip: When writing a coefficient matrix or augmented matrix for a system of linear
equations, be sure that the variables appear in the same order in each equation. Arrange the
variables in columns, as in the text, placing zeros in the matrix whenever a variable is missing
from an equation.

1 0 -3 8 1 0 -3 8 1 0 -3 8 1 0 -3 8
3.2 2 9 7|-/0 2 15 -9|~j0 1 5 -2|~|0 1 5 -2
o 1 5 -2]0 1 5 =240 2 15 -9 [0 O 5 -5

1 0 -3 8 1 0 0 5
~0 1 5 =2/~]0 1 0 3}. Thesolutionis (5, 3, -1).
0 0 1 -1 0 0 1 -1

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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CHAPTER 1 + Linear Equations in Linear Algebra

Study Tip: Pay attention to how a problem is worded. If you only need to determine the
existence or uniqueness of a solution, stop row operations when you reach a “triangular” form.
Exercises 15-18 do not require you to solve the systems of equation.

19.

23.

25.

31.

1 h 4 1 h 4 . ) )
~ . Think of 6 — 34 as a constant, c. When c is zero, that is,
3 6 8 0 6-3h 4

when & = 2, the system has no solution, because 0 x, = —4 has no solution. Otherwise, when
¢ is nonzero, that is, when 4 # 2, the system has a solution.

My own students have recommended that I never give the complete answers to the true/false
questions. They felt that the temptation to read the answers is too great. After working both
with and without answers, they realized how much they benefited from doing the true/false

work by themselves. So, all you will see here are the places where you can find the answers.

a. See the remarks following the box titled “Elementary Row Operations.”

b. The size of a matrix is defined just before the subsection titled “Solving a Linear
System.”

c. The solution set of a linear system is the set of all solutions of the system. See page 3.
d. See the box before Example 2.
1 4 7 ¢ 1 4 7 g 1 4 7 g
0 3 -5 hi~|0 3 -5 hm [~|0 3 -5 h
-2 5 -9 k% 0 -3 5 k+2g 0 0 O k+2g+h
Let b denote the number k + 2g + h. Then the third equation represented by the augmented

matrix above is Ox; = b. If b is nonzero, this equation has no solution, so the system is
inconsistent. The system is consistent if b is zero, that is, if k + 2g + £ = 0, then the system

x —4x, +Tx, = g
3x, = 5x;, = h
0=0
has a solution no matter what the values of g and A. The text will explore this situation more
in Section 1.2. Briefly, here is why this system, and hence the original system, is consistent.
In this case, the third equation can be ignored, and the second equation, 3x; — 5x; = & has
many solutions. Imagine choosing any values for x, and x; that satisfy the second equation,

and substituting those values for x, and x; in the first equation. The resulting first equation
can be solved for x;. These values for x;, x,, and x; will satisfy all three equations.

Look at the first column. The next row operation should replace the 4 in the third row by a 0.
To do this, replace R3 by R3 + (—4)R1. To reverse the operation, replace R3 by R3 + (4)R1.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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1.1 « Systems of Linear Equations 1-5

A Mathematical Note: “If...,then....”

Many important facts and theorems in the text are written as implication statements, in the form
“If P, then Q”, where P and Q represent complete sentences. For instance, the statement in the
box at the top of page 8 has the form

the augmented matrices the two systems
If , then (1)

of two linear systems have the same
are row equivalent solution set

An implication statement “If P, then Q” is itself true provided that statement Q is true whenever
statement P is true. In mathematical terminology, we say that “P implies Q,” and we write P = Q.

Be careful to distinguish between an implication statement “P implies Q" and the converse or
“opposite” implication, “Q implies P”’. The converse may or may not be true when the original
implication is true. For instance, the converse of (1) above is not true, because there exist two linear
systems with the same solution set but whose augmented matrices are not row equivalent. For
example:

xt+tx, =1 x+ x =1
2%, +x, =2 2x, + 2x, = 2
3x, + 3x, =3

MATLAB Row Operations

To use MATLAB for your homework in this course, the MATLAB program must contain
the data for the exercises in this text. At some schools, the campus-wide version of
MATILAB already has this data available on some or all computers. (The same may be true
for Maple or Mathematica.) Ask your instructor. If you plan to run MATLAB at home,
you will need to download the MATLAB Laydata Toolbox from the website

www.laylinalgebra.com

and follow the instructions there. Data files are also available at this site for Maple,
Mathematica, and the graphic calculators TI-83+/86/89 and HP-48G. Basic instructions for
using these matrix programs in this course are given in appendices at the end of this Study
Guide. Specific commands for MATLAB will be introduced as needed at the end of some
sections. Corresponding commands for other matrix programs can be found in the appendices.

While you are running MATLAB, type the command c¢181 (which stands for chapter 1
section 1) at the MATLAB prompt. If the data are not installed, you will get a message
such as “Undefined function”. Otherwise, you should see a list of exercises in Section 1.1
for which data are available. Type the number of the appropriate exercise and press
<Enter>.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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1-6 CHAPTER 1 « Linear Equations in Linear Algebra

For Section 1.1, the MATLAB data for each exercise are stored in a matrix called M.
You can perform row operations on M with the following commands (which are in the
Laydata Toolbox along with the data):

replace(M,r,m, 8) Replaces row r of matrix M by row r + m-row s
swap (M, r,s) Interchanges rows » and s of M
scale(M,r,c) Multiplies row r of M by a nonzero scalar ¢

(Press <Enter> after each MATLAB command, displayed in boldface type.) The name
of any matrix in your MATLAB workspace can be inserted in place of M, the letters r, m, s,
and c stand for any whole numbers you choose.

If you enter one of these commands, say, swap(M,1,3), then the new matrix,
produced from M, is stored in the matrix “ans” (for “answer”). If, instead, you type M1 =
swap (M, 1, 3), then the answer is stored in a new matrix M1. If the next operation is M2
= replace(Ml, 2,5, 1), then the result of changing M1 is placed in M2, and so on.

The advantage of giving a new name to each new matrix is that you can easily go back a
step if you don’t like what you just did to a matrix. If, instead, you type M = replace (M,
2,5,1), then the result is placed back in M and the “old” M is lost. Of course, the “reverse”
operation, M = replace(M,2,-5,1) will bring back the old M.

Note: For the simple problems in this section and the next, the multiple m you need in
the command replace (M, r,m,s) will usually be a small integer or fraction that you
can compute in your head. In general, m may not be so easy to compute mentally. The next
two paragraphs describe how to handle such a case.

The entry in row r and column ¢ of a matrix M is denoted by M(r, c¢). If the number
stored in M(r, c) is displayed with a decimal point, then the displayed value may be accurate
to only about five digits. In this case, use the symbol M(r, c) instead of the displayed value
in calculations.

For instance, if you want to use the entry M(s, ¢) to change M(r, ¢) to 0, enter the
commands

m
M

—M(r,c)/M(s,c) The multiple of row s to be added to row r
replace(M,r,m, 8) Adds m times row s to row r

Or, you can use just one command: M = replace(M,r,-M(r,c)/M(s,c),s).

Finally, the command format compact will eliminate extra space between
displays, so you can see more data on the screen. The command format will return the
screen to the normal display.

Warning: Using a matrix program such as MATLAB is fun and will save you time, but make
sure you can perform row operations rapidly and accurately with pencil and paper. Probably, you
should work all the exercises in Section 1.1 by hand and use your matrix program only to check
your work,
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1.2 ROW REDUCTION AND ECHELON FORMS

Our interest in the row reduction algorithm lies mostly in the echelon forms that are created by
the algorithm. For practical work, a computer should perform the calculations. However, you
need to understand the algorithm so you can learn how to use it for various tasks. Also, unless
you take your exams at a computer or with a matrix programmable calculator, you must be able to
perform row reduction quickly and accurately by hand.

STUDY NOTES

The row reduction algorithm applies to any matrix, not just an augmented matrix for a linear
system. In many cases, all you need is an echelon form. The reduced echelon form is mainly
used when it comes from an augmented matrix and you have to find all the solutions of a linear
system.

Strategies for faster and more accurate row reduction:

» Avoid subtraction in a row replacement. It leads to mistakes in arithmetic. Instead, add a
negative multiple of one row to another.

» Always enclose each matrix with brackets or large parentheses.

o To save time, combine all row replacement operations that use the same pivot position,
and write just one new matrix. Never “clean out” more than one column at a time. (You
can combine several scaling operations, or combine several interchanges, if you are
careful. But that seldom will be necessary.)

+ Never combine an interchange with a replacement. In general, don’t combine different
types of row operations. This will be particularly important when you evaluate deter-
minants, in Chapters 3 and 5.

How to avoid copying errors:

» Practice neat writing, not too small. Develop proper habits in homework so your work on
tests will be accurate, complete, and readable.

« Write a matrix row by row. Your eye may be less likely to read from the wrong row if
you place the new matrix beside the old one. Arrange your sequence of matrices across
the page, rather than down the page. (Some students prefer to place the matrices in
columns. Use whichever method seems to work best for you.)

« Try not to let your work flow from one side of a paper to the reverse side.

Study Tips: Theorem 2 is a key result for future work. Also, study the procedure in the box
following Theorem 2. Failure to write out the system of equations (step 4) is a common source of
€rTorS.
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SOLUTIONS TO EXERCISES

1. To check whether a matrix is in echelon form ask the questions:
(i) Is every nonzero row above the all-zero rows (if any)?
The matrix (c) fails this test, so it is not in echelon form.
(ii) Are the leading entries in a stair-step pattern, with zeros below each leading entry?
The matrices (a), (b), and (d) all pass tests (i) and (ii), so they are in echelon form.
To check whether a matrix in echelon form is actually in reduced echelon form, ask two
more questions:
(iii) Is there a 1 in every pivot position?
Matrix (d) fails this test, so it is only in echelon form. Finally, ask:
(iv) Is each leading 1 the only nonzero entry in its column?
Matrices (a) and (b) pass all four tests, so they are in reduced echelon form.

Study Tip: Exercises 5 and 6 ask you to “visualize” echelon forms and write out matrices
whose entries are just symbols. Example 2 suggests the form of your “answer,” but it does not
show you how to find the answer. Later, other exercises will ask you to construct other types of
examples. If you look at answers from the text, or the Study Guide (or another student), before
you try to write your own answers, you will lose most of the value of such exercises. The process
of trying to understand the question and writing an example is important.

. 1 3 4 7 1 3 4 7 1 3 4 7 1 3 0 -5

139 7 6/ |0 0-5-15{0 0 1 3 (0 0 1 3
. , x + 3x, = -5

Corresponding system of equations:

x =3

The basic variables (corresponding to the pivot positions) are x; and x;. The remaining variable
x,is free. Solve for the basic variables in terms of the free variable. The general solution is

x, ==5-3x,
x, is free
x,=3
1 -3 0 -1 0 =2 1 -3 0 0 921 0 0 0 -3 5
13'0100—4 1~0100—41~0100—41
0 0 0 1 9 4,10 0 0 1 94,10 0 0 1 9 4
0 0 0o 0 0 0/ {0 0 0 O OO O 0O0O0OO0OO
x - 3% =3
X, —4x, =1

Corresponding system:
P g%y x, +9x, =4
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x, =54 3x
x, =1+4x
Basic variables: xi, x, x4; free variables: x3, xs. General solution: < x, is free

x, =4-9x;

X5 1s free

Note: A common error in this exercise is to assume that x; is zero. Another common error is to
say nothing about x; and write only x,, X, X4, and xs, as above. To avoid these mistakes, identify
the basic variables first. Any remaining variables are free. (This type of computation will arise
in Chapter 5.) See also Exercise 8.

Study Tip: Be sure to work Exercises 17-20. The experience will help you later. These exer-
cises make nice quiz questions, too.

1 A 2 1 h 2
19. ~ . Look first at 8 — 4A4. If this number is not zero, then the
4 8 k 0 8-4h k-8

system must be consistent. Also, the solution will be unique because there are no free
variables. This is case (b), when h# 2. Now, if 8 — 4h is zero, that is, if 4 = 2, there are two
possibilities—either k equals 8 or k does not equal 8. If 4 = 2 and k = 8, the second equation
is Ox, = 0. The system is consistent and has a free variable, so the system has infinitely many
solutions. This is case (¢). When & =2 and k # 8, the second equation is Ox, = b, with b
nonzero, and the system has no solution. This is case (a).

21. a. See Theorem 1.
b. See the second paragraph of the section.
¢. Basic variables are defined after equation (4).
d

. See the beginning of the subsection, “Parametric Descriptions of Solution Sets.”
Actually, this question does not consider the case of an inconsistent system. A better
true/false statement would be: “If a linear system is consistent, then finding a parametric
description of the solution set is the same as solving the system.

e. The row shown corresponds to the equation Sx, = 0. Could there also be an equation of
the form Ox, = b, with b nonzero?

25. A full solution is in the text answer section.

Study Tip: Notice from Exercise 27 that the question of uniqueness of the solution of a linear
system is not influenced by the numbers in the rightmost column of the augmented matrix.

31. Yes, a system of linear equations with more equations than unknowns can be consistent. The
answer in the text includes an example.
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34. The data for this exercise comes from one of my students who was working part time for a
private wind tunnel company near the University of Maryland. You will need a matrix
program to solve this problem. The basic instructions for MATLAB were given in the Study
Guide notes for Section 1.1. For Maple, Mathematica, the TI-calculators, or the HP-48G
calculators, see the respective appendices at the end of this Study Guide.

A Mathematical Note: “If and only if”’

You need to know what the phrase “if and only if” means. It was used above in Exercise 27, and
you will see it again in theorems and in boxed facts. The phrase “if and only if” always appears
between two complete statements. Look at Theorem 2, for instance:

A specific the rightmost column of the
linear system ; if and only if < augmented matrix is not ¢))
is consistent a pivot column.

The entire sentence means that the two statements in parentheses are either both true or both
false.
Sentence (1) has the general form

P if and only if Q 2)

where P denotes the first statement and Q denotes the second statement. This sentence says two
things:

If statement P is true, then statement Q is also true.
If statement Q is true, then statement P is also true.

A mathematical shorthand for (2) is “P < Q.

1.3  VECTOR EQUATIONS

Do not be deceived by the rather simple beginning of Section 1.3. The important material on
Span{v, . . ., vy} will take time to digest. Figures 8, 10, and 11 are important, along with
Exercises 11-14, 17, 18, 25, and 26. Each of the exercises involves an existence question about
whether a certain vector equation has a solution. (You don’t have to find the solution.) Notice
how the same basic question can be asked in several different ways.
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STUDY NOTES

Develop the habit of reading the section carefully once or twice before looking at the Study Guide
and before starting the exercises. (Don’t just look at the pictures and examples! Important
comments lurk in between.)

In nearly all of the text, a scalar is just a real number. By convention, scalars are usually
written to the left of vectors, such as 5v or cv, rather than v5 or ve. To identify vectors in your
lecture notes and homework, you can write underlined letters for vectors. (Some students write
arrows above the letters, but that takes longer.)

Vectors must be the same size to be added or used in a linear combination. For instance, a
vector in R’ cannot be added to a vector in R,

SOLUTIONS TO EXERCISES

e (R
20 1 =1]"| 2+¢=D) 1

Using the definitions carefully,

u-2v= +(=2) = + = = , or, more quickly,
2 -1 2] | (=2)-1) 2+2 4

-1 -3 -1+6 5 ) X _ )
u-—-2v= -2 = = . The intermediate step is often not written.
2 -1 2+2 4

7. See the figure below. Since the grid can be extended in every direction, the figure suggests
that every vector in R can be written as a linear combination of u and v. To write a vector a
as a linear combination of u and v, imagine walking from the origin to a along the grid
“streets” and keep track of how many “blocks” you travel in the u-direction and how many
in the v-direction.
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a. Toreach a from the origin, you might travel 1 unit in the u-direction and —2 units in the
v-direction (that is, 2 units in the negative v-direction). Hence a = u - 2v.

b. To reach b from the origin, travel 2 units in the u-direction and —2 units in the v-
direction. So b =2u-2v. Or, use the fact that b is 1 unit in the u-direction from a, so
that

b=a+u=@u-2v)+u=2u-2v
¢. The vector ¢ is —1.5 units from b in the v-direction, so
c=b-15v=C2u-2v)-1.5v=2u-3.5v
d. The “map” suggests that you can reach d if you travel 3 units in the u-direction and —4
units in the v-direction. If you prefer to stay on the paths displayed on the map, you

might travel from the origin to —3v, then move 3 units in the u-direction, and finally
move -1 unit in the v-direction. So

d=-3v+3u-v=3u-4v
Another solution is
d=b-2v+u=2u-2v)-2v+u=3u-4v

9. Here are the intermediate calculations, which usually are not displayed. Check with your
instructor whether you need to “show work” on a problem such as this.

x, +5x =0 X, +5x, 0
4x, + 6x, — x, =0, 4x, +6x,—-x, [=|01,
-x; +3x, — 8x, =0 -x,+3x, -8x, 0
0 X, 5x, 0 0 1 5 0
4x, |+|6x, |[+| —x, |=|0], x| 41+x,|6|+x-1{=|0
—x, 3x, —8x, 0 -1 3 -8| |0

Helpful Hint: As you work Exercises 11-14, circle the pivots in an echelon form of an
appropriate matrix. This will help you visualize the cases when a vector either is or is not a linear
combination of other vectors.
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13. Denote the columns of A by a;, a,, a;. To determine if b is a linear combination of these
columns, use the boxed fact on page 34. Row reduce the augmented matrix until you reach
echelon form:

1 4 2 3 -4 2 3

0 3 5 -7|~j0 ® 5 -7

2 8 4 -3/ 0 0 0 ®
The system for this augmented matrix is inconsistent, so b is not a linear combination of the
columns of A.

19. By inspection, v, = (3/2)v,. Any linear combination of v, and v, is actually just a multiple of
v,. For instance,

avy + bva=av; + b(3/2)vi=(a + 3b/2)v,
So Span{v;, v,} is the set of points on the line through v, and 0.
Warning: Although Figures 8 and 11 provide the most common ways to view Span{u, v},

don’t forget Exercise 19, which shows that in a special case, Span{u, v} can be just a line through
the origin. In fact, Span{u, v} can also be just the origin itself. How?

2 2 Kl @ 2 h
-1 1 k| |0 @ k+h/2
corresponds to a consistent system for all # and k. Soy is in Span{w, v} for all / and k.

h
21. Lety= LJ Then[u v y]= { } This augmented matrix

23. a. The alternative notation for a (column) vector is discussed after Example 1.
b. Plot the points to check the assertion. Or, see the statement preceding Example 3.
¢. See the line displayed just before Example 4.
d. See the box that discusses the matrix in (5).
e. Read the geometric description of Span{u, v} very carefully.

Study Tip: Iurge my own students to work by themselves on the true/false questions and then
meet together in groups of two or three, to compare and discuss their answers.

25. a. There are only three vectors in the set {a,, a5, a3}, and b is not one of them.

b. There are infinitely many vectors in W = Span{a,, a,, a;}. To determine if b is in W, use
the method of Exercise 13.

1 0 4 4 1 04 4 [ o~ 4
0 3 2 1/~]0 3 -2 1|-/]0 B2 1
2 6 3 -4/ |0 6 -5 4] |0 0CD 2
TT T

a a, a, b
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The system for this augmented matrix is consistent, so b is in W.

. a; = 1a, + Oa, + Oas. See the discussion following the definition of Span{v,, . . ., v,}.

. Thecenterofmassisl 1 0 +1- 8 +1- 2 = 1073 .
3 1 1 4 2

. The total mass of the new system is 9 grams. The three masses added, w;, w;,, and ws,

satisfy the equation

s s oo [

which can be rearranged to

(w +1)-[(1)_ 81k (m, +1).B =ﬁ§

—+(w2+1)-|:1

and

e 8o 2] )

The condition w; + w, + w3 = 6 and the vector equation above combine to produce a
system of three equations whose augmented matrix is shown below, along with a
sequence of row operations:

1 11 6] 1 1 16] 1116

0 8 2 8|~{0 8 2 8|~|0 8 2 8

11412 |003¢6] (0012
[1 10 4] [t 0 0 35] (DO 0 35
~l0 8 0 4/~|0 8 0 4 |~l0D o0 5
oo12/001 2]]|00@ 2

Answer: Add 3.5 gat (0, 1),add .5 gat (8, 1), and add 2 g at (2, 4).
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33. a. Forj=1,...,n,thejthentry of (u+v)+wis (4 + vj) + w;. By associativity of addition
in R, this entry equals u; + (v; + w;), which is the jth entry of u + (v + w). By definition
of equality of vectors, (W +v) + w=u+(v+w).

b. For any scalar c, the jth entry of c(u + v) is c(u; + v;), and the jth entry of cu + cv is cu; +
cv; (by definition of scalar multiplication and vector addition). These entries are equal,
by a distributive law in R. So c(u + v) =cu + cv.

MATLAB Constructing a Matrix

To access the data for Section 1.3, give the command cls3. The data for Exercise 25, for
example, consists of a matrix A, its columns al, a2, a3, and the vector b. The command
M=[al a2 a3 b]createsa matrix using the vectors as its columns. The same matrix
is created by the command M =[A b].

Each time you want data for a new exercise in Section 1.3, you need the command cls3.
After the first exercise, you can use the up-arrow (7). This will make MATLAB scroll back
through your old commands. You may be able to find “c2s]” faster than you can retype it.
Press <Enter> to reuse the command.

Exercises 11-14, 25-28, and 31 can be solved using the commands replace, swap, and
(occasionally) scale, described on page 1-6.

1.4  THE MATRIX EQUATION Ax=b

The ideas, boxed statements, and theorems in this section are absolutely fundamental for the rest
of the text, so you should read the section extremely carefully.

KEY IDEAS

The definition of Ax as a linear combination of the columns of A will be used often. You should
learn the definition in words as well as symbols. Note: It is not wrong to write a scalar on the
right side of a vector and write AX as apx; + * * * + a,%,, but the text follows the usual practice of
writing a scalar on the left side of a vector.

You need to understand why Theorem 4 is true. That may take some time and effort.
Example 3 should help, along with the proof. Theorem 4(d) can be restated as “The reduced
echelon form of A has no row of zeros.”

The phrase logically equivalent is explained in the statement of Theorem 4. This phrase is
used with several statements in the same way that if and only if (or the symbol <) is used
between two statements. (See the Mathematical Note at the end of Section 1.2 in this Guide.)
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Saying that statements (a), (b), (c), and (d) are logically equivalent means the same thing as
saying that (a) & (b), (b) & (¢), and (¢) & (d).

Key exercises are 1-20, 27, 28, 31 and 32. Think about 31 and 32, even if they are not
assigned, because they introduce ideas you will need soon. (Don’t check the solution of Exercise
31 until you have written your own answer.)

Checkpoint 1: True or False? If an augmented matrix [A b] has a pivot position in every row,
then the equation Ax = b is consistent.

Note: You should work a checkpoint problem when you first see it, provided that you have
already read the text at least once. Always write your answer before comparing it with the one I
have written. The checkpoint answer will be at the end of the solutions for this section.

SOLUTIONS TO EXERCISES

1. The text has the solution. Exercises 1--12 are designed to help you learn Theorem 3 and the
definition of Ax. If a problem involves vectors—say, vy, v,, v;— you can place the vectors
into a matrix [v; v, V3], if that is helpful. If a problem involves a matrix A, you can give
names to the columns of A-—say, a;, a,, a;—and reformulate a matrix equation as a vector
equation. If a problem leads to a system of linear equations, you may regard it as either a
vector equation or a matrix equation, whichever is most useful.

7. The left side of the equation is a linear combination of three vectors. Write the matrix A
whose columns are those three vectors, and create a variable vector x with three entries:

4 -5 7 4 -5 7
X
-1 3] |-8 -1 3 -8 :
A= = and x=|x, |.
7 -5 0 7 =5
X3
-4 1 2 -4 1 2
4 -5 7 6
xl
. -1 3 -8 -8
Thus the equation Ax = b is X, |=
7 -5 0 0
A3
-4 1 2 -7
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Warning: Be careful to distinguish between the matrix equation 4 -5 7 6
Ax = b and the augmented matrix[a, --- a, b],whichisusedin | _;, 5 _g _g
Theorem 3 to refer to a system of linear equations having this

augmented matrix. Thus, the answer to Exercise 7 is not the aug- 7 -5 0 0
mented matrix at the right: 4 1 2 -7

13. The vector u is in the plane spanned by the columns of A if and only if u is a linear
combination of the columns of A. This happens if and only if the equation AX = u has a
solution. (See the box preceding Example 3 in Section 1.4.) To study this equation, reduce
the augmented matrix [A uj:

3 -5 0] [1 1 471 1 4 1 4
2 6 4|~|2 6 4|~|0 8 12]~|0 (®) 12
1 1 4/ |3 -5 0] |0 -8 -12] [0 0 0

The equation Ax = u has a solution, so u is in the plane spanned by the columns of A.

Study Tip: Exercises 17-20 require written explanations as well as calculations. For instance,
your calculation for Exercise 17 might show the row reduction

1 3 0 3]t 3 0 3]t 3 03 3 0 3
O B B B T (A 4~02-14~o@-14
0 4 2 -8/ |0 4 2 -8/ |00 00|00 00O
2 0 3 -1/ |0 6 3 -7/ /0 0 05/ /0 0 0 0

After this, it is not enough to write “No, by Theorem 4.” Instead, you should show that you
know why Theorem 4 is relevant. For instance, you might write:

The matrix A does not have a pivot in every row. By Theorem 4, the equation Ax = b
does not have a solution for each b in R,

On a test, you probably would not have to know the theorem number. It might be enough to
say “By a theorem,” instead of “By Theorem 4.” (Check with your instructor.)

19. The work in Exercise 17 shows that the equation Ax = b does not have a solution for each b.
That is, statement (d) in Theorem 4 is false. So all four statements in Theorem 4 are false.
Since statement (b) is false, not all vectors in R* can be written as a linear combination of the
columns of A. Since statement (c) is false, the columns of A do not span R*.
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Checkpoint 2: Given v,, v,, v3 as in Exercise 21, find a specific vector in R* that is not in
Span{v,, v,, v3}. (If necessary, reread Example 3.)

23. a. See the paragraph following equation (3). b. See the box before Example 3.
c¢. See the warning following Theorem 4. d. See Example 4.
e. See Theorem 4. f. See Theorem 4.

25. By definition, the matrix-vector product on the left is a linear combination of the columns of
the matrix, in this case using weights -3, -1, and 2. Soc¢,=-3,c,=-1,and c; = 2.

29. Start with any 3 X 3 matrix B in echelon form that has three pivot positions. Perform a row
operation (a row interchange or a row replacement) that creates a matrix A that is not in
echelon form. Then A has the desired property. The justification is given by row reducing A
to B, in order to display the pivot positions. Since A has a pivot position in every row, the
columns of A span R’, by Theorem 4.

31. A 3 X 2 matrix has three rows and two columns. With only two columns, A can have at
most two pivot columns, and so A has at most two pivot positions, which is not enough to fill
all three rows. By Theorem 4, the equation Ax = b cannot be consistent for all b in R*.

33. If the equation Ax = b has a unique solution, then the associated system of equations does
not have any free variables. If every variable is a basic variable, then each column of A4 is a

1 00

. 1 0
pivot column. So the reduced echelon form of A must be 01
0 00

37. [M] The original matrix has no pivot in the fourth row, so its columns do not span R*, by
Theorem 4.

Helpful Hint: For Exercises 41 and 42, use a matrix program to obtain an echelon form of the
matrix. Try covering various columns of this matrix, one at a time, and ask yourself if the
columns of the resulting matrix span R*. If you can delete one column, can you delete a second
column? Why or why not?

The analysis here depends on the following idea, which is fairly obvious but is not explicitly
mentioned in the text. When a row operation is performed on a matrix A, the calculations for
each new entry depend only on the other entries in the same column. If a column of A is
removed, forming a new matrix, the absence of this column has no affect on any row-operation
calculations for entries in the other columns of A. (The absence of a column might affect the
particular choice of row operations performed for some purpose, but that is not relevant.)
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Answers to Checkpoints:

1. False. See the Warning after Theorem 4. If you missed this, you are not studying the text
properly. You should read the text thoroughly before you look at the Study Guide and before
you work on the exercises.

1 0 1 b,
0 1 0 b, )
2. LetA=[v, v, v,]= 1 0 o0 and b = b | Row reduce the augmented matrix for
0 -1 -1 b,
Ax = b to determine values of b;, . . . , b, that make the equation inconsistent.
1 0 1 p 1 0 1 b, 1 0 1 b,
0 1 0 b 0 1 0 b 01 0 b
-1 0 0 b| |0 0 1 b+b| (00 1 b+
0 -1 -1 p, 0 -1 -1 b, 0 0 -1 b +b,
1 01 b,
010 b,
0 01 b, +b,
0 0 O b,+b,+b,+h
Take b = (1, 1, 0, 0), for example, or any other choice of b, . . . , by whose sum is not zero.

Mastering Linear Algebra Concepts: Span

Please begin by reviewing “How to Study Linear Algebra,” at the beginning of this Study Guide.

To really understand a key concept, you need to form an image in your mind that consists of the
basic definition(s) together with many related ideas. Your goal at this point is to collect various
ideas associated with the set Span{v,, . . ., v,} and the concept of a set that “spans” R". Here are
specific things to do now as you prepare a sheet (or sheets) for review and reference.

»  Write the definition of Span{v,, .. ., v,}. (Learn it word for word.)

«  Write the definition of the phrase: {v, .. ., v,} spans R". (See page 43.) Here span is a
verb rather than a noun as in Span{vy, .. ., V,}.

« Add the equivalent description (not definition) of what is meant for a vector b to be in
Span{vy, ..., v,}. (See page 35.)

« Copy Theorem 4 word for word. (If you try to rephrase or summarize it in your own
words, you are likely to change the meaning.)
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Sketch some geometric interpretations of Span{v,, .. ., v,}. (Select some of Figs. 8, 10,
11, and Exercises 19, 20 in Section 1.3.)

Identify special cases. (Describe Span{u} and Span{u, v}.)

Summarize algorithms or typical computations (such as Example 6 and Exercises 11-14, 17,
18, 25, and 26 in Section 1.3, or Example 3 and Exercises 1322 in Section 1.4.

Describe connections with other concepts. (See pages 42—43.)

Whenever you encounter new examples or situations that help you understand the concept of a
spanning set, add them to this review sheet.

MATLAB gauss and bgauss

To solve Ax = b, row reduce the matrix M = [A b]. The command x = [5;3; -
7] creates a column vector x with entries 5, 3, —7. Matrix vector multiplication is A*x.

To speed up row reduction of M = [A Dbl, the command gauss (M,r) will use
the leading entry in row r of M as a pivot, and use row replacements to create zeros in the
pivot column below this pivot entry. The result is stored in the default matrix “ans”, unless
you assign the result to some other variable, such as M itself.

For the backward phase of row reduction, use bgauss (M, r), which selects the
leading entry in row r of M as the pivot, and creates zeros in the column above the pivot.
Use scale to create leading 1’s in the pivot positions. The commands gauss,
bgauss, and scale are in the Laydata Toolbox, which you can download from the web.

1.5 SOLUTION SETS OF LINEAR SYSTEMS

Many of the concepts and computations in linear algebra involve sets of vectors which are
visualized geometrically as lines and planes. The most important examples of such sets are the
solution sets of linear systems.

KEY IDEAS

Visualize the solution set of a homogeneous equation Ax = 0 as:

« the single point 0, when Ax = 0 has only the trivial solution,
o aline through 0, when Ax = 0 has one free variable,
« aplane through 0, when Ax = 0 has two free variables.

(For more than two free variables, also use a plane through 0.)
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For b # 0, visualize the solution set of Ax = b as:
» empty, if b is not a linear combination of the columns of A,
» one nonzero point (vector), when Ax = b has a unique solution,
+ aline not through 0, when Ax = b is consistent and has one free variable,
« aplane not through 0, when Ax = b is consistent and has two or more free variables.

The solution set of Ax = b is said to be described implicitly, because the equation is a condition
an x must satisfy in order to be in the set, yet the equation does not show how to find such an x.
When the solution set of Ax = 0 is written as Span{v,, . . ., v,}, the set is said to be described
explicitly; each element in the set is produced by forming a linear combination of v,, . . ., v,.

A common explicit description of a set is an equation in parametric vector form. Examples
are:

X = tv, a line through 0 in the direction of v,
X =p + tv, a line through p in the direction of v,
X = Xu + X5V, a plane through 0, u, and v,

X = p + Xu + X3V, aplane through p parallel to the plane whose equation is X = x,u + x3V.

An equation in parametric vector form describes a set explicitly because the equation shows how
to produce each x in the set.

To solve an equation AX = b means to find an explicit description of the solution set. If the
system is inconsistent, the solution set is empty. Otherwise, the description of all solutions can be
written in parametric vector form, in which the parameters are the free variables from the system.
Important: The number of free variables in Ax = b depends only on A, not on b.

Theorem 6 and the paragraph following it are important. They describe how the solutions of
Ax = 0 and Ax = b are related when the solution set of Ax = b is nonempty. See Figs. 5 and 6.
Key exercises: 5-16, 29-32, 37.

SOLUTIONS TO EXERCISES

1. Reduce the augmented matrix to echelon form and circle the pivot positions. If a column of
the coefficient matrix is not a pivot column, the corresponding variable is free and the system
of equations has a nontrivial solution. Otherwise, the system has only the trivial solution.

2 -5 8 0] 2 -5 8 0 5 8 0
—2—710~o—1290~0@90
4 2 7 0/ l0 12 9 o 00 0

The variable x; is free, so the system has a nontrivial solution.
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7. Always use the reduced echelon form of an augmented matrix to find the solutions of a
system. See the text’s discussion of back substitution on pages 22-23.

13 -3 7 —8 +9x, = -8
01 4 5 @—4 @—4x3

5
If you wrote something like the system above, then you made a common mistake. The

matrix in the text problem is a coefficient matrix, not an augmented matrix. You should row

reduce [A 0]. The correct system of equations is
+9x, - 8x, =0

®
@—4x3+5x4=0

The basic variables are x; and x,, with x; and x4 free. Next, x; = —9x; + 8x4, and x; = 4x3 — 5x4.

The general solution is

X, —Ox, +8x, -9x, 8x, -9 8
e X 4x, —5x, _ 4x, N -5x, —y 4 tx -5
X, x, X, 0 1 o
X, X, 0 X, 0 1

The solution set is the same as Span{u, v}, whereu=(-9,4, 1,0)and v=(8, -5, 0, 1).

Originally, the solution set was described implicitly, by a set of equations. Now the solution

set is described explicitly, in parametric vector form.

11.

1 4 -2 0 3 50 |! 42020 780 -4 0 0 0 50
6 0 10 0 -10]]0 0 1 0 O0-10 00@00—10
00001—40~00001—40~0000@—40
0o 0o 0 0 0O 00/ |0 0 0 OO OO0 O0O0OO0OO OO

@—4x2 + 5x, =

® - -

—4x, =0

0=0
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Some students are not sure what to do with x,. Some ignore it; others set it equal to zero. In
fact, x, is free; there is no constraint on x, at all. The basic variables are x;, x3, and xs. The
remaining variables are free. So, x; = 4x, — 5x¢, X3 = X5, and x5 = 4xg, with x;, x4, and x¢ free.
In parametric vector form,

- -

x| [4x,-5x] [4x, 0] [-5x 4 0 -5
x, X, X, 0 0 1 0 0
X, X 0 0 X 0 0 1
X= = = + |+ =x,| |+x,|  |+x
x, x, 0 x, 0 0 1 0
Xs 4x, 0 0 4x, 0 0 4
X%l L % ] LO] [0] [ x | 10 10} my
T T T
u v w

The solution set is the same as Span{u, v, w}.

Study Tip: When solving a system, identify (and perhaps circle) the basic variables. All other
variables are free.

13. To write the general solution in parametric vector form, pull out the constant terms that do
not involve the free variable:

X, 5+4x, 5 4x, 5 4
X=|x, |={=2=Tx; |=| =2 |+|-Tx; |=| =2 |+x,| T
X, X, 0 Xy 0 1
T =p+xq
p q
5 4
Geometrically, the solution set is the line through | -2 | parallel to | -7 |.
0 1

Checkpoint: Let A be a 2 X 2 matrix. Answer True or False: If the solution set of Ax = 0 is a line
through the origin in R? and if b # 0, then the solution set of Ax = b is a line not through the origin.

19. The line through a parallel to b can be written as x = a + tb, where ¢ represents a parameter:

X -2 -5 x, =-2-5t
X= = +t , or
x, 0 3 x, =3t
23. a. See the first paragraph of the subsection titled “Homogeneous Linear Systems.”

b. See the first two sentences of the subsection titled “Parametric Vector Form.”
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¢. See the box before Example 1.
d. See the paragraph that precedes Fig. 5.
e. See Theorem 6.

Suppose p satisfies Ax =b. Then Ap =b. Theorem 6 says that the solution set of Ax = b
equals the set § = {w:w = p + v, for some v, such that Av, = 0}. There are two things to
prove: (a) every vector in S satisfies Ax = b, (b) every vector that satisfies AX = b is in S.

a. Let w have the formw =p + v,, where Av, = 0. Then
Aw = A(p + v;) = Ap + Av,, By Theorem 5(a) in Section 1.4
=b+0=b

So every vector of the form p + v, satisfies Ax = b.
b. Now let w be any solution of Ax = b, and set v, = w — p. Then
Avy,=A(w-p)=Aw-Ap=b-b=90
So v, satisfies Ax = 0. Thus every solution of Ax = b has the form
W=p+V,

A is a 3 X 2 matrix with two pivot positions.

a. Since A has a pivot position in each column, each variable in Ax = 0 is a basic variable.
So the equation Ax = 0 has no free variables and hence no nontrivial solution.

b. With two pivot positions and three rows, A cannot have a pivot in every row. So the
equation Ax = b cannot have a solution for every possible b (in R*), by Theorem 4 in
Section 1.4.

If you worked on the Checkpoint when you first saw it, you should be ready for this exercise.

Since the solution set of Ax = 0 contains the point (4, 1), the vector x = (4, 1) satisfies

Ax = 0. Write this equation as a vector equation, using a, and a, for the columns of A:

4.a,+l-a,=0

Then a; = —4a;. So choose any nonzero vector for the first column of A and multiply that

1 4
column by —4 to get the second column of A. For example, set A= [1 4} .
Finally, the only way the solution set of Ax = b could nor be parallel to the line through (4, 1)
and the origin is for the solution set of Ax = b to be empty. (Theorem 6 applies only to the
case when the equation Ax = b has a nonempty solution set.) For b, take any vector that is
not a multiple of the columns of A.
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Answer to Checkpoint: False. The solution set could be empty. In this case, the solution set of
Ax = b is not produced by translating the (nonempty) solution set of Ax = 0. See the Warning
after Theorem 6.

MATLAB Zero Matrices

The command zeros(m,n) creates an m X n matrix of zeros. When solving an
equation Ax = 0, create an augmented matrix:

M = [A zeros(m, 1)] m is the number of rows in A.

Then use gauss, bgauss, and scale torow reduce M completely.

1.6 APPLICATIONS OF LINEAR SYSTEMS

All of the examples and exercises in this system involve linear systems that have multiple
solutions. In each case, make a note of why you should expect the system to have many
solutions.

STUDY NOTES

The Leontief exchange model concerns the dollar value (called the price) of the annual output of
each sector of a nation’s economy. An equilibrium price vector p provides a list of prices, one for
each section, such that each sector’s expenses and income are in balance. Example 1 shows that
there are many equilibrium price vectors; each one is a multiple of a fixed equilibrium price
vector. This means that once the prices are all in balance, multiplying all the prices by a fixed
constant does not affect the balance. For instance, if all prices are doubled, then each sector’s
expenses and income are doubled at the same time and hence they remain in balance.

A solution of a chemical equation-balance problem is a list of coefficients that appear on the
various terms in the chemical equation. When a chemical equation is balanced, the number of atoms
of each type on the left side of the equation matches the number of corresponding atoms on the right
side. If the coefficients in the equation are each multiplied by a fixed positive integer, the equation
will remain balanced. So, there are many solutions to a chemical equation-balance problem.

The problems here in network flow have multiple solutions for the simple reason that there
are more variables than there are constraint equations. The equations for network flow are mostly
nonhomogeneous. In contrast, the Leontief model and the chemical equation-balance problem
both lead to systems of homogeneous equations.
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SOLUTIONS TO EXERCISES

1. Fill in the exchange table one column at a time. The entries in a column describe where a
sector’s output goes. The decimal fractions in each column sum to 1.

Distribution of

Output From:
Goods Services Purchased by:
output d { input
2 i - Goods
.8 3 - Services

Denote the total annual output (in dollars) of the sectors by pg and ps. From the first row,
the total input to the Goods sector is .2 pg + .7 ps. The Goods sector must pay for that. So
the equilibrium prices must satisfy

income expenses
Dg = 2p;+.7p;

From the second row, the input (that is, the expense) of the Services sector is .8 pg + .3 ps.
The equilibrium equation for the Services sector is

income expenses
ps = 8pg+.3pg
Move all variables to the left side and combine like terms:
8p; —.1ps =0
-8ps +.7ps =0

Row reduce the augmented matrix:

8 -7 0 8 -7 0 1 -875 0
-8 7 0 0 0 0 0 0 O
The general solution is pg = .875 ps, with ps free. One equilibrium solution is ps = 1000 and
pc = 875. If one uses fractions instead of decimals in the calculations, the general solution
would be written pg = (7/8) ps, and a natural choice of prices might be ps = 80 and pg = 70.

Only the ratio of the prices is important: pg = .875 ps. The economic equilibrium is
unaffected by a proportional change in prices.
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7. The following vectors list the numbers of atoms of sodium (Na), hydrogen (H), carbon (C),
and oxygen (O):

1 0 3 0 0| sodium
) 8 5 2 0| hydrogen

NaHCO;: At H,C,H,0,: 6 Na,C,H,O,: 6| H,O: ol CO,: 11 cabon
3 7 7 1 2| oxygen

The order of the various atoms is not important. The list here was selected by writing the
elements in the order in which they first appear in the chemical equation, reading left to
right:

xl-NaHCO3 + xz-H3C6H507 e X3'Na3C5H5O7 + .X4'H20 +Xx 5'C02

The coefficients xy, . . ., x5 satisfy the vector equation
1 0 3 0 0
1 8 5 2 0
X, 1 + X, 6 =X +X, 0 + X5 1
3 7 7 1 2

Move all terms to the left side (changing the sign of each entry in the third, fourth, and fifth
vectors) and reduce the augmented matrix:

1 0-3 0 0 0 1000 -1 0
1 8 5 -2 0 0 0 100 -1/30
16 6 0 -1 0 0010 -1/30
37 -7 -1 =2 0 0001 -1 0

The general solution is x; = xs, X, = (1/3)xs, x3 = (1/3)xs, x4 = x5, and x5 is free. Take x5 = 3.
Then x, = x, = 3, and x, = x3 = 1. The balanced equation is

3NaHCO; + H3C6H507 i d Na3C6H507 + 3H20 + 3C02
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13. Write the equations for each intersection (see the diagram for the intersection labels):

A
B
C
D
E

Total flow:

Intersection Flow in

x, +30
X, + X,
x, +100
x, +40
x, +60
230

Flow out

=  x +80
= x,+tx,
x5 +40
= x,+90
= x+20
= 230

Completely reduce the augmented matrix:

1
0

- O O

l
l
S O O D -

a. The general solution is

b. To find minimum flows,

-1

1
0
0
0
0

1
0
0
0

OO = O O

0 0 -50]
-1 0 0
1 -1 60|~---
0 -1 50
0 0 -40]
0 0 —40]
0 0 10
0 -1 50
1 -1 60
0 0 0]
x, =x,—40
x,=x+10
x, is free
x, =x, +50
X5 = x, +60
X, is free

SO OO e

|
—_

O OO =

X

Rearrange the equations:

~x, -
X, — X + X, — X =
X5 — Xg =
X, - X, =
- x, =
0 0 0 -50
1 -1 0 0
1 0 -1 50
0 1 -1 60
0 0 0 0]

note that since x; cannot be negative, x3 > 40. This implies that
X, > 50. Also, since xs cannot be negative, x, > 50 and xs > 60. The minimum flows are
Xy = 50, X3 = 40, X4 = 50, X5 = 60 (When X1 = 0 and X = 0)
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MATLAB Rational Format

Chemical equation-balance problems are studied best using exact or symbolic arithmetic,
because the balance variables must be whole numbers (with no round-off allowed). In
MATLAB, a simple approach is to execute the command format rat, which will make
MATLAB display matrix or vector entries as rational numbers. In general, the rational
number displayed might be only an approximation for a floating-point number. But since
the chemical equations studied here have integer coefficients, format rat will make
MATLAB display the exact (rational) value of every entry during row reduction. Use
format or format short toreturn to the standard MATLAB display of numbers.

Once you find a rational solution of a chemical equation-balance problem, you can
multiply the entries in the solution vector by a suitable integer to produce a solution that
involves only whole numbers.

1.7 LINEAR INDEPENDENCE

This section is as important as Section 1.4 and should be studied just as carefully. Full
understanding of the concepts will take time, so get started on the section now.

KEY IDEAS

Figures 1 and 2, along with Theorem 7, will help you understand the nature of a linearly
dependent set. (Fig. 2 applies only when u and v are independent.) But you must also learn the
definitions of linear dependence and linear independence, word for word! Many theoretical
problems involving a linearly dependent set are treated by the definition, because it provides an
equation (the dependence equation) with which to work. (See the proof of Theorem 7.)

The box before Example 2 contains a very useful fact. Any time you need to study the linear
independence of a set of p vectors in R", you can always form an n X p matrix A with those
vectors as columns and then study the matrix equation Ax = 0. This is not the only method,
however. Stay alert for three special situations:

+ A set of two vectors. Always check this by inspection; don’t waste time on row
reduction of [A  0]. The set is linearly independent if neither of the vectors is a multiple
of the other. (For brevity, I sometimes say that “the vectors are not multiples.”) See
Example 3.

« A set that contains too many vectors, that is, more vectors than entries in the vectors; the
columns of a short, fat matrix. Theorem 8.

« A set that contains the zero vector. Theorem 9.
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The most common mistake students make when checking a set of three or more vectors for
independence is to think they only have to verify that no vector is a multiple of one of the other
vectors. Wrong! Study Example 5 and Figure 4.

Key exercises are 9-20 and 23-28, and 30. Try Exercise 35, even if it is not assigned. Think
carefully, and write your answer before checking the answer section.

SOLUTIONS TO EXERCISES
1. Use an augmented matrix to study the solution set of x;u + x,v + x;w = 0 (*), where u, v, and
5 7 9 0 7 9 0
w are the three given vectors. Since |0 2 4 0(~|0 @ 4 0], there are no free
06 -8 0l [0 0@ o0
variables. So the homogeneous equation (*) has only the trivial solution. The vectors are
linearly independent.

Warning: Whenever you study a homogeneous equation, you may be tempted to omit the
augmented column of zeros because it never changes under row operations. I urge you to keep
the zeros, to avoid possibly misinterpreting your own calculations. In Exercise 1, if you wrote

2 e

you might conclude that “the system is inconsistent” and then go on to make some crazy state-
ment about linear dependence or independence. Don’t laugh. I have seen this happen on exams.
A more common error occurs in a problem like Exercise 7. In that exercise, if you write

1 4 -3 0 1 4 -3 0 4 -3 0
2 7 5 1/-|l0 t -1 1|~jo (D -1 1
-4 -5 7 -5/ (011 -5 5| {00 (6-6
you might conclude that “the system has a unique solution” and the vectors are linearly

independent. However, the four columns are actually linearly dependent. In both cases, the error
is to misinterpret your matrix as an augmented matrix.
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7. Study the equation Ax = 0. Some people may start with the method of Example 2:
1 4 -3 0 0] 1 4-300]([D4 -3 00
2 -7 5 1 0/~0 1 -110/~<jo(D-1 10
<4 -5 7 -5 0] 011 5 5 0|00 (6)-6 0
But this is a waste of time. There are only 3 rows, so there are at most three pivot positions.

Hence, at least one of the four variables must be free. So the equation Ax =0 has a
nontrivial solution and the columns of A are linearly dependent.

Warning: Exercise 9 and Practice Problem 3 emphasize that to check whether a set such as
{v1, V5, v3} is linearly dependent, it is not wise to check instead whether v; is a linear
combination of v; and v,.

13. To study the linear dependence of three vectors, say v, v,, v3, row reduce the augmented
matrix [vl V2 V3

~ 1 h-15 O
-9 0

The equation x;v; + x,v, + x3v3 = 0 has a free variable and hence a nontrivial solution no
matter what the value of 4. So the vectors are linearly dependent for all values of A.

Checkpoint: What is wrong with the following statement?

3pt20(-=51| 7
The vectors [ I:HS]’[ 3:|,|:_4:| are linearly dependent “because there is a free variable,” or

“because there are more variables than equations.”

5012](1]]-1
15. The set {[ 1]’[8]’[3]’[ 7}} is obviously linearly dependent, by Theorem 8, because there

are more vectors (4) than entries in the vectors. On a test, you probably will not have to
know the theorem number. Check with your instructor.

19. The set is linearly independent because neither vector is a multiple of the other vector. [Two
of the entries in the first vector are —4 times the corresponding entry in the second vector.
But this multiple does not work for the third entries.]
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21. a. See the box before Example 2.
b. See the warning after Theorem 7.
¢. See Fig. 3, after Theorem 8.
d. See the remark following Example 4.

m o n

on 0 0
25. and

0 0 0 0

0 0 0 0

31. Think of A=[a; a, a;]. The text points out that a; = a, + a,. Rewrite this as
a, +a, —a; =0. As a matrix equation, Ax =0 forx = (1, 1, ~1).

33. The text uses Theorem 7 to conclude that {v,, . . ., v4} is linearly dependent. Another
argument is to rewrite the equation v3 = 2v; + vy as 2v; + Iv, + (=1)v3 + Ovy, = 0. Thisis a
linear dependence relation. Some students think of this argument rather than Theorem 7.
Did you? (I hope you did not read the answer before trying this problem.)

37. True. The text gives a complete answer.

39. If for all b the equation Ax = b has at most one solution, then take b = 0, and conclude that
the equation Ax = 0 has at most one solution. Then the trivial solution is the only solution,
and so the columns of A are linearly independent.

43. [M] Make v any one of the columns of A that is not in B and row reduce the augmented
matrix [B  v]. The calculations will show that the equation Bx = v is consistent, which
means that v is a linear combination of the columns of B. Thus, each column of A that is not
a column of B is in the set spanned by the columns of B.

Answer to Checkpoint: The set of four vectors contains only vectors, no variables of any kind,
and no equations. It makes no sense to talk about the variables in a set of vectors. Variables
appear in an equation. One cannot assume that the writer of the statement has any idea of the
appropriate equation. If you want to give an explanation involving variables, then you must
specify the equation. One correct answer is: the vectors are linearly dependent because the

3 2 -5 7 0
equation x, li | }L X, {8} + x, { 3 }+ X, [_4 jI = {0} necessarily has a free variable.
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Mastering Linear Algebra Concepts: Linear Independence

In Section 1.4 of this Guide, I described how to begin forming a mental image of the concept of a
spanning set. The same technique works for linear independence. The goal is to merge all the
ideas you find regarding linear independence into a single mental image, with each part
immediately available in your mind for use as needed. Start now to organize on paper your
understanding of linear independence/dependence, using the following list as a guide. In each
case, write information that you think will be helpful. (Definitions and theorems should be
copied word-for-word.)

» definitions of linear independence and dependence

« equivalent descriptions Theorem 7

« geometric interpretations Figs. 1,2, 4

+ special cases Theorems 8, 9, box on p. 67, Examples 3, 5, 6

« examples and “counterexamples” Figs. 1, 2, 3, 4, Exercises 9-20, 33-38

» algorithms or typical computations Examples 1, 2, Exercises 1-8

« connections with other concepts Box on p. 66, Examples 2, 4, Exercises 27, 30, 39

As you work on your notes, be careful to use terminology correctly. For instance, the term
“linearly independent” may be applied to a set of vectors, but it never is applied to a matrix or to
an equation. The columns of a matrix may be linearly independent, but it is meaningless to refer
to a linearly independent matrix. Similarly, solutions of a system of linear equations may be
linearly independent, but the term “linearly independent equations” has never been defined.
Finally, a set of vectors or a matrix cannot have a “nontrivial solution”. Only equations have
solutions.

1.8 INTRODUCTION TO LINEAR TRANSFORMATIONS

Linear transformations are important for both the theory and the applications of linear algebra.
You will see both uses in a variety of settings throughout the text. The graphical descriptions in
this section will be augmented in Section 1.9 and in a later section on computer graphics.

STUDY NOTES

Viewing the correspondence from a vector x to a vector Ax as a mapping provides a dynamic
interpretation of matrix-vector multiplication and a new way to understand the equation Ax = b.
Using the language of computer science, we can describe a matrix in two ways—as a data
structure (a rectangular array of numbers) and as a program (a prescription for transforming
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vectors). Strictly speaking, however, the actual linear transformation is the function or mapping
x > Ax rather than just A itself.

Here is a way to visualize a matrix acting as a linear transformation. The entries in the input
vector x are assigned as weights that multiply the corresponding columns of A, then the resulting
weighted columns are added together to produce the output vector b.

LI

b, L B
X
b, * % x !
< b | x
b, * k% 2
— X
3
b 4 * * %k
b A X

As you learn the definition of a linear transformation 7, don’t forget the crucial phrases “for
all u and v in the domain of T and “for all u and all scalars ¢.” The mapping T defined by
T(x1, x2) = (Ixyl, Ixy]) is not a linear mapping, and yet T satisfies the linearity properties for some
vectors in its domain and some scalars.

The key exercises are 17-20, 25 and 31.

SOLUTIONS TO EXERCISES

w3
CR SRR IR RS IR

. 3 I . .
Note that a solution is not [ J . To avoid this common error, write the equations:

3 x,=3-3x,
X, x, =
’ ’ and solve for the basic variables: { x, =1-2x,

x, + 2x .
: ? x, is free
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X, 3-3x, 3 -3
General solution: x=| x, [=|1-2x, |=|1 |+ x| =2 |. For a particular solution, one might
X, X, 0 1
3
choose x3=0and x={1{.
0

7. a = 5; the domain of T is R’, because a 6X 5 matrix has 5 columns and for Ax to be defined,
x must be in R®. b = 6; the codomain of T'is R®, because Ax is a linear combination of the
columns of A, and each column of A is in R®.

13. The transformation may be described geometrically as a n
reflection through the origin. Two other correct de-
scriptions are a rotation of 7t radians about the origin and a

rotation of —rt radians about the origin. See the figure. +
18. Additional Hint: Draw a line through w parallel to v, and = e

draw a line through w parallel to u. This will help you .
write w as a linear combination of u and v. Tw 4

19. All you know are the images of e, and e, and the fact that T T 1M
is linear. The key idea is to write

ve T

5 1 0
X = [ 3} = SI:O} - 3|: J =5e, —3e,. Then, from the linearity of 7, write

2 -1 13
T(x) = T(5e, — 3e,;) = 5T(e,) — 3T(ey) = Sy; — 3y, = 5[ 5:\ —3[ 6] =[ 7]

X 1 0
To find the image of [ 1] , observe that x = [x' ] = xl[ :|+x2 [ }= xe +xe,. Then
X, X, 0 1

2 -1 2x —x,
T(X) = T(x,el + x?_ez) = xlT(el) + X2T(e2) = x +Xx, =
5 6 5x, +6x,
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21. a. A function is another word for transformation or mapping.
b. See the paragraph before Example 1.
¢. See Figure 2. Or, see the paragraph before Example 1.
d. See the paragraph after the definition of a linear transformation.
e. See the paragraph following the box that contains equation (4).
25. Any point X on the line through p in the direction of v satisfies the parametric equation
X = p + tv for some value of ¢. By linearity, the image 7(x) satisfies the parametric equation

T(x) = T(p + tv) = T(p) + 1T(v) (*)

If T(v) = 0, then T(x) = T(p) for all values of 7, and the image of the original line is just a
single point. Otherwise, (*) is the parametric equation of a line through T(p) in the direction
of T(v).

Study Tip: Exercise 31 is important, because it will help you to connect the concepts of linear
dependence and linear transformation. Be sure to try the exercise first, before looking in the
answer section of the text. Don’t feel badly if you need to peek at the hint there. Only my best
students can do this problem unaided. Once you have seen the hint, try hard to construct the
desired explanation without consulting the solution I have written below. Don’t give up too soon.
Reread the definitions of linear dependence and linear transformation, if necessary.

After you have written your best attempt at an explanation, check it against the Study Guide
solution. Also, study the strategy there of how I found the solution. Even if your attempt is quite
unsatisfactory, the time spent on this problem is worthwhile, because you will learn more from
the solution here.

31. To help you use this Study Guide properly, I have hidden the solution at the end of the
solutions for Section 1.9. Do not look there until you have followed the instructions above.
(I may not “hide” a solution again, but I wanted this one time to emphasize the importance of
working seriously on a problem before checking the solution.)
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Mastering Linear Algebra Concepts: Linear Transformation

Start to form a robust mental image of a linear transformation by preparing a review sheet that
covers the following categories:

o definition Page 77

» equivalent descriptions Equations (4) and (5)

« geometric interpretations Figs. 1 or 2

« special cases Matrix transformation: page 77
« examples and “counterexamples” Superposition, Examples 2-6

Paragraph before Exercise 1, in this Guide
Exercises 29, 30, 33

» connections with other concepts Existence and uniqueness: page 75
Linear dependence: Exercise 31

Note: Exercise 31 should enrich your mental image of linear dependence, so add a note about it
to your list for “linear independence”. If your course does not emphasize the next section, turn
now to the end of the Study Guide material for Section 1.9 and read the box on Existence and
Uniqueness.

1.9 MATRIX OF A LINEAR TRANSFORMATION

Every matrix transformation is a linear transformation. This section shows that every linear
transformation from R" to R™ is a matrix transformation. Chapters 4 and 5 will discuss other
examples of linear transformations.

KEY IDEAS

A linear transformation 7: R*—R™ is completely determined by what it does to the columns of
the identity matrix I,. The jth column of the standard matrix for T is T(e;), where e; is the jth
column of 7,

There are two ways to compute the standard matrix A. Either compute T(e;), . . . ,7(e,),
which is easy to do when T is described geometrically, as in Exercises 1-14, or fill in the entries
of A by inspection, which is easy to do when 7 is described by a formula, as in Exercises 15-22.
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Existence and uniqueness questions about the mapping x > Ax are determined by properties
of A. You should know how this works. The proof of Theorem 11 also applies to linear
transformations on the general vector spaces in Chapter 4. Here is another way to understand
Theorem 11 [and Theorem 12(b)] using the language of matrix transformations:

Let A be the standard matrix of 7. Then T is one-to-one if and only if the equation Ax =b
has at most one solution for each b. This happens if and only if every column of A is a
pivot column, which happens if and only if Ax = 0 has only the trivial solution.

The “if and only if” phrase in Theorem 11 (and in the proof above) was discussed in
A Mathematical Note, in Section 1.2 of this Guide.

SOLUTIONS TO EXERCISES

1. The columns of the standard matrix A of T are the images of e; and e,. Write these images
-5 -5

—

2
vertically: T(e,) = and T'(e,) = ol Then A = [T(e;) T(e,)] =

w

3
1
3
1

P
S O N

0

7. Follow what happens to e, and e,. Since e is on the unit T
circle in the plane, it rotates through —3n/4 radians into a /{e‘ )
point on the unit circle that lies in the third quadrant and on i I |
the line x, = x (that is, y = x in more familiar notation). The | M
point (-1, ~1) is on the line x, = x,, but its distance from the
origin is J2 . So the rotational image of e, is

-1/ \/5, ~1/\2 ). Then this image reflects in the
horizontal axis to (—-1/\/5, 1/\/5) . he PR

o . . oo . Te N
Similarly, e, rotates into a point on the unit circle that lies in / 2 I
the second quadrant and on the line x, = —x;, namely, {/

\\

(1/\/5 , —1/ \/5 ). Then this image reflects in the horizontal

axis to (1/+/2, 1//2). \__,/
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When the two calculations described above are written in
vertical vector notation, the transformation’s standard
matrix [T(e,;) T(e,)] is easily seen:

_{—1/\/5}_{—1/\/5} _{ 1/\/5}_)[1/\/5} A_[—l/\/i 1/\/1
LN vz T e T luz ] T i iz

Checkpoint: Use an idea from this section to explain why the linear transformation T that reflects
points through the origin, T(x;, x;) = (=x;, —x,), is the same as the linear transformation R that
rotates points about the origin in R* through 7 radians.

13. Since (2, 1) = 2e; + e,, the image of (2, 1) under T is 27(e;) + T(e,), by linearity of 7. On the
figure in the exercise, locate 27(e;) and use it with 7(e,) to form the parallelogram shown in
the text’s answers.

19. The matrix A that changes (x;, x,, x3) into (x; — 5x; + 4x3, x, — 6x3) can be found by inspection
when vectors are written in column formation. Write a blank matrix A to the left of the
column vector x and fill in the entries of A. Since 7(x) has 2 entries, A has 2 rows. Since x
has 3 entries, A must have 3 columns.

X X
lix1 -5x, + 4x3] |: } { 1 -5 4]
= A x, |= X,
x, —6x, . 0 1 -6 .
3 3

+ 11 3
21. Ty =| 072 |=| a4 | T )= %1, Tosolve T(x) = | ~ |, row reduce the
4x, +5x, X, 4 5] x 8
111 3 1 1 3 1 0 7 7
augmented matrix: ~ ~ , X= .
4 5 8] 10 1 —4] |0 1 -4 -4

Study Tip: When T is described by a formula, as in Exercises 15-22, you can use the method of
Exercise 19 to find an A such that 7(x) = Ax, provided that T is a linear transformation. (Finding
A proves that T is linear.) If you can’t find the matrix, T is probably rot a linear transformation.
To show that such a T is not linear, you have either to find two vectors u and v such that T(u + v)
is not equal to 7(u) + T(v) or to find a vector u and scalar ¢ such that T(cu) # cT(u).

The text does not give you practice determining whether a transformation is linear because
the time needed to develop this skill would have to be taken away from some other topic. If you
are expected to have this skill, you will need some exercises (besides Exercises 32 and 33 in
Section 1.8). Check with your instructor.
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See Theorem 10.
See Example 3.
See the paragraph before Table 1.

a o o

See the definition of onto. Any function from R" to R™ maps each vector onto another
vector.

e. See Example 5.

Three row interchanges on the standard matrix A of the transformation T in Exercise 17
1 00

o1 o] .. . iy

produce 00 @ e This matrix shows that A has only three pivot positions, so the

0 00O

equation Ax = 0 has a nontrivial solution. By Theorem 11, the transformation T is not one-
to-one. Also, since A does not have a pivot in each row, the columns of A do not span R*.
By Theorem 12, T does not map R* onto R*.

T is one-to-one if and only if A has n pivot columns. This statement follows by combining
Theorem 12(b) with the statement in Exercise 30 of Section 1.7.

A Mathematical Note: One-to-one

Many students have difficulty with the concept of a one-to-one mapping. Figure 4 should help.

The

transformation 7 on the left appears to map three (or even more) points to one image point.

In contrast, the transformation T on the right maps three points to one image point. In contrast,
the transformation 7 on the right maps three points to three points. You could say that T is three-
to-three (or six-to-six), but the standard terminology is one-to-one.

33.

Define T: R" — R™ by T(x) = Bx for some m X n matrix B, and let A be the standard matrix

for T. By definition, A = [T(e;) - - - T(e,)], where ¢; is the jth column of 7,. However, by
matrix-vector multiplication,

T(e;) = Be; = by, the jth column of B. S0 A =[b, -+ b,] = B.
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If T: R"—>R™ maps R" onto R™, then its standard matrix A has a pivot in each row, by
Theorem 12 and by Theorem 4 in Section 1.4. So A must have at least as many columns as
rows, som=< n.

When T is one-to-one, A must have a pivot in each column, by Theorem 12, so m > n.
[M] There is no pivot in the fourth column, so the columns of the matrix are not linearly
independent and hence the linear transformation is not one-to-one (Theorem 12). (Or, use
the result of Exercise 31.)

[M] Row reduction of the matrix shows that columns 1, 2, 3, and 5 contain pivots, but there
is no pivot in the fifth row, so the columns of the matrix do not span R°. By Theorem 12, the
linear transformation is not onto.

(This solution is for Section 1.8.) To construct the proof, first write in mathematical terms
what is given.

Since {vy, v,, v3} is linearly dependent, there exist scalars ¢, ¢, c3, not all zero, such
that

CiVy + V) + C3V3 = 0 (*)

Next, think about what you must prove. In this problem, to prove that the image points are
linearly dependent, you need a dependence relation among 1(v, ), T(v, ), and T(v; ). That
fact suggests the next step.

Apply T to both sides of (*) and use linearity of 7, obtaining
T(civy + v, + c3v3) = T(0)

and

ciTn) + ¢2T(v2) + ¢3T(v3) = 0

Since not all the weights are zero, {T(v,), T(v,), T(v3)} is a linearly dependent set. This
completes the proof.

Study Tip: Analyze the strategy above for solving Exercise 31 (in Section 1.8). This approach
will work later in a variety of situations.

Answer to Checkpoint: The reflection T has the property that 7(e,) = —e; and T(e,) = —,, while
the rotation R has the property that R(e;) = —e; and R(e;) = —e,. Since a linear transformation is
completely determined by what it does to the columns e; and e, of the identity matrix, T and R
must be the same transformation. (You could also explain this by observing that T and R have the
same standard matrix, namely, [-e; —e;].)
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Mastering Linear Algebra Concepts: Existence and Uniqueness

It’s time to review and organize what you have learned about existence and uniqueness concepts,
if you have not already done so. The review will help to prepare you for an exam on the chapter
material.

Search through the chapter and collect all the various ways to express existence and uniqueness
statements. Most of them can be found in boxes (and theorems) with an “if and only if” statement.
Also, check the exercises. For existence, make two lists—one that concerns the equation Ax = b for
some fixed b (but not always phrased as a matrix equation), and one that concerns the existence of
solutions of Ax = b for all b.

1.10 LINEAR MODELS IN BUSINESS, SCIENCE, AND
ENGINEERING

This is the second of twelve sections devoted to uses of linear algebra. The applications in the
text were selected to give you an impression of the power of linear algebra. You are likely to
encounter some of these topics again—in school or in your career-—and the discussions in your
text will be valuable references.

The main point of this section is to present several interesting applications in which
“linearity” arises naturally.

STUDY NOTES

Nutrition Problem: In some applied problems such as the nutrition problem considered here, the
data are already organized naturally in a manner that leads to a vector equation of the type we
have discussed. The steps to the solution in this case may be diagrammed as follows:

Applied Vector Augmented Solution Answer to
Problem Equation Matrix Set Problem

The nutrition model is linear because the nutrients supplied by each foodstuff are
proportional to the amount of the foodstuff added to the diet mixture, and each nutrient in the
mixture is the sum of the amounts from each foodstuff. Study equations (1) and (2) on page 94.
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The nutrition problem leads naturally into linear programming, a subject that uses linear
algebra and has applications in agriculture, business, engineering, and other areas. In the 1950’s
and 1960’s, one of the most common applications of linear algebra (measured in millions of
dollars per year for computer time) was to linear programming problems. Such problems are still
of great importance in operations research and management science. The following reference
gives an entertaining introduction to linear programming. Matrix notation is used in its appendix
(pp. 127-152).

Gass, Saul 1, An lllustrated Guide to Linear Programming, New York: McGraw-
Hill, 1970. Republished by Dover Publications, 1990.

Electrical Networks: The linearity of this model, which is evident from the matrix equation
Ri = v, comes from the linearity of Ohm’s law and Kirchhoff’s voltage law. (Kirchhoff’s current
law, which is also linear, is needed when studying another model that involves branch currents.)

Population Movement: The entries in each column of the migration matrix must sum to one
because the (decimal) fractions in a column account for the entire population in one region. A
certain fraction of the population in a region remains in (or moves within) that region, and other
fractions move elsewhere.

SOLUTIONS TO EXERCISES

1. a. If x, is the number of servings of Cheerios and x; is the number of servings of 100%
Natural Cereal, then x; and x; should satisfy

| nutrients [ nutrients quantities
x| per serving |+ x, | per serving of |=| of nutrients
| of Cheerios | 100% Natural required
That is,
110 130] [295
4 3 9
X, +x, =
20 18 48
2 51 L 8
110 130 295
. . .4 3 9 :
b. The equivalent matrix equation is = . To solve this, row reduce
20 18| x, 48
2 5 8

the augmented matrix for this equation.
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110 130 295 2 5 8 1 2.5 4
4 3 9 4 3 9 4 3 9
20 18 48 20 18 48 10 9 24
2 5 8 110 130 295 110 130 295

1 25 4 1 25 4 1 0 15
0 -7 =7 0 1 1 0 1 1
o -6 -16] 0 0 0| |0 0 0
0 -145 -145 0 0 O 0 0 O
The desired nutrients are provided by 1.5 servings of Cheerios together with 1 serving of

100% Natural Cereal.

Study Tip: Be sure to distinguish between (i) the vector equation, (i) the matrix equation
(which has the form Ax = b), and (iii) the augmented matrix (which has the form [A b]) that
represents a system of linear equations.

7. Loop 1: The resistance vector is
12| Total of three RI voltage drops for current /;
—7 | Voltage drop for /, is negative; I, flows in opposite direction
0| Current/; does not flow in loop 1
~4 | Voltage drop for I, is negative; I, flows in opposite direction
Loop 2: The resistance vector is

-7 Voltage drop for /; is negative; I; flows in opposite direction

15| Total of three RI voltage drops for current I,

= —6 | Voltage drop for I, is negative; /, flows in opposite direction
(0| Current!l, does not flow in loop 2
0 -4 12 -7 0 4
Also, r; = 6 ,Ty= 0 ,andR=[r, r, r; r4= 7560 .
14 -5 0 -6 14 -5
-5 13 -4 0 -5 13

Note that each off-diagonal entry of R is negative (or zero). This happens because the loop
current directions are all chosen in the same direction on the figure. (For each loop j, this
choice forces the currents in other loops adjacent to loop j to flow in the direction opposite to
current /;.)
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40
30 . . . .
Next, setv = 20! Note the negative voltage in loop 4. The current direction chosen in
-10
loop 4 is opposed by the orientation of the voltage source in that loop. Thus Ri = v becomes
12 -7 0 411 40 I, 1143
-7 15 -6 0|1, 30 T A 10.55
= . [M]: The solution isi = = .
0 -6 14 5|1 20 I 8.04
-4 0 -5 131, -10 1, 5.84

[M] The order of entries in a column of a migration matrix must match the order of the
columns. For instance, if the first column concerns the population in the city, then the first
entry in each column of the matrix must be the fraction of the population that moves to (or
remains in) the city. In this case, the data in the exercise leads to

95 .03 600,000
M= and xp = .
05 97 400,000

a. Some of the population vectors are

523,293 472,737 439,417 417,456
X, = , X0 = , Xo = , Xoq =
5 1476,707 7 7 527,263 " | 560,583 | "® | 582,544

The data here shows that the city population is declining and the suburban population is
increasing, but the changes in population each year seem to grow smaller.

350,000 e
b. When x, = , the situation is different. Now
650,000
358,523 364,140 367,843 370,283
X; = > Xig = y Xi5 = s X0 =
641,477 635,860 632,157 629,717

The city population is increasing slowly and the suburban population is decreasing. No
other conclusions are expected. (This example will be analyzed in greater detail later in
the text.)
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MATLAB Generating a Sequence

The m-file (in the Laydata Toolbox) for Exercises 9-13 in Section 1.9 stores initial vectors
in x0. Set x = x0 to put the initial data into x. Then use the command x = M*x
repeatedly to generate the sequence x1, x2, .... Youonly type the command once.
After that, use the up-arrow (T) key to recall the command, and press <Enter>.

In Exercise 11, you need 6 decimal places to get four significant figures in M(1, 2). Use
the command format long and then M to see more decimal places in M. The
command format short will return MATLAB to the standard four decimal place
display. (The display format does not affect MATLAB’s accuracy in computations.)

Numbers are entered in MATLAB without commas. The number 600,000 in MATLAB
scientific notation is 6e5. A small number such as .00000012 is 1.2e-7.

Chapter 1 SUPPLEMENTARY EXERCISES

The supplementary exercises at the end of each chapter review material from the chapter,
synthesize concepts from several chapters, or supplement the chapter material in some way. The
text has solutions for most of the odd-numbered exercises. The Study Guide provides solutions
for selected odd-numbered exercises that have only an answer or a Hint.

In each chapter, Exercise 1 consists of many true/false questions, whose level of difficulty
varies. Some are similar to the ones that appear in many sections of the text, in which a word or
phrase is sometimes missing or slightly misstated. Some follow fairly easily from a theorem:
others may need careful reasoning. A few may require an argument that uses several ideas. In
each case, think carefully about the statement and attempt to write a solution. The text provides
the true/false answer, but you must supply the justification or counterexample. Careful work on
Exercise 1 will help you prepare for an exam over the chapter material.

2 4 -2 b,
7. a. Setv,=|-5|, v,=| 1|, v;=| 1|and b=|b,|. “Determine if v;, v, v3 span R
7 -5 -3 b,

To do this, row reduce [v; v, vl
1 -2 -1 1 -2 -1 1 -2 -1 1 -2 -1
-5 1 1{~|-5 1 1|~{0 -9 -4|~/0 -9 —4|. The matrix does not have
7 -5 3 7 -5 -3 0 9 4 0 0 0O
a pivot in each row, so its columns do not span R’, by Theorem 4 in Section 1.4.
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1 0 *
13. The reduced echelon form of A looks like E=|{0 1 *|. Since E is row equivalent to A,
0 00
1 0 *] 3] (0
the equation Ex = 0 has the same solutions as Ax =0. Thus (0 1 *{|-2{=(0]|. By
0 0 Ooff 1y |0
1 0 -3
inspection, E={0 1 2].
00 O

17. Here are two arguments. The first is a “direct” proof. The second is called a “proof by
contradiction.”

i. Since {vy, v;, v3} is a linearly independent set, v; # 0. Also, Theorem 7 shows that v,
cannot be a multiple of v;, and v; cannot be a linear combination of v; and v,. By
hypothesis, v, is not a linear combination of vy, v,, and v;. Thus, by Theorem 7,
{v1, v2, V3, v4} cannot be a linearly dependent set and so must be linearly independent.

ii. Since {v,, v,, v3} is a linearly independent set, v; # 0. Suppose that {v,, v,, v3, v4} is
linearly dependent. Then, by Theorem 7, one of the vectors in the set is a linear
combination of the preceding vectors. This vector cannot be v4 because v, is not in
Span{vy, v5, v3}. Also, none of the vectors in {v;, v, v3} is a linear combination of
the preceding vectors, by Theorem 7. So the linear dependence of {v,, v, v3, v4} is
impossible, and {v,, v,, v3, v4} is linearly independent.

Chapter 1 GLOSSARY CHECKLIST

Check your knowledge by attempting to write definitions of the terms below. Then compare your
work with the definitions given in the text’s Glossary. Ask your instructor which definitions, if
any, might appear on a test.

affine transformation: A mapping 7: R" —»R" of the form T(x) =. . ..

augmented matrix: A matrix made up ofa. ...

back-substitution (with matrix notation): The . .. phase of row reduction of an . . . .

basic variable: A variable in a linear system that . . . .

codomain (of T: R"—>R™): Theset...that contains. ...

coefficient matrix: A matrix whose entries are . . ..
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consistent linear system: A linear system with . . . .
contraction: A mappingxl-....

difference equation (or linear recurrence relation): An equation of the form . . . whose
solution is . . ..

dilation: A mappingxl-....
domain (of a transformation 7): Thesetof .. ..
echelon form (or row echelon form, of a matrix): An echelon matrix that . . ..

echelon matrix (or row echelon matrix): A rectangular matrix that has three properties:

M...2...03)....
elementary row operations: (1)...(2)...(3)....
equal vectors: Vectors in R” whose . . . .
equivalent (linear) systems: Linear systems with the . . ..
existence question: Asks, “Does . . . exist?” or “Is...?” Also, “Does . .. exist for...?”
floating point arithmetic: Arithmetic with numbers represented as . . . .
flop: One arithmetic operation . . . .
free variable: Any variable in a linear system that . . ..
Gaussian elimination: See row reduction algorithm.
general solution (of a linear system): A ... description of a solution set that expresses . . .
homogenous equation: An equation of the . . ..
identity matrix (denoted by /or /,): A square matrix . . . .
image (of a vector x under a transformation T): The vector . . . . (Use symbols)
inconsistent linear system: A linear system with . . . .
leading entry: The. .. entry in a row of a matrix.
linear combination: A sumof....
linear dependence relation: A ... equation where . ...
linear equation (in the variables xy, . . . ., X)) An equation that can be written in the form .
linearly dependent (vectors): An indexed set {v, .. ., v,} with the property that . . ..
linearly independent (vectors): An indexed set {vy, ..., v,} with the property . ...
linear system: A collection of one or more . . . equations involving . . . .
linear transformation: A transformation 7: R"— R™ is linear if (i) . . ., and (ii) . . . .

line through p parallel to v: The set . . . . (Use symbols)
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matrix: A rectangular. ...
matrix equation: An equation that . . ..

matrix transformation: A mappingxb>....

1-49

migration matrix: A matrix that gives the . . . movement between different locations, from. . ..

mx nmatrix: A matrix with . . ..

nontrivial solution: A nonzero solution of . . ..

one-to-one (mapping): A mapping 7: R"—» R™such that . ...

onto (mapping): A mapping T: R"— R"such that. ...
overdetermined system: A system of equations with . . . .
parallelogram rule for addition: A geometric interpretation of . . . .
parametric equation of a line: An equation of the form . . . .
parametric equation of a plane: An equation of the form. . ..
pivot: A ...number thateitherisused...oris....

pivot column: A column that.. ..

pivot position: A position in a matrix A that corresponds . . . .
plane through u, v, and the origin: A set whose parametric equation is . . . .
product Ax:

range (of a linear transformation T): Thesetof .. ..

reduced echelon form (or reduced row echelon form, of a matrix) : A rectangular matrix in

echelon format that has these additional properties . . . .

roundoff error:  Error in floating point arithmetic caused when . . . .

row equivalent (matrices): Two matrices for which there exists . . . .
row reduction algorithm: A systematic method using . . . .

row replacement: An elementary row operation that . . . .

scalar:

scalar multiple of u by ¢: The vector. . ..

set spanned by {vi,...., Vy}:
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1-50 CHAPTER 1 + Linear Equations in Linear Algebra

size (of a matrix): Two numbers . . ..

solution (of a linear system):

solution set: Thesetof....

Span{vy,...., vp}: Theset....

standard matrix (for a linear transformation 7): The matrix .. ..
system of linear equations (or a linear system): A collection of . ...

transformation (or function or mapping) T from R" to R™ A rule that assigns to each vector
xinR"a.... Notation: 7: R"— R".

translation (by a vector p): The operation of . . . .

trivial solution: The solution...ofa....

underdetermined system: A system of equations with . . . .
uniqueness question: Asks, “If a solution of a system ... ?”
vector:

vector equation: An equation involving . . ..

weights:
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Matrix
Algebra

2.1 MATRIX OPERATIONS

Most of this chapter is an outgrowth of the idea in Section 1.7 that a matrix can transform data.
This dynamic role of matrices suggests that we study the combined effect of several matrices on
data (that is, on a vector or a set of vectors). Sections 2.1 to 2.5 describe this matrix algebra.

KEY IDEA

Matrix multiplication corresponds to composition of linear transformations. The definition of
AB, using the columns of B, is critical for the development of both the theory and some of the
applications in the text.

STUDY NOTES

Double-subscript notation: The subscripts tell the location of an entry in the matrix—the first
subscript identifies the row and the second subscript the column. (Remember: Row is shorter
than column, so row goes first.) This convention is opposite to the way a spreadsheet identifies
the location of an entry.

In the product AB, left-multiplication (that is, multiplication on the left) by A acts on the
columns of B, by definition, while right-multiplication by B acts on the rows of A (see page 112).
That is,

[C‘g‘f‘g‘g J}:A {Coglf“;‘ f} and [row i of AB]= [row i of A]B

2-1
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2-2 CHAPTER2 « Matrix Algebra

To compute a specific matrix product by hand, use the Row-Column Rule. If A is mXn, then the
(i, ))-entry of AB is written with sigma notation as

(AB), =) a,b,
k=1

Remember that if you change the order (position) of the factors in a matrix product, the new
product may be different, or it may not even be defined. For instance, (A + C)B and AB + BC are
probably not equal! Also, see the warmning box on page 114.

Notes: Key exercises 13 and 17-22 emphasize the definition of a matrix product. Work at least
five of these exercises, for practice.

SOLUTIONS TO EXERCISES

2 0 -1 -4 0 2
1. -2A=(=2) = . Next, use B —2A = B + (-2A):
4 =5 2 -8 10 —4

7 -5 1, |4 0 2 3 -5 3
B-2A= + =
1 -4 -3 -8 10 4 -7 6 -7
The product AC is not defined because the number of columns of A does not match the
number of rows of C.

1 2 3 5 1-3+2(-1) 1-5+2-4 1 13 .

CD = = = . For mental computation,
-2 1}-1 4 -2:3+1(-1) -2-5+1-4 -7 -6

the row-column rule is easier to use than the definition.

7. Since A has 3 columns, B must match with 3 rows. Otherwise, AB is undefined. Since AB
has 7 columns, so does B. Thus, B is 3X7.

13. If you had difficulty with this problem, read the definition of AB from right to left. Here is
the definition, written in reverse order:

[Ab, --- Ab,J=A[b, --- b,]=AB,whenB=[b, --- b,].

Thus [Qr; - Or,]=0QR,whenR=[r; - - r,].

15. a. See the definition of AB. b. See the box after Example 3.
c. Read Theorem 2(b) from right to left. d. Read Theorem 3(b) from right to left.
e. See the box after Theorem 3.

19. A solution is in the text. The main point is that the columns of AB are Ab,, ..., Ab,.

Checkpoint:  Show that if y is a linear combination of the columns of AB, then y is a linear
combination of the columns of A.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.




EB Brief Table of Contents || EB Table of Contents

2.1 » Matrix Operations 2-3

21. Let b, be the last column of B. By hypothesis, the last column of AB is zero. Thus, Ab, = 0.
However, b, is not the zero vector, because B has no column of zeros. Thus, the equation
Ab, = 0 is a linear dependence relation among the columns of A, and so the columns of A are
linearly dependent.

23. If x satisfies Ax = 0, then CAx = C0 =0 and so I,x = 0 and x = 0. This shows that the
equation Ax = @ has no free variables. So every variable is a basic variable and every
column of A is a pivot column. (A variation of this argument could be made using linear
independence and Exercise 30 in Section 1.7.) Since each pivot is in a different row, A must
have at least as many rows as columns.

25. By Exercise 23, the equation CA = I, implies that (number of rows in A) > (number of
columns), that is, m > n. By Exercise 24, the equation AD = [,, implies that (number of rows
in A) < (number of columns), that is, m < n. Thus m = n. To prove the second statement,
observe that CAD = C(AD)=ClI, = C, and also CAD = (CA)D=I,.D=D. ThusC=D. A
shorter calculation is

C=Cl,=CAD) =(CA)D=1,D=D

Study Tip: In Exercises 27 and 28, inner products (u'v and v'u) have the transpose symbol in
the middle. Outer products (uv’ and vu’) have the transpose symbol on the outside.

29. The (i, j)-entry of A(B + C) equals the (i, j)-entry of AB + AC, because

n n n
2By te) =2 ab,+D ac,
k=1 k=1 k=1

The (i, j)-entry of (B + C)A equals the (i, j)-entry of BA + CA, because

n
Z (b, +c,k)ak] z akj+ch.kakj
k=1 k=1

31. Use the definition of the product /,,A and the fact that I,x = x for x in R".
L.A=ILfa --- aj=[l,a --- L.a]=[a --- a]=A

33. The (i, j)-entry of (AB)" is the (j, i)-entry of AB, which is
ab,+-+a,b,

jn"ni

The entries in row i of B  are by, . . . , b,;, because they come from column i of B. Likewise,
the entries in column j of A” are ajl, ..., aj,, because they come from row j of A. Thus the
(i, j)-entry in B'ATis ayb,+---+a, b as above.

jn“ni

Answer to Checkpoint: 1f y is a linear combination of the columns of AB, then there is a vector x
such that y = (AB)x. By definition of matrix multiplication, y = A(Bx). This expresses y as a
linear combination of the columns of A using the entries in the vector Bx as weights.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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MATLAB Matrix Notation and Operations

To create a matrix, enter the data row-by-row, with a space between entries and a semicolon
between rows. For instance, the command

A=[1 2 3; 4 5 -6] Use brackets around the data.

creates a 2X3 matrix A. If A is mXn, then size(A) is the row vector [m n]. The (i, j)-
entry in A is A(i, j). If i or j is replaced by a colon, the result is a column or row of A,
respectively. Examples:

A(:,3) Column 3 of A
A(2,:) Row 2 of A

To specify columns 3, 4 and 5 of A, you can use
A(:,[3 4 5]) or A[:,3:5)

The symbols 3:5 (read “3 to 5”) stand for the vector [3 4 5]. Similar notation works for
selected rows of A.

MATLAB uses +, —, and * to denote matrix addition, subtraction, and multiplication,
respectively. If A is square and k is a positive integer, A*k denotes the kth power of A.
The transpose of A is A’ (with an apostrophe for the prime symbol). Note: when A has
complex entries, the (i, j)-entry of A’ is the complex conjugate of the (j, i)-entry of A.

Use a single column (or row) matrix for a vector. If u and v are column vectors of the
same size, then u’*v is their inner product, and w*v’ is an outer product.

MATLAB has commands that construct many special matrices. For example,

M=zeros (5, 6) A 5 x 6 matrix of zeros

M=ones (3, 5) A 3 x 5 matrix of ones

M=eye (6) The 6 X 6 identity matrix
M=diag([3 5 7 2 4]) A5 x 5 diagonal matrix

M=rand (6) A 6 x 6 matrix with random entries
M=randomint (6, 4) A 6 x 4 matrix with random integer entries

Place help in front of any command to learn all the features of the command. The
former name for randomint was randint, but MATLAB now uses randint fora
slightly different command in its Communications Toolbox.

2.2 THE INVERSE OF A MATRIX

Matrix inverses are essential for many discussions in linear algebra. This section and the next
describe the main properties of invertible matrices.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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STUDY NOTES

The inverse formula for a 2X2 matrix will be used frequently in exercises later in the text. (See
Theorem 4.) To invert a 2X2 matrix, interchange the diagonal entries, reverse the signs of the off-
diagonal entries, and divide each entry by the determinant (assuming ad — bc # 0).

Theorem 5 and its proof are important. The phrase “has a unique solutlon includes the
assertion that a solution exists, so the proof has two parts. The equation AA™ = I is used to prove
that a solution exists, and the equation A™'A = I is used to show that the solution is unique.

Except when A is 2X2, Theorem 5 is practically never used to solve Ax = b. Row reduction
of [A b] is faster. Actually, in practical work, you w111 seldom need to compute A™'. (However,
Example 3 illustrates a case in which the entries of A™' could be useful.)

When using an inverse in matrix algebra, remember that matrix multiplication is not
commutative. The phrase “left-multiply B by A™” means to multiply B on its left side by A™.

Never write —; (or B/A) because it could stand for A" B or BA™.

Elementary matrices are used in this text mainly to link row reduction to matrix
multiplication. Each elementary row operation amounts to left-multiplication by an elementary
matrix. So, if A can be row reduced to U, then there is a product F of elementary matrices such
that FA=U.

Theorem 7 includes an if and only if statement, which was discussed in the Appendix to
Section 1.2 in this Study Guide. The proof of this statement in Theorem 7 has two parts: (1)
assume that A is invertible and prove that A ~ I,; and (2) assume that A ~ I, and prove that A is
invertible.

SOLUTIONS TO EXERCISES
(86 __1 [4 6 [2 3
"5 4| 32-30|-5 8| |-5/2 4
1 27! 1 12 2] 112 =2 6 -1
7. a. —— - or
[5 12] 1-12—2-5[—5 J 2[—5 1} [-2.5 .5}

-9
=[ } Similar calculations give

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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2-6 CHAPTER2 . Matrix Algebra
1 2 -1 1 2 3

b.[A b, b, b; bJ=
[1234][5123—565}

1 2 -1 1 2 3 1 2 -1 1 2 3
0 2 8 -10 4 -10 0O 1 4 -5 -2 -5
1 0 -9 11 6 13
0O 1 4 -5 -2 -5
. -9 11 6 13 )
The solutions are all=sl |2 , and 5 , the same as in part (a).

Note: This exercise was designed to make the arithmetic simple for both methods, but (a)
requires more arithmetic than (b). In fact, (a) requires 22 multiplications or divisions and 9
additions or subtractions. In general, the arithmetic for method (b) can be unpleasant for
hand calculation. However, when A is larger than 2x2, method (b) is much faster than (a).

Study Tip: Notice in Exercise 7(a) how the 1/2 in the formula for A" was kept outside the

12 -2
matrix [ } when computing A™'b. This trick sometimes simplifies hand calculations (on

exams!) by postponing the arithmetic with fractions (or decimals) until the end.

9. a. See the definition of invertible. b. See Theorem 6(b).
¢. See Theorem 4. d. See Theorem 5.
e. See the box just before Example 6.

11. (See the proof of Theorem 5.) The n xp matrix B is given (but is arbitrary). Since A is
invertible, the matrix A™'B satisfies AX = B, because A(A™'B) = AA™'B = IB = B. To show
this solution is unique, let X be any solution of AX = B. Then, left-multiplication of each
side by A™' shows that X must be A™'B:

A'AX)=AT'B, IX=A"'B, and X=A"'B.

Study Tip: Whenever you are told “A is invertible,” you know that A™' exists, and you may
use A" to solve an equation or to make appropriate calculations.

13. Left-multiply each side of the equation AB = AC by A™' to obtain
A'AB=A"AC, IB=IC, and B=C.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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This conclusion does not always follow when A is singular. The matrices in Exercise 10 of
Section 2.1 provide a counterexample.

Warning: A common mistake in Exercise 16 is to try to use the formula (AB)™ = B"'A™". But,
this formula can be used only when you know, in advance, that both A and B are invertible. In
Exercise 16, you must prove that A is invertible.

19.

21.

23.

25.

Unlike Exercise 17, this exercise asks two things, “Does a solution exist?”” and “What is the
solution?” First, find what the solution must be, if it exists. That is, suppose X satisfies the
equation C'(A4 + X)B™' =I. Left-multiply each side by C, and then right-multiply each side
by B:

CC'A+X)B'=Cl, A+X)B'=C, (A+X)B'B=CB, (A+X)I=CB
Expand the left side and then subtract A from both sides:

Al+XI=CB, A+X=CB, X=CB-A
If a solution exists, it must be CB — A. To show that CB — A really is a solution, substitute it
for X:

C'[A+(CB-A)B'=C'CBIB'=C'CBB =1l =1
After this section, your instructor may permit you to include fewer details in your
calculations. (Check on this.) For instance, after some practice with algebra, an expression
such as CC'(A + X)B™ could be simplified directly to (A + X)B™ without first replacing
CC'byl
Suppose A is invertible. By Theorem 3, the equation Ax = 0 has only one solution, namely,
the zero solution. This means that the columns of A are linearly independent, by a remark in
Section 1.7.
Suppose A is nXn and the equation Ax = 0 has only the trivial solution. Then there are no
free variables in this equation, and so A has n pivot columns. Since A is square and the n
pivot positions must be in different rows, the pivots in an echelon form of A must be on the
main diagonal. Hence A is row equivalent to the nxn identity matrix.

a b ) 0 0f x 0 )
Suppose A= and ad — bc = 0. If a = b = 0, then examine = . This
c d c dl||x, 0

. d . e
has the solution x = [ } . This solution is nonzero, except when ¢ = d = 0. In that case,
—c

however, A is the zero matrix, and Ax = 0 for every vector X. Finally, if a and b are not both

-b a bil-b —ab+ba 0
Zero, set u = . Then Au= = = , because —cb + da = 0.
a c dl|l a —cb+da 0

Thus, u is a nontrivial solution of Ax = 0. So, in all cases, the equation Ax =  has more than
one solution. This is impossible when A is invertible (by Theorem 5), so A is not invertible.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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27. a. Interchange A and B in equation (1) after Example 6 of Section 2.1: row;(BA) =
row; (B)-A. Then replace B by the identity matrix: row; (A) = row; (A) = row;(])-A.
b. Using part (a), when rows 1 and 2 of A are interchanged, write the result as

row,(A) row,(I)-A row, ()
row,(A) |=| row,(I}-A {=| row,(I) |[A=FEA *)
row,(A) row,([)-A row, (1)

Here, E is obtained by interchanging rows 1 and 2 of I. The second equality in (*) is a
consequence of the fact that row; (EA) = row; (E)-A.

¢. Using part (a), when row 3 of A is multiplied by 5, write the result as

row,(A) row, (I)-A row, (1)
row,(A) |=| row,(I)-A |=| row,(I) [A=EA
5-row,(A) S-row,([)-A 5-row,(I)
Here, E is obtained by multiplying row 3 of I by 5.
1 0 -2 100 1 06 -2 1 0 O
31.[A I]=j-3 1 4 0 1 0|~0 1 -2 3 1 0
2 -3 40 0 1 0 3 8 -2 0 1
(1 0 2 1 0 0 1 0 0 8 3 1
-0 1 -2 3 1 0{~|0 1 0 10 4 1
o 0 2 7 3 1 0 0 2 3.1
1 0 0 8 301
-0 1 0 10 4 1
10 0 1 7/2 3/2 1/2 7/2 3/2 1/2
(1 0 0 0]
-1 1 0 0
33. LetB=1 0 -1 1 ,andforj=1, ..., n, let a;, b;, and e; denote the jth columns
10 0 -1 1]

of A, B, and I, respectively. Note thatforj=1,...,n-1, a;—
have the same entries except for the jth row), b;=¢;-

a,, = ¢; (because a; and a;,,
e..;and a, = b, =e,.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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To show that AB = [, it suffices to show that Ab; = ¢; foreachj. Forj=1,...,n-1,
Ab; = A(e;—e;;) = Aej—Aej, =a;— 2, = €
and Ab, = Ae, = a, = e,. Next, observe thata;=¢;+ - - - + e, for eachj. Thus,
Ba;=B(ej+---+e,)=bj+---+b,
=(e-eu)+ (e —e)+ - +(e—€)+e =g
This proves that BA = I. Combined with the first part, this proves that B=A"".
_i 1 _é:| is the only one whose entries are

1, -1, and 0. With only three possibilities for each entry, the construction of C can be done
by trial and error. This is probably faster than setting up a system of 4 equations in 6
unknowns. The fact that A cannot be invertible follows from Exercise 25 in Section 2.1,
because A is not square.

37. There are many possibilities for C, but C = [

MATLAB Constructing A™

If A is a 5X5 matrix, then the command M = [A eye(5)] creates the augmented matrix
[A I]. Use gauss, swap, bgauss, and scale toreduce[A I]. See page 1-17.

MATLAB has other commands that row reduce matrices, invert matrices, and solve
equations Ax = b. They will be introduced later, after you have studied the concepts and
algorithms in this section.

2.3  CHARACTERIZATION OF INVERTIBLE
MATRICES

In many linear algebra texts, the equivalent of Chapter 4 is extremely difficult for students. But
you won’t have problems if you prepare well now, because you are already learning basic ideas
that will be presented again in Chapter 4. Review the major concepts from the previous sections,
and plan for more study time here than you ordinarily spend on one section.

KEY IDEAS

The Invertible Matrix Theorem (IMT) only applies to square matrices. However, some groups of
these statements in the IMT are also equivalent for rectangular matrices. The following table will
help you remember other important theorems as well as the IMT. (See Theorem 4 in Section 1.4,
Theorems 11 and 12 in Section 1.9, Theorem 5 in Section 2.2, and Theorem 9 in Section 2.3.) All
of the statements in the table are equivalent when A is square (m =n = p).

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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STATEMENTS FROM THE INVERTIBLE MATRIX THEOREM

Equivalent statements for an | Equivalent statements for an Equivalent statements for an
mxn matrix A. nXn square matrix A. nXp matrix A.

k. Thereis a matrix Dsuch |a. A is an invertible matrix. | j. There is a matrix C such

that AD = I. that CA=1.

* Ahasapivot positionin | c. A has n pivot positions. | ¥*. A has a pivot position in
EVEery row. every column.

h. The columns of A span b. A is row equivalent to the | e The columns of A are
R™ identity matrix. linearly independent.

g. The equation Ax=b has | *. The equation Ax = b has a | d. The equation Ax = 0 has
at least one solution for unique solution for each b only the trivial solution.
each bin R™ in R".

i.  The transformation *, The transformation f.  The transformation
X — Ax maps R" onto X > Ax is invertible. X > AX is one-to-one.
R". 1. A'is invertible.

The four statements denoted by (*) were not listed in the text as part of the IMT, mainly to
avoid intimidating you with so many statements in one theorem. Note: the text did not actually
prove that for a rectangular matrix, statements (j) and (k) are each equivalent to the other state-
ments in their respective columns. (Exercises 23, 24, and 26 in Section 2.1 contain most of the
facts needed to prove this.) A matrix C such that CA = [ is called a left-inverse of A, and a
matrix D such that AD = [ is called a right-inverse of A.

Checkpoint: What can you say about the statements in the first column when A has more rows
than columns? (Why?) What about the statements in the third column when A has more columns
than rows? (Why?)

A question such as the one in the box below is one way I test whether my students know the
IMT. Test yourself. Cover up the IMT, write your answers, and then check your work. The
answers are given at the end of this section.

Test Question:

Let A be an nXn matrix. Write 6 statements from the Invertible Matrix
Theorem, each equivalent to the statement that A is invertible. Use the
following concepts, one in each statement: (i) row equivalent, (ii) the
equation AD = I, (iii) columns, (iv) the equation Ax = 0, and (v) linear
transformation.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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SOLUTIONS TO EXERCISES

5 7
1. The columns of the matrix [ 3 6} are not multiples, so they are linearly independent. By

(e) in the IMT, the matrix is invertible. Also, the matrix is invertible by Theorem 4 in
Section 2.2 because the determinant is nonzero.

-1 -3 0 1 -1 -3 0 1 -1 -3 0 1

- 35 8 3 ~ 0 4 80 _ 0 4 80
-2 -6 3 2 0 0 30 0 0 30

0 -1 2 1 0 -1 21 0 0 0 1

The 4 X4 matrix has four pivot positions and so is invertible by (c) of the IMT.

11. Study the Invertible Matrix Theorem. The statements there are true only for an invertible
matrix. Also, if one of the statements is true about a square matrix A, then all statements in
the theorem are true; if one of the statements is false, then all are false.

a. See statements (d) and (b) of the IMT.
b. See statements (h) and (e). ¢. See statement (g).
d. See statements (d) and (c). e. See statement (1).

Study Tip: Learn how to recognize when a square matrix is not invertible. If A is an nXn
matrix, then each of the following statements is true if and only if A is not invertible.

« The matrix A has fewer than n pivot positions.

« The equation Ax = () has a nontrivial (nonzero) solution.

o The columns of A are linearly dependent.

o The linear transformation x  AX is not one-to-one.

« The equation Ax = b has no solution (is inconsistent) for some b in R".
« The equation AX = b has more than one solution for some b in R".

o The columns of A do not span R".

o The linear transformation x > AX does not map R" onto R".

13. If a square upper triangular nxn matrix has nonzero diagonal entries, then because it is
already in echelon form, the matrix is row equivalent to I, and hence is invertible, by the
IMT. Conversely, if the matrix is invertible, it has » pivots on the diagonal and hence the
diagonal entries are nonzero.

Study Tip: If you check your answer for odd exercises between 13 and 33, be careful not to
read any other answers or hints. You must try to write your own solutions first.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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By (e) of the IMT, D is invertible. Thus the equation Dx = b has a solution for each b in R’,
by (g) of the IMT. Even better, the equation Dx = b has a unique solution for each b in R,
by Theorem 5 in Section 2.2. (See the paragraph following the proof of the IMT.)

Suppose that A is square and AB = I. Then A is invertible, by the (k) of the IMT. Left-
multiplying each side of the equation AB = I by A™', one has

A'AB=A"1 IB=A"' and B=A"

By Theorem 6 in Section 2.2, the matrix B (which is A™) is invertible, and its inverse is
(Ay" = A. Note: Exercise 25 makes a good test question.,

Let Wbe the inverse of AB. Then ABW =1 and A(BW) = I. This equation, by itself, does not
prove that A is invertible. However, since A is square, the IMT does apply and by statement
(k), A is invertible.

Of course, in this exercise set there is an overall assumption that matrices in this section
are square unless otherwise stated. So, with that given, you do not really have to mention
here that A is square. However, I put that question “Why not?” in the answer to make you
think about this. Look back at Exercise 38 in Section 2.2. There, AD = I, which certainly
makes AD invertible, yet A is not invertible.

Since the equation Ax = b has a solution for each b, the matrix A has a pivot in each row
(Theorem 4 in Section 1.4). Since A is square, A has a pivot in each column, and so there are
no free variables in the equation Ax = b, which shows that the solution is unique.

The preceding argument shows that the (square) shape of A plays a crucial role. A less
revealing proof is to use the “pivot in each row” and the IMT to conclude that A is invertible.
Then Theorem 5 in Section 2.2 shows that the solution of Ax = b is unique.

-5 9
The standard matrix of Tis A =[ 4 7}, which is invertible because det A # 0. By

Theorem 9, the transformation 7 is invertible and the standard matrix of 77" is A™. From the

7 9
formula for a 2X2 inverse, A™' = L 5}. So

T'(x,x )=[7 9][Xl}=(7x +9x,,4x, +5x,)
122 4 5 x, 1 25 FA 2
To show that T is one-to-one, suppose that T(u) = T(v) for some vectors u and v in R”. Then
S(T(uw)) = S(T(v)), where S is the inverse of 7. By Equation (1), u = S(T(uw)) and S(T(v)) = v,
sou =v. Thus T is one-to-one. To show that 7 is onto, suppose y represents an arbitrary
vector in R" and define x = S(y). Then, using Equation (2), T(x) = T(S(y)) =y, which shows
that T maps R" onto R".

Second proof: By Theorem 9, the standard matrix A of T is invertible. By the IMT, the
columns of A are linearly independent and span R". By Theorem 12 in Section 1.9, T is one-
to-one and maps R” onto R".
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37. Let A and B be the standard matrices of T and U, respectively. Then AB is the standard
matrix of the mapping x — T(U(x)), because of the way matrix multiplication is defined (in

Section 2.1). By hypothesis, this mapping is the identity mapping, so AB = I. Since A and B
are square, they are invertible, by the IMT, and B = A"!. Thus, BA = 1. This means that the
mapping x > U(T'(x)) is the identity mapping, i.e., U(T(x)) = x for all x in R".

Answers to Checkpoint: If A has more rows than columns, then all statements in the first
column of the table must be false, because they are equivalent and the statement about a pivot
position in each row cannot be true. If A has more columns than rows, then all statements in the
third column of the table must be false, because A cannot have a pivot in each of its columns.

Answers to Test Question: (i) A is row equivalent to I,. (if) There exists an nXn matrix D such
that AD = I. (iii) The columns of A span R". (iv) The equation Ax = 0 has only the trivial
solution. (v) The linear transformation x — Ax maps R" onto R".

Another answer for (iii) is: The columns of A are linearly independent. Similarly, (v) has
another answer. But the following statement is unacceptable as one of the answers to the test
question:

A is invertible if and only if the columns of A span R".

This statement is itself a (true) theorem (assuming A is square), not a statement that is true
precisely when A is invertible.

Mastering Linear Algebra: Reviewing and Reflecting

Two important steps to mastery of linear algebra are periodic review of earlier material and
reflection on its relation to new material. When you reread the basic conceptual material
from Chapter 1, you may be surprised to discover new insights that you missed earlier.
Your broader experience now should give you a better framework within which to
understand concepts such as spanning and linear independence.

Compare the review you conducted in Section 1.9 (see the Study Guide appendix to that
section) with the three-part table at the beginning of this Study Guide section. (You did carry
out that review, didn’t you?) The left and right columns of the table should match some of
your “existence” and “uniqueness” statements, respectively.

If your review in Section 1.9 was thorough, you probably anticipated some of the content
of the Invertible Matrix Theorem. Existence and uniqueness threads run through the fabric of
linear algebra, and they intertwine when related to square matrices (the middle column of the
table). A good review procedure now is to expand the table to include references to theorems,
examples, and counterexamples. This will occupy several pages. The process of constructing
this table is what will help you most.
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MATLAB inv, cond, and hilb

Determining whether a matrix is invertible is not always a simple matter. A fast and fairly
reliable method is to use the command inv(A), which computes the inverse of A. A
warning is given if the matrix is singular (noninvertible) or nearly singular.

For Exercises 41-44, the command cond (A) computes the condition number of a
matrix A, using what are called the singular values of A (discussed in Section 7.4.) To
perform the experiment described in Exercise 42, you can use the following MATLAB
instructions

x=rand(4,1); b=A*x; xl=inv(A)*b; x-xl

Use format long. Displaying the value of x—x1 is the best way to compare x and x1.
Press the up-arrow key (T) to repeat this instruction line.

For Exercise 45, the commands format rat; hilb(n) produce the nxn Hilbert
matrix, with its entries displayed as rational numbers. Enter format short to return to
the standard display of numbers as decimals.

2.4 PARTITIONED MATRICES

The ideas in this section are fairly simple. However, mark them for future reference, because you
are likely to use this notation after you leave school. Partitioned matrices arise in theoretical
discussions in essentially every field that makes use of matrices. Here are two examples.
1. The modern state space approach to control systems engineering depends on matrix
calculations.' The problem of determining whether a system is controllable amounts to
calculating the number of pivot positions in a controllability matrix

[B AB A’B --- A"'B]

where A is nXn, B has n rows, and the matrices come from an equation of the form (8) in the
discussion preceding Exercise 19.

! An understanding of control systems is important in the design of filtering circuitry, robots, process control systems, and spacecraft.
Thus a control systems course is often part of the undergraduate curriculum for electrical, mechanical, chemical, and aerospace
engineering. See Control Systems Engineering, 3rd ed., by Norman S. Nise, John Wiley & Sons, New York, 2000.
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2. Discussions of modern algorithms and computer software design for scientific computing
naturally use the “language” of partitioned matrices. For instance, common techniques for
parallel processing of large matrix calculations, such as slicing and crinkling, are described
with partitioned matrices.? Also, the standard computer science reference on matrix
calculations relies heavily on partitioned matrices.’

KEY IDEAS

The columm-row evaluation of AB is the last of five different “views” of matrix multiplication.
All five are special cases of the block matrix version of the row-column rule for matrix
multiplication. Here they are:

(1) The definition of Ax amounts to block multiplication of AB where B has only one column:
‘xl

Ax=[a/l---la ]l | |=[xa, +-—+xa,]

X

n

(2) Partition A as one row and one column. Then the definition of the usual product AB is a
row-column block product:

AB=A[b, b, |--b,1=[Ab, | Ab, |---| Ab ]

(3) Likewise, we observed in Section 2.1 that if B is partitioned as one row and one column,

then
row,(A) row,(A)B
B row,(A) B= row,(A)B
row, (A) row, (A)B

(4) The next display can be viewed either as just the standard row-column rule in which each
entry of AB is computed as the product of a row of A and a column of B, or as a multi-
plication of block matrices (with A having only one column of blocks and B having only one
row of blocks):

2 Parallel Algorithms and Matrix Computations, by Jagdish J. Modi, Oxford Applied Mathematics and Computing Science Series,
Clarendon Press, Oxford, 1988, pp. 73-75.

* Matrix Computations, 3rd ed., by Gene H. Golub and Charles F. Van Loan, The Johns Hopkins Press, Baltimore, 1996.
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[ row,(A)
row,(A)
AB = [col,(B) col,(B) --- col (B)]
_rowm(A)
[ row (A)col,(B) -+~ row,(A)col (B) - row,(A)col,(B) ]
=| row,(A)col,(B) - row,(A)col,(B) - row,.(A)colp(B)
_rowm(A)coll(B) -+ row, (A)col (B) - rowm(A)colp(B)_

(5) The final display is the column-row expansion of AB (Theorem 10 in this section). In this
view, AB is expressed as a sum of outer products of the form uv’, with u a column of A and
v’ arow of B. But the display can also be viewed as the block version of the row-column
product in which A has one row (of blocks) and B has one column (of blocks):

row,(B)
AB=[col,(A) col,(A) --- col, (A)]| row,(B)

row  (B)

=col,(A)-row,(B)+---+col, (A)-row, (B)

You might say that the row-column rule computes AB as an array of inner products (view 4
above), while the column-row expansion displays AB as a sum of arrays (view 5).

SOLUTIONS TO EXERCISES

1. Apply the row-column rule as if the matrix entries were numbers, but for each product (such
as EA below), always write the entry of the left block-matrix on the left.

I 0|A B IA+0C IB+0OD A B
E 1|C D| |EA+IC EB+ID| |EA+C EB+D

This must be EA, not AE.
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I 0 0 I
Checkpoint: Notice in Exercises 1 and 3 that [E I} and [1 0] act as block-matrix

generalizations of elementary matrices. What sort of 2X2 block matrix is the appropriate
generalization of an elementary matrix that acts as a scaling operation? (Answer this carefully.)

7. Compute the left side of the equation:

A Z
X 00 0 0le XA+0+0B XZ+0+0
Y 0 I | YA+O0+IB YZ+0+I

Set this equal to the right side of the equation:

XA XZ I 0 that XA=1 XZ =0
= so tha
YA+B YZ+1 0 17 YA+B=0 YZ+I=1I

Since the (1, 1)-blocks are equal, XA = 1. Since X and A are square, the IMT implies that A and X
are invertible, and hence X = A™". From the (1, 2)-entries, XZ = 0. Since X is invertible, Z must
be 0. Therefore, the (2, 2)-entries give no new information. Finally, from the (2, 1)-entries,

YA + B=0and YA = -B. Right-multiplication by A™' shows that ¥ = -BA™". The order of the
factors for Y is crucial.

Study Tip: Problems such as 5-10 make good exam questions. Remember to mention the
IMT when appropriate, and remember that matrix multiplication is generally not commutative.

11. a. See the subsection Addition and Scalar Multiplication.
b. See the paragraph before Example 3.

13. You are asked to establish an “if and only if” statement. First, suppose that A is invertible,
E

G

B O0\|D E| |BD BE| |I O
0 C||F G| |cF ¢cG| |0 I
Since B is square, the equation BD = [ implies that B is invertible, by the IMT. Similarly,

CG = I implies that C is invertible. Also, the equation BE = 0 implies that E = B'0 = 0.
Similarly F = 0. Thus

el L
0 C E G| (o !

D
and let A™ =[F } Then
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This proves that A is invertible only if B and C are invertible. For the “if” part of the
statement, suppose that B and C are invertible. Then (*) provides a likely candidate for A™
which can be used to show that A is invertible. Compute:

o ols S o

Since A is square, this calculation and the IMT imply that A is invertible. (Don’t forget this
final sentence. Without it, the argument is incomplete.) Instead of that sentence, you could
add the equation:

Noels Y el )

The matrix equation (8) in the text is equivalent to
(A-sl)x+Bu=0 and Cx+u=y
Rewrite the first equation as (A — s/,)x = —Bu. When A - s/, is invertible,
x = (A~ sL) ' (-Bu) = ~(A - s1,)'Bu
Substitute this formula for x into the second equation above:
C(+A-sl)'Bu)+u=y, sothat Lu—CA-sl,) Bu=y
Thusy = ([, — C(A — sI)"'Byu. If W(s)=1,,— C(A - sI,)"'B, then y = W(s)u. The matrix
W(s) is the Schur complement of the matrix A — sl, in the system matrix in equation (8).
To prove a statement by induction, a good first step is to write the statement that depends on
n but exclude the phrase “for all n,” and label the statement for reference:

The product of two nXn lower triangular matrices is lower triangular. (*)

Second, verify that the statement is true for n = 1. In this particular case, (*) is obviously
true, because every 1X 1 matrix is lower triangular. The “induction step” is next.

Suppose that (*) is true when » is some positive integer k, and consider any (k+1)X(k+1)
lower-triangular matrices A; and B,. Partition these matrices as

7 T
A1=a 0 , Bl=b 0
v A w B

where A and B are kxk matrices, v and w are in R, and a and b are scalars. Since A, and B,
are lower triangular, so are A and B. Now

4B = o llp 0 _|ab+ 0w a0" +0'B _ ab 0
Uy Allw B| | vb+Aw VO +AB | |bv+Aw AB
Assuming (*) is true for n = k, AB must be lower triangular. The form of A;B; shows that it,

too, is lower triangular. Thus the statement (*) about lower triangular matrices is true for
n =k +1 if it is true for n = k. By the principle of induction, (*) is true for all n > 1.
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25. First, visualize a partition of A as a 2X2 block-diagonal matrix, as below, and then visualize

the (2,2) block-entry A, itself as a block-diagonal matrix. That is,

1 210 0 O]
35 00 210 0
— A 0 2 0
A=10 02 0 O|= , where A,=|0|7 8=
0|4y, 0 B
0 0({0 7 8 0|5 6
10 0|0 5 6]
o . . —1 1 6 —8 3 “4 .
Observe that B is invertible and B~ = — = . By Exercise 13, the block
2(-5 7 2.5 35
diagonal matrix A, is invertible, and
S5 0 0
A, = =0 3 4
0 -25 35

2
Next, observe that A,; is also invertible, with inverse [ J . By Exercise 13, A itself is

invertible, and its inverse is block diagonal:

(=5 2 0 (=5 2 0 0 0]
L 3 -1 3 -1 0 0 0
-1 All O
Al = ~ = 5 0 0l=l0 0 5 0 0
0 A
2 0 0 3 -4 0 0 0 3 -4
I 0 -25 35 |0 0 0 -25 35]

A somewhat less detailed solution would be to write (without formal proof) that the result of
Exercise 13 seems to generalize to any block-diagonal matrix. Such a matrix A is invertible
if and only if each of the diagonal blocks is invertible, and the inverse of A is the block-
diagonal matrix formed from the inverses of the diagonal blocks. View the 5X5 matrix in
this exercise as a 3X3 block matrix:

1 2(0|0 O
3 5/0/0 0] [4, O O
A=l0 o[2]0 ol=| 0 4, O
0 0l0|7 8/ |0 0 A,
0 0[0|5 6]

Finish by inverting each of the diagonal blocks and use the results to assemble A~ as above.
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E O 1 0
Answer to Checkpoint: The block diagonal matrices {O I:‘ and I:O E} are obvious choices.

Less obvious is the requirement that E be invertible, in order to make these block matrices invertible.
(Recall that the invertibility of elementary matrices was essential for the theory in Section 2.2.)

Appendix: The Principle of Induction

Consider a statement “(*)” that depends on a positive integer n, as in Exercise 23. To prove
“by induction” that (*) is true for all positive integers, you must prove two things:

(a) Statement (*)is true forn=1.

(b) (The induction step) If (*) is true for any positive integer n = k, then (¥*) is also
true for the next integern =k + 1.

A property or axiom of the real number system, called the principle of mathematical
induction, says that if (a) and (b) are true, then (*) is true for all integers n > 1. This is
reasonable, because if (*) is true for n = 1, then (b) shows that (*) is true for n = 2.
Applying (b) again with n = 2, we see that (¥) is true for n = 3. Applying (b) repeatedly, we
see that (*) is true for 2, 3,4, 5, . ...

MATLAB Partitioned Matrices

MATLAB uses partitioned matrix notation. For example, if A, B, C, D, E, and F are
matrices of appropriate sizes, then the command

M= [ABC; DE F]

A B
D E

of the partition that was used to create M. For instance, although B was the (1, 2)-block
used to form M, the number M(1, 2) is the same as the (1, 2)-entry of A.

C
creates a larger matrix of the form M =|: F} . Once M is formed, there is no record

2.5 MATRIX FACTORIZATIONS

In a sense, Section 2.5 is the most up-to-date section in the text, because matrix factorizations lie
at the heart of modern uses of matrix algebra. For instance, they are indispensable for the
analysis of computational algorithms and research in parallel processing. The text focuses here
on triangular factorizations, but the exercises introduce you to other important factorizations that
you may encounter later.
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KEY IDEAS

When a matrix A is factored as A = LU, the data in A are preprocessed in a way that makes the
equation Ax = b easier to solve. Write LUx=b, or L(Ux) =b, and let y = Ux. Solve Ly =b fory
and then solve Ux =y for x. The two-step process is fast when L and U are triangular.

Finding L and U requires the same number of multiplications and divisions as row reducing A
to an echelon form U (about n°/3 operations when A is nXn). After that, L and U are available for
solving other equations involving A. The key to finding L is to place entries in L in such a way
that the sequence of row operations reducing A to U also reduces L to the identity. In this case,
LU must equal A. (See the top of page 145.)

The text discusses how to build L when no row interchanges are needed to reduce A to U. In
this case, L can be unit lower triangular. An appendix below describes how to build L in
permuted unit triangular form when row interchanges are needed (or desired, for numerical
reasons).

SOLUTIONS TO EXERCISES
1 0 0 3 -7 2 -7
L z={-1 1 o|,Uu={0 -2 -1|, b=| 5| First, solve Ly =b.
2 -5 1 0 0 -1 2

[L bl={-1 1 0 5}~10 1 0 —2! Theonlyarithmeticis in column 4

10 0 -7 -7
~0 1 0 =2, soy=|-2]|.
00 1 6 6

Next, solve Ux =y, using back-substitution (with matrix notation).

-7 =2 -7 3 -7 =2 -7 3 -7 0 -19
w yl=|0 -2 -1 2|~]0 -2 -1 2(~j0 -2 0 -8
0 0 -1 6 0 0 1 -6 6 01 -6

3 -7 0 -19 30 0 9 1 0 0 3
~[0 1 0 4(~j0 1 0 4(~f0 1 0 4
0 0 1 -6 0 0 1 -6 0 0 1 -6

Sox=(3,4,-6).

Checkpoinr:  Exercise 12 in Section 2.2 shows how to compute A™'B by row reduction. Describe
how you could speed up this calculation if you have an LU factorization of A available (and A is
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2 5
7. Place the first pivot column of [ _4} into L, after dividing the column by 2 (the pivot),

then add 3/2 times row 1 to row 2, yielding U.

T o

-3
+2 +7/2
Vol ]
1 1 0
, L=
~3/2 1 -3/2 1
® 3 -5 311t 3 -5 -3][1 3 -5 -3
—1—5840@310——231U
~ ~ = ivots!
By 2 5 7170 =10 15 5|70 o No more pivot
0

-1

4|10

-2 2 Use the last two columns of I,

- to make L unit lower triangular.

+1 =2

Lo l

1 1 0 0 O
~1 1 -1 1 0 0
4 51 e s 1 o
-2 -1 0 1 -2 -1 0 1

19. A good answer will require a written paragraph or two. If you have not tried to write your
answer, do so now, without reading the solution below. Explain how you would row reduce
[A 1], knowing that A is lower triangular. Your answer to this question should contain some
of the ideas shown below, although your wording might be quite different.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.




EB Brief Table of Contents || EB Table of Contents

2.5  Matrix Factorizations 2-23

Let A be a lower-triangular nXn matrix with nonzero entries on the diagonal, and consider
the augmented matrix [A [].

a. The (1, 1)-entry can be scaled to 1 and the entries below it can be changed to 0 by adding
multiples of row 1 to the rows below. This affects only the first column of A and the first
column of 1. So the (2, 2)-entry in the new matrix is still nonzero and now is the only
nonzero entry of row 2 in the first n columns (because A was lower triangular).

The (2, 2)-entry can be scaled to 1, and the entries below it can be changed to 0 by
adding multiples of row 2 to the rows below. This affects only columns 2 and n + 2 of
the augmented matrix. Now the (3, 3) entry in A is the only nonzero entry of the third
row in the first n columns, so it can be scaled to 1 and then used as a pivot to zero out
entries below it. Continuing in this way, A is eventually reduced to /, by scaling each row
with a pivot and then using only row operations that add multiples of the pivot row to
rows below.

b. The row operations just described only add rows to rows below, so the / on the right in
[Al I] changes into a lower triangular matrix. By Theorem 7 in Section 2.2, that matrix is
A
21. Suppose A = BC, with B invertible. Then there exist elementary matrices E, ..., E,
corresponding to row operations that reduce B to I, in the sense that E,---E\B=1. Applying
the same sequence of row operations to A amounts to left-multiplying A by the product
E,---E,. By associativity of matrix multiplication,

E,EA=E,EBC=IC=C

so the same sequence of row operations reduces A to C.

25. A=UDV. Since U and V7 are square, the equations U "U = I and V 'V = [ imply that U and
VT are invertible, by the IMT, and hence U ™' = U " and (V') = V. Since the diagonal
entries 0,,...,0, in D are nonzero, D is invertible, with the inverse of D being the diagonal
matrix with o;",...,0;" on the diagonal. Thus A is a product of invertible matrices. By
Theorem 6, A is invertible and A~ = (UDV "Y' = (VIY'D'U = vD U ™.

Answer to Checkpoint: If A is an invertible nXn matrix, with an LU factorization A = LU, and if
B is nXp, then A™'B can be computed by first row reducing [ B] to a matrix [/ Y] for some Y
and then reducing [U Y] to [/ A™'B]. One way to see that this algorithm works is to view A™'B

as [A™b, - A7b,] and use the LU algorithm to solve simultaneously the set of equations
Ax=b, ...,Ax=b,. MATLAB uses this approach to compute A™'B (after first finding L and U).
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Appendix: Permuted LU Factorizations

Any mXn matrix A admits a factorization A = LU, with U in echelon form and L a permuted
unit lower triangular matrix. That is, L is a matrix such that a permutation (rearrangement)
of its rows (using row interchanges) will produce a lower triangular matrix with I’s on the
diagonal.

The construction of L and U, illustrated below, depends on first using row replacements to
reduce A to a permuted echelon form V and then using row interchanges to reduce V to an
echelon form U. By watching the reduction of A to V, we can easily construct a permuted unit
lower triangular matrix L with the property that the sequence of operations changing A into U
also changes L into I. This property will guarantee that A = LU. (See the paragraph before
Example 2 in the text.)

The following algorithm reduces any matrix to a permuted echelon form. In the algorithm
when a row is covered, we ignore it in later calculations.

1. Begin with the leftmost nonzero column. Choose any nonzero entry as the pivot.
Designate the corresponding row as a pivot row.

2. Use row replacements to create zeros above and below the pivot (in all uncovered
rows). Then cover that pivot row.

3. Repeat steps 1 and 2 on the uncovered submatrix, if any, until all nonzero entries are
covered.

This algorithm forces each pivot to be to the right of the preceding pivots; when the rows
are rearranged with the pivots in stair-step fashion, all entries below each pivot will be zero.
Thus, the algorithm produces a permuted echelon matrix. Whenever a pivot is selected, the
column containing the pivot will be used to construct a column of L, as we shall see.

As an example, choose any entry in the first column of the following matrix as the first
pivot, and use the pivot to create zeros in the rest of column 1. We choose the (3, 1)-entry.

r call this column a

1 -1 5 -8
2 1 4 9
A=l@ 8 4 o
2 3 0 -5
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Row 3 is the first pivot row. Choose the (2, 2)-entry as the second pivot, and create zeros in
the rest of column 2, excluding the first pivot row.

r call this column b

<— 2nd pivot row

<— st pivot row

Cover row 2 and choose the (4, 4)-entry as the pivot. (The row index of the pivot is relative
to the original matrix.) Create zeros in the other rows (in the pivot column), excluding the

first two pivot rows.
r call this column ¢ column d

0 0 0 0 <— 4th pivot row
0 @ ~6 9 -3 | ¢ 2ndpivot row

8 -4 (0 -8| ¢ lstpivotrow
0 0 0 @ 6 | < 3rd pivot row

~

02 6
Let V denote this permuted echelon form, and permute the rows of V to create an echelon

form. The first pivot row goes to the top, the second pivot row goes next, and so on. The
resulting echelon matrix U is

4 8 4 0 -8
0 3 -6 9 3
=U
0 0 0 -2 6
0 0 0 0 5

The last step is to create L. Go back and watch the reduction of A to V. As each pivot is
selected, take the pivot column, and divide the pivot into each entry in the column that is not
yet in a pivot row. Place the resulting column into L. At the end, fill the holes in L with
Zeros.
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Column: a b c d

+4 +3 +-2 +-5

l d J l

174 -1 -1/2 1 174 -1 —1/2 1

-1/2 1 L__-q/z 1 0 0
] T 1 0 0 0

172 -1/3 1 1/2 -1/3 1 0

You can check that LU = A. To see why this is so, observe that L is constructed so the
operations that reduce A to V also reduce L to a permuted identity matrix. Since the pivots
in L are in exactly the same rows as in V, the sequence of row interchanges that reduces V to
U also reduces the permuted identity matrix to /. Thus, the full sequence of operations that
reduces A to U also reduces L to /, so that A = LU. (See argument before the box on page
134 of the text.)

The next example illustrates what to do when V has one or more rows of zeros. The
matrix is from the Practice Problem for Section 2.5. For the reduction of A to V, pivots were
chosen to have the largest possible magnitude (the choice used for “partial pivoting”). Of
course, other pivots could have been selected.

A= 2 -7 -3 9|~|0 -4 -4/3 19/3|~
4 -2 -2 -1 0 4 4/3 -19/3

-6 3 3 4] [0 €O -2 12

0O 0 0 0
@ -9 -5 8 [« 1st pivot row
~V=[0 0 0 0 ~U=
0 0O 0 @ < 3rd pivot row
0 £6) -2 21|« 2ndpivotrow
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The first three columns of L come from the three pivot columns above.

21 [-11 [-5/3
®

2| || [-5/3
o | 4] |
6] 18 L
+6 +-6 +5/3
¥ 3 3
[1/3 1/6 -1
1

173 2/3 -l
2/3 =213 1
-1 1

b
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< 1st pivot row

<— 3rd pivot row

<— 2nd pivot row

2-27

The matrix L needs two more columns. Use columns 1 and 3 of the 5X5 identity matrix to

place I’s in the “nonpivot” rows 1 and 3. Fill in the remaining holes with zeros.

[1/3
1/3
2/3

-1

1/6

0

2/3
-2/3

@

-1
0

@

1 0 ]
0 0
-1 0 1 |~L=
0 0
0 0 0 |

1/3

0 0
1 0
-2/3 1
176 -1
2/3 -1

0

o - O O

-0 © O O

Row reduction of L using only row replacements produces a permuted identity matrix.
Moving the 1’s in the “pivot rows” 2, 5, and 4 into rows 1, 2, and 3 of the identity requires
the same row swaps as reducing V to U. If a further row interchange on the permuted
identity is required, it will involve the bottom two rows, which came from the “nonpivot”
rows 1 and 3. A corresponding interchange of the bottom two rows of U has no effect on U
(and the product LU is unaffected). As a result, L is reduced to I by the same operations that

reduce A to V and then to U. Check that A = LU.
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MATLAB LU Factorization and the Backslash Operator \

Row reduction of A using the command gauss will produce the intermediate matrices
needed for an LU factorization of A. You can try this on the matrix in Example 2, stored as
Exercise 33 in the Laydata Toolbox. The matrices in (5) on page 145 in the text are
produced by the commands

U=gauss (A, 1) U has 0’s below the first pivot
U=gauss (U, 2) Now U has 0’s below pivots 1 and 2
U=gauss (U, 3) The echelon form

You can copy the information from the screen onto your paper, and divide by the pivot
entries to produce L as in the text. For most text exercises, the pivots are integers and so are
displayed accurately.

To construct a permuted LU factorization, use U=gauss (U, r,v), where r is the
row index of the pivot and v is a row vector that lists the rows to be changed by replacement
operations. For example, if A has 5 rows and the first pivot is in row 4, use
U=gauss(A,4,[1 2 3 5]). If the next pivot is in row 2, use
U=gauss (U,2, [1 3 5]). To build the permuted matrix L, use full columns from A or
the partially reduced U, divided by the pivots. Then change entries to zero if they are in a
row already selected as a “pivot row."

The MATLAB command [L Ul=lu(A) produces a permuted LU factorization for
any square matrix A, but it does not handle the general case.

When A is invertible, the best way to solve Ax = b with MATLAB is to use the
backslash command x=A\b. MATLAB proceeds to compute a permuted LU factorization
of A and then use L and U to compute X. The alternative command
x=inv (A) *b is less efficient and can be less accurate. The command inv (&) usesthe
LU factorization to compute A™" in the form U™'L™".

2.6 THE LEONTIEF INPUT-OUTPUT MODEL

If you are in economics, you definitely will need the material in this section for later work.
Although most of the discussion concerns economics, the formula for the inverse of 7 — C is used
in a variety of applications.

STUDY NOTES

The power of Leontief’s model of the economy is that it compresses hundreds of equations in hundreds
of variables into the simple matrix equation (/ — C)x = d. You should know how to construct the
consumption matrix C and know the algebra that leads from the matrix equation x = Cx + d to its
solution x = ( — C)"'d, under the assumption that the column sums of C are less than one.
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You may need to know the formula (8) for ( - O on page 155. (Check with your instructor.)
The formula is analogous to the formula for the sum of a geometric series of positive numbers:

14+r+r+r +---=(1-r)" when Iri<l.

SOLUTIONS TO EXERCISES

1. Fill in C one column at a time, since each column is a unit consumption vector for one
sector. Make sure that the order of the sectors is the same for the rows and columns of C.
From the way the data are presented, we use the order: manufacturing, agriculture, and
services. Read the sentences carefully, to get the data arranged correctly.

Purchased Unit consumption vectors
from: Manuf. Agric. Serv.
Manufacturing 10 .60 .60
Agriculture 30 .20 .00
Services .30 .10 .10

The intermediate demands created by a production vector X are given by Cx. If agriculture
plans to produce 100 units (and the other sectors plan to produce nothing), then the
intermediate demand is

.10 .60 .60 0] [60
Cx=|.30 .20 .00|[100|=|20
30 .10 .10]| ol |10

-

6 .2 30

a. The production required to satisfy the demand d, is the vector x; such that (/ - O)x; = d,,
namely, x; = (/ - C)'ldl. From Exercise 5,

1 -5 1.6 1
I-C= and (I-C)'=
-6 .8 12 2

so
1.6 1)1 1.6
xl = =
1.2 2}|0 1.2
51 . . S
b. For the final demand d, = 30’ the corresponding production X, is given by

x, =(I-C)'d, = 1.6 11{]|51 _ 111.6
1.2 2|30 121.2

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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120

Observe from (a) and (b) that X, = X + X;. Also, as pointed out in the text, d, = d + d;.
The sum of the production vectors x and x; gives the production needed to satisfy the
sum of the demands d and d,. This is expressing the linearity between final demand and
production. This relation is true in general, because

x,=(I-0)"'d,=(I-C)"'(d+d,)

110
c. From Exercise 5, the production x corresponding to the demand d is given by x = [ ] .

=(I-0)'d+(-0C)'d,

=X+X,

Warning: In Exercise 9, don’t multiply the consumption matrix C by 10, to get rid of the
decimals. That changes the equation Cx = x + d into 10Cx = x + d, whose solution is different.
However, you may multiply the augmented matrix [(I - C) 0] by 10, because the solution of an
equation is not affected when both sides are multiplied by a nonzero number.

11. Following the hint in the text, you should obtain p’x = p’Cx + v'x (from the price equation).
Then, from the production equation, p'x = p’(Cx + d) = p’Cx + p’d. Equate the two
expressions for p'x to yield p’d = v'x.

Another solution: Take transposes in the price equation,
p =(Cp) +v =p'C+v sovi=p'-p'C
and right-multiply by x to obtain
vx = pTX - pTCX = pT(I -Ox= pTd From the production equation
13. The data for this exercise are in the Laydata Toolbox. To solve the equation (/ - C)x = d,
row reduce the augmented matrix [(/ — C) d] rather than compute ( - C)‘l. (Another

reasonable solution method is suggested in Exercise 15.) The numerical solution is given in
the text.

2.7  APPLICATIONS TO COMPUTER GRAPHICS

According to my students over the past few years, this section is one of the most interesting
application sections in the text, because it shows how matrix calculations, performed millions of
times per second, can create the illusion of 3D-motion on a computer screen or in a movie theater.
Of course, one short section cannot begin to indicate the vast scope of computer graphics. I
encourage you to look at the book by Foley et al., referenced in your text. Chapters 5, 6, and 11
are filled with matrices! The rest of the 1100 pages in the book contains lots of interesting
mathematics, detailed discussions of computer algorithms, and scores of spectacular (in some
cases, almost unbelievable) color plates.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.




EB Brief Table of Contents || EB Table of Contents

2.7 + Applications to Computer Graphics 2-31

STUDY NOTES

When a graphical object is represented by a set of polygons, each vertex can be stored as one
column of a data matrix D. When a linear transformation T acts on the graphical object, the
transformed object is determined by the images of the vertices, because each line segment
between vertices is transformed into a line segment between the image vertices. If A is the matrix
of the transformation T, then the image vertices are the columns of the matrix AD, by definition
of the product AD.

Homogeneous coordinates are needed to make translation act as a linear transformation.

. . . I p|x X+p
Translation by a vector p is illustrated by the computation l:oT Jlil:| =|i !
transformations are composed, the order of matrix products is important. See Example 6.

For 3D-graphics, homogeneous coordinates are used to compute perspective projections. The
text only considers a perspective projection whose center of projection is at (0, 0, d). The matrix
for this is displayed just before Example 8. Check with your instructor whether you should
memorize this matrix. Examples of good test questions can be found in Exercises 1-8 and 13-16.

} . When several

SOLUTIONS TO EXERCISES

)

5

1
1. From Example 5, the matrix | has the same effect on homogeneous coordinates

— O O

1
0 0

1 .25
for R? that the matrix {0 ) } of Example 2 has on ordinary vectors in R?. Partitioned

matrix notation explains why this is true. Let A be a 2X2 matrix. The following diagram
0

A
shows that the action of [OT i

T > AX Coordinates in R?

i
i
X (A 0 x] [Ax+017] [Ax
1 — OT 111 - OTx +11 = 1 Homogenous coordinates
7. A 60% rotation about the origin in R? is given by

cos60° —sin60°] | 1/2 —/3/2
sin60°  cos60° | {372 1/2

X
} on lililcorresponds to the action of A on x.

6
} , SO the 3 X3 matrix for rotation about [8] is
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1 0 6] /2 =/3/2 o1 0 6
01 8(1/3/2 172 00 1 8
0 01 0 0o 110 0 1
Finally, Then, rotate First,
transiate about the translate
back origin by -p

1 0 6] 172 —\3/2 =3+43 172 —3/2 3+43
=0 1 8] .3/2 112 —4-3J3|=[3/2 172 4-33
0 01 0 0 1 0 0 1

13. The answer is given in the text. Notice that the order of the transformations is important. If
the translation is done first (that is, if the matrix for the translation is on the right), then

A O]l T p| [AI+007 Ap+0-1| [A ApiA p
0" 1/0" 1] [0'7+10" 0"p+1-1] [0 1 0" 1

Here, 0" is a zero row vector, and so the outer product 007 is a zero matrix.

19. The matrix P for the perspective transformation with center of projection at (0, 0, 10) and the
data matrix D using homogeneous coordinates are shown below. The data matrix for the
image of the triangle is PD:

10 0 0][42 6 2] [42 6 2

01 00|12 4 2| (12 4 2
PD= =

00 004 260 00

00 -1 1/1 1 1] |6 8 4

The R’ coordinates of the image points come from the top three entries in each column,
divided by the corresponding entries in the fourth row.

42/6 6/8 2/4 7 75 5
1.2/6 4/8 2/4|=12 5 5
0 0 0 0 0 O
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2.8  SUBSPACES OF R”

This section presents the basic ideas from Sections 4.1—4.3 that are needed for Chapters 5 to 7.
You should study this section and the next only if your course will omit most or all of Chapter 4.
If you reviewed carefully after Sections 1.9 and 2.3, you should be well prepared for the new
material here.

KEY IDEAS

There are four fundamental concepts in this section: subspace, column space, null space, and
basis. The best mental image for a subspace is a plane in R® through the origin. (See Fig. 1 on
page 168.) The distinguishing feature of such a plane is that the sum of any two vectors in the
plane is another vector in the same plane (by the parallelogram rule), and any scalar multiple of
any vector in the plane is also in the plane. Other subspaces of R’ are lines through the origin, the
zero subspace, and R itself.

The main examples of subspaces of R" are column spaces (defined explicitly) and null spaces
(defined implicitly). Example 6 is probably the most important example in the section. It
illustrates a type of computation needed frequently in Chapters 5 and 7.

Actually, there really is not so much to learn here, because you have already been using these
concepts for several weeks, without the terminology. (For instance, the notion of a basis is a
combination of the ideas of linear independence and spanning.) But you do need to know the
precise definitions of these four terms, and you must move beyond mechanical computations.
See “Mastering Linear Algebra Concepts” at the end of this section for help.

SOLUTIONS TO EXERCISES

1. The set is closed under sums but not under
multiplication by a negative scalar. A
counterexample to the subspace condition is
shown at the right. You may also give an
algebraic example, such as x = (2, 1) and
c=-1. Thenxisin Hand cx = (-2,-1) is
not in H. Ask your instructor what type of
counterexample would be acceptable if this
question were on a test.

7. a. There are three vectors, vy, V,, and vs, in the set {v,, v,, v3}.
b. There are infinitely many vectors in Span{v,, v,, v3} = Col A.
¢. Deciding whether p is in Col A requires calculation:
2 3 4 6|12 -3 4 6| |2 -3 4 6
[A p]~|-8 8 6 -10|~{0 4 -10 14|~|0 4 -10 14
6 -7 -7 11 0 2 5 -7 0 o0 0 O

The equaﬁon A’%ﬁp!’rlg‘g%@%&%l Bé%?s{}ﬁ igdgoins—\i\gsqu IAIﬁ Tights reserved.
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13.
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To produce a vector in Col A, select any column of A. For Nul A, solve the equation Ax = 0.
(Include an augmented column of zeros, to avoid errors.)

3 2 1 -5 0] [3 2 1 -5 0] 3 2 1-5 0
-9 4 1 7 0|~|0 2 4 -8 0|~|0 2 4 -8 0
9 2 -5 1 0] |0 4 -8 16 0/ {0 0 0 0 0

-

'3 2 1 -5 0] [1 0 -1 1 0 X - x+ x, =0
~[0 1 2 -4 0|~|0 1 2 -4 0f, x, +2x, —4x, =0
0 0 0 0 0] OO 0 0O 0=0

The general solution is x; = x3 — x4, and x, = —2x3 + 4x4, with x; and x, free. The general
solution in parametric vector form is not needed. All that is required here is one nonzero
vector. So choose any values for x3 and x4 (not both zero). For instance, set x; =1 and x;=0
to obtain the vector (1,-2, 1, 0) in Nul A. Another choice, setting x; = 0 and x; = 1, might be
(-1,4,0,1).

No. The vectors cannot be a basis for R’ because they only span a plane in R®. Or, point out
1 -5

that the columns of the matrix | 1 -1/ cannot possibly span R’ because the matrix cannot
-2 2

have a pivot in every row. So the columns are not a basis for R’. Be careful nor to say that
the vectors are a basis for R>. They are not in R?, because they each have three entries.

Warning: R’ is nor a subspace of R’. The notation R’ refers explicitly to lists of numbers with
exactly two entries. R’ is the set of all lists of three entries from R.

21.

23.

a. Carefully read the definition at the beginning of the section. What is missing?
b. See the paragraph before Example 4.
c. See Theorem 12. The numbers m and » need not be equal.
d. See Example 5.
e. See the first part of the solution of Example 8.
4 5 9 2 1 2 6 -5

A=|6 5 1 12,~{0 1 5 -6|. The echelon form identifies columns 1 and 2 as
3 4 8§ -3 0 0 0 O
4115
the pivot columns. A basis for Col A uses columns 1 and 2 of A: { 6|,| 5|. This is not the
3|14

only choice, but it is the “standard” choice. A wrong choice is to select columns 1 and 2 of
the echelon form. These columns have zero in the third entry and could not possibly

enerate the columns displayed in A.
g Eopyright © 2006 Pearson Addison-Wesley. All rights reserved.
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For Nul A, obtain the reduced (and augmented) echelon form for Ax = 0:

1 0 4 7 0 x, —4x, +7x, =0
0 1 5 -6 0]. Thiscorresponds to: x, + 5%, —6x, =0.
0 06 0 0 0 0=0
Solve for the basic variables and write the solution of Ax = 0 in parametric vector form:
X, 4x, - 7x, 4 -7 41|-7
X, -5x;, +6x, -5 6 ) -5
= = x, +x, . Basis for Nul A: ,
X, X 0
x, X, 0 1 0 1

Note: A basis is a set of vectors. For simplicity, the answers here and in the text list the vectors
without enclosing the list inside set brackets. Ask your instructor if this format is acceptable.

Warning: A common error is to confuse Col A with Nul A. This happens easily when the defi-
nitions of these spaces are not known precisely. Another error is to think that the nonpivot columns of
an mXn matrix A form a basis for Nul A. This is not true in general, even when m = n.

1 4 8 -3 -7 1 4 8 0 5§
-1 2 7 3 4 0 2 5 -1
25. A= ~ 0 .

-2 2 9 5 5 0O 0 0 1 4
369 -5 210 00 0 O

1 4 -3

. ~1 2
Basis for Col A: R s .
-2 2 5
3 6] -5

For Nul A, obtain the reduced (and augmented) echelon form for Ax = 0:

10 20 7 0] x - 2x, +75=0
a4 o]0 125 0 -5 00 n+25n  -5x=0
00 0 1 40 X, + 4x, =0
00 00 0 O 0=0
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(x] [ 26-7x ] [ 2] [-7]

X, -2.5x;, +.5x, -2.5 S
The solution in parametric vector form: | x; |= X, =x,| 1 |+x| O}.
X, —4x 0 —4

%] | X; i 0 | L 1]

T T

u v

Basis for Nul A: {u, v}.

Note: This solution illustrates how you can save time on an exam and not copy the ten
numbers in the basis vectors for your answer. Just label the basis vectors as u and v, and
write something such as “u and v form a basis for Nul A.” You might ask your instructor if
this is acceptable.

Warning: Do not become too attached to the symbols commonly used for certain ideas. For
instance, calling a vector “b” does not imply that it can only be the “right side” of an equation
Ax =b. In Exercise 29, you should be looking for a vector b such that Ab = 0.

29.

31.

37.

A simple construction is to write any nonzero 3X3 matrix whose columns are obviously
linearly dependent, and then make b a vector of weights that come from a linear dependence
relation among the columns. For instance, if the first two columns of A are equal, then
a,—a, +0a;=0. So,bcouldbe (1, -1, 0).

The text has an answer. An answer such as “Nul F is a subset of R*” says something true,
but not much. “Nul F is a subspace of R>” ought to be good for some partial credit, but this
fact does not use the information given about the column space of F. Probably the best pos-
sible answer is that Nul F is a nonzero subspace of R’.

[M] Use the command that produces the reduced echelon form in one step (ref or rref
depending on the program). By Theorem 13, the pivot columns of A form a basis for Col A.

3 -5 0 -1 3 1 0 25 -45 35
-7 9 4 9 -11 0 1 15 =25 15
-5 7 =2 5 -7 0 0 0 o0

0

0
3 -7 -3 4 0 0 O 0 0O
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For Nul A, obtain the solution of Ax = 0 in parametric vector form:

x  +25x; —45x, +35x% =0

x, + 1.5x, = 2.5x, + 1.5 =0
—2.5x, + 4.5x, — 3.5x,
~1.5x, + 2.5x, — 1.5x;

x;, x,, and x; are free

i

X

Solution: {x, =

x| [-2.5x +4.5%,-35x]
x, -1.5x, +2.5x, —1.5x
X=|x; |= Xy =X,
X, X,
| Xs | | Xs i L

Basis for Nul A: {u, v, w}.

[—2.5]
-1.5

+ X,

[4.57]

25

+ X

[-3.5]
-1.5

L 1]

Subspaces of R” 2-37

=X3U + X4V + XsW

Mastering Linear Algebra Concepts: Subspace, Column Space, Null Space, Basis

To form strong mental images of a subspace and the two main types of subspaces (Col A
and Nul A), prepare a review sheet that covers the following categories:

definitions

equivalent descriptions

geometric interpretations

special cases

examples and counterexamples
typical computations

contrast between Col A and Nul A

Pages 168 and 169

Sentence after Example 4, Theorem 12

Fig. 1, Sentence after Example 1

Examples 1, 2, 3, Exercises 1-4

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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Examples 4, Practice Problems 1 and 2, Exercises 5-14
Table on page 232 (in Chapter 4) and Examples on page 231
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The concept of a basis deserves a separate review sheet. Use the categories below. Also,
add notes to your review sheets for Span and Linear Independence that say when a spanning

set is a basis for a subspace Span{vy, ..., v,} and when a linearly independent set in R" is a
basis for R".

o definition Page 170

« geometric interpretations Fig. 3

« special cases Example 5

« examples and counterexamples Warning, page 172, Exercises 15-20

» typical computations Examples 6 and 8, Exercises 23-26

MATLAB ref

The command ref (A) produces the reduced echelon form of A. From that you can write
a basis for Col A or write the homogeneous equations that describe Nul A. (Don’t forget
that A is a coefficient matrix, not an augmented matrix.) MATLAB has another command,
rref, which works basically the same as ref but is often much slower, because it checks
for rational entries in the matrix.

2.9 DIMENSION AND RANK

This section and Section 2.8 cover the ideas from Chapter 4 that you need for Chapters 5-7.
There is no need to read this section if your course covers Chapter 4.

KEY IDEAS

The two fundamental concepts in this section are the dimension of a subspace and the rank of a
matrix. Coordinate vectors are used to give an intuitive understanding of dimension and a geo-
metric explanation of why a k-dimensional subspace of R” behaves as if it were R

The Basis Theorem ties together the concepts of dimension, subspace, linear independence,
span, and basis. So does the Invertible Matrix Theorem. Make sure you know the precise word-
ing of the statements in these theorems. If you desire extra review material, you might look at
Examples 2, 4, and 5 in Section 4.6 (pages 258 and 260).

The following table lists all statements that are in the Invertible Matrix Theorem at this point
in the course. They are arranged in the scheme used in Section 2.3 of this Study Guide. As
before, a few extra statements have been added to make the table more symmetrical.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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STATEMENTS FROM THE INVERTIBLE MATRIX THEOREM

Equivalent statements for
an mxn matrix A.

Equivalent statements for an
nXn square matrix A.

Equivalent statements for
an nXxp matrix A.

k. There is a matrix D such
that AD = 1.

*_ A has a pivot position in
every row.

h. The columns of A span
R™.

g. The equation Ax = b has
at least one solution for
each bin R”.

1.  The transformation

n. ColA=R"
o. dimCol A =m.

* rank A =m.

X — Ax maps R" onto R™.

a. A is an invertible matrix.

c. A has n pivot positions.

m. The columns of A form a
basis for R".

. The equation Ax =b has a
unique solution for each b
in R".

. The transformation
X > Ax is invertible.

*

*

o

. A is row equivalent to

. ATis invertible.

[y

p. rank A =n.

j-  There is a matrix C such
that CA=1.

*_ A has a pivot position in
every column.

e. The columns of A are
linearly independent.

d. The equation Ax =0
has only the trivial
solution.

f. The transformation
X > AX is one-to-one.

q. NulA={0}.
dim Nul A =0.
*, rank A =p.

With many concepts to learn in Sections 2.8 and 2.9, you need to be careful not to combine terms
in ways that are undefined, even though they may sound reasonable to you. For example, after
you finish your work on this section you should recognize that the following phrases (which have

appeared on my students’ papers) are meaningless: “the basis of a matrix,
basis,” and “the rank of a basis.”

SOLUTIONS TO EXERCISES

R ERTY

the dimension of a

3
1. If[x]g= {2:| , then x is formed from b, and b, using weights 3 and 2:

comeme{ ] 2]

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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7. The figure in the text suggests that w = 2h; — b, and x = 1.5b, + .5b,, in which case,

W], = 2 q 15
W]g = | [xlg = sl

To confirm [x]z, compute

3 -1 4
1.5b, +.5b, =1.5| [+.5 =| |=X
0 2 1

Note: The figures in the text for Exercises 7 and 8 display what Section 4.4 calls B-graph
paper. See pages 247-248.

Study Tip: Exercises 9-16 make good test questions because they do not require much arith-
metic. The problem of finding a basis for a null space is particularly important, because this skill
is needed throughout Chapters 5 and 7.

13. The four vectors span the column space H of a matrix that can be reduced to echelon form:
1 -3 2 4 1 3 2 4 1 -3 2 4 1 3 2 -4
-3 9 -1 5 0 0 5 -7 0 0 5 -7 0 O -7

2 -6 4 -3/ /0 0 0 5|0 00 5/ {0 o0 5

-4 12 2 7,10 010 -9} [0 O O 5] |0 O

S O W

Columns 1, 3, and 4 of the original matrix form a basis for H, so dim H = 3.

17. a. Check the definition of coordinates relative to a basis.
b. Dimension is defined only for a subspace. ¢. See the sentence before Example 3.
d. See the Rank Theorem. e. See the Basis Theorem.

19. The text answer uses the Rank Theorem, which is fine. However, you can also answer
Exercises 19-22 without explicit reference to the Rank Theorem. For instance, in Exercise
19, if the null space of a matrix A is three-dimensional, then the equation Ax = 0 has three
free variables, and three of the columns of A are nonpivot columns. Since a 5X7 matrix has
seven columns, A must have four pivot columns (which form a basis of Col A). So
rank A = dim Col A = 4.

22. The wording of this problem is poor, because the phrase “it spans a four-dimensional sub-
space” may be unclear. Here is a revision that I will put in later printings of the third edition:

Show that a set {vy, ..., vs} in R" is linearly dependent if dim Span{vy, ..., vs} =4.
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25. The text has the solution. This question provides a good way to test knowledge of the Basis
Theorem.

27. a. StartwithB=1[b, --- b,JandA=[a, --- aj], whereg>p. Forj=1,...,q,the
vector a;is in W. Since the columns of B span W, the vector a; is in the column space of
B. That is, a; = Bc; for some vector ¢; of weights. Note that ¢; is in R” because B has p
columns.

b. Let C=[c; --- ¢g]. Then Cis a pXq matrix because each of the g columns is in R”.
By hypothesis, g is larger than p, so C has more columns than rows. By a theorem, the
columns of C are linearly dependent and there exists a nonzero vector u in R? such that

Cu=0.
¢. From part (a) and the definition of matrix multiplication
A=[a; --- aj]=[Be; --- Be)=BC

From part (b), Au = (BC)u = B(Cu) = B0 = 0. Since u is nonzero, the columns of A are
linearly dependent.

Mastering Linear Algebra Concepts: Dimension and Rank

The concepts of dimension and rank are relatively simple, but they are used so often later
that they deserve a review sheet. Pay attention to how they are used in the sentences of the
Invertible Matrix Theorem. “Dimension” is always attached to a subspace (not a matrix or
vector or basis), and “rank” is attached to a matrix (not a subspace or other object).

+ definitions Pages 177 and 178

e geometric interpretations Fig. 1, a coordinate system on a 2-dim subspace
« special cases Paragraph before Example 2

« examples and counterexamples Examples 2 and 3

¢ typical computations Practice Problem 1, Exercises 9-16 and 19-21

MATLAB rank

You can use ref (A) to check the rank of A, but roundoff error or an extremely small pivot
entry can produce an incorrect echelon form. A more reliable command is rank ().
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Chapter 2 SUPPLEMENTARY EXERCISES

7. Since A™'B is the solution of AX = B, row reduction of [A B] to [I X] produces X = A”'B.

10 -1
See Exercise 12 in Section 2.2. Infact, A”'/B=| 9 10].
-5 -3

11. ¢. When x4, ..., x, are distinct, the columns of V are linearly independent, by (b). By the
Invertible Matrix Theorem, V is invertible and its columns span R". So, for every vector
y =1, ..., yo) in R”, there is a vector ¢ such that Ve =y. Let p be the polynomial whose
coefficients are listed in ¢. Then, by (a), p is an interpolating polynomial for (x;, y1), ...,

(Xn> Yn)-
17. The text has a solution. In addition, note that it is possible that BA is invertible. For

C
example, let C be an invertible 4 X4 matrix and construct A = {0] and B=[C™" 0]. Then

BA = I,, which is invertible.

Chapter2 GLOSSARY CHECKLIST

Check your knowledge by attempting to write definitions of the terms below. Then compare your
work with the definitions given in the text’s Glossary. Ask your instructor which definitions, if
any, might appear on a test.

associative law of multiplication:

basis (for a subspace Hof R", §2.8): Aset B={v, ...,v,}in R"suchthat:....
block matrix: See partitioned matrix.

block matrix multiplication: The . .. multiplicationof . . . asif .. ..

column space (of an mxn matrix A, §2.8): ThesetColAof....

column sum: Thesumof....

commuting matrices: Two matrices A and B such that. ...

composition of linear transformations: A mapping produced by applying . . ..

conformable for block multiplication: Two partitioned matrices A and B such that . . . .
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consumption matrix: A matrix in the . . . model whose columns are . . . .

coordinate vector of x relative to a basis B = {b, ..., by} (§2.9): The vector [x]z whose
entries ¢y, ..., ¢, satisfy . . . .

diagonal entries (in a matrix): Entries having . . . .
diagonal matrix: A square matrix . . . whose entries are . . . .

dimension (of a subspace, §2.9): The number.. ..
. ab
determinant | of A= c d : The number...,denoted by....

distributive laws: (left) . .. (right) . ...
elementary matrix: An invertible matrix that results by . . . .

final demand vector (or bill of final demands): The vector d in the . . . model that lists . . . .
The vector d can represent . . . .

flexibility matrix: A matrix whose jth column gives . . . of an elastic beam at specified points
when . . .is applied at . . ..

Householder reflection: A transformation x— QOx, where 0 =....

identity matrix: The nXn matrix I or I, with . . ..

inner product: A matrix product ... whereuand vare . . ..

input-output matrix: See consumption matrix.

input-output model: See Leontief input-output model.

intermediate demands: Demands for goods or services that . . . .

inverse (of an nx nmatrix A): An nXn matrix A} such that . . . .

invertible linear transformation: A linear transformation T: R"—R" such that there exists . . . .
invertible matrix: A square matrix that . . ..

ladder network: An electrical network assembled by connecting . . . .

left inverse (of A): Any rectangular matrix C such that . . ..

Leontief input-output model (or Leontief production equation): The equation . . ., where . . ..
lower triangular matrix: A matrix with . . ..

lower triangular part (of A): A ... matrix whose entrieson. ...

LU factorization: The representation of a matrix A in the form A = LU, where Lis...and Uis. . ..

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.



EB Brief Table of Contents || EEi

Table of Contents

2-44 CHAPTER2 « Matrix Algebra

main diagonal (of a matrix): The location of the . . . .

null space (of an mxn matrix A, §2.8): ThesetNulAofall....

outer product: A matrix product . .. whereuandvare. ...

partitioned matrix: A matrix whose entries are . . . . Sometimes called . . . .
permuted lower triangular matrix: A matrix such that . . ..

permuted LU factorization: The representation of a matrix A in the form A = LU, where Lis . . .
and Uis....

production vector: The vector in the . . . model that lists . . . .

rank (of a matrix A, §2.9):

right inverse (of A): Any rectangular matrix C such that . . . .
row-column rule: The rule for computing a product AB in which . . ..

Schur complement: A certain matrix formed from the blocks of a 2X2 partitioned matrix
A =[Ay]. If Ay, is invertible, its Schur complement is given by . . . . If A, is invertible,
its Schur complement is given by . . ..

stiffness matrix: The inverse of a . . . matrix. The jth column of a stiffness matrix gives . . . at
specified points on an elastic beam in order to produce . . . .

subspace (of R”, §2.8): A subset H of R" with the properties: . . . .

transfer matrix: A matrix A associated with an electrical circuit having input and output
terminals, such that . . ..

transpose (of A): Ann X m matrix A" whose . . . are the corresponding . . . of . . . .
unit consumption vector: A column vector in the . . . model that lists . . . .

unit lower triangular matrix: A matrix with. ...

upper triangular matrix: A matrix U with .. . ..

Vandermonde matrix: An nXrn matrix V or its transpose, of the form . . . .
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Determinants

3.1 INTRODUCTION TO DETERMINANTS

This section is relatively short and easy. Some exercises provide computational practice and
others allow you to discover properties of determinants to be studied in the next section. You
will enjoy Section 3.2 more if you finish your work on this section first.

KEY IDEAS

The second paragraph of the section sets the stage for what follows. Read it quickly, without
worrying about the details of the row operations. The main idea is that a multiple of the
determinant of A is a number that appears along the diagonal of an echelon form of A, and this
number is nonzero if and only if the matrix is invertible. Later (in Section 3.3) you will see why
this idea is important. For now, this 3X3 case is only used to motivate the definition of det A.

Determinants are defined here via a cofactor expansion along the first row. Since the cofactors
involve determinants of smaller matrices, the definition is said to be recursive. For each n > 2, the
determinant of an nXn matrix is based on the definition of the determinant of an (n~1)X(n—1) matrix.
There are other equivalent definitions of the determinant, but we shall not digress to discuss them.

Study Tip: Watch how parentheses are used in Example 2 to avoid a common mistake. The
cofactor expansion puts a minus sign in front of as, because (-1**?=~1. Since a3, happens to
be negative, the correct term in the expansion is —(-2) det As,, not -2 det As,.
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SOLUTIONS TO EXERCISES
1. By definition, det A is computed via a cofactor expansion along the first row:
>0 3 2 2 2 2 3
2 3 =3|5 1{—0|0 1|+ '0 5)
0 5 -1

=3(-3-10)-0+4(10-0)=-39+40=1
For comparison, a cofactor expansion down the second column yields

3 0 4 5 3
2 3 2|==D"*.0 +(—1)2+2~3!0

4
‘0 . +(—1)3+2-5’
0 5 -1

3 4
-1

2 2

=0+3(-3-0)-5(6-8)=-9+10=1
Study Tip: To save time, omit the zero terms in a cofactor expansion, but be careful to use the
proper plus or minus signs with the nonzero terms.

7. By definition,

4 30
6 5 2|= 4I
9 7 3
Using the second column of A instead,
4 30
6 5 2(= —3‘
9 7 3

52 6 2
-3 =4(15-14)-3(18-18) =4
73 9 3

6 2 4 0 4 0
+5 =7
9 3' ‘9 3, |6 2'

=-3(18-18)+5(12-0)-7(8-0)=0+60-56=4
13. Row 2 or column 2 are the best choices because they contain the most zeros. We’ll use row
2. Since the only nonzero entry in that row is 2, the determinant is (—1)>"*-2-2A4,,.

40 3 -5
73 4 -8
det A=(~1)>"*-2 =(-2).
etA=cD s 0 2 3
00 -1 2
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The best choice for this 4X4 determinant is to expand down the second column. Notice that
the cofactor associated with the 3 in the (2, 2) position is the (2, 2)-cofactor of the 4X4
matrix. The original location of the “3” in the 5X5 matrix is irrelevant.

4 3 -5 4 3 -5
det A=(=2)-(-D*?*(3):|5 2 -3|=-6|5 2 -3
0 -1 2 0 -1 2

Finally, use column 1 (although row 3 would work as well).
2 -3 3 -5

detA=(—6)~(4|_1 5 1 2
=—-6[4(4-3)-5(6-5)]=-6(4-5)=6

Checkpoint: Try to complete the following statement: “If the kth column of the nXn identity

matrix is replaced by a column vector x whose entries are xj, ..., X,, then the determinant of the
resulting matrix is .’ To discover the answer, compute the determinants of the following
matrices:
1 0 3 0 0]
1 300 1030
01400
0 400 b 0140 0050 0
a. . c
0510 0050 006 10
0 6 01 0 0 6 1
0 07 0 1]

b d
19. det|? " |=ad—be, and det| € ¢ |=cb—da=—det] ¢ 7|,
c d a b c d

Interchanging two rows reverses the sign of the determinant, at least for the 2X2 case.
Perhaps this is true for larger matrices.
25. The matrix is triangular, so use Theorem 2.
1 00
det|0 1 0j=1-1-1=1 Product of the diagonal entries
0 £ 1
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31. A 3X3 row replacement matrix has one of the following forms:
1 0 0] {1 0 0] [T O O]
k1 0,0 1 0|, |0 1 0f,

0 01| |k 0 1] |0 k 1

1 £ O 1 0 k] [1 00
01 O, 101 0}, |0 1 %k
0 01 0 01 00

In each case the matrix is triangular with I’s on the diagonal, so its determinant equals 1.
The determinant of a row replacement matrix is 1, at least for the 3X3 case. Perhaps this is
true for larger matrices.
31 5-3 5-1
37. det A=det =3(2)-1(4)=6-4=2. Since 5SA= ,
4 2 54 5.2
det 5A=(5-3)(5-2)-(5-1}(5-4)=150-100=50.
So, det5A#5-det A. Can you see what the true relation between det 5A and det A really is,
at least for this example? What about det 5A for any 2X2 matrix? Try to guess (and perhaps
verify) a formula for det rA, where r is any scalar and A is any nX#» matrix.

39. a. See the paragraph preceding the definition of det A.
b. See the definition of cofactor, preceding Theorem 1.

31 3
41. detfu v]=det {:0 2} =6, detfu x]}=det I:O ﬂ =6, and the areas of the parallelograms

determined by [u v] and [u x] both equal 6. To see why the areas are equal, consider the
parallelograms determined by u = (3, 0) and v = (1, 2) and by u and x = (x, 2):

)
v ] X

| «

£ 7
£ 7

T2 w T 2 u
The parallelogram on the left is determined by u and v (and the vertices u + v and 0). Its
base is 3 and its altitude is 2, so the area is (base)(altitude) = 6. The parallelogram on the
right, determined by w and x = (x, 2), has the same base. Also, the altitude is 2 for any value
of x, so the area again equals 3-2=6.

Xy

Answer to Checkpoint: a. 4 b.5 c. 5 “If the kth column of the nXn identity matrix is replaced
by a column vector x whose entries are xj, ..., X,, then the determinant of the resulting matrix is
x.” Can you explain why this is true? You’ll learn the answer when you begin Section 3.3.
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3.2 PROPERTIES OF DETERMINANTS

This section presents the main properties of determinants, gives an efficient method of
computation, and proves that a matrix is invertible if and only if its determinant is nonzero.

KEY IDEAS

It is not surprising that row operations relate nicely to determinants. After all, we found the
definition of a 3X3 determinant by row reducing a 3X3 matrix. Theorem 3 can be rephrased
informally as follows:

a. Adding a multiple of one row (or column) of A to another does not change the
determinant.

b. Interchanging two rows (or columns) of A reverses the sign of the determinant.

c. A constant may be factored out of one row (or column) of the determinant of A.

The other properties to learn are stated in Theorems 4, 5, and 6, together with the boxed formula
for det A on page 194. Theorem 4 is sometimes stated as: A square matrix is nonsingular if and
only if its determinant is nonzero. Theorems 4 and 6 will be used extensively in Chapter 5.

Your instructor may or may not want you to know the (multi-) linearity property on page 197.
This property is important in more advanced courses but is not used later in the text. Warning: in
general, det(A + B) is unequal to det A + det B.

SOLUTIONS TO EXERCISES

1. Rows 1 and 2 are interchanged, so the determinant changes sign.
1 3 0 2 1 3 0 2 13 0 2 1 0 2

3
7—2—5 7 4,0 1 7 8 |01 7 8 01 7 8
’ 0

35 2 1/ 10 4 2 =5|7 1o 0 30 27| |0 30 27|
1 -1 2 -3/ 10 4 2 -5/|0o03 27|00 0 0

Note, the second array already shows that the determinant is zero, because two rows are
equal, as in Example 3.

Study Tip: In general, computation of a 3X3 determinant by row reduction takes 10
multiplications (and divisions), but cofactor expansion only takes 9 multiplications. At n =4, the
advantage switches to row reduction, which requires 23 multiplications, cofactor expansion 40
(9 for four 3X3 determinants, plus 4 multiplications of a;; times det A;). Often, the best strategy
is to combine the two techniques, as in Exercises 11-14.
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13. Use row or column operations whenever convenient to create a row or column that has only
one nonzero entry. (I recommend using only row operations, because you already have
experience with them.) Then use a cofactor expansion to reduce the size of the matrix.

2 5 4 1112 5 4 1

47 6 2| |03 2 0l g
6 -2 4 0 6 -2 -4 0 in column 4
-6 7 7 0 -6 7 7 0
0 -3 2
=i 6 -2 -4 Result of cofactor
expansion down column 4
-6 7 7
0 -3 =2
=—]6 -2 -4 Zero created
in column 1
0 5 3
— —-(—6) -3 =2 Result of cofactor
5 3 expansion down column 1
=6-(-9+10)=6
a b c a b ¢
19 12d+a 2e+b 2f+c|=|2d 2e 2f| (D rowladded
g h i g h i
a b ¢
=2d e f| 2w
g h i
=2-7=14

25. By Theorem 4 and the IMT, the set {vy, v,, v3} is linearly independent if and only if
det[v, v, vi]# 0. Rather than use row operations on {v; Vv, V3], you might choose to
expand the determinant by cofactors of the third column:

7 -8 7

-4 5 7 -8
-4 5 0(=7 +(=5 =T7(-28+30)-5(35-32
I R I e

=7(2)-53)=-1

The determinant is nonzero, so the vectors are linearly independent.
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Study Tip: For 3x3 matrices, some students tend to prefer the special trick suggested for
Exercises 15-18 in Section 3.1, even though in general there are 12 multiplications instead of the
9 multiplications needed for cofactor expansion. Note, however, that numbers in the special
method can sometimes be large. For comparison, here are those computations for the matrix
studied above in Exercise 25:

7 -8 T7i7 -8
-4 5 0|« s
-6 7 5| 7

det[v, v, v,]=7(5)(=5)+(-8)(0)(—6)+7(—4)7)
= (=6)(5)(7) = T(0)(T) = (-5)(—4)(-8)
=-175+0+(-196) - (-210)-0-(-160)=-1

27. a. See Theorem 3.

b. See the paragraph following Example 2.

¢. See the remark following Theorem 4.

d. See the warning after Example 5.
31. Since the determinant is multiplicative (Theorem 6),

(det A)(det A™") = det(AA™") = det I= 1. Sodet A" = 1/det A.

Study Tip: The result of Exercise 31 might be useful on a test.

33. By Theorem 6 (twice), det AB = (det A)(det B) = (det B)(det A) = det BA.
35. By Theorem 5, det U” = det U. So, by Theorem 6,
det U'U = (det U")(det U) = (det U)*
If U'U = I, then (det U)2 =det I = 1, which implies that det U = + 1.

37. The solution is in the text. (The determinant of a triangular matrix is the product of the
entries on the main diagonal.)

Study Tip: Exercises 15-26, 39, and 40 make good test questions because they check your
knowledge of determinant properties without requiring much computation. Exercise 39(b) is the
one most likely to be answered incorrectly. What would be the answer to 39(b) if A were 4X47

43. Compute det A by a cofactor expansion down column 3:
det A=(u, +v,)-det A; —(u, +v,)-det A, +(u, +v,)-det A,
=u, -det A, ~u, -det A,; +u, -det A;; +v,-det A, —v, -det A, +v, -det A,
=u, -det B;; —u, -det B,; +u, -det B;; +v, -det C, —v, -det C,; +v, -det C,,
=det B+detC
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45. Suppose A is mXn with more columns than rows. Then A’A is nXn and must be singular. If
A is generated with random entries, then AA” will be nonsingular (invertible) practically all
the time. Try to explain why these statements should be true. (Use the IMT.)

MATLAB Computing Determinants

To compute det A, set U = A and then repeatedly use the commands U = gauss (U, r)
and U = swap(U,r,s) asneeded toreduce A to an echelon form U. Then, except for
a + or — sign (depending on how many times you swap rows), the determinant of A is given
by the command

prod(diag(U))

The command diag (U) extracts the diagonal entries of U and places them in a column
vector, and prod computes the product of those entries. You can also use det (A) to
check your work, but the longer sequence of commands helps you think about the process
of computing det A.

3.3 CRAMER’S RULE, VOLUME, AND
LINEAR TRANSFORMATIONS

This section will be a valuable reference for students who plan to take a course in multivariable
calculus. Mathematics and statistics majors probably will encounter the material here several
times. Also, economics students and engineers (particularly electrical engineers) are likely to
need Cramer’s rule and some of the supplementary exercises in later courses.

KEY IDEAS

The main results of the section are stated in Theorems 7, 8, 9, and 10. The proof of Theorem 7 is
simple and yet involves three important ideas: the definition of a matrix product, the multiplicative
property of the determinant, and the evaluation of a determinant by cofactors. Check with your
instructor about whether you should be able to reproduce the proof of Theorem 7.

A heuristic proof of Theorem 9 for 2X2 matrices is given in an appendix at the end of this
section. Theorem 10 provides a key idea in calculus and physics needed for the study of double
and triple integrals. The determinant used there in calculus is called a Jacobian.
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STUDY NOTE

In Exercise 25, you are asked to use Theorem 9 to explain why the determinant of a 3X3 matrix A
is zero if and only if A is not invertible. (A similar explanation holds for the 2X2 case.) The
answer is in the text, so be sure to work on this before looking at the answer section. Work on
Exercise 25, even if it is not assigned.

Remember, learning does take place when you think hard about an exercise, even when you
are unsuccessful, if you try to look at the problem from different angles, browse back through the
text, and perhaps look at earlier exercises. Write your solution, don’t just talk to yourself about
what you would write if you had to.

SOLUTIONS TO EXERCISES

57 3
1. The system is equivalent to Ax = b, where A= [:2 4:| and b= [1:! . Write

3 7 53
b)= , b)=
sl 7] aoe3
T T
b b
and compute
detA=20-14=6, detAi(b)=12-7=5,detAx(b)=5-6=-1
_detA(b) 5 _detab)_-1_-1
detA 6 7 detA 6 6

6s 4 5
7. The system is equivalent to Ax = b, where A= [gs 5 ] and b =]: 2} . Write
s —

)= 5 4 (b)_6s 5
Ab)=|_, 2s’A2 )

and compute
det A=12s* -36=12(s* —=3) =12(s =3 )(s +V3)
det A (b)=10s+8, det A,(b)=-125-45

The system has a unique solution when det A # 0, that is, when s # ++/3. Forsuch a
system, the solution is X = (x;, x,), where

_detA() _ 10s+8 _ 55+4
detA  12(s°-3) 6(s>-3)

_detA,(b) -125-45 —4s-15
detA  12(s*=3) 4(s*-3)

2

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.



EB Brief Table of Contents || EB Table of Contents

3-10 CHAPTER 3 + Determinants

3 5 4
13. First, find the cofactorsof A=|1 0 1|.
2 11
01 11 1 0
C, =+ =-1, C,=— =1, C,=+ =1
" 1 1‘ ) 1' B2
5 4 3 4 35
C,=- 1!=—1, C,=+ 5 1‘=—5, Cy=- =7
5 4 3 4 35
C,=+ =5, C,, =— =1, C,=+ =-5
31 0 1 32 1 1 33 1 0
Then, arrange the transpose of the array of cofactors into the adjugate of A.
(-1 -1 5
adjA=] 1 -5 1
1 7 -5

Were you to compute det A now, you could write A™, but you would still need to check
whether your calculations are correct. To build in this check, compute

354 |-1 -1 5 6 00
A-adjA=|1 0 1 1 -5 1{=/0 6 O
2 11 1 7 -5 0 0 6
If any off-diagonal entries in the product are nonzero, or if the diagonal entries are not all the
same, then some errors have been made, and you can recheck your cofactor calculations.
(One possible mistake is to forget the + signs in front of the 2 x 2 determinants. Another

error is to not transpose the array of cofactors.) In this case, the calculations above are
correct and det A must be 6. So

s
A"=d1Aade=g 1 -5 1
¢ 1 7 =5
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19. The parallelogram with vertices (0, 0), (5, 2), (6, 4), (11, 6) is shown below. If no vertex
were zero, we would have to translate the parallelogram to the origin by subtracting one
vertex from all four vertices. Since one vertex already is zero, use the two vertices adjacent

to the origin to construct the columns of A, and compute |det A| .

5 6 £ th
A=[2 J, (pgael?e?oér:m)=|det14|=|20—12|=8

2 4 6 8 10

25. The answer is in the text. I hope you took the advice at the beginning of this Study Guide
section and worked the problem (or at least tried hard to work the problem) before checking
the answer section. If you were successful, you should be proud of yourself; you are
mastering the material-—not only determinants but also linear dependence!

X, u, a 00
31. Letx=|x, |,u=|u, |, and A={0 b 0/ Also, letS be the unit ball in R’, whose
X, U, 0 0 ¢

bounding surface consists of all vectors u such that u’ +u. +u. =1, and let S’ be the image
of S under the mapping ui—> Au.

x/a
a. Ifxisin S, then x = Au for some uin S,andu=A"'x= | x,/b |.

xy/c

2 2 2
.. x x x
The condition on u,, u,, u; shows that (—1] +(72) + (—3] =1.
a c

b. Since the volume of the unit ball bounded by S is 47/3 and the determinant of A is abc,
Theorem 10 shows that the volume of the region bounded by S’ is 4nabc/3.
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Appendix: A Geometric Proof of a Determinant Property

b a

det [a Z} =ad ~ bc
c

d
c
a b
(a + b)c +d)=ac +ad+ bc + bd
/
-2 c -2 / d = ~2bc — bd
b [
b
-2 c =-—ac
a
(Area of the Parallelogram) = ad~ bc
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Chapter3 GLOSSARY CHECKLIST

Check your knowledge by attempting to write definitions of the terms below. Then compare your
work with the definitions given in the text’s Glossary. Ask your instructor which definitions, if
any, might appear on a test.

adjugate (or classical adjoint): The matrix adj A formed from a square matrix A by replacing
the (i, j)-entryof Aby. . . .

cofactor: A number C;=. . . , called the (i, j)-cofactor of A, where A; is the submatrix
formed by deleting . . . .

cofactor expansion: A formula for det A using cofactors associated with one row or one
column, such as forrow 1:. . . .

Cramer’s Rule: A formula for eachentryin. . . .
interchange (matrix): An elementary matrix obtained by interchanging . . . .
row replacement (matrix): An elementary matrix obtained from the identity matrix by . . . .

scale by r (matrix): An elementary matrix obtained by muitiplying . . . .
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Vector
Spaces

4.1 VECTOR SPACES AND SUBSPACES

The main focus of the chapter is on R" and its subspaces. However, Section 4.1 builds a framework
within which the theory for R" rests. Most of the exercises in the chapter concern subspaces of R”,
but some are designed to help you learn gradually about other important vector spaces.

KEY IDEAS

A vector space is any collection of objects that behave as vectors do in R". (The precise meaning
of “behave” is described by the axioms on page 217.) A vector is simply any object that belongs
to a vector space. Arrows, polynomials, and infinite sequences of numbers are all examples of
vectors, in different vector spaces.

The most important vector spaces in this text are subspaces of R". Visualize subspaces as
lines or planes through the origin, the origin by itself, or the entire space R". In this section,
Theorem 1 is a useful tool to show that a set is a vector space. To show that a set is not a
subspace, show that one of the properties in the subspace definition is violated. (See Exercises 1—
4.)

STUDY NOTES

Parts of this chapter are somewhat more theoretical than the earlier chapters, but that is necessary
in order to give a solid foundation for the rest of the course. Learn the key definitions and
theorems as they appear in the text (rather than waiting until just before an exam). You need this
knowledge to get through the conceptual exercises and to be prepared for later sections.

In Example 5, the concept of a function as a single “vector” in a vector space is difficult to
absorb on a first reading, and you should not expect to master it in a few days.
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The word subspace should usually be accompanied by a phrase such as “of V”’, or “of R™.
Without such a phrase, the nature of the elements in the subspace is unknown. For instance, the
statement “H is a subspace” does not say whether the elements in H are pairs of numbers, or
polynomials, or something else. But the phrase “H is a subspace of P;” includes the information
that each vector in H is a polynomial of degree three or less.

Set Notation: The notation introduced in Example 8 is sometimes used in this chapter as an
efficient way to describe a set. The symbols and phrases inside the set brackets describe the set.
The part to the left of the colon displays the basic nature of the elements in the set (such as
vectors in R*) while the part to the right adds any qualifying conditions that must be met in order
for an element to belong to the set (such as all vector entries must be positive). For instance, the
set in Example 8 can also be written as

s
H=<|t|.sandt arereal, and u =0

u

As another example, the set in Exercise 1l can be written as

a

W =4| b | a=5b+2c, where b and ¢ are arbitrary

C

Here, and elsewhere, reference to the scalars b and c¢ as “arbitrary” means that the scalars can be
any real numbers.

Study Tip: Review Sections 1.3-1.5 and 1.7 before you reach Section 4.3.

SOLUTIONS TO EXERCISES

1. a. Vis a subset of R?, The defining property of V is that the entries of every vector in V are
nonnegative. So, if u and v are in V, their entries are nonnegative. Since a sum of
nonnegative numbers is nonnegative, the vector u + v satisfies the condition that defines
V. Thatis,u+ visin V.

b. The text’s solution gives a specific u and ¢. One specific “counterexample” suffices to
show that V is not a vector space. However, you could also simply say, “If any nonzero
vector v in V is multiplied by a negative scalar c, then cv is not in V because at least one
of its entries is negative.”
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Most examples in the text involve integers, to make calculations simple, and one can easily
overlook the fact that a subspace must be closed under multiplication by all real numbers.

Checkpoint: Let H be the set of all points (x, y, z) in R? that satisfy the condition x* + y* - 22 = 0.
Is H a subspace of R*?

13.

19.

23.

25.

31.

a. w is certainly not one of the three vectors in {vy, v, v3}.
b. Span{vy, v,, v;} contains infinitely many vectors.
¢. wis in the subspace (of R3) spanned by v,, v,, v5 if and only if the equation x;v; + x,v, +
x3v3 = w is consistent (has a solution). Row reduce the augmented matrix:
1 2 4 3 12 43 12 43
012 1{(~|01 2 1{~|0 1 2 1
-1 3 6 2 0 5 10 5 0000

There is no pivot in the augmented column, so the vector equation is consistent, and w is in
Span{v,, v,, v3}.

Let H be the set of all functions described in (5). Then H is a subset of the vector space V of
all real-valued functions, and H consists of all linear combinations of the functions cos wt
and sin wt. By Theorem 1, H is a subspace of V, and hence is a vector space.

a. See Example 5.

b. See the definition of a vector.

c. See Exercises 1, 2, or 3.

d. See the paragraph before Example 6.
e. See Example 3.

Axiom 4 (plus Axiom 2) shows that 0 + w = w. Exercises 25-30 show how facts that we
take for granted in R" depend only on a few basic properties of R”", properties that are now
axioms for a general vector space.

Let H be a subspace of V that contains the vectors u and v. Since H is closed under
multiplication by scalars, H must contain all scalar multiples of u and v. Since H is also
closed under vector addition, it contains all sums of scalar multiples of u and v. That is, H
contains all vectors in Span{u, v}.
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Answer to Checkpoint: H is not a subspace. Counterexamgle: (1,0, 1)and (0, 1, 1) are in H and
yet their sum, (1, 1, 2), is not in H (because 1> + 1> — 2* # 0). Many counterexamples are
possible. Only one is needed.

MATLAB Graphing Functions

The following commands will graph the function f in Exercise 37.

t = linspace(0,2*pi);

f = t.70 - 8*cos(t)."2 + 8*cos(t)."4;
grid on

plot(t, £)

Here, t is a vector with 101 entries, the endpoints of 100 equal subintervals of [0, 2x];
cos (t) is a vector whose entries are the cosines of the corresponding entries in t, and
t.”0 isavector of 1’s. In general, t. k is a vector whose entries are the kth powers of
the corresponding entries in €. The command grid on (or off) turns on (or off)
gridlines the next time a display is created. Use hold omn if you want the next graph to
appear on the current display. The command hold off makes each graph appear in a
separate display. See the topic “Basic Plotting” in MATLAB’s Help menu for examples
of plotting options.

4.2 NULL SPACES, COLUMN SPACES, AND
LINEAR TRANSFORMATIONS

Many problems in linear algebra involve a subspace in one way or another. This section provides
an opportunity to become comfortable with the concept. The foundation for this section was laid
in Sections 1.3 and 1.5. Have you reviewed those sections yet?

KEY IDEAS

Theorems 2 and 3 describe the main types of subspaces. (The proof of Theorem 2 makes a good
exam question, because it tests both the definition of Nul A and the definition of a subspace.)
Theorem 3 actually has two conclusions: (liol Aisa subspacel o|f [R'"l.
The first phrase tells us that linear combinations of vectors in Col A remain in Col A. The phrase
“ of R™” reminds us that each vector has m entries (because A has m rows). A similar remark
applies to the statement from Theorem 2 that Nul A is a subspace of R".
The box after Example 4 shows that the statement “ Col A = R™” can be added to the list of
equivalent statements in Theorem 4 of Section 1.4.
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STUDY NOTES

In Example 3, the statement “Nul A = Span{u, v, w}” would be an explicit description of
Nul A (provided you specify what u, v, and w are).

In some applications, it is important to know that for a given m X n matrix A, every equation
Ax = b has a solution (assuming b is in R™). Yet it may require some effort to determine whether
this is the case. If not every equation Ax = b has a solution, then not every b belongs to Col 4,
and hence Col A is a proper subspace of R™. One of the goals of the next few sections is to obtain
a method for determining when Col A = R™.

Checkpoint I: How many pivot positions does an m X n matrix A have if Col A = R™?
Study Tip: Theorems 1, 2, and 3 are the main tools for showing that a set is a vector space

(that is, a subspace of some known vector space). Review these theorems now, before starting
the exercises.

SOLUTIONS TO EXERCISES

1. Now is the time to learn the definition of Nul A. A vector x is in Nul A precisely when the
product Ax is defined and Ax = 0. Given x, simply compute Ax to determine whether Ax is

Zero.
3 -5 -3 1 0 1

Ax=| 6 -2 0 3|={0}, so; 3|isinNulA.
-8 4 1|4 0 —4

Warning: In Exercises 3-6, writing an equation x = cu + dv is not the same as listing, say, the
vectors u and v that span the null space. The appropriate answer for these exercises is a list of a
small finite number of vectors that span Nul A, not a description of all the vectors in Nul A.

Study Tip: Try Practice Problem 1 before you work on Exercises 7-14. If you can’t find two
ways to work the practice problem, reread the first paragraph of Section 4.2 (but don’t look at it
until you have attempted the practice problem).

7. The set Wis a subset of R®. If W were a vector space (under the standard operations in R*),
it would be a subspace of R’. But W fails every property of a subspace, so it is not a vector
space. For instance, the vector (0, 0, 0) does not satisfy the condition @ + b + ¢ = 2, and so
the zero vector is not in W.
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13. A typical element of W can be written as follows:

c—6d c —6d 1 -6 1 -6

d :0+d=c0+dl=01[2}

c el 1o 1 ol [1 0
u A\

Since ¢ and d are any real numbers, this calculation shows that W is a subspace of R’ (and
hence is a vector space) by Theorem 3. Alternatively, this calculation shows that W is the
same as Span{u, v}, so Wis a subspace of R’, by Theorem 1.

Checkpoint 2: 'Why is W a subspace “of R"?

19. The matrix A is 2 X 5, so vectors in Nul A must have 5 entries and vectors in Col A must
have 2 entries. Thus Nul A is a subspace of R’ and Col A is a subspace of R*.

Study Tip: Exercises 17-20 may seem simple, but they will help you in Section 4.5.

25. Check the definition before Example 1.

. See Theorem 2.

See the remark just before Example 4.

. See the table that contrasts Nul A and Col A.
See Fig. 2.

See the remark after Theorem 3.

= o6 o B

31. The solution in the text shows that T is a linear transformation. If 7(p) is the zero vector,
then p(0) = 0 and p(1) = 0, by definition of 7. One such polynomial is p(t) = #( — 1). Any
other quadratic polynomial that vanishes at 0 and 1 must be a multiple of p, so p spans the
kernel of T,

1
For the range of T, observe that the image of the constant 1 function is L} , and the

0
image of the polynomial ¢ is L:| Denote these two images by u and v, respectively. Since

the range of T is a subspace of R that contains u and v, the range must contain all linear
combinations of u and v. By inspection, u and v are linearly independent, so they span R®.
Thus the range of T must contain all of R%.

37. The vector w is in Col A because row reduction of the augmented matrix [A w] shows that
the equation Ax = w is consistent. The vector w is not in Nul A because Ax is not the zero
vector.
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Answers to Checkpoints:
1. Anm X n matrix A must have m pivot positions in order for Col A to be all of R™.
2. Wis a subspace “ of R® ”” because each vector in W has three entries.

Mastering Linear Algebra Concepts: Vector Space, Subspace, and Column and Null Spaces

A vector space is a nonempty set of objects on which are defined two operations, called addition
and multiplication by scalars, that satisfy ten axioms. Make one review sheet for vector space
and subspace. Include as much of the definition of a vector space as you are required to know.
(Ask your instructor.) Include the full definition of a subspace.

Organize what you have learned in Sections 4.1 and 4.2 (together with Sections 1.3~1.5), using
the categories listed below. Your examples of vector spaces will be the same as your examples of
subspaces. (See the paragraph just before Example 6 in Section 4.1.) The column space and null
space of a matrix should be among your examples of subspaces.

« definitions of vector space, subspace  Pages 217 and 220

« equivalent descriptions Paragraph before Example 6 in Sec. 4.1

e geometric interpretations Figs. 6,7,9, in Sec. 4.1

» subspaces defined explicitly Theorems 1, 3; Exercises 15-18 in Sec. 4.1

+ subspaces defined implicitly Theorem 2; Exercises 20(b), 22 in Sec. 4.1; Example 2 in Sec. 4.2
« examples and counterexamples Examples and exercises in Sec. 4.1, 4.2

« algorithms and computations Exercises 7-14 in Sec. 4.2

» connections with other concepts Fig. 2 and Example 8 in Sec. 4.2

The references above are not exhaustive. You can find more facts and examples in the exercises for
Sections 4.1 and 4.2. In addition to the review sheet for vector spaces, you should make another
sheet for column space and null space. List the two basic definitions, equivalent formulations of
each definition, and examples of computations. Also, you could attach a copy of the table on page
232 that contrasts the two types of subspaces. My students say that the table is quite helpful.

4.3 LINEARLY INDEPENDENT SETS; BASES

The definition of linear independence carries over from R”" to any vector space. The geometric
interpretations in Chapter 1 of linearly independent and dependent sets should help you visualize
these concepts here.
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KEY IDEAS

In general, you cannot use an ordinary matrix equation Ax = @ to study linear dependence of
{vi, ..., ¥v,}. You have to work with the vector equation ¢,v, +---+c,v, =0, or with Theorem 4,

unless the vectors happen to be n-tuples of numbers.

A set {v} with v # 0 is linearly independent because the vector equation x;v = 0 has only the
trivial solution. (See Exercise 30 in Section 4.1.) The set {0} is linearly dependent, because the
equation x;0 = 0 has many nontrivial solutions.

Theorem 6 is important for later work, but its proof is rather subtle. Study Examples 8 and 9
carefully, as well as the proof of the theorem.

A basis for a vector space Vis a set in V that is large enough to span V and small enough to be
linearly independent. See also the subsection Two Views of a Basis. The plural of basis is bases.

Warning: If a set in V does not span V, the set may or may not be linearly dependent.

SOLUTIONS TO EXERCISES

1. The complete solution is in the text. For a general set of n vectors in R", row operations on a
matrix will usually be needed to determine if the matrix has » pivot positions.

7. Again, the solution is in the text. Any set in R” with fewer than n vectors cannot span R" and
therefore cannot be a basis for R". Such a set may or may not be linearly independent. What
similar statement can you make about a set in R” with more than n vectors? See Exercise 8
for ideas.

Study Tip: Theorem 4 in Section 1.4 may help you decide whether a set of vectors spans R".

13. The matrix B is in echelon form and displays the pivot columns. A basis for Col A consists

-2 4
of columns 1 and 2 of A: | 2|, | -6 |. This is not the only correct choice, but it is the
-3 8
“standard” choice. A wrong choice would be columns 1 and 2 of B. See the Warning after

Theorem 6.
For the nuil space, solve Ax = 0:

1 06 50 1 0 6 5 0
[A 0]~[B 0]=|0 2 5 3 0(~|0 1 5/2 3/2 0
0 00 00 00 O 0 0
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Then x; = —6x3 — 5x4, X, = —(5/2)x3 — (3/2)x4, with x; and x, free. The general solution is

X, —6x, —5x, -6 -5

X, —(5/2)x; = (3/2)x, -5/2 ~3/2
X= = =X, +x,

X, X, 1 0

X, X, 0 1

This equation describes all vectors in Nul A, not just a basis for Nul A. For a basis, the
“standard” choice is (-6, -5/2, 1, 0) and (-5, -3/2, 0, 1). Another choice is (12, -5, 2, 0)
and (-10, -3, 0, 2), which avoids fractions.

Warning: You really need to know the definition of Nul A and the definition of Col A, not
just the procedures for finding bases for these spaces. The definitions will help you avoid the

fairly common mistake of attempting to use the null space procedure to find a basis for a column
space, or vice-versa.

19. You can solve the equation 4v, + 5v, — 3v; = 0 for any one of the three vectors in terms of
the others. By the Spanning Set Theorem, the set spanned by all three vectors is the same as
the set spanned by any two of the vectors—any one of the three vectors can be discarded. If
you discard vs, then v, and v, span H and are obviously linearly independent. Hence {v,, v,}
is a basis for H. The same reasoning applies to {v,, v3} and {Vv,, v3}. These are the most
likely answers. But, once you realize that {v;, v,} is a basis for H, you can make others,
such as {v,, v, + rv;} for any scalar ». Showing that this set is a basis for H does take some
work, however. You might try to do this. In some courses that spend time on theoretical
questions, this problem could appear on a test.

21. a. See the paragraph preceding Theorem 4.

. See the definition of a basis.

a

b

¢. See Example 3.

d. See the subsection Two Views of a Basis.
e. See the box before Example 9.

23. LetA=[v; v, vi3 v, SinceAis square and its columns span R* the columns of A must
be linearly independent, by the Invertible Matrix Theorem. So {1, V2, v3, v4} is a basis for R*,

Checkpoint:  Suppose {vi, ..., v,} is a basis for R” and A is an invertible n X »n matrix. Explain
why {Av,, ..., Av,} is a basis for R".

25. The displayed equation shows only that Span {vi, V,, V3} contains H. In fact, the vectors

Vi, V2, V3 are not all in H, so Span{v,, v,, v3} cannot be H. Therefore {vi, v5, v3} cannot be a
basis for H. (It is easy to check that {v,, v,, v;} is a basis for R> )
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31. (This generalizes Exercise 31 in Section 1.8.) Suppose {vi, ..., v,} is linearly dependent.
Then there exist ¢y, ..., ¢,, not all zero, such that

ov, +--+c,v, =0
Then, since 7 is linear,

T(ev,++c,v,)=T0)=0 See the boxed statement on page 77.

and
ol (v)+--+c,T(v,)=0
Since not all the ¢; are zero, {T(v)), ..., T(v,)} is linearly dependent.
Study Tip: The solution of Exercise 31 illustrates how to use linear dependence: If {v,, ..., v,}

is known to be linearly dependent, then you can write ¢,v, +---+¢,v, =0, assume that not all the
¢y are zero, and use this equation in some way.

Answer to Checkpoint: Let B=[v, --- v ]. Then B is invertible because {v,, ..., v,} is a basis
for R". Since A is also an invertible n X n matrix, so is AB; hence the columns of AB, namely
Avy, ..., Av,, form a basis for R".

Mastering Linear Algebra Concepts: Basis

To the review sheet(s) you have on linear independence, add Examples 1, 2, and 6 from this
section. The definition and geometric interpretations are unchanged. Add a note about not using
the matrix equation Ax = 0 in the general case.

Start a separate review sheet for “basis”, even though it involves two other concepts (span and
linear independence) already being reviewed.

o definition Page 238

» geometric interpretation Fig. 1

» special cases Standard bases for R” and R,

« examples and counterexamples Example 10, Exercise 25

« algorithms and computations Examples 7 and 9; Example 3 in Sec. 4.2
» connections with other concepts Invertible Matrix Theorem

Unique Representation Theorem (in Sec. 4.4)
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MATLAB ref and cos

The command ref (A) produces the reduced echelon form of A. From that you can write
a basis for Col A or write the homogeneous equations that describe Nul A. (Don’t forget
that A is a coefficient matrix, not an augmented matrix.) MATLAB has another command,
rref, that works basically the same as ref but often is much slower because it checks
for rational entries in the matrix.

In some cases, roundoff error or an extremely small pivot entry can cause ref to
produce an incorrect echelon form. The more reliable singular value decomposition (see
Section 7.4) can produce bases for Col A and Nul A, but ref is satisfactory for our
purposes.

For Exercise 38, see the MATLAB box for Section 4.1.

44  COORDINATE SYSTEMS

This section contains a variety of geometric and algebraic explanations of the idea of a coordinate
system for a vector space.

KEY IDEAS

The coordinate mapping from a vector space V (with a basis of n elements) onto R” is a rule for
giving “R"-names” to vectors in V in such a way that the vector space structure of V is still visible
in R". Every vector space calculation in V is precisely mirrored by the same calculation in R”".

An important special case is when V is itself R", and each vector x and its coordinate vector
[x]z are related by a matrix equation X = Pg[X];.

Everything in the section depends on the Unique Representation Theorem. The proof of that
theorem could appear on an exam because it shows precisely why the two properties of a basis B
are important, and it illustrates how linear independence can be used in an argument:

Any vector in V has “coordinates” because B spans V, and the coordinates are uniquely
determined because B is linearly independent.

If you are asked to prove the theorem, make sure your proof shows exactly where each property
of a basis is needed in the proof. Also, be careful not to use a matrix in the proof. The vectors
Vi, ..., V, cannot be arranged as the columns of an ordinary matrix when the vectors are in some
abstract vector space.

Checkpoint: Let B={b,, ..., b,} be a basis for R". Apply the Invertible Matrix Theorem to the
matrix A=[b, --- b,] and deduce the Unique Representation Theorem for the case when V = R".
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STUDY NOTES

Be careful to distinguish between x and [x]gz. They are not equal in general, even if x itself is in
R" (unless B is the standard basis for R").

Theorem 8 and Exercises 25 and 26 show that the coordinate mapping translates vector space
statements or calculations in V into equivalent (and familiar) calculations in R". The table below
lists some examples of typical linear algebra statements.

CORRESPONDING STATEMENTS IN ISOMORPHIC VECTOR SPACES

Linear Algebra in V Matrix Algebra in R"

a. u,v,andwareinV [ulg, [V]g, and [w]z are in R”

b. wisin Span{u, v}, or [W]g is in Span{[u]g, [V]g}, or
w is in the subspace of V [w]; is in the subspace of R”
spanned by u and v spanned by [u]z and [viz

c. w=cu+dv [w]g = c[ulg + divls

d. {vy, ..., v,}islin. indep. {[vis, ..., [Vp]g} is lin. indep.

e. {vy,...,v,}spans V {Ivilg ..., [v,]5} spans R"

f. {vy,...,v,}isabasisforV | {[vlg, ..., [V.]g} is a basis for R"

SOLUTIONS TO EXERCISES

. 5 3 —4 3
1. Since [x]g =| . |, we have x=5b, +3b, =5 +3 = .
3 -5 6| |7

7. The B-coordinates of x are scalars ¢y, ¢,, ¢; that satisty ¢;b; + c;b, + ¢3b3 = x. To solve this
vector equation, row reduce the augmented matrix:

1 -3 2 8 1 -3 2 8 1 -3 0 2 1 0 0 -1
-1 4 -2 9|~j0 1 0 -1|~0 1 0 ~1(~j0 1 0 -1
-3 9 4 6 0 0 10 30 0 0 1 3 0 0 1 3

TT T

b, b, b, Xx
-1

So [x]z; =|-1].
3
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13. The B—coordinates of p are scalars ¢, ¢;, c3 that satisfy
cd+D)+at+D+c(1+2t+7) = p@) = 1 +4r+ 77 (1)
Multiply out terms on the left:
ctalf + o+l + c+et+cal = 1+4t+7F
On the left, group the constant terms, the terms involving ¢, and the terms involving 7
(1t c)+(cr+2e)t+ (1t +e)t = 1+4t+77
Equate coefficients of like powers of ¢ to obtain the system of equations:

+ ¢ =1

¢ 3

1
c, +2c, =4
¢ tc, + ¢ =7
Row reduce the augmented matrix to obtain
1 01 1 1 0 1 1 1 0 0 2 2
0 1 2 4/~|0 1 2 4|~10 1 0 6|. Thus, [plg=]| 6 (2)
11 17 0 0 -2 2 0 0 1 -1 -1

Perhaps you can skip writing the second and third displayed equations and mentally go from
(1) directly to the systems of equations. That will save writing time, but mistakes can occur.

A shorter solution uses Theorem 8 and the fact that a calculation in P, can be done

instead with coordinate vectors relative to the standard basis {1, ¢, tz}. Using this idea, you
go directly from equation (1) to the equivalent equation using coordinate vectors:

1 0 1 1
¢|0i+c,| 1|+c|2|=|4 3
1 1 1 7

This vector equation is, of course, equivalent to the system of equations above, and you
solve it by row reducing the augmented matrix as in (2).

Warning: The second solution for Exercise 13 is faster, but students can easily forget what
their calculations mean. I expect my students to write about what they are doing, to show that
they understand what they are calculating. For an acceptable solution to Exercise 13, write that
the B—coordinates of p are scalars cy, ¢, ¢; that satisfy equation (1), write something about using
coordinate vectors to express (1) in the equivalent form (3), and then solve (3) by the calculations
in (2).

15. a. See the definition of a B-coordinate vector.
b. See equation (4).
c¢. See Example 5.
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The set S spans V because every x in V has a representation as a (unique) linear combination
of elements of S. To show linear independence, suppose that S = {v,, ..., v,} and
¢V, +--++c,v, =0 for some scalars ¢y, ..., ¢,. The case when ¢, =---=¢, =0 is one

possibility. By hypothesis, this is the only possible representation of the zero vector as a linear
combination of the elements of S. So S is linearly independent and hence is a basis for V.

Suppose that [u]z = [w]s for some u and w in V, and denote the entries in this coordinate
vector by ¢j, ..., ¢,. By definition of the coordinate vectors,

u=¢b, +---+c,b, and w=¢b, +---+¢,b,
which shows that u = w. Since u and w were arbitrary elements of V, this shows that the
coordinate mapping is one-to-one.

Since the coordinate mapping is one-to-one, the following equations have the same
solutions, ¢y, ..., ¢,

cu +--+c,u, =0 (the zero vector in V) (N
[cu, +--+c,u,ls=[0]4 (the zero vector in R™) 2)

Since the coordinate mapping is linear, (2) is equivalent to
0
alalg+-+c,lu,lz=|: 3)
0

Hence ¢y, ..., ¢, satisfy (1) if and only if they satisfy (3). So (1) has only the trivial solution
if and only if (3) has only the trivial solution. It follows that {uy, ..., u,} is linearly
independent if and only if {[w,], ..., [W,]z} is linearly independent. (This fact is also an
immediate consequence of Exercises 31 and 32 in Section 4.3.)

Study Tip: Exercises 27-34 tell you to explain your work and justify your conclusions. This
requirement is to help you think about your calculations. Check with your instructor. A similar
requirement is likely to appear on exam questions.

Warning: The standard mistake in Exercises 27-34 is to write the coordinate vectors as the
rows of a matrix and then to check the linear independence of the columns. This is completely
wrong! Since we mainly work with column vectors, it is wise to write the coordinate vectors first
(as columns) and afterwards write a matrix that can be row reduced to check for linear indepen-
dence. See the second solution of Exercise 13 and the sample solution for Exercise 27, below.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.




EB Brief Table of Contents || EB Table of Contents

44 -« Coordinate Systems 4-15

1 3 0
0 -1
27. The coordinate vectors of the polynomials are v, = ol v, = Y v, = 3 (relative to
1 0 -1
the standard basis). To check linear independence of these vectors in R*, compute

1 3 0 O 1 0 -1 0O 1 0 -1 O

0O 1 -1 0 0O 1 -1 0 0O 1 -1 0

02 3 0[]|0-2 30 o0 10

1 0 -1 O 2 3 -1 0 0 0 0 O

The three coordinate vectors are linearly independent in R*, because the equation
X1Vi + X2V2 + x3v3 = 0 has only the trivial solution. By the isomorphism with [P, the three
polynomials are linearly independent in Ps.

Note: When you write that an equation has only the trivial solution, you must indicate in some
way what equation you have in mind.

Study Tip: Exercises 27-30 could be expanded to ask whether the given polynomials form a
basis for P;. You might see such a question on an exam.

31. In each part, place the coordinate vectors of the polynomials into the columns of a matrix
and reduce the matrix to echelon form:

1 -3 4 11 [1 -3 4 11 [1 -3 -4 1
a.|-3 5 5 0|~|0 4 -7 31~10 -4 -7 3/|. The four coordinate
5 -7 -6 -1] |0 8 14 -6/ |0 0 0 O

vectors do not span R’ because there is no pivot in row 3. Because of the isomorphism
between R’ and P, the corresponding polynomials do not span P,.

0 1 -3 2] 1 =2 2 ol [1 -2 2 o)1 -2 2 o
b.|5 -8 4 -3|~|5 -8 4 -3[~|0 2 -6 -3|~|0 2 -6 -3|.
1 -2 2 0] |0 1 -3 2(/]|0 1 -3 2,10 0 0 35

The four coordinate vectors span R’ because there is a pivot in each row. Because of the
isomorphism between R® and P,, the corresponding polynomials span P,.

Study Tip: Carefully study the solutions in Exercise 31, because some student papers have a
discussion that is far removed from a correct answer. After creating the matrix from the
coordinate vectors and row reducing, a student might write something such as
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“They do not span because there is not a pivot in each row.”

Error #1: “They” is a pronoun with no mention of what “they” is. Does the student mean the
polynomials, the coordinate vectors, or the columns of the matrix?

Error #2: Span what? The verb “span” requires an object, such as P; or R’.

Error #3. There is no mention of “isomorphism.” The phrase “not a pivot in each row” has
relevance only to the fact that the coordinate vectors do not span R’. The only way to get from
this fact to the polynomials in the exercise is to use the isomorphism between P, and R’. (Some
instructors may permit the term “correspondence” instead of the more precise “isomorphism.”)

Answer to Checkpoint. The columns of the matrix A=[b, --- b,] form a basis for R", so A is
invertible, by the Invertible Matrix Theorem. By Theorem 5 in Section 2.2, for each x in R" there
exists a unique vector ¢ = (cy, ..., ¢,) such that x = Ac, thatis, x=¢b, +---+c¢c,b,.

MATLAB The Backslash Operator \

If an equation Ax = b has a unique solution, MATLAB will automatically produce x if you
use the command

x = A\b

In this section, the equation probably will have the form Pu = x, with u the B-coordinate
vector of x, and the command will be u = P\x.

The “backslash” command works in two different ways. When A is square, the
command A\b causes MATLAB to create an LU factorization of A (see Section 2.5); if A
is invertible, the factorization is used to produce the unique solution to Ax = b; and if A is
not invertible, MATLAB gives the error message “matrix is singular” (even if the system
Ax = b has a solution). When A is not square, A\b creates a least-squares solution (see
Section 6.5).

4.5 THE DIMENSION OF A VECTOR SPACE

This short section provides a convenient way to compare the “sizes” of various subspaces of a
vector space. The notion of dimension will be used frequently throughout the rest of the text.
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KEY IDEAS

Theorem 10 shows that the dimension of a finite-dimensional vector space does not depend on
the particular basis for the space. Example 4 shows how to visualize subspaces of various
dimensions. Theorems 9 and 12 are important for later theory and applications. You might
remember Theorem 9 more easily in this form:

In an n-dimensional vector space, any set of more than n vectors must be linearly
dependent.

Theorem 12, the Basis Theorem, may be restated as follows:

If Vis a p-dimensional vector space, with p > 1, and if § is a subset of V that contains
exactly p elements, then S is linearly independent if and only if S spans V.

Warning: Theorem 11 shows that any basis of a subspace H of a finite-dimensional space V
can be extended to a basis of V. But it is not true that any basis of V can be cut down to a basis
for H. That is, if S is a basis for V, it is not likely that a subset of S is a basis for H. For instance,
suppose S is the standard basis for R’ and H is a plane in R® that contains the origin but none of
the coordinate axes. Then no subset of S can be a basis for H.

SOLUTIONS TO EXERCISES
s—2t 1 -2 1| |-2
1. Since | s+t |=s|1 +¢| 1| foralls, ¢ theset{|1| | 1| certainly spans the subspace,
3t 0 3 0 3

call it H. Also, the set is obviously linearly independent (because the vectors are not
multiples), so the set is a basis for H. Hence, dim H = 2.

3. The given subspace, call it H, is the set of all linear combinations of the vectors

0 0 2
1 -1 0

vV, = ,V, = ,V, =
Ylol? 1> -3
1 2 0

First determine if {v,, v,, v3} is linearly independent. One way to do this is to row reduce
the augmented matrix [v, v, v, 0]. A faster way is to use Theorem 4 in Section 4.3.
Clearly, v, # 0, v, is not a multiple of v;, and v; is not a linear combination of the vectors v;,
v, that precede it, because the first entry in v; is not zero. Hence {v,, v,, v3} is linearly
independent and thus is a basis for the space H it spans. Thus dim H = 3.
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Standard calculations show that the set of solutions of the homogeneous system consists of
only the trivial solution. So the subspace is {0}, and it has no basis. (The vector 0 spans the
space, but {0} is a linearly dependent set.) By definition, the dimension is zero. [Note:
Instructors who want every subspace to have a basis often define the empty set to be a basis
for {0}. The number of vectors in this basis is zero, so the dimension of {0} is still zero.]

13. A has three pivot columns, so dim Col A = 3. There are two columns without pivot

19.

21.

positions, so the equation Ax = 0 has two free variables, and dim Nul A = 2.
a. See the box before Example 5. b. Read Example 4 carefully.
c. See Example 1. d. See Theorem 10.

e. See Practice Problem 2. (You should be working the practice problems before you start
the exercises.)

Form the matrix whose columns are the coordinate vectors of the Hermite polynomials,
relative to the standard basis {1, ¢, £, t3}:

I 0 =2 0

0O 2 0 -12
A=

0O 0 4 0

0O 0 O 8

The matrix has four pivots and hence is invertible. So its columns, the coordinate vectors,
are linearly independent. Hence the Hermite polynomials themselves are linearly
independent in PP;. Since there are four Hermite polynomials, and dim PP; = 4, we conclude
from The Basis Theorem that the Hermite polynomials form a basis for P;.

Note: You could, of course, say that the columns of the matrix A span R*. But you cannot stop
with that assertion, because you need the polynomials to span P;. You have to go on and point
out that because of the isomorphism between P; and R*, a set of vectors spans P; if and only if
the set of coordinate vectors (the columns of A) spans R*. So the solution is shorter if you appeal
to the Basis Theorem.

25.

27.

29.

Note that n > 1, because S cannot have fewer than 0 vectors. If dim V=n > 1, then

V# {0}. If S spans V, then a subset S’ of S is a basis for V, by the Spanning Set Theorem.
But if § has fewer than n vectors, then S” also has fewer than n vectors. This is impossible,
by Theorem 10, because dim V=n. So S cannot span V.

If PP were finite-dimensional, then Theorem 11 would imply that n + 1 = dim P, < dim P for
each n, because each P, is a subspace of P. This is impossible, so [P must be infinite-
dimensional.

a. True. Apply the Spanning Set Theorem to the set {vy, ..., v,} and produce a basis for V.
This basis will have no more than p elements in it, so dim V must be no more than p.
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b. True. By Theorem 11, {vy, ..., v,} can be expanded to a basis for V. The basis will have
at least p elements in it, so dim V must be at least p.

¢. True. Take any basis (of p vectors) for V and adjoin the zero vector. Spanning sets can
be arbitrarily large. The dimension of V being p only keeps spanning sets from having
fewer than p elements.

31. Since H is a nonzero subspace of a finite-dimensional space, H is finite-dimensional and
has a basis, say, Vi, ..., V,. Any vector in T(H) has the form 7(y) for some y in H. Since
{w, ..., v} spans H, there exist scalars ¢, ..., ¢, such that y =¢;v, +--- +¢,v . Since T'is
linear, T(y)=c¢T(v)+ - +c,T(v,). This shows that {T(vy), ..., T(v,)} spans T(H). By
Exercise 29(a), dim T(H) < p=dim H.
Second proof: Let k = dim T(H). If k =0, then k < dim H. Otherwise, T(H) has a basis,

which can be written in the form T(v,), ..., T(v,) for some vectors vy, ..., vy in H. Since
{T(v), ..., T(vy)} is linearly independent, so is {vi, ..., v}, by Exercise 31 in Section 4.3.
Since v, ..., v; are in H, the dimension of H must be at least k.

Hint for Exercise 32: Use an exercise in Section 4.3.

Study Tip: The next section is quite important. Do your best to get caught up now.
Otherwise, you may have difficulty relating the various concepts and facts about matrices that
will be reviewed in Section 4.6.

4.6 RANK

This section gives you a chance to put together most of the ideas of the chapter in the same way
that Section 2.3 collected the main ideas of the sections that preceded it.

KEY IDEAS

The Rank Theorem is the main result. By definition, rank A = dim Col A. But because rank A is
also the dimension of Row A, the displayed equation in the theorem leads to the equation:
dim Row A +dim Nul A = n.
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Equivalent Descriptions of Rank

The rank of an m X n matrix A may be described in several ways:

* the dimension of the column space of A, (our definition)

¢ the number of pivot positions in A, (from Theorem 6)

* the maximum number of linearly independent columns in A,
* the dimension of the row space of A, (from the Rank Theorem)

» the maximum number of linearly independent rows in A,

e the number of nonzero rows in an echelon form of A,

e the maximum number of columns in an invertible submatrix of A.
(Supplementary Exercise 17 at the end of the chapter)

Pay attention to how Theorem 13 differs from the results in Section 4.3 about Col A: If you
are interested in rows of A, use the nonzero rows of an echelon form B as a basis for Row A; if
you are interested in the columns of A, only use B to obtain information about A (namely, to
identify the pivot columns), and use the pivot columns of A as a basis for Col A. For Nul A, it is
important to use the reduced echelon form of A.

When a matrix A is changed into a matrix B by one or more elementary row operations, the
row space, null space, and column space of A may or may not be the same as the corresponding
subspaces for B. The following table summarizes what can happen in this situation.

Effects of Elementary Row Operations

* Row operations do not affect the linear dependence relations among the
columns. (That is, the columns of A have exactly the same linear dependence
relations as the columns of any matrix that is row-equivalent to A.)

* Row operations usually change the column space.
* Row operations never change the row space.
e Row operations never change the null space.

The four subspaces shown in Figure 1 in the text are called the fundamental subspaces
determined by A. (See Exercises 27-29.) The main difficulty here is to avoid confusion between
Row A, Nul A, and Col A. The fourth subspace will appear again in Sections 6.1 and 7.4.

The following table lists all statements that are in the Invertible Matrix Theorem at this point
in the course, arranged in the scheme used in Section 2.3 of this Study Guide. The statements in
all three columns are equivalent when A is square (m = n = p). As before, a few extra statements
have been added to make the table more symmetrical.
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STATEMENTS FROM THE INVERTIBLE MATRIX THEOREM

Equivalent statements for Equivalent statements for an Equivalent statements for

an mxn matrix A. nXxn square matrix A. any nXxp matrix A.

k. There is a matrix D such | a. A is an invertible matrix. j-  There is a matrix C such
that AD = I. that CA = 1.

*. A has apivot positionin | c. A has n pivot positions. *. A has a pivot position in
every row. every column.

h. The columns of A span m. The columns of A form a e. The columns of A are
R™, basis for R". linearly independent.

g. The equation Ax =b has | *. The equationAx=Dbhasa |d. The equation Ax =0 has
at least one solution for unique solution for each b only the trivial solution.
each b in R™. in R".

i. The transformation *. The transformation f. The transformation
X > Ax maps R" onto X > Ax is invertible. X > AX is one-to-one.
R™.

n. ColA=R". b. A is row equivalent to L. q. Nul A = {0}.

o. dimCol A=m. 1. A”is invertible. r. dimNulA=0.

* rank A=m. p- rank A = n. * rankA=p.

With so many concepts in your linear algebra vocabulary, you need to be careful not to
combine terms in ways that are undefined, even though they may sound reasonable to you. For
example, after you finish your work on this section, you should recognize that the following
phrases (which have appeared on my students’ papers) are meaningless: “the basis of a matrix,”
“the dimension of a basis,” and “the rank of a basis.”

SOLUTIONS TO EXERCISES
1 4 9 7 1 0 -1 5
1. A=]-1 2 -4 1|~B=|0 2 5 -6
5 -6 10 7 0 0 0 o

Look at B, and conclude that A has two pivot columns and the equation Ax = 0 has two free
variables. Sorank A =2 and dim Nul A = 2. In fact, the first two columns of A are pivot

columns, so
1] (-4
Basis for Col A: <[ ~-1),| 2
5/|-6

Copyright © 2006 Pearson” Addison-Wesley. All rights reserved.



EB Brief Table of Contents || EEi

Table of Contents

4-22 CHAPTER 4 « Vector Spaces

For the row space, use the rows in the echelon form B. That is,
Basis for Row A: {(}, 0, -1, 5), (0, -2, 5, -6)}
For the null space, use the reduced echelon form of A to solve Ax = 0:

10 -1 5 x, - x,+5x,=0
A~B~l0 1 =5/2 3|5 x,~(5/2)x,+3x, =0
0 0 0 0 0=0

Thus x) = x3 — 5x4, x2 = (5/2)x3 — 3x4, with x3, x4 free. The general solution of Ax = 0 is

X, x,—5x, 1 -5
5/2)x,-3 5/2 -3

B Gr2)x, =3, =X, +x,
x, X, 1 0
X, X, 0 1
T T
u v

Thus {u, v} is a basis for Nul A.

Study Tip: Because rank A = 2 in Exercise 1, any two linearly independent columns of A
form a basis for Col A, and any two linearly independent rows of A form a basis for Row A.
When the rank of a matrix exceeds 2, selecting bases in this way is not so easy. (That is why you
examine an echelon form of A.) On an exam, you should always choose the pivot columns of A as
the basis for Col A and the nonzero rows of an echelon form of A as the basis for Row A. This
will show that you can handle matrices with any rank.

7. Yes, Col A = R*, because Col A is a 4-dimensional subspace of R* and hence coincides
with R*. No, Nul A cannot be R®, because the vectors in Nul A have 7 entries. Nul A is a
3-dimensional subspace of R’, by the Rank Theorem.

13. If A is either a 7 X 5 matrix or a 5 X 7 matrix, then A has at most 5 pivot positions. So 5 is
the largest possible value for rank A.

17. a. See the paragraph before Example 1.
. See the warning after Example 2.

b

¢. See the Rank Theorem.

d. See the Rank Theorem.

e. See the Numerical Note before the Practice Problem.

19. Visualize the system as Ax = 0 where A is a 5 X 6 matrix. The information in the problem
implies that the solution space is one-dimensional. By the Rank Theorem, rankA=6-1=35.
So dim Col A = 5. But Col A is a subspace of R*. Hence Col A = R’. Thus Ax=b has a
solution for all b.
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Study Tip: Exercises 19-25 make good exam questions.

21.

23.

25.

31.
33.

3s.

Visualize the system as Ax = b, where A is 9 X 10 matrix. You are told that the system has a
solution for all b, so A must have a pivot position in each row. (That is, rank A = 9.) Since A
has 10 columns, the Rank Theorem implies that dim Nul A = 1. So it is not possible to find
two linearly independent vectors in Nul A.

The set of interest is the null space of a 12 X 8 matrix A. The description of this set implies
that dim Nul A = 2. By the Rank Theorem, rank A = 8 -2 = 6. So the equation Ax = 0 is
equivalent to Bx = 0, where B is an echelon form of A with 6 nonzero rows. The answer to
the question is that six homogeneous equations are sufficient.

Let A be the 10 X 12 coefficient matrix. By hypothesis, there are three free variables in the
system Ax = b, so dim Nul A = 3. By the Rank Theorem, dim Col A =12 -3 =9. Since
Col A is a subspace of R'® (because A has 10 rows), Col A cannot be all of R', so some
nonhomogeneous equations Ax = b will not have solutions.

The solution is in the text.

Let A=[u u, wu,]. Ifu# 0, then u must be a basis for Col A, since Col A is one-
dimensional. Hence there exist scalars r and s such that u, = ru and u; = su, so that

1
A=[u ru sul=u[ll r s]=uv’, where v=|r

N

If the first column of A is zero and the second column, call it u, is nonzero, then
A=[0 u ru] for some r. Inthis case, take v=(0,1,7). If A=[0 0 u],take v=(0,0, 1).

a. Let C and N be the matrices you construct whose columns are bases for Col A and
Nul A, respectively. For the specific 5 X 7 matrix A in this problem, rank A = 4 and
dim Nul A = 3. So C should be 5 X 4 (because Col A is a four-dimensional subspace of
R?), and N should be 7 X 3 (because Nul A is a three-dimensional subspace of R"). Also
if the rows of R form a basis for Row A, then R should be 4 X 7, because dim Row A =
rank A = 4 and Row A is a subspace of R”. (Make sure you understand these statements.)

b. The matrix S=[R” N]is7 X 7,because R"is 7 X 4and Nis 7 X 3. If M is a matrix
whose columns form a basis for Nul A”, then M should be 5 X 1, because Nul A” is a one-
dimensional subspace of R, by Exercise 28(b). Since Cis 5 X 4, the matrix T[C M]
should be 5 X 5.

In general, the matrix S is n X n because the dimensions of Row A (spanned by the
columns of R") and Nul A add up to n, the number of columns of A, and both Row A and
Nul A are subspaces of R” The matrix Tis m X m because the dimensions of the column

space and Nul AT add up to m, the number of rows of A, and both Col A and Nul A are
subspaces of R™.

b
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Mastering Linear Algebra Concepts: Eight Basic Ideas

Sometime between now and when you finish the chapter, you should do a major review of the
eight key concepts introduced in this chapter: vector space, subspace, column space, null space,
basis, coordinate vector, dimension, and rank. (The row space of A is not really a separate
concept; it is just the column space of A”.) Study your old review sheets, and prepare new
summary sheets for coordinate vector, dimension, and rank. Use as many of the standard
categories (special cases, examples, algorithms, etc.) as possible. The tables in this section will
be helpful. Also, add cross-references about dimension and rank to other sheets (subspace,
column space, etc.) and update your summary sheet for the Invertible Matrix Theorem.

MATLAB ref, rank,and randomint

In this course, you can use either ref (A) or rank(A) to check the rank of A. In
practical work, you should use the more reliable command rank(A), based on the
singular value decomposition (Section 7.4).

The Laydata command randomint (m,n) produces an m X n matrix with integer
entries between -9 and 9. (The former name for this command was randint, but
MATLAB now uses that for a slightly different command in its Communications Toolbox.)

4.7 CHANGE OF BASIS

This section will help you better understand coordinate systems. A review of Section 4.4 now is
strongly recommended.

KEY IDEAS

Figure 1 and the accompanying discussion will help you visualize the main idea of the section.
Imagine superimposing the C-graph paper (Figure 1-b) on the B-graph paper (Figure 1-a). Can
you see where b, will lie on the (*coordinate system? Four units in the ¢,-direction and one unit

4
in the c,-direction. That is the geometric interpretation of the equation [b, ], ={ J in Example 1.

—6 o . N .
Similarly, since {b, ], =I: J , b, lies six units in the negative ¢;-direction and one unit in the ¢,-

direction.
In general, the locations of b, and b, on the %-graph paper are precisely what you must find
in order to build the columns of the change-of-coordinates matrix:

(I_)B = [ (b,], [b, ]C]
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The notation for this matrix should help you remember the basic equation for changing B-
coordinates into C-coordinates:

(Xl = P, =[x],

The calculations are simple when B and C are bases for R". The box after Example 2
illustrates the algorithm for computing the change-of-coordinates matrix. In general,

[, - ¢, l b, -+ b1~ | 04}—)3]
Equivalently, using the notation of Section 4.4,
(B, P)~U P
where Pg is the matrix [b, --- b,] that changes B-coordinates to standard coordinates, and P,
is similarly defined. If you refer back to Exercise 12 of Section 2.2, you will see that cfg is the

same as (P,)'Pg. Since (P, changes standard coordinates to C-coordinates, you can obtain [x],
from [x]5 as follows:

-1
[x]g %PB [XJB A'(Pc) Pg [X]B = ch[X]B = [X]c
B-coordinates standard C-coordinates
coordinates

This diagram provides another way of viewing the change of coordinates.

SOLUTIONS TO EXERCISES

1. a. From b; = 6¢; - 2¢; and b, = 9¢; — 4¢,, write

bile=| ba=| Zlana p <[ & °
Puke=| 5P| g2 f=| 4]

b. Since x = -3b; + 2b,,

-3 6 9[-3] [ 0]
Ma=| 5| 2dBe=| 5 4| 2)7| =

7. Unlike Exercise 1, you do not have direct information from which you can write [b;], and
[b,]c. Rather than compute these two coordinate vectors separately, use the algorithm from
Example 2:

1 2 7 -3]
[e, ¢, b b= ~[

-5 2 5 -1]

1 -2 7 =3
0 -8 40 -16

~_1 2 7 3] [to 31
0 1 -5 2| 101 =5 2
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1
2} . The change-of-coordinates matrix from C to B is

Lo [=3 a7 a2 1] (201
P=(P)'= SSEE =
BeC CeB -5 2 -115 -3 -5 3
11. a. See Theorem 15.

b. See the first paragraph in the subsection on Change of Basis in R".

13. Let b, represent the polynomial 1 — 27 + 7, let b, be 3 — 5¢ + 4¢%, let by be 2¢ + 37, and let C be
the standard basis {l, ¢, t2} for P%. The C-coordinate vectors of the vectors by, by, b, are

1 3 0
[bl]cz -2 ’[b2]C: =5 a[b3]c= 21, and
1 4 3
1 3 0
P=-2 -5 2
CeB
1 4 3
The coordinate vector [-1 + 2¢] satisfies
-1
Cfs[—1+2t]3=[—1+2z]c= 2
0
This equation can be solved by row reduction:
1 3 0 -1 1 0 0 5 5
-2 =5 2 2{~-~10 1 0 =2y [-1+2]g=|-2
1 4 3 O 0 0 1 1 1

19. a. If P is to be the change-of-coordinates matrix from {u;, u,, us} to {v;, v,, v3}, then the
columns of P should be C-coordinate vectors, where C = {v;, v,, v3}. That is, the
columns of P should be [u]., [w,];, and [us]; . You know P, but you do not know u,,
u,, or uz. Ask yourself, for example, what is the meaning of [u,].? By definition, a C-
coordinate vector tells how to build a vector out of the C-basis vectors, vy, v,, and vs. So,
forj=1,2,3,

u; = [vi vz V5] [Uj]c = V[uj]c
where V=[v, v, v;3]. Then, by the definition of matrix multiplication,
[, w, wl= [Vl Viwl Viul} =Vl Ml Ml]=VP

You know V and P, so you can compute uy, U, and us.
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-2 -8 -7 1 2 -1 -6 -6 -5
V= 2 5 2{-3 -5 0|={-5 -9 O
3 2 6|4 6 1 21 32 3

—6 -6 -5
Thus, w, ={ =5 |,u,=|-9 |,u;=| 0].
21 32 3

b. Stop here! Part (a) was fairly difficult. If you were not able to work it by yourself and
you have read the solution, then you should try part (b) by yourself. Here are the steps of
the solution:

(i) Write in symbols what the columns of P should be.

(ii) Decide how these columns are related to the matrix W= {w; w, w;s].
(iii) Obtain a matrix equation that involves W in some way.

(iv) Compute W, and list its columns as the answer to the problem.

Study the solution to (a), close the Study Guide, and work on (b) as if it were a new
problem. The solution of (b) is at the end of the solutions for Section 4.8.

MATLAB Change-of-Coordinates Matrix

The Laydata Toolbox has data for Exercises 7-10 and 17-19. The command ref (M)
row reduces a matrix such as [¢; ¢; b; b,] to the desired form.

4.8  APPLICATIONS TO DIFFERENCE EQUATIONS

Difference equations are the discrete analogues of differential equations. Both are important in
science and engineering. The discrete and continuous theories are remarkably parallel, and linear
algebra is applied in similar ways, although the calculations are somewhat easier for difference
equations. A variety of examples and exercises here illustrate some difference equations you may
encounter later in your work.

KEY IDEAS

Each signal in S is an infinite list of numbers. Linear independence of a set of signals can often
be demonstrated by looking at short segments of the signals, that is, by showing that a Casorati
matrix is invertible. A Casorati matrix cannot be used in general to demonstrate linear depen-
dence of a set. However, see the appendix at the end of this Study Guide section.
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The main focus of the section is on difference equations. Given a homogeneous difference
equation, you should be able to:

» determine whether a specified signal is a solution of the equation;
« find solutions of the equation, using the auxiliary equation;

« give the general solution (when the auxiliary equation has no multiple roots and no
complex roots).

Theorem 17 is the key result that enables you to write the general solution. Just finding some
specific solutions is not enough; you must show that they span the set of all solutions. But
Theorem 17 and the Basis Theorem in Section 4.5 together show that for an nth order equation,
you only need to find n linearly independent solutions. (See Example 5.) The same principle
apples to an nth order differential equation (discussed later in Section 5.7). This principle is one
of the most powerful applications of linear algebra in the text.

The subsection on nonhomogenous equations is optional. If this is covered, you should be
able to work Exercises 25-28. The general principle is illustrated in Figure 4, page 284:

General solution of
nonhomogeneous eqn.

_ ) Particular solution of General solution of }

B {nonhomogeneous eqn.} {homogeneous eqn.

The final subsection shows the modern way to study an nth order linear difference equation,
rewriting it as a first order system X;,; = Ax, (k = 1, 2, ...). Such systems were introduced in
Section 1.10 and they will be discussed further in Sections 4.9 and 5.6.

SOLUTIONS TO EXERCISES

1. If y, = (4, then v = (<" and y.,» = (—4)*2. Substitute these formulas into the left side
of the equation:

Vewr ¥ 2V =8y, = (=4 +2(—4)*" —8(—4)
=(—4)"[(—4)* +2(-4) - 8]

=(-4)"[16 -8 - 8]=0 forall k
Since the difference equation holds for all £, (—4)" is a solution. The text answer displays the
similar calculations for y, = 2",
7. Compute the Casorati matrix for the signals 1%, 2%, and (-2)*, setting k = O for convenience:
1° 2° (=2)° 1 Ut 1 I 1 1 1 1 1
1" 2" =2)'|=l1 2 =2|~{0 1 =3|~(0 1 -3
P2 (=2 |1 4 4, |0 3 3] |0 0 12
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This Casorati matrix has three pivots and hence is invertible, by the IMT. Hence the set of
signals (1%, 2%, (2%} is linearly independent in S. We know (from the text) that these
signals are in the solution space H of a third-order difference equation. By Theorem 17,
dim H = 3. Since the three signals are linearly independent, they form a basis for H, by the
Basis Theorem in Section 4.5.

Warning: Many student papers for Exercise 7 suffer from a lack of precision, often confusing
linear independence of the columns of the Casorati matrix with linear independence of the signals
in S. There is no need to discuss the columns of the Casorati matrix—just observe that the
matrix is invertible. But you must point out that the three signals are linearly independent, in
order to apply the Basis Theorem to the vector space H of solutions to the difference equation.

13. The auxiliary equation for y,,, — y,,, +§ y, =0isr?—r +§ =0. By the quadratic formula,

_121-8/9 _1%1/3
2

r= = or

2

wiN
W —

k k
Two solutions of the difference equation are (%J and (%} . These signals are obviously

linearly independent because neither is a multiple of the other. Since the solution space is
two-dimensional (Theorem 17), the two signals form a basis for the solution space, by the
Basis Theorem.

Study Tip: I think Exercises 7-19 (and 25-28) make good test questions because they illustrate
how important Theorem 17 and the Basis Theorem really are. Probably, you do not have to
remember the specific number of Theorem 17, but your discussion should show that you have it
in mind and know how to use it with the Basis Theorem. (Check with your instructor.)

19. The auxiliary equation for yi, + 4y + yi = 0 is 7 + 4r + 1 = 0. By the quadratic formula,

+16 - +
r=—4_\2/16 4:—4_22\/§=_2J_r\/5

Two solutions of the difference equation are (-2 + \/3 ¥ and (-2- \/5 )y, They are

obviously linearly independent because neither is a multiple of the other. Since the solution
space is two-dimensional (Theorem 17), the two signals form a fundamental set of solutions

by the Basis Theorem, and the general solution has the form ¢, (=2 +~/3)* +¢,(=2—+/3).
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To prove that y, = k? is a solution of
Ves2 + 3V — 4 =10k +7 )

show that when k%, (k + 1)2, and (k + 2)2 are substituted for yi, i1, and y,p, respectively, the
resulting equation is true for all k:

(k+2)° +3(k +1)° — 4k = (k> + 4k +4)+3(k” + 2k +1)—- 4k*
=(1+3- D> +(4 +6)k +(4 +3)
=10k +7 forallk
So k* is a solution of (1). The auxiliary equation for the homogeneous difference equation
Yirz + 3y — 4y, =0 forall k 2
is r* + 3r — 4 = 0, which factors as (r-D(r+4)=0,s0r=1,-4. Thus 1¥and (—4)" are

solutions of (2). The signals are linearly independent (for neither is a multiple of the other),
so they form a basis for the two-dimensional solution space. The general solution of (2) is

¢, 1 +¢,(~4)*. Add this to a particular solution of (1) and obtain the general solution
K + ¢ + co(-4) of (1).

The full explanation is in the text’s answer section.

For {y:} and {z,} in S, the kth term of {y;} + {z} is y« + . Hence

TUy I H{z D ={n t ) Y a(yea + 2) + 0y + )}
=V T W Y 2, Yaz,,, +h2,)

=T{yk } +T{Zk}
For any scalar r, the kth term of r{y,} is ry;, and so

T(r{y D) =1y, +alry,,) +b(ry,)}
=r{Yio tay,, thyy=rT{y}

Thus T has the two properties that define a linear transformation.

19. b. (This solution is for Section 4.7.) The columns of a change-of-coordinates matrix P from

{v1, V2, v3} to {w;, w,, w3} are D-coordinate vectors, where D = {w,, w,, w3}. That is,
the columns of P are [vi]; ., [V2]lp , and [vslp . How are these columns related to the
matrix W={w; w, ws;]? A D-coordinate vector tells how to build a vector out of the
D-basis vectors (the columns of the matrix W). Forj=1, 2, 3,

vi=[wi w willvil, =Wlvip
By definition of matrix multiplication,
V=lv; v, w]=[W [Vj]p W [Vj]p w [Vj]p] =W [[Vj]'D vilp [Vj]p] = WP

You know V and P, so compute W from VP' = W. Use MATLAB or other matrix
program to compute P~'. Then
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-2 -8 -7 5 8 5 28 38 21

W=vP'=| 2 5 2|3 -5 3|=|-9 -13 -7
3 2 642 -2 -1 -3 2 3
28 38 21
Thus, w, ={-9 |, w,=|-13|,w,=| -7 .
-3 2 3

Appendix: The Casorati Test

Let {y;, ..., y.} be a set of signals in S. Forj =1, ..., n and for any £, let y,(k) denote the kth
entry in the signal y; and let

y, (k) Y, (k)

- :yl(k+1) :y,,(k+1)

The Casorati matrix

Y (k+n-1) - y, (k+n-1)

a. If C(k) is invertible for some &, {y;, ..., ¥.} is linearly independent.
b. Ifyj, ..., ¥, all satisfy a homogeneous difference equation of order n,

Yien T G Visoa +--+a,y, =0 forall k (*)

(with a, # 0), and if the Casorati matrix C(k) is not invertible for some k, then {yy, ..., y,} is
linearly dependent in S, and for all k, C(k) is not invertible.

Proof. (a) The argument given in the text (page 279) for a set of three signals generalizes
immediately to n signals. (b) Suppose thaty,, ..., y, are in the set H of solutions of (*) and C(k,)
is not invertible for some ko. It is readily verified that if T: H — R" is defined by

y(ko)

k, +1
7(y)=| Yo P

y(k, +n-1)

then T is a linear transformation. The proof of Theorem 16 is easily modified to show that (*) has
a unique solution y whenever y(ky), ..., Y(ko + n — 1) are specified. This means that T is a one-to-
one mapping of H onto R". Furthermore, the images 7(y,), ..., T(y,) form the columns of the
Casorati matrix C(kg) and hence are linearly dependent, because C(ko) is not invertible. Since T is
one-to-one, {yy, ..., ¥} is linearly dependent, by Exercise 32 in Section 4.3. This proves the first
statement in (b). The second statement follows immediately from part (a), because if C(k) were
invertible for some k, then {y,, ..., ¥,} would be linearly independent, which is not true. So C(k)
is not invertible for each k.
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MATLAB roots

In Exercises 7-16 and 25-28, the polynomial in the auxiliary equation is stored in a row
vector p, with coefficients in descending order. For instance, if the auxiliary equation is
7 +6r+9=0,then p=[1 6 9]

The MATLAB command roots (p) produces a column vector whose entries are the
roots of the polynomial described by p.

4.9 APPLICATIONS TO MARKOV CHAINS

This section builds on the population movement example in Section 1.9. You should review that
example now. Markov chains are widely used in applications and there is a rich theory connected
with them. The simple examples and exercises in this section provide a basic foundation on
which you can build later as needed. Two of the examples here will be analyzed from a different
point of view in Section 5.2.

KEY IDEAS

A probability vector is a list of nonnegative numbers that sum to one. A Markov chain is a
sequence of probability vectors {x,} that satisfy a difference equation x;,; = Px; (k=0, 1, ...) for
some stochastic matrix P (whose columns are themselves probability vectors).

The theory of this chapter can be used to show that P — I always has a nontrivial null space
when P is a stochastic matrix (Exercise 17). Advanced texts show that the null space of P - [
always includes at least one probability vector, which then is a steady-state vector for P, because
the equation (P — I)q = 0 is equivalent to Pq = q. (Also, see Exercise 18.)

Our main interest is in a regular stochastic matrix P. In this case the steady-state vector is
unique, according to Theorem 18. The key to predicting the distant future for a Markov chain
associated with such a P is to find the steady-state vector ¢, since the sequence {x;} converges to
¢ no matter what the initial state.

SOLUTIONS TO EXERCISES

1. a. To set up the stochastic matrix P, label the columns N (for news) and M (for music) in
some order; use the same order for the rows. (Failure to keep the same order is a
common source of error in this type of problem.) The data should be arranged so you
read down a column and then to the right along a row.

From:

N M To

.7 .6| News
) .3 4] Music )
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b. You are told that 100% of the listeners are listening to the news at 8:15 a.m., so start the

Markov chain then, with x, =

¢. There are two breaks between 8:15 and 9:25, so you need x,.

R MR
e[S

The entries in X, show that after two station breaks, 67% of the audience is listening to
the news and 33% is listening to music.

Study Tip: When you compute a typical probability vector Px, be sure to compute all of the
entries in the product Px. Then check your work by verifying that the entries sum to 1.

7. To find the steady state vector for a regular stochastic matrix P:
(i) setup the matrix P - I,
(i) find the general solution of (P - Dx =0,
(iii) choose a basis vector for Nul(P — I) whose entries sum to 1.

A T | g 1 1 1 00 -3 1 1
P=2 8 2\,P-1I=|2 8 2|-{10 1 0= 2 -2 .
d .17 A 0107 0 0 1 d 1 -3

Solve (P-Dx=0:
-3 1 10 1 =30
_ - _ Interchange rows 1 and 3
2 2 20 -2 2 20 Scale every row by 10
l 1 -30 -3 .1 .1 0]

10 -1 0 X = x5 |Xx X, 1
~ee~ 001 =2 0] x, = 2x5 | =|2x; =22
0 0 0 0] xisfree |x| X, 1
1 1 174 25
The entries in | 2| sum to 4, so q=71 2|=|1/2]or|.50|.
1 1 174 25
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Study Tip: Notice that the column sums are all zero for the matrix / — P of Exercise 7. This
always happens (see Exercise 17), and so you have a fast way to check your arithmetic for the
entries in P — [.

Warning: You may have noticed that in Exercise 7, I scaled rows by 10, to avoid decimals. A
common mistake is to do this only to P, before forming P — I. That changes P drastically. The
scaling I did was permissible because it was applied to all the coefficients in an equation.

13.

19.

a.

a.

. 95 45
From Exercise 3, P =

-05 45
05 P_IZI: } Solve (P-Dx=0:

05 —45
~05 45 0] [-05 45 0] [1 -9 0] x=9x
05 —45 0 0 0 0] |0 0 0] xisfree

9 9
A basis for Nul(P - ) is {L}} ; the steady-state vector is q = [i J .

. The description in Exercise 3 may be interpreted as saying that the “state” of any

specified person (in some group of students) on day k is predicted by a probability vector,
say, X;. The second entry in X, is the probability that the person is ill on day k. The
starting vector for a specified person is (1,0) if the person is well today, and (0,1) if the
person is ill. This situation applies to each person, because the exercise says, for
example, that every healthy student has a 95% probability of being healthy the next day.
That is, the stochastic matrix P applies to each person in the group.

The question in part (b) is about x; for a large value of k. By Theorem 18, x,
approaches q, so it is reasonable to assume that q may be used to answer a question about
X.. Thus, the probability is .10 that after many days a specific student is ill. The second
question essentially asks, “If xo = (0,1), does this have any affect on x; for large k7 No,
by Theorem 18, because the sequence {x,} approaches q no matter what X, is.

The product Sx equals the sum of the entries in x. Thus, by definition, x is a probability
vector if and only if its entries are nonnegative and Sx = 1.

Let P=[p, p, - p,], where the p; are probability vectors. By matrix multiplication
and part (a),

SP=[Sp, Sp, - Sp,J=01 1 - 1]=S§
By part (b), S(Px) = (SP)x = Sx = 1. The entries in Px are obviously nonnegative,

because P and x have only nonnegative entries. By (a), the condition S(Px) = 1 shows
that Px is a probability vector.
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MATLAB randomstoc

The MATLAB box for Section 1.10 contains information that is useful here. The command
randomstoc (n) produces a random nxn stochastic matrix.

Chapter4 GLOSSARY CHECKLIST

Check your knowledge by attempting to write definitions of the terms below. Then compare your
work with the definitions given in the text’s Glossary. Ask your instructor which definitions, if
any, might appear on a test.

auxiliary equation: A polynomial equation in a variable r, created from . . . .

basis (for a nonzero subspace H): AsetB={vy,...,v,}in Vsuchthat:....

B-coordinates of x: See coordinates of x relative to the basis B.

change-of-coordinates matrix (from a basis B to a basis C): A matrix Cfg that transforms . . .,
namely, (equation). . . .

column space (of an m X nmatrix A): The set Col A of .. .. In set notation, ColA ={ : }.

controllable (pair of matrices): A matrix pair (A, B) where Aisn X n, Bhas nrows, and . . . .

coordinate mapping (determined by an ordered basis B in a vector space V): A mapping that
associates toeach . . ..

coordinates of x relative to the basis B = {b, ..., b,}:

coordinate vector of x relative to B: The vector [x]z whose entries . . ..
dimension (of a vector space V): The number. . ..

explicit description (of a subspace Wof R"): A parametric representation of W as the set of . . . .
finite-dimensional (vector space): A vector space that is . . . .

full rank (matrix): Anm X n matrix whose rank is . . . .

fundamental set of solutions: A ... for the set of solutions of . . . .
fundamental subspaces (determined by A): The...of A,....

implicit description (of a subspace Wof R"): A set of one or more . . . .
infinite-dimensional (vector space): A nonzero vector space Vthat . ...
isomorphism: A ... mapping from one vector space . . ..

kernel (of a linear transformation T: V— W): Thesetof...suchthat....
linear combination: A sum. ...

linear dependence relation: A ... vector equation where . . . .
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linear filter: A ...equation used to transform . . ..
linearly dependent (vectors): A set {v,, ..., v,} with the property that . . ..
linearly independent (vectors): A set {v, ..., v,} with the property . . ..

linear transformation T (from a vector space Vinto a vector space W): A rule T: V — W that

Markov chain: A sequence of . . . vectors vy, v}, V,, ... , together with a . . . matrix P such
that . ...

maximal linearly independent set (in V): A linearly independent set B in V such thatif . . .,
then....

minimal spanning set (for a subspace H): A set B that spans H and has the property thatif . . .,
then. ...

null space (of an m X nmatrix A): The set Nul A of all . ... In set notation, NulA={ : }.

probability vector: A vector in R” whose entries . . . .

proper subspace: Any subspace of a vector space V. . . .

range (of a linear transformation T: V— W): The set of all vectors.. . ..
rank (of a matrix A):

regular stochastic matrix: A stochastic matrix P such that . . ..

row space (of a matrix A): The set Row A of all . . . ; also denoted by . . . .
signal (or discrete-time signal):

Span{v,, ..., vp}: Thesetof.... Also,the...spanned. ...

spanning set (for a subspace H): Anyset {v;,...,V,}...suchthat....
standard basis: The basis . . . for R” consisting of . . . , or the basis . . . for P,.
state vector: A ... vector. In general, a vector that describes . . ., often in connection with a

difference equation . . . .
steady-state vector (for a stochastic matrix P): A ... vector vsuchthat....
stochastic matrix: A ... matrix whose columns. . . .
submatrix (of A): Any matrix obtained by . . ..
subspace: A subset H of some vector space V such that H has these properties . . . .

vector space: A set of objects, called vectors, on which . . ..
zero subspace: The subspace . . . consisting of . . ..
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5.1 EIGENVECTORS AND EIGENVALUES

This section introduces eigenvectors and eigenvalues. A hint about the connection with
dynamical systems appears at the end of the section.

KEY IDEAS

In words, a nonzero vector v is an eigenvector of a matrix A if and only if the transformed vector
Ax points in the same or opposite direction of v.

Notice that while an eigenvalue A might be zero, an eigenvector is never zero (by definition).
An eigenspace contains eigenvectors together with the zero vector.

The two equations AX = Ax and (A — ADx = 0 are equivalent. See Example 3. The first
equation is useful for understanding what eigenvalues and eigenvectors are, and it shows the
geometric effect of the linear transformation x > Ax on an eigenvector. The second equation
shows that the eigenspace is a subspace (because it is the null space of the matrix A — Al), and the
equation is used to find a basis for the eigenspace, when A is a known eigenvalue. The second
equation will be used again in Section 5.2 for another purpose.

SOLUTIONS TO EXERCISES

1. The number 2 is an eigenvalue of A if and only if the equation Ax = 2x has a nontrivial
solution. This equation is equivalent to (A — 20)x = 0. Compute

el

The columns of A are obviously linearly dependent, so (A — 2)x = 0 has a nontrivial
solution, and so 2 is an eigenvalue of A.
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7. Proceed as in Exercise 1:
3 0 -1 (4 00 -1 0 -1
A-4I=| 2 3 1|-10 4 0= 2 -1 1
-3 4 5| |0 0 4 (-3 4 1
You need to know whether A — 4/ is invertible. This could be checked in several ways, but

since you are asked for an eigenvector, in the event that one exists, the best strategy is to row
reduce the augmented matrix for (A —4D)x = 0:

-1 0 -1 O -1 0 -1 O -1 0 -1 O
2 -1t 0|~0 -1 -1 O|~0 -1 1 O
-3 4 1 0 0 4 4 O 0 0 0 O

Now it is clear that 4 is an eigenvalue of A [because (A — 4)x = 0 has a nontrivial solution].
The coordinates of an eigenvector satisfy —x; — x3 = 0 and —-x, — x3 = 0. The general solution
is not requested, so take any nonzero value for x; to produce an eigenvector. If x; = 1, then

x=(-1,-1, ).

Checkpoint 1: The answer in the text is different, namely, (1, 1, —1). Why is this also correct?

Helpful Hint: Suppose you think that 4 is an eigenvalue of a matrix, as in Exercise 7, and you
row reduce the augmented matrix for (A — 4Dx = 0. If you discover that there are no free
variables, then there are only two possibilities: (1) 4 is not an eigenvalue of A, or (2) you have
made an arithmetic error.

13. ForA=1:
4 0 1 1 00 301
A-1I=|-2 1 0|-]/0 1 O0(={-2 0 O
-2 0 1] {0 0 1 -2 00
) 3, +x, =0
The equations for (A — )x = 0 are easy to solve: {—2xl _ O}

Row operations hardly seem necessary. Obviously x, is zero, and hence x; is also zero.
There are three-variables, so x is free. The general solution of (A — )x = 0 is x,e,, where
e, =(0,1,0), and so e, provides a basis for the eigenspace.

For A=2:
4 0 1 2 00 2 0 1
A-2I=(-2 1 0{-{0 2 O|=|-2 -1 O
-2 0 1 0 0 2 -2 0 1
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2 0 1 0 2 0 1 O 0 1/2 0
[(A-21) 0]=-2 -1 0 0O(~l0 -1 1 O0f~}0 ®-1 o0
-2 0 -1 O 0 0 0 O 00 0 O

-1/2
So x; = —(1/2)x3, x, = x3, with x; free. The general solution of (A-20)x=0isx;; 1 |. A
1
[-1
nice basis vector for the eigenspaceis | 2 |.
2

For A =3:
401 [300| 1 o
A-3I={—2 1 0|-|0 3 0|=|—2 =2 o0
20 1003 |2 0 =2

1 0 1 0 |1 0o t of (Do 1 0
(A-3ry 0]=|-2 -2 0 0j~|0 =2 2 0~0@—1 0
-2 0 -2 0 (0 0 O O |O O O O
-1
So x; = —x;3, X, = x3, with x; free. A basis vector for the eigenspaceis | 1].
1

Study Tip: The text’s answer to Exercise 15 is likely to be the same as yours, but there are many
answers. What should you do if your vectors differ from those in the answer key? Example 2 gives
the answer. Whenever you compute an x that you think is an eigenvector of A, you can check this
simply by computing Ax. There is a little more to do in Exercise 15, however. The answer shows a
basis of two eigenvectors, which means that the eigenspace is two-dimensional. So your answer
must consist of two linearly independent eigenvectors. You can check that they are indeed
eigenvectors, and then their linear independence can be checked by inspection.

1 23

19. The matrix {1 2 3| is not invertible because its columns are linearly dependent. So the
1 23

number 0 is an eigenvalue of the matrix. See the discussion following Example 5.
21. a. Carefully read the definition of an eigenvalue.
b. See the paragraph before Example 5.
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¢. See the discussion of equation (3).

d. See Example 2 and the paragraph preceding it. Also, see the Numerical Note.

e. See the Warning after Example 3.

If a2 X 2 matrix A had three distinct eigenvalues, then by Theorem 2 there would
correspond three linearly independent eigenvectors (one for each eigenvalue). This is
impossible because the vectors all belong to a two-dimensional vector space in which any set
of three vectors is linearly dependent. See Theorem 8 in Section 1.6. In general, ifann X n
matrix has p distinct eigenvalues, then by Theorem 2 there would be a linearly independent
set of p eigenvectors (one for each eigenvalue). Since these vectors belong to an n-
dimensional vector space, p cannot exceed n.

Let x be a nonzero vector such that Ax = Ax. Then A™'Ax = A'(Ax), and x = ?»(A"lx). Since
x # 0 (and since A is invertible), A cannot be zero. Then A'x = A™'x, which shows that A" is
an eigenvalue of A™', because x # 0.

Note: The relation between the eigenvalues of A and A™' is important in the so-called inverse
power method for estimating an eigenvalue of a matrix. (See Section 5.8.)

27.

33.

For any A, (A — AM)" = A" — (A)" = A" — AL Since (A — MDY is invertible if and only if A — AJ
is invertible (by Theorem 6(c) in Section 2.2), we conclude that AT — Al is not invertible if
and only if A — Al is not invertible. That is, A is an eigenvalue of A’ if and only if A is an
eigenvalue of A.

The solution is given in the text. This exercise is important because it sets the stage for work
later in the chapter. You ought to spend at least a little time on Exercise 34, too, even if that
is not assigned.

Answer to Checkpoint: The answer in the text is also correct because it is a nonzero multiple of
the eigenvector found in the solution to Exercise 7, and any nonzero multiple of an eigenvector is
another eigenvector. (The eigenspace is a subspace and so is closed under scalar multiplication.)

MATLAB Finding Eigenvectors

When you know an eigenvalue, MATLAB can produce a basis for the corresponding eigen-
space. For example, if A is a5 X 5 matrix with an eigenvalue 7, then the commands

C = A - 7T*eye(5)
B nulbasis (C)

or, simply, B = nulbasis(A - 7*eye(5)), produce a matrix B whose columns
form a basis for the eigenspace for A corresponding to A = 7. In general, eye (k) is the
k X k identity matrix, and nulbasis (C) is a matrix whose columns form a basis for
Nul C (the same basis you would get if you started with ref (C) and made the

calculations by hand). The command nulbasis is in the Laydata Toolbox.
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If the numbers in the basis matrix B are messy, use format rat; B , which will
display the entries in B as rational numbers. (All eigenvectors calculated in this section
have rational entries, so the rational format introduces no error.) To return to the usual
decimal number display, enter format short.

For Exercises 3740, you need the command eig(A), which lists the eigenvalues of
A accurately to many decimal places, in most cases. For example, enter

ev = eig(A)
B = nulbasis(A - ev(2)*eye(5))

to compute a basis for the eigenspace corresponding to the second eigenvalue listed in the
vector ev. It is dangerous to type eig(A) and simply “look™ at the list of eigenvalues
to use in the nulbasis command. You may make a mistake when you type an
eigenvalue, particularly when the eigenvalue has sixteen nonzero digits and MATLAB
displays only six of them.

5.2  THE CHARACTERISTIC EQUATION

There are several equivalent definitions of the determinant of a matrix. The definition here in
terms of the pivots in an echelon form has the advantage that it is easy to state and understand,
and in most cases it provides the most efficient way to compute a determinant.

KEY IDEAS

When A is 3 X 3, the geometric interpretation of det A as a volume explains why det A = 0 if and
only if A is not invertible:

The determinant of A is zero.
<=> The parallelepiped determined by the columns of A has zero volume.
<=> One column of A is in the subspace spanned by the other columns.
<=> The columns of A are linearly dependent.
<=> The matrix A is not invertible.

If A is n X n, then det(A — Al) = 0 if and only if A — Al is not invertible, and this happens if
and only if A is an eigenvalue of A.

Exercises 1-14 are designed only to provide some basic familiarity with characteristic
polynomials. The main use of det(A — Al) is as a tool for studying eigenvalues rather than
computing them.

Sometimes the characteristic polynomial is defined as det(Al — A). A property of
determinants implies that det (A/ — A) = (-1)"det (A — Al), when A is n X n, so the two
polynomials are either the same (when 7 is even) or they are negatives of one another. The use of
det (A — AJ) tends to make hand calculations easier and less prone to copying errors.
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SOLUTIONS TO EXERCISES
1A—27A,u—27 A0 j2-4 7 the characteristic pol ial i
. = 7 2 . = 7 2 O ﬂ, = 7 2_/1 ,the ¢ aracensmpoynomla 1S

dettA—AD =2 -A?*-T*=4-4L+2A*-49 = A\> -4\ - 45
In factored form, the characteristic equation is (A — 9)(A + 5) = 0, so the eigenvalues of A are
9 and -5.

Warning: Don’t row reduce a matrix A to find its eigenvalues. Row reduction preserves the
null space of A but not the eigenvalues of A.

53 5-4 3 . .
7. A= , A—Al= , the characteristic polynomial is
-4 4 -4 4-1

det(A—AD=(G5-AM)E -1 —3X4) =20-9h + A2+ 12
=A-9A+32

The characteristic polynomial does not factor easily, but the quadratic formula provides the
solutions of A* — 9\ + 32 = 0.

P +9+,/81-4(32)
2
These values for A are not real numbers, so A has no real eigenvalues. There is no nonzero

vector x in R? such that Ax = Ax for such a A. (For any x # 0 in R?, the vector Ax has only
real entries and thus could not equal a complex multiple of x.)

Study Tip: If you are asked to work some of Exercises 9-14, you may be tested on them.
This is one way of finding out if you know what the characteristic polynomial is and how it is
connected with eigenvalues. Also, you can show that you know some elementary properties of
determinants.

6-4 2 0
13. A-Al= -2 9-4 O
5 8 3-1
The method using the special 3 X 3 formula will produce the characteristic polynomial
A%+ 1827 = 954 + 150. Factoring such a polynomial to find the eigenvalues requires a little

experience. (See the appendix at the end of the exercise solutions.) However, if you use a
cofactor expansion down the third column (see Section 3.1), you immediately obtain
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6-4 2
det(A—-/ll)=(3—/1)-det|: 5 9_1}

=3-Dli6-HO-1)-4]
=(3-A)A* =154+50)

The characteristic polynomial is already partially factored, and the remaining quadratic
factor is itself easily factored. The factored characteristic polynomial is
(3 = A)(A — 10)(A - 5) or, equivalently, —(A — 3)(A — 5)(A — 10).

Note: The solutions of Exercises 11-14 are similar to that of Exercise 13. These matrices have
the property that if a cofactor expansion is chosen along a column or row that contains two zeros,
then the characteristic polynomial appears in a partially factored form.

19. Since the equation det(A—AI)=(4 —A)XA, —A) -+ (4, —A) holds for all A, set A = 0 and
conclude that det A=AA,--- 4, .
21. a. See Example 1. b. See Theorem 3.

¢. See Theorem 3. d. See the solution of Example 4.

23. If A = OR, with Q invertible, and if A, = RQ, then A, = O'QRQ = Q"' AQ, which shows that
Aj is similar to A.

6 3 3/7 S
25. A= . V] = , XO =
4 7 4/7 5
a. The problem statement implies that v, is an eigenvector of A. This is readily verified:
6 3] 3/7 (1.8+1.2)/7 3/7
AVl = = = = l‘vl
4 701417 1.2+28)/7 4/7
So v, is an eigenvector corresponding to the eigenvalue 1. To find another eigenvector,
first compute the characteristic polynomial:

T-4

=42-131+A4-12=4"-134+.3

Factoring might be a little difficult, but since 1 is an eigenvalue A —1 must be a factor of
the polynomial. This helps to see that det(A— AI) = (1 —1)(A-.3). So .3 is the other
eigenvalue. For a corresponding eigenvector, solve (A — .3)x = 0:

3 30 1 10
[(A-.3I) 0]=[ }~[ }, x+x,=0

6-1
det(A—/U)=det{ 4 }=(.6—/1)(.7—/1)—.12

4 4 0 0 00
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-1
So x; = —x,, with x, free. An eigenvectoris v, ={ J . Now, {vy, v,} is linearly

independent because the eigenvectors correspond to different eigenvectors (also, they are
not multiples). Thus, {vy, v,} is basis for R?, by the Basis Theorem, because the set
contains two vectors and R? is two-dimensional. (You can use other arguments, t00.)

b. To show that X, = v + ¢V, just compare X, — v; with vy, to find c:

1/2 3/7 1/14 11-1 1
X.—V, = — g = — ==YV
O V2| 47| |14 140 1| 147
So Xg=V; + (1/14)V2

¢. Compute X; = Axp = A(v, + (1/14)vy) = Av; + (1/14)Av, = v; + (1/14)(.3)v,, because v,
and v, are eigenvectors of A corresponding to eigenvalues | and .3, respectively. To
continue, recall from Practice Problem 2 in Section 5.1 that A*x = A*x when x is an
eigenvector corresponding to an eigenvalue A. Thus,

X; = A’Xy = A2(v) + (1/14)v,) = A, + (1/14)A%V, = v, + (1/14)(.3)*v,
x3 = A’%o = A (vi + (1/14)v,) = Av, + (1/1)A%, = v, + (1/14)(.3)*v,
Note: Another way to find these formulas is to compute
X, = A%Xo = A(AXo) = A(v, + (1/14)(3)V,y) = Av, + (1/14)(3)Av, = v, + (1/14)(.3)*v;
X3 = A’Xy = A(A%X0) = AV, + (1/14)(.3)*v,) = Av, + (1/14)(.3)*Av,
= v, + (1/14)(3)’v,

By inspection, it seems that
X = v, + (1/14)(3)'v, (1)
As k —oo, the powers of .3 tend to 0, and x, tends to v,.

Appendix: Factoring a Polynomial

In general it is difficult to factor a polynomial of degree 3 or higher (unless you have one of
several powerful computer programs available). Fortunately, textbook examples and exercises
tend to have small integer solutions. The following observation is helpful.

Let p()\) be a polynomial with integer coefficients. If p(c) = O for some integer c,
then A — c is a factor of p(A) and c is a divisor of the constant term of p(A).

EXAMPLE Find the eigenvalues of the matrix A whose characteristic polynomial is p(A) =
A + 18A% — 961 + 160.

Solution By the observation above, any integer eigenvalue of A must be a divisor of the
constant term 160 in the characteristic polynomial. There are twenty-four such
divisors: 1,2, 4, 5, 8, 10, 16, 20, 32, 40, 80, and 160, together with the negatives of
these numbers. We let ¢ be one of these numbers and try to divide A — ¢ into the
polynomial by long division. The terms A + 1 and A + 2 don’t work, and the first
successful division is
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~A% +141-40
yl —4)-,13 +184% —964 + 160
-+ 41?
1447 —962
144> - 564
T C404+160
—404+160

Thus the characteristic polynomial is (A — 4)(-A> + 14A — 40). The quadratic
polynomial factors easily, and the characteristic equation is (A —4) (A —4)(10 — &)
=0. The eigenvalues of A are 4 (with multiplicity two) and 10,

MATLAB poly, plot

You can use the MATLAB command poly(A) to check your answers in Exercises 9-14.
Note that if A is n X n, this command lists the coefficients of the characteristic polynomial
of A in order of decreasing powers of A, beginning with A". If the polynomial is of odd
degree, the coefficients are multiplied by -1, to make +1 the coefficient of A". This
corresponds to using det(A I — A) instead of det(A — A I).

For Exercises 28 and 29, use randomint (4) to create a 4 X 4 matrix with random
integer entries. For Exercise 29, use gauss and perhaps swap to create the echelon
form without row scaling. See the MATLAB box for Section 1.4.

The following commands will produce the graph of the characteristic polynomial of the
matrix A in Exercise 30 (with a = 32).

x = linspace(0,3) Choose 100 points between 0 and 3
grid on Include a grid on the display

hold on Add the next graph to the display
A(3,2)= 32; p = poly(a); Compute the characteristic polynomial
v = polyval(p,x):; Evaluate it at the points in x
plot(x,v,’'b’) Plot the graph in blue.

Edit line 4 to change the value of a (from 32 to another value). Edit line 6 to change the
color of the graph. When the commands are run again, the old graph(s) will remain visible.
If you do not specify the color of the graph, MATLAB will automatically cycle through a
set of colors, one for each graph on the display. To create a fresh display, enter hold
off.

5.3 DIAGONALIZATION

The factorization A = PDP" is used to compute powers of A, decouple dynamical systems in
Sections 5.6 and 5.7, gd study SHMStIG MatHiGes and yadras forms in Chapter 7.
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KEY IDEAS

Example 3 gives the algorithm for diagonalizing a matrix A. After you construct P and D, check
your calculations:

1. Compute AP and PD, and check that AP = PD.

2. Make sure the columns of P are linearly independent. Use Theorem 7 to save time. You
only have to verify that for each eigenvalue, the corresponding eigenvectors are linearly
independent. That’s easy if the dimension of the eigenspace is 2 or 1.

The key equation in this section is AP = PD. It will help you to kee[‘) the order of the factors
correct when you write A = PDP"', and it also leads immediately to P"AP = D, which you may
need occasionally. Possible test question: If AP = PD, explain why the first column of P is an
eigenvector of A (if the column is nonzero). (Study the proof of the Diagonalization Theorem.)

Warning: Do not confuse the property of being diagonalizable with the property of being
invertible. They are not connected. The matrix in Example 5 is diagonalizable, but it is not

1 =2
invertible because 0 is an eigenvalue. The matrix o 1 is invertible, but it is not

diagonalizable because the eigenspace for A = 1 is only one-dimensional.

SOLUTIONS TO EXERCISES
2 0] 3 -7
1. P= > 7 , D= ,A=PDP", and A* = PD*P", Next compute P! =1 ,
2 3 0 1] 1|2 5
s 16 0
D= 201 . Putting this together,
0 1| |0 1]
o5 T][ olff 3 -7] [80 77 3 -7] [226 -525
12 3]0 1j|-2 5] |32 3][-2 5| |9 —209

1 0
7. A= L 1] The eigenvalues are obviously +l (since A is triangular).

0 0
ForA=1:A-1= |:6 2} . The equation (A — )x = 0 amounts to 6x;—2x, = 0. So

1/
x1 = (1/3)x,, with x; free. The general solution is xz{ Ll A nice basis vector for the

1
eigenspace is u, = L:l
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2 0
ForA=-1: A—-(-DI = 6 ol The equation (A + I)x = 0 amounts to 2x, = 0, with x;, free.
. 0 0 . .
The general solution is x, a Take u, = | as a basis vector for the eigenspace.

1 0 1 0
From u; and u,, construct P=[u, u,]= [3 J. Then set D= L) J , Where the
eigenvalues in D correspond to u; and u,, respectively.
Warning: The 3 X 3 matrices in Exercises 12-18 may be diagonalizable even though each

matrix has only two distinct eigenvalues. (Theorem 6 gives only a sufficient condition for
diagonalizability.) You have to check for three linearly independent eigenvectors.

2 2 -1
13. A= 1 3 -1|. Theeigenvalues 5 and | are given. Because A is 3 X 3, you need three
-1 =2 2
linearly independent eigenvectors.
-3 2 -1
For A=5: Solve (A-5D)x=0. Form A-5I=| 1 -2 -1| and compute
-1 -2 3

3 2 ~10] |1 -2 -0 010
1 -2 -1 0f~|-3 2 -1 0~-~0 (D1 0
-1 -2 30| |[-1 2 30 0000

S0 x; = —x3, Xy = —x3, with x3 free. Take v,=| —1 |, for instance, as a basis vector for the
1
eigenspace. At this point, you don’t know if A is diagonalizable. Your only hope is to find

two linearly independent eigenvectors inside the eigenspace for A = 1, because there are no
other eigenspaces in which to look.

1 2 -1
ForA=1:Form A—I=| 1 2 -1|. The equation (A —I)x = 0 reduces to x; + 2x, — x3 =
-1 -2 1

0. So x; = -2x; + x3, with x, and x; free. At this point you know that the eigenspace is two-
dimensional (because there are two free variables). So there are the necessary two linearly
independent eigenvectors, and hence A is diagonalizable. To produce the eigenvectors, write

the solution of (A — x = 0 in the form
Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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X, —2x,+x, -2 1
X, |= X =x| 1[+x]0
X, X, 0 1
-2 1 -1 =2 1
Set v,=| 1|, v;=|0],and P=[v, v, v;]=|-1 1 0].
0 1 1 0 1

The columns of P are linearly independent, by Theorem 7, because the eigenvectors form
bases for their respective eigenspaces. So P is invertible. Since the first column of P
corresponds to A = 5, the first diagonal entry in D must be 5, which means that

500
D=|0 1 0
0 01

Warning: A common mistake in Exercise 13 is to build a 3 X 3 matrix P in the usual way and
then take D to be a 2 X 2 matrix, such as

S

Of course this doesn’t make sense because PD isn’t even defined. Another mistake is to
make a 2 X 2 matrix D as above and build P with only two of the three eigenvectors, say one
from each eigenspace. Now AP = PD, but P is a 3 X 2 matrix and is not invertible.

Study Tip: Exercise 18 is a good test question. Try it. Note: the eigenvector (-2, 1, 2) does
not correspond to the eigenvalue A = 5. If you have trouble here, review Exercises 5-8 in
Section 5.1.

5 -3 0 9
0 3 1 - . .

19. A= o 0 2 ol The eigenvalues are obviously 5, 3, and 2. (Why?)
0 0 0 2

For A = 2: To solve (A — 2D)x = 0, completely reduce [(A —-21) 0]:

3 -3 0 9 0 (30 3 3 0 (Mo 1 1 0
0 1 1 -2 9010 1 120 l0o@® 120
0o 0 0 0 000 0 0 o/foo0o 0 0 o0
0 0 0 0 0/ |0 0 0 0 0/|0 0 0O 0 O
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SO x| = =X3 — X4, X, =—x3 + 2x4, With x5 and x, free. The usual calculations produce a basis
for the eigenspace:

X, —X; — X, -1 -1 -1 -1
-x,+2 -1 2 -1 2
B THTR =x, +x, . Basis: v,= , V=
X3 X3 1 0 1 0
X, X, 0 1 0 1
Checkpoinr:  If you happened to choose A = 2 first, as in this solution, would you have

enough information at this point to determine whether A is diagonalizable?

For A = 3: To solve (A -~ 3Dx = 0, completely reduce [(A - 3I) 0]:

23 0 9 0 3/2 0 0 0] [x=@3/2x
0 0 1 2 0 0 0 (D 0 0| |x,isfree
o 0-1 00 Jo o oQ@ of |xn=0

0 0 0 -1 0 0O 0 0 0 0| |x=0

Choosing x, = 2 produces the eigenvector v; = (3, 2, 0, 0).

For A = 5: To solve (A - 5D)x = 0, completely reduce [(A - 5I) 0]:

03 0 9 0 00 0 0] |xisfree
02 1 -2 0 0 0(Mo of Jx,=0
0o 0-3 0 0/ Jooo(Do| |x=0
0 0 0 -3 0 0 0000O0| [x=0
A basis vector for the eigenspace is v4 = (1, 0, 0, 0). Set
-1 -1 3 1 2000
Pelv. v, v, v4]:-1220’D20200
1 0 0 0 0030
0 1 0 0 00035

This answer differs from that in the text. There, P =[vs v; v; V;], and the entries in D are
rearranged to match the new order of the eigenvectors. According to the Diagonalization
Theorem, both answers are correct.

a. The symbol D does not automatically denote a diagonal matrix.

b. See the remark after the statement of the Diagonalization Theorem.
¢. Check out the matrix in Example 4.

d. See Example 4.

A is diagonalizable because you know that five linearly independent eigenvectors exist: three
in the three-dimensional eigenspace and two in the two-dimensional eigenspace. Theorem 7
guarantees that thepsegoballofivecigenvectovssiy lineagly independent.
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25. Let {v,} be a basis for the one-dimensional eigenspace, let v, and v; form a basis for the
two-dimensional eigenspace, and let v, be any eigenvector in the remaining eigenspace. By
Theorem 7, {v,, v5, V3, v4} 1s linearly independent. Since A is 4 X 4, the Diagonalization
Theorem shows that A is diagonalizable.

27. If A is diagonalizable, then A = PDP™' for some invertible P and diagonal D. Since A is
invertible, O is not an eigenvalue of A. So the diagonal entries in D (which are eigenvalues
of A) are not zero, and D is invertible. By the theorem on the inverse of a product,

Al =(eDPY'=P)'D'P"=pPD P
Since D™ is obviously diagonal, A™' is diagonalizable.

A Second Proof: 1f Ais n X n, it has n linearly independent eigenvectors, say, v, . . . , V,.
Then vy, . . ., v, are also eigenvectors of A", by the solution of Exercise 25 in Section 5.1.
Hence A™' is diagonalizable, by the Diagonalization Theorem.

29. The diagonal entries in D, are reversed from those in D. So interchange the (eigenvector)
columns of P to make them correspond properly to the eigenvalues in D;. In this case,

11 30
B= and D, =
INETE

Although the first column of P must be an eigenvector corresponding to the eigenvalue 3,

: 1 :
there is nothing to prevent us from selecting some multiple of , say , and letting

-3 1
P = { 6 J. We now have three different factorizations or “diagonalizations” of A:

A=PDP"' =RDF "' =PD P’

Answer to Checkpoint: Yes. In Exercise 19, the fact that the eigenspace for A = 2 is two-
dimensional guarantees that A is diagonalizable, because each of the other two eigenvalues will
produce at least one eigenvector, and the resulting set of four eigenvectors will be linearly
independent, by Theorem 7. So A is diagonalizable, by the Diagonalization Theorem. (Note that
since one eigenspace is two-dimensional, the other eigenspaces must be one-dimensional,
because there could not possibly be more than four linearly independent eigenvectors in R*))
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Mastering Linear Algebra Concepts: Eigenvalue, Eigenvector, Eigenspace

I suggest that you take time now to prepare review sheets for the three terms listed above. Begin
with their definitions, of course.

Eigenvalue:

+ equivalent description Sec. 5.1: Equation (3); Box on page 313

+ geometric interpretation Sec. 5.1: Fig. 2

« special cases Theorems 1, 6

o typical computations Sec. 5.1: Exer. 7,19; Sec. 5.2: Exer. 7, 15

» connections with other concepts The IMT; Theorem 4; Sec. 5.2: Exer. 19

Eigenvector:

« special cases Theorem 2

« typical computations Sec. 5.1: Examples 2, 4, Exer. 5, 15

« connections with other concepts Sec. 5.1: Exer. 33; Sec. 5.2: Example 5
Sec. 5.3: Theorem 5, Exer. 5, 18

Eigenspace:

+ equivalent description Sec. 5.1: Equation (3)

» geometric interpretation Sec. 5.1: Fig. 2,3

» typical computations Sec. 5.1: Example 4

« connections with other concepts Theorem 7

MATLAB Diagonalization

To practice the diagonalization procedure in this section, you should use nulbasis to
produce eigenvectors. For Exercises 33-36, first enter the command ev = eig(A), to
provide the eigenvalues. See the MATLAB box for Section 5.1.

In later work, you may automate the diagonalization process. The command [P D] =
eig(A) produces two square matrices P and D (or any other names you choose) such that
AP = PD, with D diagonal. If P is invertible, then A is diagonalizable. Check whether
P*D*inv(P) - A isthe zero matrix. In any case, P is likely to be different from what you
construct for the homework. The columns of P are scaled so they are “unit” vectors (studied
in Chapter 6). Dividing P by one of its entries may make some of the entries recognizable,
because the problems in the text usually involve simple numbers.
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5.4 EIGENVALUES AND LINEAR TRANSFORMATIONS

This section introduces the matrix of a linear transformation relative to specified bases for vector
spaces, and then uses this concept to give a new interpretation of the matrix factorization A = PDP™".

STUDY NOTES

The exercises will help you learn the definition of the matrix representation of a transformation
relative to specified bases, say B and C. Compare this definition with the standard matrix of a
transformation from R" into R™. What are B and C in this case?

After Example 1 (and Exercises 1-6 and 9-10), the section focuses on the case when
T:V— V and B = C. The following algorithm and the solution to Exercise 7 describe two
different ways to construct [71].

Algorithm for Finding the B-matrixof T: Vo> V

1. Compute the images of the basis vectors:
T(by), ..., T(b,)
2. Convert these images into B-coordinate vectors:

(T(by]s, . . .. [T(by)]s

3. Place the B-coordinate vectors into the columns of [T],.

The sentence before Theorem 8 summarizes the main idea of the theorem. Studying the
proof should help you understand the theorem and review important concepts. The subsection on
Similarity of Matrix Representations could have contained more ideas. Take notes carefully if
your instructor decides to expand this material somewhat.

SOLUTIONS TO EXERCISES
1. T'(,)=3d,-5d,, T(b,)=—-d,+6d,, T(b,)=4d,
3 -1 0
[T(b1)]p = _5 [T(b2 )]’D = 6 [T(b3 )]'D = 4
Matrix for T 3 -1 0
relativeto BandD: |5 ¢ 4
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7. The method of Example 2 works. But, perhaps a faster way is to realize that the information
given provides the general form of 7(p) as shown in the figure below:

a, +at+ayt’ %3% +(5a, —2a,)t +(4a, +a)t’

coordinate coordinate
mapping mapping
a, 3a,
multiplication
aq 3| Sa, - 2a,
by [Tlg
a, 4a, +a,

The matrix that implements the multiplication along the bottom of the figure is easily filled
in by inspection:

27 7 a 3a, 3 00
? 7 7| aq |=|5a,-2q, | implies that [T]; =5 -2 0
7?7 ?a 4a, +a, 0 4 1

Study Tip: See the Study Guide notes for Section 1.9 (particularly for Exercise 19). This
method allows you to find a matrix that implements the mapping without assuming that T is
linear. In fact, this derivation proves that T is linear, because it is now represented as a matrix
transformation. Why not try this method on Example 2?7

p(-1)
9. b. The transformation T maps P into R* by the formula 7(p) = | p(0) |. Take any p and q
p(D)
in P, and any scalar ¢. Then T is linear because
P+D | (pD| |q=D
Te+q@)=| (P+q)0) |=| p(0) |+| q0) |=T(P)+T(q), and
(P +q)(1) p(D q(®

(ep)(-D) p(-1
T(cp)=| (cp)(0) |=c| p(0) [=cT(p)
(ecp)(D) p()

0
13. Start by diagonalizing A= { 3 } The characteristic polynomial is

A =4\ +3 = (A - 1)(A - 3), so the eigenvalues are 1 and 3.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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1
ForA=1: A-1= [ 3}. The equation (A — I)x = 0 amounts to —x; + x, = 0. So x; = xy,

1
with x, free. As a basis vector, take u, = L}

1
ForA=3: A-31 :{ 3}. The equation (A — I)x = 0 amounts to —3x; + x, = 0. So

1
X1 = xof3, with x, free. Take u, = [3} as a basis vector. The vectors w,, u, can form the

columns of a matrix P that diagonalizes A. By Theorem 8, the basis B = {u,, u,} has the
property that the B-matrix of the transformation x > Ax is a diagonal matrix.
If A is similar to B, then there exists an invertible matrix P such that P"'AP = B. Thus B is

invertible because it is the product of invertible matrices. By a theorem about inverses of
products, B'=pP 'A7(PY = P'A7'P, which shows that A" is similar to B~

By hypothesis, there exist invertible P and Q such that P'BP = A and 0”'CQ = A. Then
P'BP=Q'CQ. Left-multiply by Q and right-multiply by Q' to obtain QP"'BPQ™" =
Q0'CQQ™. So C=QP'BPQ = (PQOY'B(PO™"), which shows that B is similar to C.

IFAX=Ax,x # 0, then P'Ax = AP 'x. If B= P'AP, then
B(P'x) = PPAP(P'x) = P'Ax = AP 'x (*)

by the first calculation. Note that P'x # 0, because x # 0 and P~' is invertible. Hence *
shows that P~'x is an eigenvector of B corresponding to A. (Of course, A is an eigenvalue of
both A and B because the matrices are similar, by Theorem 4 in Section 5.2.)

If A = PBP', then
tr(A) =tr((PB)P') =tr(P"'(PB)) By the trace property
= tr(P"'PB) = tr(IB) = tr(B)

If B is diagonal, then the diagonal entries of B must be the eigenvalues of A, by the
Diagonalization Theorem (Theorem 5 in Section 5.3). So tr A = tr B = {sum of the
eigenvalues of A}.

Study Tip: It can be shown that for any square matrix A, the trace of A is the sum of the
eigenvalues of A, counted according to multiplicities. You can use this fact to provide a quick
check on your eigenvalue calculations. The sum of the eigenvalues must match the sum of the
diagonal entries in A (even if A is not diagonalizable).
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29. If B = {by, ..., b,}, then the B-coordinate vector of b is e;, the standard basis vector for R".
For instance,

b,=1-b,+0-b, +:--+0-b,
Thus [1(b))]s = [bj]z = €;, and
N =[I®)l - Ub)l]=le, - el=1

31. See the subsection, “Similarity of Matrix Representations,” which points out that the matrix
D in Theorem 8 need not be diagonal. If P is the matrix whose columns come from B, then

the B-matrix of the transformation x —> Ax is D = P'AP. From the data in the text,

~7 -48 -16] 3 2 3
A=l 1 14 6|, P=[b, b, bjJ=| 1 1 -I
-3 —45 -19 -3 =3 0

-1 3 -1/3|[-7 —48 -16|[-3 2 3] [-7 -2 -6
D=1 3 01| 1 14 6/ 1 1-1l=|0 -4 -6
0 -1 -1/3]|-3 =45 -19]|-3 -3 0 0 0 -1

55  COMPLEX EIGENVALUES

If the characteristic equation of an n X n real matrix A has a complex eigenvalue A and if v is a
nonzero vector in C, such that Av = Av, then both A and v provide useful information about A.

STUDY NOTES

Only matrices with real entries are considered here. If A is a complex eigenvalue of A, with v a
corresponding eigenvector, then A is also an eigenvalue of A, with v an eigenvector. Find out if
you should know how to prove this fact.

Example 6 describes the prototype for all 2 X 2 matrices with a complex eigenvalue A. Only
A is needed if you want to know the angle @ of rotation and the scale factor IAl, but an associated
eigenvector v is also needed if you want to factor A as PCP', as in Example 7.
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SOLUTIONS TO EXERCISES

1 -2 -1 -
1. A= Ca-u=Th 2
1 3 1 3-2

detA—AD=(1-MGB- M -(2)= AP =41 +5
4+16-20

Use the quadratic formula to find the eigenvalues: A= T =2+i. Example 2
gives a shortcut for finding one eigenvector, and Example 5 shows how to write the other

eigenvector with no effort.

}. The equation (A — AD)x = 0 gives
i

_ . -1-i -2
ForA=2+i: A—(2+i)I = | |
(-1-Dx, - 2x,=0
x,+(1-Dx, =0
As in Example 2, the two equations are equivalent—each determines the same relation
between x; and x,. So use the second equation to obtain x; = —(1 — i)x,, with x;, free. The

o 1+ 1+ . .
general solution is x, e and the vector v, = | provides a basis for the

eigenspace.
- —1-i
For~A=2-i:letv,=v, = { . l}. The remark prior to Example 5 shows that v; is

automatically an eigenvector for 2+i. In fact, calculations similar to those above would
show that {v,} is a basis for the eigenspace. (In general, for a real matrix A, it can be shown
that the set of complex conjugates of the vectors in a basis of the eigenspace for A is a basis
of the eigenspace for 4 .)

W

7. A=

1 3

: a —b . :
write down the eigenvalues of { } from memory, or if you are expected to find them
a

] . The eigenvalues are J3ti. Ask your instructor if you are permitted to

via the characteristic equation. Note that the eigenvectors are easy to remember, too. See
the Practice Problem.

The scale factor associated with the transformation x > Ax is simply

2
r=|A|= ((\/5)2 +1? )U =2. For the angle of the rotation, plot the point (a, b) = (+/3, 1) in

the xy-plane and use trigonometry.
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® ¢ = /6 radians

—

Jy3

-1-i
13. From Exercise 1, A = 2 + i, and the eigenvector v = { . } corresponds to A =2 ~i. Since

-1 ~1 -1 -1
Re v= and Im v= , take P= . Then compute
1 0 1 0

N [ i S

Actually, Theorem 9 gives the formula for C. Note that the eigenvector v corresponds to
a - bi instead of a + bi. If, for instance, you use the eigenvector for 2 + i, your C will be
2

1
Lol The imaginary part of the eigenvalue is the (1, 2)-entry in C.

So, there are two possible choices for C (depending on the vector used to produce P).
On an exam, if you are not sure of the form of C, you can always compute it quickly from
the formula C = P'AP, as in the solution above.

Note: Because there are two possibilities for C in the factorization of a 2 X 2 matrix as in
Exercise 13, the measure of rotation ¢ associated with the transformation x > Ax is determined
only up to a change of sign. The “orientation” of the angle is determined by the change of
variable x = Pu. See Fig. 4 in the text.

1.52 -7
19. A= ,det(A-AD=A2~1.92A + 1
56 4

Use the quadratic formula to solve A*~ 1.92A + 1= 0:

1.92++/-.3136
2

A= =.96+.28i

To find the eigenvector for A = .96 — .28i, solve
(1.52-.96 + .28i)x, -7x, =0
56x, + (4-96+28i)x, =0
There is a nonzero solution (because .96 — .28i is an eigenvalue), so you can use either
equation to find the solution. From the second equation,
_.56~.28i
.56
Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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D
Setting x, = 2 produces the (complex) eigenvector v = { 5 l}.

2 -1 2 -1
Since Re v= and Im v= , take P= . Finally, compute
2 0 2 0

O 1{ 0 {152 =72 -1 {96 -28
PAP=— =
212 2| 56 432 0] |28 .96
This final matrix, which has the proper form, is C.

25. Write x = Re x + i(Im x), so that Ax = A(Re x) + i/ A(Im x). Since A is real, so are A(Re x)
and A(Jm x). Thus A(Re x) is the real part of Ax and A(Im x) is the imaginary part of Ax.

MATLAB Complex Eigenvalues

The command [V D] = eig(A) (mentioned in Section 5.3) works for matrices with
complex eigenvalues. In this case V and the diagonal matrix D have some complex entries.
For a 2 X 2 real matrix with a complex eigenvalue, MATLAB tends to place the eigenvalue
a— bi (where b > 0) as the (2, 2)-entry of D. MATLAB does not produce matrices for a
factorization A = PCP™" of the sort described in this section.

For any matrix V, the commands real (V) and imag (V) produce the real and
imaginary parts of the entries in V, displayed as matrices the same size as V.

5.6 DISCRETE DYNAMICAL SYSTEMS

This section presents the climax to a crescendo of ideas that began in Section 1.10 and flowed
through parts of Chapters 4 and 5. You need not have read all the material to appreciate the
interesting applications in this section, but you will profit from a review of page 307 and Example
5 in Section 5.2.

KEY IDEAS

A solution of a first order homogeneous difference equation
X = AXy k=0,1,2,..0) 1)

is a sequence {x;} that satisfies (1) and is described by a formula for each x, that does not depend
on the preceding terms in the sequence other than the initial term X,. In Section 5.1, you saw how
a solution can be constructed when x; is an eigenvector. When X, is not an eigenvector, look for
an eigenvector decomposition of Xy:

X, =qV, ++c,V, Each v; is an eigenvector. )
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To make (2) possible for any x, in R”, the section assumes that the n X n matrix A has z linearly
independent eigenvectors. If x, = A'x,, then
X, =c(A) v+ +c, ()Y,

When {x;} describes the “state” of a system at discrete times (denoted by k = 0, 1, 2, ...), the
long-term behavior of this dynamical system is a description of what happens to x;, as k — oo,
The text focuses on the following important situation.

Let A be an n X n matrix with n linearly independent eigenvectors, corresponding
to eigenvalues such that A} > 1 > Al for j =2, ..., n. If X is given by (2) with
a # 0, then for all sufficiently large &,

Xp1 = AMiX Each entry in x, grows by a factor of A;.

X = Cl(Xl)kVI x, is approximately a multiple of v;, and so the ratio
between any two entries in X, is nearly the same as the
corresponding ratio for v,.

STUDY NOTES

When the two approximations above are true in an application, the eigenvalue A, and the
eigenvector v, have interesting physical interpretations. Make sure you can describe these on an
exam. (See the last four sentences in the solution of Example 1, for instance.)

The predator-prey model is rather primitive and provides only a starting point for more
refined models. Still, you might enjoy considering what the model in Example 1 predicts if x,
happens to be a multiple of v, = (5, 1), or if initially there are more than 5 owls for every 1
thousand rats, assuming p = .104.

The graphical descriptions of solutions to difference equations should help you understand
what can happen to x; as k — co. | hope you enjoy studying the figures even if your class does
not have time to cover this part of the section. Only the simplest cases are shown, but these cases
form the foundation for studying nonlinear dynamical systems which are widely used (but require
calculus techniques not covered here). Even for nonlinear systems, eigenvalues and eigenvectors
of certain matrices play an important role.

SOLUTIONS TO EXERCISES

1 -1
1. a. The eigenvectors v, = L} and v, = { J form a basis for R%. To find the action of A on

9 ) .
X, = [:J express X, in terms of v; and v,. That is, find ¢, ¢, such that xq = v, + ¢,V

~ = X, =5v,~4v,
1 1 1 0 1 4
Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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Since v,, v, are eigenvectors (for the eigenvalues 3 and 1/3):
X, = AX,=5Av, —4Av, =5-3v -4-(1/3)v,

_|15] |-4/3)|_|49/3
15] | 4/3] |41/4

. Each time A acts on a linear combination of v, and v, the v, term is multiplied by the

eigenvalue 3 and the v, term is multiplied by the eigenvalue 1/3.
x; = AX; = A[5(3)v, — 4(1/3)v,] = 5(3)°v, - 4(1/3)v,
In general, x, = 5(3)* v, — 4(/3)v, for k> 0.

. The matrix A in Exercise 1 has eigenvalues 3 and 1/3. Since 131> 1 and 11/31 < 1, the

origin is a saddle point.

L L . -1 .
. The direction of greatest attraction is determined by v, = { J, the eigenvector

corresponding to the eigenvalue with absolute value less than 1. The direction of greatest

o : 1 . : ,
repulsion is determined by v, = NE the eigenvector corresponding to the eigenvalue

greater than 1.

. The drawing below shows: (1) lines through the eigenvectors and the origin, (2) arrows

toward the origin (showing attraction) on the line through v, and arrows away from the
origin (showing repulsion) on the line through v;, (3) several typical trajectories (with
arrows) that show the general flow of points. No specific points other than v, and v,
were computed. This type of drawing is about all that one can make without using a
computer to plot points.
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Remark: Sketching trajectories for a dynamical system in which the origin is an attractor or a
repellor is more difficult than the sketch in Exercise 7. There has been no discussion of the
direction in which the trajectories “bend” as they move toward or away from the origin. For
instance, if you rotate Figure 1 of Section 5.6 through a quarter-turn and relabel the axes so that x,
is on the horizontal axis, then the new figure corresponds to the matrix A with the diagonal entries
.8 and .64 interchanged. In general, if A is a diagonal matrix, with positive diagonal entries a and
d, unequal to 1, then the trajectories lie on the axes or on curves whose equations have the form
x; = r(x))’, where s = (In d)/(In @) and r depends on the initial point x,. (See Encounters with
Chaos, by Denny Gulick, New York: McGraw-Hill, 1992, pp. 147-150.)

Study Tip: If your instructor wants you to graph trajectories when the origin is an attractor or
repellor, there will need to be some class discussion of exactly how to do this.

-4
det(A - AD) = (8-A)(1.5-A) - (3)(-4) =A"-23 +1.32
=(A-1.2)(A-1.1) Use the quadratic formula, if needed.
=0
Since both eigenvalues, 1.2 and 1.1, are greater than 1, the origin is a repellor. For the
direction of greatest repulsion, find the eigenvector for the larger eigenvalue, 1.2:

-4 30| |1 =3/4 0 3/4
(A-121) 0]= ~ , X=X,
[—.4 3 o} {o 0 o} [1}

3/4 3
Any multiple of [ | }, such as [J , determines the direction of greatest repulsion.

8 3
13. A= { . 5}. First find the eigenvalues:

MATLAB Plotting Trajectories

Given a vector X, the command x = A*x will compute the “next” point on the trajectory.
Use the up-arrow (T) and <Enter> to repeat the command, over and over.

The following steps create a “trajectory” matrix T whose columns are the points x, Ax,
A’x, ..., APx. (Change 15 to any integer you wish.)

T = x Put x in the first column of 7.

for j=1:15 This loop repeats the next two lines 15 times.
X = A*x; Compute the next point on the trajectory.
T = [T x] Store the new point in T.

end End of the loop.
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After you type the line beginning with “for,” MATLAB will suspend all calculations (while
you type additional lines) until you type “end” and press <Enter>.
If you want MATLAB itself to plot the points in 7, use the commands:

plot(T(1,:),T(2,:),’0ow’), grid

The ‘0’ produces a small circle at each point on the trajectory. The ‘w’ makes the circle
white. If you have the data for another trajectory stored in a matrix S, you can plot both
trajectories on the same graph:

plot(Ttl,:),T(2,:),’ow’,S(1,:),8(2,:),"*g"),grid gis for green.

Each new plot command erases the previous graph. If you want the new graph added to
the previous graph, issue the command hold on before the next plot command.

For Exercise 17, the following commands will produce a graph of the first entry in each
of the first nine columns of the matrix 7 constructed above.

k = 0:8
plot(k,T(1,1:9),"-'), grid

To graph the sum of the two entries in the first nine columns of 7, with k already defined,
enter

plot(k,T(1,1:9)+T(2,1:9),'-'), grid

The command ./ between two vectors of equal lengths divides each entry in the first
vector by the corresponding entry in the second vector. Thus, to plot the quotient of the two
entries in each column of 7, use

plot(k,T(1,1:9)./ T(2,1:9),’-"), grid

5.7 APPLICATIONS TO DIFFERENTIAL EQUATIONS

If you plan to take a course in differential equations, the material in this section will be a valuable
reference. If you have aiready studied differential equations, you may gain new understanding as
you work through this section.

KEY IDEAS

A basic solution of the differential equation X" = Ax is an eigenfunction x(t) = ve”, where A is an
eigenvalue of A and v is a corresponding eigenvector. In all examples and exercises in this
section, every solution of X" = Ax is a linear combination of eigenfunctions. (This is because A is
diagonalizable. The general case is usually handled in a full course in differential equations.) An
initial condition, x(0) = x,, determines the weights for the linear combination of eigenfunctions.
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The eigenvalues of A determine the nature of the origin for the dynamical system described
by X" = Ax. Most of the discussion involves the case when A is 2 X 2. If one eigenvalue is
negative and one is positive, the origin is a saddle point. If the real parts of the eigenvalues are
negative (this includes the case when both eigenvalues are real and negative), the origin is an
attractor of the dynamical system. If the real parts are positive, the origin is a repellor. If an
eigenvalue is complex, then the trajectory of a corresponding eigenfunction forms a spiral—
either toward the origin, away from the origin, or on an ellipse around the origin, depending on
the real part of the eigenvalue.

Study Tip: Note that conditions on eigenvalues here differ from those in Section 5.6. For
differential equations, the real parts of the eigenvalues determine the nature of the trajectories; for
difference equations, the absolute values of the eigenvalues are important. You can remember
this if you note that a basic solution ve™ of X’ = Ax tends to 0 (as 1 —> o) only if the real part of A
is negative. In contrast, a basic solution A'v of x..; = Ax, tends to 0 (as k— o) only if the
absolute value of A is less than 1.

SOLUTIONS TO EXERCISES

1. The eigenfunctions for X" = Ax are v,e* and v,¢”. The general solution of X’ = Ax has the
form

~3] -1
CII: | e4’+cz[ Jez'

The initial condition x(0) = (-6, 1) determines ¢; and ¢,:

-3 -1 -6

cl|: ) 4(°)+c2|: J ez(°’=[ 1:'

-3 -1 -6 1 1 1 1 0 5/2
1 1 1 -3 -1 -6 0 1 -3/2

-3 -1
Thus ¢; = 5/2, ¢, =-3/2, and x(¢) = el e* - 3 e,
21 1 21 1

3/2
Checkpoint. Let A be the matrix [ /2 /1

by 2. Now the eigenvalues of A are .5 and —.5. Is the origin an attractor or a saddle point for the
equation X' = Ax?

:!, obtained by dividing the matrix in Exercise 3
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1 1
7. Use the eigenvectors v, = {3} and v, = L} (found in Exercise 5) to create P =[v; v;].

Match the eigenvectors with the eigenvalues in D= 0 6l The details of the substitution
of x = Py into X' = Ax are given in the answer section of the text.

Helpful Hint: The idea of changing variables to uncouple a differential equation is fairly
common in engineering texts. Exercises 7 and 8 test your understanding of the value of a
diagonalization. (You might see such a question on an exam.)

13. An eigenvalue of A is A = 1 + 3i, with eigenvector v = (1 + i, 2). The complex

eigenfunctions ve and Ve provide a basis for the solution space of all complex solutions
of X' = Ax. The general (complex) solution is

1+i . 1-i .
o l: }emmt +c, [ }6(1_3'” (¢; and ¢, are complex)
2 2

(1+3i) (1+3i

Use the real and imaginary parts of ve

as:
1+i (1+30)t 1+l s e '
e = (cos3t+isin3t)e

2 2

cos3t—sin3t| , |sin3t+cos3t| |
= i e
2cos 3t 2sin3t

to build the general real solution. Rewrite ve

The general real solution has the form

[cos 3t —sin 31 . {sin 3t +cos3t
1 2

2sin 3¢

e’ (c; and ¢; are real)
2cos3t

The trajectories are spirals because the eigenvalues are complex. The spirals tend away from
the origin because the real parts of the eigenvalues are positive.

19. Substitute R, = 1/5, R, = 1/3, C; =4, and C, = 3 into the formula for A given in Example 1,
and use a matrix program to find the eigenvalues and eigenvectors:

A={—2 3/4}, A =-5: V1=|:1:|, Ay =-2.5: Vz:{_ﬂ
1 -1 2 2
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G . _ 1 —5¢ -3 2.5
eneral solution: x(¢)=c, ) e +c, 5 e,

6

4 1 -3 4
The condition x(0) :L} implies that L 2}|: :I = L} By a matrix program, ¢, = 5/2 and

¢, =—1/2, so that

[v' (t)} =x(t) = E{lile_'s’ — l|:_3} e
v, (1) 202 20 2

Helpful Hint: (for 21 and 22) Find the general real solution before you use the initial
condition to find the constants ¢; and ¢,. Otherwise, your ¢; and ¢, will probably be complex, and
you will have to do unnecessary complex arithmetic to write the solution using only real scalars.

C,

Answer to Checkpoint:  One eigenvalue is positive and one is negative, so the origin is a saddle
point. If you consider the difference equation x,,; = AX, (with the same matrix A), then the origin
is an attractor, because both eigenvalues are less than 1 in absolute value. Be careful if you have
a test that covers both Sections 5.6 and 5.7.

MATLAB Solutions of Differential Equations

For the eigenvalues of A, use ev = eig(A). The eigenvectors shown in the text’s
answers were produced using commands such as

v = nulbasgis(A-ev(l) *eye(3))

If the eigenvalue ev (1) is complex, the eigenvector v will be complex. The real and
imaginary parts of vare real (v) and imag(v).

If you use the command [P D] = eig(A), your eigenvectors should be multiples
of those in the text’s answer {when the eigenspaces are one-dimensional). To test whether a
vector v is a multiple of a vector w, compute v./w. This divides each entry in v by the
corresponding entry in w. If v is a multiple of w, the result of v./w should be a vector
whose entries are all equal.

5.8 ITERATIVE ESTIMATES FOR EIGENVALUES

The algorithms in this section illustrate another use of the eigenvector decomposition described in
Section 5.6 (on page 343). Other methods for eigenvalue estimation were mentioned in Section
5.2 (on page 317).
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STUDY NOTES
Throughout the section, we suppose that the initial vector x, can be written as Xg = ;v + " + ¢,V
where v, ..., v, are eigenvectors of A and ¢, # 0. (In practice, you will not know c¢v,, ..., ¢,v,. This

eigenvector decomposition is used only to explain why the power method works.)

The Power Method: Assume the eigenvalue A, for v, is a strictly dominant eigenvalue (so
that Il > [Ajl for j =2, ..., n). Then, for large k, the line through A*x, and 0 nearly coincides with
the line through v; and 0. The vector A"x, itself may never approach a muitiple of v, (see
Exercise 21), but if each A'x, is scaled so its largest entry is 1, then the scaled vectors approach
an eigenvector (a multiple of v,) as k — .

The Inverse Power Method: You must start with an initial estimate o for a particular
eigenvalue, say A,, and o must be closer to A, than to any other eigenvalue of A. In this case,
1/(A; — o) is a strictly dominant eigenvalue of the matrix B = (A - o). The inverse power
method avoids computing B. Instead of multiplying x by B to get Xi.; (suitably scaled), you
solve the equation (A — a)y; = x; for y, and then scale y, to produce X;, ;.

SOLUTIONS TO EXERCISES

1 1 1 1 1
1. The vectors in the sequence , , , , approach an
0] |.25] |.3158] |.3298 | |.3326

eigenvector v,. Of these vectors, the last one, x4, is probably the best estimate of v;. To
compute an estimate of A;, multiply one of the vectors by A and examine its entries. Again,

4.9978
the best information probably comes from Ax, = 1 6652 whose entries are approximately
A, times the entries in X,. From the first entry, the estimate of A, is 4.9978.

The computed value of Ax, can be used as an estimate of the direction of the eigenspace.

Study Tip: Exercises 1-6 make good exam questions because they test your understanding of
the power method without requiring extensive calculation.
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The data in the table below and the tables in Exercise 19 were produced by MATLAB,
which carried more decimal places than shown here.

U e

A 6| |11.5]| 112.70| |12.959 | |12.9927 | |12.9990
X
¢ 8| |11.0] [12.78] {12946 | (12.9948 | |12.9987

[TH 8 115 1278 12959 129948 12.9990

The exact eigenvalues are 13 and —2. The subspaces determined by Ax are lines whose

slopes alternate above and below the slope of the eigenspace. (The eigenspace is the line

Xy =Xx1)

If the eigenvalues close to 4 and —4 have different absolute values, then one of these

eigenvalues is a strictly dominant eigenvalue, so the power method will work. But the power

method depends on powers of the quotients A,/A; and As/A; going to zero. If IA,/A)l is close

to 1, its powers will go to zero slowly.

Suppose Ax = Ax, with x # 0. For any o, AXx — oUx = (A — 0)x, and (A — o)x = (A — o)x. If

o is not an eigenvalue of A, then A — o is invertible and A — o is not 0; hence
x=(A-o)'A-o)xand A— o) 'x= (4 - al) 'x

This last equation shows that x is an eigenvector of (A4 — o)™ corresponding to the
eigenvalue (A — o).
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19. a. The data in the table below show that p¢ = 30.2887 = - to four decimal places. Actually,
to six places, the largest eigenvalue is 30.288685, with eigenvector (.957629, .688937, 1,

943782).
F 0 1 2 3 4 5 6 7

1 1 99 961] [.9581] [.9577] [.957637] [.957630]

. 0 i 71 691 6893 | |.6890| |.688942| |.688938
g 0 8 1 1 1 1 1 1

0 i 93 942| |.9436| |.9438] |.943778] |.943781

10] [262] [204] [29.05] [29.01] [29.006] [29.0054] [29.0053]

AX 18.8| |21.1] 12090| [2087] |20868| |208671] |20.8670

£ 265| [306] 13032] [3029] |30.289] |30.2887| |30.2887

24.7| [28.8] [28.61] |28.59] |28.586] [28.5859] |28.5859]

0, 10 265 306 3032 3029 302892 302887  30.2887

b. The inverse power method (with o = 0) produces v, = p{l =.010141, and v, = .0101501,
which seems to be accurate to at least four places. Actually, v, is accurate to six places,
v3 s accurate to eight places, and v, is accurate to ten places. The convergence is so rapid
because the next-to-smallest eigenvalue is near .85, which is much farther away from 0
than .0101501. The vector x, gives an estimate for the eigenvector that is accurate to
seven places in each entry.

ya 0 1 2 3 4
1] [-6098] [-60401] [-.603973] ’—.6039723}
0 1 1 | ]
X
‘ 0 —.2439 ~25105 —251134 — 2511351
0] | .1463] 14890 | .148953| | .1489534]
251 [-59.56] [-59.5041] [-59.5044] [-59.50438]
w4 98.61 98.5211 98.5217 98.52170
. 10] |-2476] |-24.7420| |-24.7423| |-24.74226
~6| | 14.68] | 14.6750] | 14.6751] | 14.67515)
W, || 024 010141 0101501  .010150059 0101500484
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MATLAB Power Method and Inverse Power Method

Use format long to display 15 decimal digits in your data. The algorithms below
assume that A has a strictly dominant eigenvalue, and the initial vector is x, with largest
entry 1 (in magnitude). (If your initial vector is called x0, rename it by entering x = x0.)

The Power Method When the following sequence of commands is performed over
and over, the values of x approach (in many cases) an eigenvector for a strictly dominant
eigenvalue:

Yy = A*x (1)
[t r] = max(abs(y)); mu = y(r) mus=estimate for eigenvalue (2)
x = y/y(r) Estimate for the eigenvector 3)

In (2), t is the absolute value of the largest entry in y and r is the index of that entry. As
these commands are repeated, the numbers that appear in y(r) are the p, that approach the
dominant eigenvalue.

Recall that MATLAB commands can be recalled by the up-arrow key (T). After
entering (1) — (3), your keystrokes can be

T7T7T<Enter>T7T T <Enter>T T T <Enter>

and so on. Alternatively, you could enclose lines (1) — (3) in a loop (see page 5-25).

The Inverse Power Method Store the initial estimate of the eigenvalue in the
variable a, and enter the command C = A - a*eye(n), where n is the number of
columns of A. Then enter the commands

y = C\X Solves (A —aly = x )
[t r] = max(abs(y)); nu = a + 1/y(r) nu=estimated eigenvalue 2)
x = y/y(r) Estimate for the eigenvector 3)

As these commands are repeated (using TTT <Enter> each time), lines (2) and (3) produce
the sequences {v,} and {x,} described in the text.

Displaying Data If your computer screen displays only 24 or 25 lines, vectors in the
sequence {x;} tend to scroll off the screen soon after you compute them. To see more
vectors at once, and to compare their entries more easily, you can display them as row
vectors. Change (1) to y = A*x; y’ (power method) or y = C\x; y’ (inverse
power), and for both methods, change (3)to x = y/y(r); x’.

For even more data on your screen, use the command format compact, which
removes extra lines between data displays. The simple command £format returns
everything to normal.
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Chapter 5 GLOSSARY CHECKLIST

Check your knowledge by attempting to write definitions of the terms below. Then compare your
work with the definitions given in the text’s Glossary. Ask your instructor which definitions, if
any, might appear on a test.

algebraic multiplicity: The multiplicity of an eigenvalue as . . . .
attractor (of a dynamical system in R%):  The origin of R* when all trajectories tend . . . .

B-matrix (for T): A matrix [T for a linear transformation T:V — V relative to a basis B for V,
with the property that . . . .

characteristic equation (of A):
characteristic polynomial (of A):
companion matrix: A special form of matrix whose characteristic . . . is. ...

complex eigenvalue: A nonreal root of the characteristic equation of an n X n matrix A,
when . ...

complex eigenvector: A nonzero vector x in C" such that . . ., where . . ..

decoupled system: A difference equation y,,; = Ay, or a differential equation, in which
Aisa....

determinant (of a square matrix A): A number det A computed from A; equal to . . . .
diagonalizable (matrix): A matrix that may be written in factored formas . . . .

difference equation (or linear recurrence relation): An equation of the form . . . whose
solution is . . ..

discrete linear dynamical system (or briefly, a dynamical system): A difference equation of
the form . . . that describes . . . .

eigenfunction (of the equation x'(f) = Ax(#): A function of the form. ...
eigenspace (of A correspondingto A): Thesetof . .. solutionsof . . ..
eigenvalue (of A): A scalar A such that . . ..

eigenvector (of A): A ...vectorxsuchthat....

eigenvector basis: A basis consisting entirely of . . . .

eigenvector decomposition (of X): Anequationx=. ...

fundamental set of solutions (for x’' = Ax): A basisfor. ...

Im x: The vector in R” formed from. . ..

invariant subspace (for A): A subspace H such that . . ..

inverse power method: An algorithm for estimating . . . .
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matrix for Trelative to bases Band C: A matrix M for a linear transformation T:V — W with
the property that . ... When W=V and C = B, the matrix M is called . . . and is denoted
by....

power method: An algorithm for estimating . . . .

repellor (of a dynamical system in R?): The origin in R* when all trajectories . . . tend . . . .
Rayleigh quotient: R(x)=....Anestimateof....

Re x: The vector in R" formed from. . ..

saddle point (of a dynamical system in R?): The origin in R* when . . ..

similar (matrices): Matrices A and B such that. . ..

spiral point (of a dynamical system in R): The origin in R* when . . . .

stage-matrix model: A difference equation x,,; = AX, where x, lists . . ..

strictly dominant eigenvalue: An eigenvalue A, of a matrix A with the property that . . . .

trace (of a square matrix A): The.. ., denoted by tr A.
trajectory: The graph of a solution {xg, X, X, ...} of a. ... Also, the graph of x(¢) for £ >0,
when. ...
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Orthogonality and
Least Squares

6.1 INNER PRODUCT, LENGTH, AND ORTHOGONALITY

The concepts of length, distance, and orthogonality introduced in this section are essential for
many geometric descriptions in the rest of the text.

STUDY NOTES

The first half of the section is computational and easily learned. The second half, however,
requires more attention. Read it carefully. The concepts of orthogonality and orthogonal
complements are the foundation for the rest of the chapter. In fact, Theorem 3 is sometimes
called the Fundamental Theorem of Linear Algebra.

SOLUTIONS TO EXERCISES
L[] _[4 veu 8
u= ,v=| Lusu=(=1)?+22=5 v e u=4-)+6(2)=8, =—
2 6 ueu 5

7. w=(3,-1,-5), IwlP=we+w=3%+(=1)+(=5%=35. Solwll=+/35.
13. x=(10,-3), y = (-1, -5)
I - ylI* = [10 - (<)) + [-3 - (=5 = 121 + 4 =125
dist(x, y) = lx -yl = V125, or 5v5
19. a. See the definition of Iivli.
b. See Theorem 1(c).
c. See the discussion of Fig. 5.
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d. Think about a 2 X 2 matrix of zeros and ones, and see Theorem 3 for statements that are
always true.

e. See the box following Example 6.

TheoremI(b): (u+v)sw=u+v)Vw=@ +viw=a"w+viw=u+w+vew. The
second and third equalities used Theorems 3(b) and 2(c), respectively, from Section 2.1.
Theorem I(c):  (cu) » v=(cu)’v = (cu’)v = c(u’v) = c(u + v), by Theorems 3(c) and 2(d) in
Section 2.1. Also, u ¢ (cv) = uT(cv) =cu'v= c(asv).

When v = {ZJ , the set H of all vectors [x
y

vectors whose entries satisfy ax + by = 0. If a # 0, then x = — (b/a)y, with y a free variable.

J that are orthogonal to v is the subspace of

-b
Then H is a line through the origin. A natural choice for a basis for this subspace is [ } .
a

If a =0 and b # 0, then the vectors in H satisfy by = 0. Since b is nonzero, y =0 and x is

} is also a basis, sincea=0and b # 0.
a

1 -b
free. A basis for His [O} . Note, however, that [

Finally, if @ and b are both zero, then H is R? itself, because the equation Ox + Oy = 0 places
no restrictions on x or y.

If y is orthogonal tow and v, theny « u=0 and y » v =0, and hence by a property of the
inner product,y » (u+v)=ye+su+yev=0+0=0. Soyisorthogonal tou + v.

Take a typical vector w = v+~ + ¢,v, in W. If x is orthogonal to each v;, then using the
linearity of the inner product (Theorem I(b) and I(c)), W ¢« X = (c\vi+* "+ CpV,) ¢ X =

avie X+ +¢,v, « Xx=0. Soxis orthogonal to each w in W.

Suppose x is in W and W*. Then, since x is in W™, x is orthogonal to every vector in W,
including x itself. So x « x =0. This is true only if x = 0. This problem shows that W N W™
is the zero subspace. (See Exercise 32 in Section 4.1.)

MATLAB The inner product of real column vectorsu and vis u'*v (and v'*u);the
length of vis norm(v). See the MATLAB note for Section 2.1.

6.2 ORTHOGONAL SETS

Orthogonal sets and orthogonal bases are used throughout the chapter. The “orthogonal
projection” discussed in this section is an important special case of the orthogonal projections

studied in Section 6.3.
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STUDY NOTES

The proofs of Theorems 4 and 5 are worth studying because they involve a calculation you will
see and use several times.

The subsection entitled An Orthogonal Projection is simple but extremely important. Also,
the geometric interpretation of Theorem 5 on page 388 will be helpful when you study Theorem 8
in the next section.

The attention paid to Theorems 6 and 7 will depend on what your instructor plans to do later
in the chapter. In some cases, an instructor may discuss Theorems 6 and 7 only for square
matrices. The m X n case is needed later, for Theorems 10, 12 and 15. Remember: the term
orthogonal matrix applies only to a square matrix. Also, the columns of an orthogonal matrix
must be orthonormal, not simply orthogonal.

SOLUTIONS TO EXERCISES
-1 5 3

l.a=| 4|, v={2|,w=|-4]|, uev=-5+8-3=0, uew=-3-16+21=2# 0.
-3 1 -7

The set {u, v, w} is not orthogonal. There is no need to check v » w.

2 6 9
7. u, =[ 3], u, =|:4}, x=[ 7}, u s u;=12-12=0, so {u;, u,} is an orthogonal set.

Since the vectors are nonzero, u, and u, are linearly independent, by Theorem 4. But two

such vectors in R? automatically form a basis for R2. So {u,, uy} is an orthogonal basis for
R% By Theorem 5,

Xeou Xeu, 18+21 54-28 2] 1/6
lll+ u2= ‘,l1 u2=3 —
U, e u u, -u, 4+9 36+16 -3 4

2

2

13. y=
=k

4
} , u =|: 7} . The orthogonal projection of y onto u is

A~ _Yyeu 8-21 -13 -1} 4 —4/5
y: u= u= u=— =
u-eu 16+49 65 517 775
Th t of v orth ltoui . |2 —4/5| |14/5
e component of y orthogonal touis y—-y = 3 7151=| 85"

Thus, y =9+ — gy 4514145
U Y=YT=Y= a5 sis)
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8 6
> =u s u=(-6)+(8)°=.36+ .64 = 1. Similarly, ivI*=v « v=1. Thus {u, v} is an

orthonormal set.

" :[—.6:] ve {8} , uev=-48+.48=0,so {u, v} is an orthogonal set. Also,

a. See Example 3, for instance. b. See Theorem 5.

¢. See the paragraph after Example 3. d. See the paragraph before Example 7.

e. See Example 4.

(Ux) « (Uy) = (Ux)'(Uy) =x"U"Uy =x"y = x « y (because U'U = I). If y = x, Theorem 7(b)

says that llUxI* = IxII*, which implies part (a). Part (c) of Theorem 7 follows immediately
from part (b).

Study Tip: If your instructor emphasizes orthogonal matrices, work Exercises 27-29. (They
make good test questions.) In each case, mention explicitly how you use the fact that the matrices
are square. Don’t read the solutions below until you have first written your own solution.

27.

29.

31.

If U has orthonormal columns, then U'U = 1, by Theorem 6. If U is also square, then the
equation U’ U = I implies that U is invertible, by the Invertible Matrix Theorem.

Since U and V are orthogonal, each is invertible. By Theorem 6 in Section 2.2, UV is
invertible and (UV)" = VU™ = VU T = (UV)" (by Theorem 3 in Section 2.1). Thus UV is
an orthogonal matrix.

The full solution is in the text.

Mastering Linear Algebra Concepts: Orthogonal Basis

To the review sheet(s) you have on “basis”’, add the concepts of an orthogonal basis and an
orthonormal basis for a subspace. You need to know what special properties they possess.

basic definitions Pages 385 and 389

equivalent descriptions Theorems 4 and 6

geometric interpretation Figs. 1 and 6

special cases Matrix with orthonormal columns
examples and counterexamples Examples 2 and 5

algorithms and computations Example 2

connections with other concepts Orthogonal matrix
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MATLAB Orthogonality

In Exercises 1-10 and 17-22, the fastest way (counting the keystrokes) in MATLAB to test
a set such as {uy, uy, u3} for orthogonality is to use a matrix U = [ul u2 u3] whose
columns are the vectors from the set, and test whether U’ *U is a diagonal matrix. See the
proof of Theorem 6.

For column vectors y and u, the orthogonal projection of y onto u is

(y’*u) / (u’ *u) *u

The parentheses (and the final *) are essential. MATLAB computes the scalar quotient
(yTu)/(uTu) and then multiplies u by this scalar.

6.3 ORTHOGONAL PROJECTIONS

A familiar idea in Euclidean geometry is to construct a line segment perpendicular to a line or
plane. This section treats an analogous situation in R”, namely, the orthogonal projection of a
vector (a point in R") onto a subspace. The case when the subspace is a line through the origin
was already examined in Section 6.2,

KEY IDEAS

If y is in R" and if W is a subspace of R”", then the orthogonal projection of y onto W, denoted by
y or projw Yy, has two important properties:

(i) y- § is orthogonal to W (so y is the sum of a vector § in Wand a vectory — § in W'),
and
(ii) ¥ is the closest pointin Wtoy.

Properties (i) and (ii) are described in the Orthogonal Decomposition Theorem and the Best
Approximation Theorem. You should learn the statements of both theorems. (By now you
probably know that whenever a theorem has an official name, an instructor has an easy time
asking test questions about it.) When you need one of these theorems in a discussion (homework
or test question), you should mention the theorem by name.

If your class covers Theorem 10, then the paragraph following the theorem will help you
understand the difference between an orthogonal matrix (which must be square) and a rectangular
matrix with orthonormal columns,
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SOLUTIONS TO EXERCISES
0 3 1 5 10
1 5 0 -3 -8 )
1. u= s u, = luy= ,u, = , X= . You could calculate all the inner
~4 1 1 -1
-1 1 -4 1
products in the decomposition:
x= g ¢ X0y X0 Xy, (1)
u -y u,-u, u, e u, u, - u,
in Span{u,, u,, us} in Span{uy}

However, once you know the vector in Span{u,}, the vector in Span{u;, u,, u;} is
determined completely by (1). So all you need is

10
Xeu, 50+24-2+40 -6
u,= u,=2n,=

U, eu, 25+9+1+1 -2

2
10 10 0
The vector in Span{u,, up, u3} is x—2u, = 81_|® = =2
20 |2 4
0 27 |2

Study Tip: One way to check whether projwy is computed correctly is to verify that
y — projw y is orthogonal to each vector in the orthogonal basis {w,, ..., u,} for W. A faster check
that will catch most errors (but not all) is to verify that y — projw y is orthogonal to projw y.

1 1 S
7. y=|{3|,u,=| 3|, u,=|1}|. First, make sure that {u;, u,} is an orthogonal basis for
5 -2 4

Span{u;, w,}. This is easy, since u, and u, are nonzero and u, » u, = 0. Next, by the

Orthogonal Decomposition Theorem, y is the sum of projw y and y — projw y, where
W = Span{u,, u,}.
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. yeu, yeu, 1+9-10 5+3+20
projy y = u, + u, = u, u,
u, -y u,eu, 1+9+4 25+1+16
) 10/3
=0u1+§u2 2/3
8/3

and

1 10/3 -7/3
y-—proj, y=|3|-| 2/3|=| 7/3
5 8/3 7/3

-1

As a check, scale y —proj,, y=| 1/, and observe that the scaled vector is obviously

1
orthogonal to u; and w,. Thus y — projyw y is in W, as it should be.

Warning: The formula for projw y applies only if {w, ..., u,} is an orthogonal basis for W.
That’s why you should check orthogonality, as in Exercise 7, if you are not sure that the basis is

orthogonal. If an orthogonal basis is not available, then other methods can be used to compute
¥ . (See Exercise 23 in Section 6.5, for example.)

3 2 1
-7 -1
13. z= 5| v, Nk v, = . Note that v, and v, are orthogonal. By the Best
3 1 -1
Approximation Theorem, the closest point in Span{vy, v,} to z is the orthogonal projection
z , where
2 1 -1
A LoV, Zev, 10 -7 211 7y 1} |-3
= Py =V F—V, = - =
VeV, V,*V, 15 3 3|-3] 3| O |2
1 -1 3
4 1
L |4 -1,
Check: z—-2= 4l The vector 1 is orthogonal to both v, and v,.
0 0
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By the Orthogonal Decomposition Theorem, u; is the sum of a vector in W= Span{u,, u,}
and a vector v orthogonal to W. First,
-2/6 10/30 0

projwu3=—6ul+§26u2= -2/6|+|-2/30 =] -2/5
4/6 4/30 4/5
Then
0 0 0
vV=u,—proj, u, =| 0{-| =-2/5=|2/5
1 4/5 1/5

Not only is v orthogonal to W, but also any multiple of v is in W*.

Study Tip: It would be a good idea to try Exercise 20 and compare the result with Exercise

19.

Then think about the following problem: Suppose that {u,, u,} is an orthogonal set of

nonzero vectors in R’>. How would you find an orthogonal basis of R’ that contains u, and u,?
You might discuss this with your instructor.

21.

23.

25.

a. See the calculations for z, in Example 1 or the box after Example 6 in Section 6.1.

b. See the Orthogonal Decomposition Theorem.

¢. See the second paragraph after the statement of Theorem 9.

d. See the box before the Best Approximation Theorem.

e. See the paragraph after Theorem 10.

By the Orthogonal Decomposition Theorem, each x in R" can be written uniquely as

X = p +u, with p in Row A and u in (Row A)*. By Theorem 3 in Section 6.1, u is in Nul A.
Next, suppose that Ax = b is consistent. Let x be a solution, and write X = p + u, as

above. Then Ap =A(x—u)=Ax-Au=b-0=Db. So the equation Ax = b has at least one

solution p in Row A.
Finally, suppose that p and p; are both in Row A and satisfy Ax =b. Then p-p, isin

Nul A because
A(p-p)=Ap-Api=b-b=0

The equations p = p; + (p — p1) and p = p + 0 both decompose p as the sum of a vector in
Row A and a vector in (Row A)*. By the uniqueness of the orthogonal decomposition
(Theorem 8), p; = p, SO p is unique.

From Exercise 36 of Section 6.2, U should have orthonormal columns, because U is formed
by normalizing the columns of the matrix A in Exercise 35 whose columns are orthogonal.
Verify this by computing U"U. The result should be the 4 X 4 identity matrix.

The closest point to y in Col U is the orthogonal projection of y onto Col U. By
Theorem 10, this closest point is UU’y. The MATLAB command is U*U’ *y. The result
of this computation should be the (column) vector (1.2, .4,1.2,1.2,.4,1.2, 4, 4).
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Warning: [ had to work hard to make the arithmetic simple in the exercises for this section, to
avoid distractions for you and to save you time. You might not be so lucky on an exam. Even if
a problem is designed to be numerically simple, there is always a chance that a minor error will
make the calculations messy. In such a case, don’t despair. Carry out the arithmetic as best you
can, showing the details of your work (patterned after the solutions in this Study Guide). Chances
are that you will get substantial credit for showing that you understand the concepts.

MATLAB Orthogonal Projections

The orthogonal projection of y onto a single vector was described in the MATLAB note for
Section 6.2. The orthogonal projection onto the set spanned by an orthogonal set of vectors
is the sum of the one-dimensional projections. Another way to construct this projection is
to normalize the orthogonal vectors, place them in the columns of a matrix U, and use
Theorem 10. For instance, if {y;, ¥2, y3} is an orthogonal set of nonzero vectors, then the
matrix

U = [yl/norm(yl) y2/norm(y2) y3/norm(y3)]

has orthonormal columns, and U* (U’ *y) produces the orthogonal projection of y onto
the subspace spanned by {y), ¥2, ¥3}. (The parentheses around U’*y speed up the
computation of U*U’ *y by avoiding a matrix-matrix product.)

6.4 THE GRAM-SCHMIDT PROCESS

This section has a nice geometric appeal. The Gram-Schmidt process is well-liked by students
and faculty because it is easily leamned. Although the process is seldom used in practical
computations, it has important generalizations to spaces other than R” (to be discussed briefly in
Section 6.7).

KEY IDEAS

When the Gram-Schmidt process is applied to {x,, ..., X,}, the first step is to set v; = x;. For
k=2, ..., n, the kth step consists of subtracting from x, its projection onto the subspace spanned

by the previous X’s. At each step the projection is easy to compute because an orthogonal basis
for the appropriate subspace has already been constructed.

The QR factorization of a matrix A encapsulates the result of applying the Gram-Schmidt
process to the columns of A, just as the LU factorization of a matrix encodes the row operations
that reduce a matrix to echelon form. Also, just as the LU factorization can be implemented via
multiplication by elementary matrices, so can the QR factorization be constructed via
multiplication by orthogonal matrices.
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SOLUTIONS TO EXERCISES
3 8
1. x,=| 0}, x,=| 5|. Setv,=x, and compute
-1 -6
8 30 3 -1
v2—x2—xz.vl X 51-=| 0|=| 5
vV, VY, 10
-6 -1 -3
3] [-1]
Check: v, « vi=-3 +0+3=0. So an orthogonal basis is Ol,| 5
-1] [-3]
2 4 2 3]
7. x,=| -5, x, =| -1|. From Exercise 3, use v, =| 5| and v, ={3/2 | as an orthogonal
1 2 1 3/2]
basis for W = Span{x,, x,}. Scale v, to (2, 1, 1) before normalizing, and then obtain
2 2/~/30 2 2//6

w =] 5 |=|-SB0 |, w, = 1= 1146
1l | 1430 1 | 1ve

Study Tip: If you need to normalize a vector by hand, first consider scaling the entries in the
vector to make them small integers, if possible.

5 9 5/6 -1/6
1 7 1/6 516
13. A= , 0= . Let
-3 -5 -3/6 1/6
1 5 1/6  3/6
5 9
R=0Q7 A= 5/6 1/6 -3/6 1/6]| 1 7| [36/6 72/6] [6 12
- “l-1/6 5/6 1/6 3/6||-3 -5\ | 0 36/6| |0 6
1 5
5/6 -1/6 5 54/6
176 5/6|[6 12 1 42/6
As a check, compute OR = = =
-3/6 1/6]|0 6| |-3 -30/6
176 3/6 1 30/6
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Remark: The reason the R in Exercise 13 works is that the columns of Q form an orthonormal
basis for Col A (since they were obtained by the Gram-Schmidt process). Thus QQ’y =y for all y
in C?IA, by Theorem 10 in Section 6.3. In particular, QQTA =A. Soif Ris QTA, then OR =
QQA)=A.

17. a. See the remark after Example 5 in Section 6.2, and the reference there to Exercise 32.
b. See (1) in the statement of Theorem 11.
c. See the solution of Example 4.

19. The full solution is in the text.

21. The solution in the text is complete, except for the details of extending an orthonormal basis
for Span{q,, ..., q,} to an orthonormal basis for R”. Here is one algorithm. Let {e,, ..., e,}
be the standard basis for R™. Let f; be the first vector in this basis that is not in
W, = Span{qy, ..., q.}, and let u; = f, — projy f. Then {q,, ..., ., w;} is an orthogonal basis
for W,,; = Span{qy, ..., q,, w}. Let f, be the first vector in {e, ..., e,} that is not in W,,,.
(Of course £, occurs later than f; in the list e, ..., e,.) Formu, =f, — projW,,; f, and W,,,, =
Span{qy, ..., q., W, W;}. This process will continue until m — n vectors have been added to
the original n vectors. Normalizing the new vectors produces an orthonormal basis for R™.

23. Use the definition of matrix multiplication. When A = QR, the first p columns of A are
determined by the action of Q on the first p columns of R. So,if A={A; A,], make the
same column-partition of R as [R; R,], where R, has p columns. Then

A = Q[R, R = [QR, QR =[A, Aj]
Is OR; a QR factorization of A;? Unfortunately, no. The second factor in a QR factorization
should be square and upper triangular with positive entries on the diagonal. Since R has
those properties, its first p columns have zeros in rows p + 1 to n. (This is a key

R
observation.) So, partition R, into two blocks, R, ={ (;1] , where R, is square and upper

triangular. The entries on the diagonal of R}, are positive because they come from R. Then
R

A =0R, = Q[ 611| . You might consider left-multiplying R, by Q, but partitioned matrix

multiplication does not work that way. QR is not defined, because Q has more columns

than R;; has rows. (Why?)

The final idea needed is to view the product QR, as a product of block matrices, by
partitioning the columns of Q to match the row partition of R;. Write Q =[Q;, ], where
Q) consists of the first p columns of Q. The matrix Q; has orthonormal columns, because the

columns come from Q and so the columns are unit vectors and are pairwise orthogonal.
Finally,

A <OR =[Q QZJ['E'}Q]RU +0,0=0QR,
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This concludes the construction, because the properties of Q, and R;, have already been
discussed. This solution has followed a path that a good student might find. Now that you
see how things fit together, you should be able to write a short proof that begins with
appropriate partitions of Q and R. [ encourage you to try it. The shorter proof is hidden at
the end of the solutions for Section 6.5.

MATLAB The Gram-Schmidt Process

If A has only two columns, then the Gram-Schmidt process is

vl A(:,1)
v2 A(:,2) - (A(:,2)'*v1)/(v1l’*vl)*vl

If A has three columns, add the command
v3 = A(:,3) - (A(:,3) " *v1)/(v1'*v1)*v1l - (A(:,3) ' *v2)/(v2'*v2)*v2

You should use these commands for a while, to learn the general procedure. After that,
you can use the Laydata command proj (x,V), which computes the projection of a
vector x onto the subspace spanned by the columns of a matrix (or vector) V. For example,

v2
v3

A(:,2) - proj(A(:,2),vl) V=vl
A(:,3) - proj(A(:,3),[vl v2]) V=i v2

The columns of Vin proj (x,V) need not be orthogonal for the command to work,
but if they are, the entries in proj (x,V) will usually agree with those computed via
Theorem 10 in Section 6.3, to twelve or more decimal places. Enter help proj tolearn
more about proj.

To check your work or to save time, enter Q = gs (A), which uses the Gram-Schmidt
process to construct the columns of Q. See help gs.

Although you should construct the QR factorization of a matrix using the approach in
the text, you might like to see what MATLAB does. The command [Ql R1] = qr(a)
creates a modified QR factorization of an m X n matrix A as described in Exercise 21 in the
text. If rank A = r, then the first »r rows of R, are nonzero and the first  columns of @, form
an orthonormal basis for Col A.

6.5 LEAST SQUARES PROBLEMS

The basic geometric principles in this section provide the foundation for all the applications in
Sections 6.6-6.8.
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KEY IDEAS

A least-squares solution of Ax = b is any vector x that makes Ax as close as possible to b. (Learn
the formal definition, too.) If the columns of A are linearly dependent, then there are many least-
squares solutions of Ax =b. They can all be found by row reducing the augmented matrix for the
normal equations ATAx = A™b (Theorem 13).

If the columns of A are linearly independent, then there is only one least-squares solution. To
find it, solve the normal equations or compute (A’A)"'A™b (Theorem 14). Ifa QR factorization of
A is available, say A = QR, solve the equation Rx = QTb (Theorem 15 and the Numerical Note).

STUDY NOTES

The material up to and including Figure 2 needs to be read carefully several times, so you under-
stand what the term “least-squares solution” means. Be careful to distinguish between X and b.
A common mistake is to think that X itself somehow has the least-squares norm or is the closest
point to b. Look at Fig. 2 again. The vector closest to b is AX, not X.

Theorem 13 provides a common way to find least-squares solutions. One way to remember
the normal equations is to observe that they look the same as Ax = b with A left-multiplied on
each side of the equation. It is completely wrong, however, to try to derive the normal equations
from AX = b via left-multiplication by A”. If the equation AX = b has no solution, then the
equation itself is a false statement about every vector x. Matrix algebra on such a false statement
is meaningless.

SOLUTIONS TO EXERCISES
-1 2 4
1. A=} 2 -3|,b=|1
-1 3 2
PG I I PR 12 1)t s
AA= 2 -3|- , ATb= =]
2 -3 3 -11 22 2 -3 3 11
-1 3] - 2
[ 6 -11]
a. The normal equations: S 4
11 22|y |1

b. Since A’A is only 2 X 2, (ATA)’1 is easy to compute, and

S I I e RN
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Warning: It is important to distinguish between the normal equations A"’ A% =A"b and the
formula =(A’A)" A"b. Both equations describe % (implicitly or explicitly), but the formula
for % holds only when A has linearly independent columns. Note that the expression (A"4)"'A”
cannot be simplified when A is not invertible.

1 -2 3 1 2
-1 2 1 1 -1 0 2|-
7. A= ,b= CATA= I 2 _ 6 6
0 3 —4 -2 2 3 5|0 3 6 42
2 2 2
3
1 -1 0 2§ 1 6
ATb= =
-2 2 3 5|4 -6
2
) 6 6} x 6
The normal equations: =
6 42 x, -6

The particular numbers in A’A suggest that the normal equations might be solved easily via
row operations:

6 6 6| |6 6 6 (1 1 1 1 0 4/3
6 42 -6 0 36 -12 0 1 -1/3 0 1 -1/3

4/3
Thus x =[ 3} . The least-squares error is | AX —b |, so compute

1 -2 31 [ 21 [ 3] [

. 1 2\ 43] | 1| |=2| | 1] |-3
AR -b= - =T =

0 3||-1/3] |—4| |-1| || | 3

2 5 20 | 1) | 2] [-1

AR —bIP=1+9+9+1=20, and Il AR ~b =20 = 2./5

Study Tip: A good way to check your work in Exercises 1-8 is to verify, that AX~b is
orthogonal to each column of A.

Warning: The matrices in Exercises 9-12 are special-—their columns are orthogonal. That is
why these exercises are not difficult. See Example 4. In general, if the columns of A are not
orthogonal, finding the orthogonal projection of b onto Col(A) takes more work. See Exercise 23.
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(3 4], - [ 11 nyrullo

Au=|-2 1 _51 =|-11{, b—Au=|-9 |-|-11|=| 2|, Ib-Aul=+/40
3 4]~ 1 s| | 11] |-6
3 4]. [ 7 11 7 4

Av=|-2 1 _j =|-12|,b=—Av=|-9|-|-12]|=| 3|, Ib-Aul=~29
3 4] | 7 5 7| | =2

Obviously, Au is not the closest point of Col A to b, because Av is closer. Hence u is not the
least-squares solution of Ax = b.
a. See the beginning of the section.

. See the comments about equation (1).

. See Theorem 13.

b
¢. Read the definition of a least-squares solution.
d
e. See Theorem 14.

The full solution is in the text.

a. If A has linearly independent columns, then the equation Ax = 0 has only the trivial
solution. By Exercise 17, A"Ax = 0 also has only the trivial solution. Since A"A is
square, it must be invertible, by the Invertible Matrix Theorem.

b. Since the n linearly independent columns of A belong to R™, m could not be less than n.
c¢. The n linearly independent columns of A form a basis for Col A, so the rank of A is n.
(This solution is for Section 6.4.) Given A = QR, partition A =[A; A;], where A, has p
columns. Consider the following partitions of Q and R, which are possible because R is
upper triangular:
Rll R12
0 R,
where Q; has p columns and R;; is a pxp matrix. Then A; = Q\R;;. The matrix Q, has ortho-
normal columns, because the columns come from Q and so the columns are unit vectors and
pairwise orthogonal. The matrix Ry, is square and upper triangular, because of its position

inside R. The diagonal entries of Ry, are positive because they are diagonal entries of R.
Thus QR is a QR factorization of A;.

A=[A A]=0R=[Q Qz][ i|=[Q1Ru OR,; +OR,]
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MATLAB The Backslash Command

When A has linearly dependent columns, you can write the general description of all least-
squares solutions on paper after you row reduce the augmented matrix for the normal
equations: ref ([A’*A A’*b]). When A has linearly independent columns, enter the
MATLAB “backslash” command

x = (A’*A)\ (A’*b)

to solve the normal equations. You can also enter inv (A’ *A) * (A’ *b); or use ref, as
above. For Exercises 15 and 16, see the Numerical Note on page 415 in the text and use the
backslash command R\ (Q” *b) to solve Rx = O'b.

When A is not square but has linearly independent columns, this procedure of first
forming Q and R and then solving Rx = Q'b is exactly what MATLAB does (internally)
when the MATLAB command A\b is used to solve Ax = b. You should use the normal
equations or QR for computations here, instead of just using the backslash. This will give
you a solid conceptual background for applying least-squares techniques later in your
career. For more about the backslash, see the MATLAB box for Section 2.5.

For Exercise 26, the command A = [Al; A2] creates a (partitioned) matrix whose
top block is Al and bottom block is A2. Of course, Al and A2 must have the same number
of columns.

6.6 APPLICATIONS TO LINEAR MODELS

This section of the text will be a valuable reference for any person who works with data that
require statistical analysis. Many graduate fields require such work, often in connection with
doctoral research. Even most undergraduates will take a course where least-squares lines are
used.

KEY IDEA

Linear algebra unifies the study of many problems in statistics and data analysis. All the
examples in this section, from ordinary linear regression (using a least-squares line) to multiple
regression, concern just one idea: find a least-squares solution of XB =y. Only the design matrix

X varies. The exercises help you practice choosing X. The least-squares solution [3 always

satisfies the normal equations X" XB=XTy.
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STUDY NOTES

Don’t confuse the least-squares line in Fig.1 with the lines and planes in Section 6.5 onto which
we projected various vectors b. The line is nothing more than a special case of the curves in
Figures 2-5. In each case, the “linearity” of the model lies not in the curve, but rather in the fact
that the unknown parameters (or weights) [, B, ... occur linearly in the formula for the curve,
just as the variables xy, x;, ... occur in an ordinary linear equation.

Any 4 X 4 submatrix of the design matrix in Example 3 is called a Vandermonde matrix.
Using Exercise 11 on page 184, one can show that if at least four of the values xi, ..., x, are

distinct, then the least-squares solution [3 will be unique, by Theorem 14 in Section 6.5.

FURTHER READING

An important generalization of the discussion here is to multivariate analysis, which involves
several y vectors rather than just one. In this case the basic equation is XB = Y, where each
column of Y is a data set for one dependent variable, and each column of B is a set of parameters
to be determined. That is, X[, - B,J=[y: *** y,). For more information, see the classic text
by T. W. Anderson, An Introduction to Multivariate Statistical Analysis, John Wiley & Sons,
New York, 1984 (and 1958). The preface of the text says, “A knowledge of matrix algebra is a
prerequisite [for understanding the text].” Most modern multivariate statistics texts rely heavily
on matrix notation and matrix algebra.

SOLUTIONS TO EXERCISES
1. Place the x-coordinates of the data in the second column of X and the y-coordinates in the
10 1
11 1
vectory. So X = and y = . Compute
1 2 2
13 2
1 0 1
11 1 1)1 1| |4 6 11 1 11 |6
[0 12 3} 12 {6 14}’ {0 12 3} 2 _[11}
1 3 2
X’ X xT y

The matrix normal equation and its solution are:

[Z 1ﬂ[ﬂ :[lﬂ
AHe Tl Ll
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The least-squares line, y = B + fix, is y = .9 + 4x.

T - A

[1.8] 11 g
2.7 2 4 £,
7.a. y=XP+e,where y=(34|, X={3 9 ,B=['Bl},e= & |
3.8 4 16 z £,
13.9] |5 25] & |

b. In this problem, X "X is invertible. You can use your matrix program to solve the normal
equations without explicitly computing the entries in X’X. For details, see the MATLAB
box below or the corresponding box in the appendix for your matrix program. In any

case,
. 1Al 176
B= '?1 = (to two decimal places)
B, -20

The desired least-squares equation is y = 1.76x — .20x".

13. Let 1 be the vector in R® with 1 in each entry, let t = (0, ..., 12), and for k = 2 and 3, let t."k
denote the vector whose entries are the kth powers of the entries in t. (See the MATLAB box
below.) Then the design matrix is:

X=[1 t t~2 tA3]
The observation vector y lists the measured positions of the plane.
a. Numerical solution of the normal equations yields
B = (-.8558, 4.7025, 5.5554, —.0274)
The least-squares polynomial (position of the plane at time f) is
y = —.8558 + 4.7025t + 5.55541* — 02741
b. The velocity is the derivative of the position function:
w(f) = 4.7025 + 11.1108¢ — .08227°
When ¢t = 4.5 seconds, v(4.5) = 53.0 ft/sec.
15. From equation (1) on page 420,

|1 x
r I 1 .. n  x
X' X= Do = ,
X, X, Xx Xx
-1 x,
Y
1 -1 . 2
XTyz . = y
xl e x” ny
L Yn

The equations (7) in the text follow immediately from the usual matrix normal equation
X'xXB=X"Ty.
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16. Note: The formulas you should derive are

2 _ E)(Ey) - (Z0)(Exy) B = nZxy — (Zx)(Zy)
0 nExt—(Ex)? 7 Ik - ()

Some statistics texts present other equivalent formulas for ,5’0 and ,31 .

19. The equation to be proved is Il y I?=1l XBI? +lly — XB I*. This follows from the
Pythagorean Theorem (in Section 6.1) and the figure below.

Appendix: The Geometry of a Linear Model

The column space of the design matrix X is sometimes called the design subspace. If [3 is the
least-squares solution of y = X B, then the residual vector e=y - X ﬁ is orthogonal to the design

subspace, and the equation y = X ﬁ —¢& is an orthogonal decomposition of the observed y into the
sum of the least-squares predicted § and the residual vector €.

/y
;

9=XB

&

The design subspace, Col X

MATLAB Least-squares Solutions and Functions of Vectors

Once you create the design matrix X and the observation vector y, your computations for
least-squares solutions here are the same as those described in the MATLAB box for
Section 6.5. Here, A and b are replaced by X and y, respectively. The MATLAB command

ref ([X'*X X’'*y])

leads to the general description of all least-squares solutions. When X has linearly inde-
pendent columns, the command (X’ *X) \ (X’ *y) creates the least-squares solution. In
subsequent courses, you may choose simply to use X\y, which also produces a least-

squares solution, except when X is square and singular (or nearly singular).
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To construct the design matrix for an exercise in this section, you may need
MATLAB?’s ability to compute functions of vectors. If x is a vector and & is a positive
integer, then x.”*k is a vector the same size as x whose entries are the kth powers of the
entries in x. The function cos(x)."k was mentioned in the MATLAB box for
Section 4.3. The exponential function, exp(x), and natural logarithm function,
log(x), also act on each entry in x. The entries in the vector exp (-.02%*x), for
example, are computed by applying the function ¢°** to the corresponding entries in x.

6.7 INNER PRODUCT SPACES

Three examples of inner product spaces are described here, in Examples 1, 2, and 7.
Corresponding applications appear in the next section. Material in Sections 6.7 and 6.8 will be
useful for many careers, particularly science, engineering, and mathematics. If your course does
not cover this now, the text and Study Guide can help you learn it later on your own.

KEY IDEAS

The concepts of length and orthogonality in R" have analogues in a number of other vector
spaces. The definition of an inner product identifies the basic properties needed for a theory that
parallels the familiar theory for R”. Two useful facts, the Cauchy-Schwarz inequality and the
triangle inequality, were not developed earlier, but they are important for applications both in R”
and in other inner product spaces. Every mathematics major will need to know these facts in
other undergraduate courses.

The inner product in Example 1 is used in Section 6.8 to describe weighted least-squares
problems. The inner product in Examples 2-6 provides a more sophisticated approach to the
least-squares curve fitting discussed in Section 6.6. See the “trend analysis” in Section 6.8.

Be sure to read the paragraph preceding Example 6. The idea of “best approximation” to a
function is of fundamental importance in mathematics. The most common applications of best
approximation (such as Fourier series, introduced in Section 6.8) involve the inner product in
Example 7.

SOLUTIONS TO EXERCISES
1. The inner product is (X, y) = 4x;y; + 5x2y,. Letx=(1, 1),y =(5, -1).
a lxlP=4 - 1. 1+5-1-1=9, Ixll=3
lyl=4 - 5 - 5+5(=1)=1)=105, lyll = V105
x, pIF=14 - 1 - 545 - 1DF=115%=225
b. A vector z = (g, z,) is orthogonal to y if and only if (z, y) = 0, that is,
4 -z - 545 -z - (-1)=0, 20z,-52,=0, and z,=4z
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Thus (z), 2») is orthogonal to y if and only if z, = 4z;.
Given p(f) = 4 + t and ¢(f) = 5 — 47. The orthogonal projection § of g onto the subspace
spanned by p is [{g, p)/{p, p)]p. The notation of Example 5 organizes the calculations nicely:
Polynomial: P q
3 1 e valueat -1
Vector of values: [ 4|, | 5|« valveat 0
5 1 |« valueat 1
The inner product (g, p) equals the (standard) inner product of the two corresponding vectors
inR* (g, p)=3 - 1+4 - 5+5 - 1=28. Similarly, (p, p) = 3> + 4° + 5° = 50. Thus
N 28 56 14
q) :%(4+t)=2—5+2—5t
Suppose A is invertible and (u, v) = (Au) « (Av), for u, vin R”. Note that (u, v) is in R, and
check each axiom in the definition on page 428:

i. {(u,v)=(Au) «(Av) =(Av) + (Au) Property of dot product
=(v,u)
il. (u+v,w)y=[A(u+v)]+(Aw)=[Au+ Av]*(AW) Matrix multiplication
=(Au) « (AW) + (Av) » (Aw) Property of dot product

={u, w)+{v,w)

i1i. (cu V> = [A(Cll)] . (AV) = [C(All)] . (AV) Matrix multiplication
=c(Au) » (AV) Property of dot product
=c{u, v)

iv.(u, u) = (Au) » (Au) = lAull* > 0, and this quantity is zero if and only if the vector Au is
0. But Au =0 if and only if u = 0, because A is invertible.

Another method for verifying the axioms is to use properties of the transpose operation. The
calculations are similar. However, for (i), you need to use the fact that the transpose of a
scalar (which is a 1 X 1 matrix) is the scalar itself: (u, v) = (u, v)” = [(Aw)’(4V)]” =
(AV)(Au)"" = (Av)/(Au) = (v, u).

17. la+viF=@+v,u+v)=@u+v)+{v,u+v) Axiom i

=u+v,u)y+{u+v,v) Axiom i
=, u) +{v,u)+{u, v) +{v, v) Axiom ii
=(u,u) +2(w, v) +({v, V) Axiom i
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Next, replace v by —v and use the fact thatu —v=u+ (-])v.
lu—vIF =@ u)+2u,—-v)+{(-v, - V) Replacing v above by —v
=(u,u) +2(u, v)+ (=1)*(v, v Axiom iii and Exercise 15
Subtracting, Ila + vII* — la — vI* = 2(u, v) - (=2(u, v)) = 4(u, v). Division by 4 gives the
desired identity.
The full solution is in the text.

In the space C[-1, 1] with the integral inner product, the polynomials 7 and 1 are orthogonal,
because

o I YIS VU D
<t,1>_j_1t-1dt_5t | =507 =~ (=" =0

So 1 and ¢ can be in an orthogonal basis for Span{1, 7, 7*}. Next, compute projy £, the
orthogonal projection of the vector £ onto the subspace W spanned by 1 and 1.

I 1 1 1 2
.=\ 2o ldt==t| ==y —=(-1)’==
@n=[ L =30 =5 =2

D= [ Lldr=d =1-(-D=2
’ 1 -1

1, 1 1
2= rdi==* == ==(=D*=0
wony= 7L =70 =D

-1
There is no need to compute (7, t), because 7is orthogonal to 7. Thus
2 2
2
(t,1>1+<t,t> /3 i

roj,, t* = t==""1+0=—
POWE =0y a2 3

A polynomial orthogonal to Wis £ — projy * = £ - % . Another choice is this polynomial

scaled by 3, namely, 37" — 1. Thus, the polynomials, 1, %, and 3¢* — 1 form an orthogonal
basis for Span{1, 1, tz}.

Can you find the next Legendre polynomial, a cubic polynomial that is orthogonal to
each of the first three Legendre polynomials?

APPLICATIONS OF INNER PRODUCT SPACES

Of the three applications in this section, the discussion of Fourier series is by far the most
important. Such series have great practical value, particularly in mathematics, engineering, and
the physical sciences. Calculations with Fourier series are simple because sine and cosine
functions are orthogonal. This fact is often overlooked in undergraduate courses that do not
assume a linear algebra background.
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KEY IDEAS

The text gives the normal equations for the weighted least-squares solution of Ax =y. When
applied to a least-squares line problem, the most common situation, the normal equations are
usually written as

WX)' WXB=WX)y
where W is the (diagonal) weighting matrix, X is the design matrix, [3 is the least-squares

parameter vector, and y is the observation vector.
Trend analysis is really a least-squares regression problem of the type described in Section
6.6, with data points (x;, y1), ..., (x, y») fitted by a curve of the form

y=Bfo(x)+ B fi(x)+--+ B f (x)

where the functions fj, ..., f; are polynomials that are orthogonal with respect to an inner product
on P,_; defined by

(P, @)= p(x)q(x) +-+ p(x,)q(x,)

Usually, x,, ..., x, are arranged to be evenly spaced and sum to zero, and the functions fj, ..., fi are
of degree 3 or 4 or less.
In C[0, 2n] with the integral inner product, the set

{1, cos ¢, cos 2t, ..., cos nt, sin t, sin 2t, ..., sin nt} *)

is orthogonal. The nth order Fourier approximation to some fin C[0, 2x] is simply the orthogonal
projection of f onto the subspace W of trigonometric polynomials spanned by the functions in (¥*).
The Fourier coefficients of f are the weights in the usual formula for the orthogonal projection of f
onto W.

If an application involves an interval [0, 7] instead of [0, 2x], then the inner product requires
an integral over [0, 7], and the appropriate orthogonal set is obtained by replacing ¢ in each
function in (*) with 2xt/T.

SOLUTIONS TO EXERCISES
1. For the data (-2, 0), (-1, 0), (0, 2), (1, 4), (2, 4), construct
1 -2] 0]
1 -1 0
X ={1 0| Design matrix, B:[’B 0} Parameter vector, Y =| 2 | Observation vector
1 : 4
1 2] 14 ]

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.



6-24

EB Brief Table of Contents || EEi

Table of Contents

CHAPTER 6 .  Orthogonality and Least Squares

Since the first and last data points are about half as reliable as the other points, a suitable
weighting matrix is

10000 1 =2 0
02 000 2 2 0
W=l0 0 2 0 Of, soWX={2 0}, and Wy=4
0 00 20 2 2 8
100 0 0 1] L1 2] KE3

The remaining calculations are the same as in ordinary least squares, except that the
weighted design matrix WX and the weighted observation vector Wy appear in place of X and
y, respectively.

[1 -2
2 2
] 1 2 2 2 1 140
WX )T (WX) = 2 0l=
2 2 0 2 2 0 16
2 2
_l -—
-
0
woramo] L2 22 T, [
y_—2—20228 24
_4_

The normal equations and solution are

14 0,80_28 G| 11/14 0 28] | 2
o sl G el
The equation of the least-squares line is y = 2 + (3/2)x.
2n 14 cos 2kt

. llcosktl*= fozncoskt-coskt dt= _[O —_—dt

2

2n

1 sin 2kt
=l —t+
2 4k 0
2n ] - cos 2kt

Il sin k# 2= j“sinkt.sinkt di= [T
Q 0

2
1 sin2kt
=|—r+
2 4k
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:(%-21t+0)—0=n (if £ 20)

2n

=G.2n+o]—o=n (ifk 20)

0




EB Brief Table of Contents || EB Table of Contents

6.8 + Applications of Inner Product Spaces 6-25

9. £ (¢) = 2n —t. The definite integrals of f cos kt and ¢ sin k¢, shown below, were computed in
Example 4. The Fourier coefficients of f are:

a 1 1 con 1. 1 22" 1 )
== 2n—-t)dt =—(-—)(2n—t =0+—@2r)' =71
T=o— |, @r-ndi=——)n-0'| =0+ —(2m)
and for k> 0,
1 ¢2n 1 pon 1 r2n
ak=;IO (th—t)cosktdt=;j‘0 21tcosktdt—;jo t coskt dt
=0-0=0

1 e2n . 1 p2r R 1 pr |
bk=;.f0 (2n—t)smktdt—;'|'0 21tsmktdt—;L t sin kt dt

—0- [_2) _2
k) k
The third-order Fourier approximation to fis

. . 2.
T+ 2sin ¢ + sin 27 + gsm 3t

13. Take fand g in C[0, 2x] and let m be a nonnegative integer. Then, the linearity of the inner
product shows that

((f +g),cosmt) ={f,cosmt) + (g, cosmt)

Dividing each term in this equality by (cos mz, cos mr), we conclude that the Fourier
coefficient a,, of f+ g is the sum of the corresponding Fourier coefficients of fand of g.
Similarly, the Fourier coefficient b,, of f+ g is the sum of the corresponding Fourier
coefficients of f and of g.

Appendix: The Linearity of an Orthogonal Projection

The argument for Exercise 13 is a special case of a general principle. In any inner product space,

the mapping y — Mu is linear, for any nonzero u. To verify this, take any x and y in the
u,u

»

space and any scalar c. Then

ryw w Gow e ) xw)
{n,u) (u,u) (u,u) (u, ) (u,a) {(w,u)

Similarly, if u,, ..., u, are any nonzero vectors, then the mapping
,u »u
}__)___(y 2 u, +---+————<y 2 u,
(u;,u;) (u,,u)
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is a linear transformation. Thus, if {u,, ..., u,} is an orthogonal basis for a subspace W, then the
mapping y — projw y is a linear transformation.

In particular, if W is the vector space of trigonometric polynomials of order at most », and if f
and g are in C[0, 2x], then

projw(f + g) = projw f + projw g
That is, the nth order Fourier approximation to f + g is the sum of the nth order Fourier
approximations to f and to g. Can you use the linearity of the mapping f*— projw f and the final
result of Example 4 to produce (with practically no work) the answer to Exercise 97 [Hint: The
nth order Fourier approximation to a constant function is the function itself.]

MATLAB Graphing Functions

After you find f; and f5 by hand computations, you can use plot to graph them. For in-
stance, to plot f(#) = sin ¢ + sin 3¢, you can write

t linspace(0,2*pi);
y = sin(t) + sin(3*t);
plot(t,y)

See the MATLAB box for Section 4.1 for more details.

CHAPTER 6 GLOSSARY CHECKLIST

Check your knowledge by attempting to write definitions of the terms below. Then compare your
work with the definitions given in the text’s Glossary. Ask your instructor which definitions, if
any, might appear on a test.

angle (between nonzero vectors u and v in R? or R%: The angle ¥ between the . . . . Related to
the scalar productby:u » v=....

best approximation: The closest point. . . .
Cauchy-Schwarz inequality: ... forallu,v.
component of y orthogonal to u (foru# 0): The vector. . ..

design matrix: The matrix X in the linear model . . . , where the columns of X are determined in
some way by . . ..

distance between uand v: ..., denoted by dist(u, v).

Fourier approximation (of order n): The closest pointin...to....
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Fourier coefficients: The weights used to make . . . .

Fourier series: An infinite series that . . . in C[0, 2x], with the inner product given by a definite
integral.

fundamental subs7paces (of A): The...spaceand...space of A,and the...spaceand...
space of A”, with Col A" commonly called the . . . .

general least-squares problem: Given an m X n matrix A and a vector b in R”, find . . . such
that...forall....

Gram-Schmidt process: An algorithm for producing . . . .

inner product:  The scalar . . . , usually written as u « v, where u and v are vectors in R"
viewed as .. .. Also called the ... of wand v. In general, a function on a vector space
that assigns to each pair of vectors u and v a number . . . , subject to certain axioms.

inner product space: A vector space on which is defined . . . .
least-squares line: The line . . . that minimizes . . . in the equation . . . .
least-squares solution (of Ax=b): A vector...suchthat....

length (of v): The scalar lIxll =. . . ; also called the . . . of v.

linear model (in statistics): Any equation of the form . . . , where X and y are known and B is to
be chosen to minimize . . . .

mean-deviation form (of a vector): A vector whose entries . . . .
multiple regression: A linear model involving . . . variables and . . . .

normal equations: The system of equations represented by . . ., whose solution yields all . . .
solutions of Ax = b. In statistics, a common notation is . . . .

normalizing (a vector v): The process of creating a. . . vectoru that . . ..

observation vector: The vector . . . in the linear model y = XP + €, where the entries in . . . are
the observed values of . . ..

orthogonal basis: A basis that. ...
orthogonal complement (of W): The set W' of .. ..
orthogonal matrix: A ... matrix Usuchthat....

orthogonal projection of y onto u (or onto the line through u and the origin, for u # 0): The
vector ¥ defined by .. ..

orthogonal projection of y onto W: The unique vector §¥ suchthat. ...
Notation: § = projw y.

orthogonal set: A set S of vectors such that. .. for. ...
orthogonal to W:  Orthogonal to every . . ..

orthonormal basis: A basis thatis....
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orthonormal set: An...setof....
parameter vector: The unknown vector . . . in the linear model . . . .
regression coefficients: The coefficients . . .inthe.. ..

residual vector: The quantity . . . that appears in the general linear model: . . . , the difference
between . . . and the . . . values (of y).

QR factorization: A factorization of an m X n matrix A with linearly independent columns,
A = QR, where Qis an . .. matrix whose . .., and R is an . . . matrix.

same direction (as a vector v): A vector thatis. ...

scale (a vector): Multiply a vector by . . . .

trend analysis: The use of . . . to fit data, with the inner product . . . .

triangle inequality:

trigonometric polynomial: A linear combination of . . . and . . . functions such as . . . .
unit vector: A vector v such that . . ..

weighted least squares: Least-squares problems with a . . . inner product such as{(x, y) = . ..

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.




EB Brief Table of Contents || EB Table of Contents

Symmetric Matrices
and Quadratic
Forms

7.1 DIAGONALIZATION OF SYMMETRIC MATRICES

To prepare for this section, review Section 5.3. Focus on the Diagonalization Theorem, Example
3, and Theorem 6. Also, review Example 3 in Section 6.2.

STUDY NOTES

If a symmetric matrix has distinct eigenvalues, as in Example 2, then the ordinary diagonalization
process produces a matrix P with orthogonal columns, because eigenvectors from different eigen-
spaces are automatically orthogonal. However, the P you need here must have orthonormal columns.
Forgetting to normalize the columns of P is the main error students make in this section.

The statements in Theorem 3 (The Spectral Theorem), together with the general approach
used in Example 3, lead to the following outline for orthogonally diagonalizing any symmetric
matrix.

Procedure for Orthogonally Diagonalizing a Symmetric Matrix A

1. Find the eigenvalues of A.

2. For each eigenvalue of A, construct an orthonormal basis for the eigenspace.
a. If the eigenspace has a basis { v}, normalize v to produce a unit vector u.

b.If the eigenspace has a basis {v, v,}, first produce an orthogonal basis
{vi, 2,}, where
V,eV
z,=v,——~—1y,
V, eV,

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 7-1
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Then normalize v; and z, to produce an orthonormal basis {u;, u,} for the
eigenspace.

c.If the eigenspace has a basis {v, ..., v}, use the Gram-Schmidt process to
construct an orthonormal basis {u,, ..., u;} for the eigenspace.

3. The union of the bases for all the eigenspaces is an orthonormal basis for R"
(when A is n X n). Use these vectors as the columns of an orthogonal matrix P.

4. Construct D from the eigenvalues, in an order corresponding to the columns of
P. Repeat each eigenvalue according to the dimension of the eigenspace.

5. Finally, A=PDP"' = PDP".

The exercises in this section have been constructed so that mastery of the Gram-Schmidt
process is not needed, because some courses may omit Section 6.4. However, you do need to
understand the calculations in Step 2(b) above.

SOLUTIONS TO EXERCISES

-7
diagonal of A can have any values.

3 5
1. A= [5 } = A", because the (1,2) and (2,1) entries match. The entries on the main

6 8
7. P =[ g 6} =[p, p,]. Toshow that P is orthogonal by hand calculations, show that its

columns are orthonormal: p; « p, = .48 — 48 =0, lIp,I* = (.6)* + (.8)° = 1, and similarly,
lip,I* = 1. Since P is square, P is an orthogonal matrix.

31
13. A= [1 3} . Characteristic polynomial: (3-A)> —1=A—6A+8=(A—4)A-2). Sothe

eigenvalues are 4 and 2.
-1 1 0 -1 0| x=x
ForA=4: [A-4] 0]= ~ ) .
1 -1 0 0 0 O] ux isfree

1
Take x, = 1 to get a basis for the eigenspace: [1] . Then normalize to get a unit vector:

. _{1/\/5
a2

} . (Don’t forget this step.)
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110 10 =
ForA=2 [A-2] 0]= ~ L hTTh
1'1 0] [0 0 O] ux,isfree

-1
Take x, = 1 to get a basis for the eigenspace: [ L Then normalize to get a unit vector:

|2
Nzl

U2 -1/2

SetP=[u uy =
srEth [1/\/5 142

4 0
}. The corresponding D is {0 2:|.

Study Tip: The fact that eigenvectors for distinct eigenvalues are orthogonal gives you a
check on your work. After you find u, in Exercise 13, verify that u, « u; = 0. Actually, when u,
and u, are in R, you can easily guess what u, must be, once you know u;. If you do this, you
should compute Au, to make sure that u, is indeed an eigenvector. Ask your instructor how much
work you should show on a test question similar to Exercise 13.

19. Be sure to work this problem before reading the solution. Use Exercises 12-24 to sharpen

3 -2 4
your skills. They are critical for the rest of the chapter. Here, A=|-2 6 2/, and the
4 2 3
eigenvalues are given: 7 and 2.
-4 -2 4 0 S5 -10
ForA=7: [A-7] 0]=|-2 -1 2 0|~|0 0O 0 O
4 2 -4 0] |0 0 0O
Thus, x; = -.5x, + x3, with x; and x; free. Instead of describing all vectors in the eigenspace,

you can produce a basis quickly by choosing two linearly independent solutions of

(A —7Dhx =0. The natural choices are the vector corresponding to x, = 1 and x3 = 0 and the
vector for x, = 0 and x; = 1. However, in this particular problem, the coefficient —.5 of x,
suggests that a better choice for the first vector is to take x, = 2 and x3 = 0. In this case, the
two vectors are

-1 1
v,=| 2|andv,=|0
0 1
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This basis for the eigenspace is not orthogonal. Keep v, and subtract from v, its orthogonal
projection onto v;. The new vector, z,, is an eigenvector for the eigenvalue 7 because it is a

linear combination of the vectors v, and v in the eigenspace for A = 7:

1 . —-1| |4/5
z,=v,-2" Yy = o|-=2| 2|=|2/5
iy,
1 0 1
4
Instead of z,, use zz/ =| 2 |, which is easier to normalize. Check that zz/- v,=0. An
5

~1//5 4//45

orthonormal basis for the eigenspace is u, =| 2/ V5, u, = 2/:/45 |.

0 5/-/45

5 2 4 0 -1 1 -4 -1 0
ForA=-2: [A+2] 0]=-2 8 2 O 5 -2 4 0|~10 18 9 0
i 2 50 4 2 0 18 9 0
_1 0 0 X =—x,
= 1 1/2 0|~|0 @ 172 0|, x,=-(1/2)x,
0 0 x, is free
-2/3
Take x; = 2 to get a basis for the eigenspace, , and normalize to obtain u, ={ ~1/3 |.
2/3

~1/\5 4145 -2/3 7 0 0
Finally, set P=[w; w, wl=| 2/3/5 2/J45 -1/3|andD=|0 7 0/.
0 5/\45 2/3 0 0 -2

What other answers might someone produce? If the vectors v, and v, are interchanged, the

1132 ~1/18

first two columns of P probably willbe | 0 and | 4/+/18 |. If the entries in D are

/N2 /18

rearranged, the columns of P must be rearranged to correspond to the new entries in D.
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Study Tip: The matrix in Exercise 20 has only two distinct eigenvalues (according to the
text’s information), so one or both eigenspaces will be at least two-dimensional. You will have to
construct an orthonormal basis for such an eigenspace. Exercises 23 and 24 are good models for
exam questions because they give you information from which you can orthogonally diagonalize
A without extensive computations.

25.

29.

31.
35.

a. See Theorem 2 and the paragraph preceding the theorem.
b. See Theorem 1.
c. See Example 3.
d. See the paragraph following formula (2) and Exercise 35.
By hypothesis, A = PDP"', where P is orthogonal and D is diagonal. Since A is invertible, 0
is not an eigenvalue and D is invertible. Then
Al =PDP ' =(P'D'P'=PD P

Since D' is diagonal, A™' is orthogonally diagonalizable.

A second argument: By Theorem 2, A is symmetric. Since A is invertible, a property of
transposes shows that (A™)" = (A7) =A™, so A™' is symmetric. By Theorem 2, again, A™" is
orthogonally diagonalizable.

The solution is in the text.

a. The matrix B =un’ is an outer product, or a rank 1 matrix. Given x in R", Bx = (un’)x =
u(u’x) = (u’x)u, because u’x is a scalar. Using dot products, BX = (x « w)u. Since uisa
unit vector, this is the orthogonal projection of x onto u. See Section 6.2.

b. Bis symmetric, because B' = (uu’)” = u"n’ = wu’ = B. Also, B* = (uu”)(un’) = u(u’u)u’
=uu’ = B, because u'u = 1.

MATLAB Orthogonal Diagonalization

Use eig(A) for eigenvalues and nulbasis to obtain eigenvectors, as in Section 5.3.
If you encounter a two-dimensional eigenspace with a basis {v;, v,}, use the command

v2 = v2 - (v27*vl) /(vl’*vl) *vl

or

v2 = v2 - proj(v2,vl)

to make the new eigenvector v, orthogonal to v,. See the MATLAB note for Section 6.4.
After you normalize the eigenvectors and create P, check that P'P = I, to verify that P is
indeed an orthogonal matrix. For practice, you might use MATLAB to work Exercise 19.
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7.2 QUADRATIC FORMS

Sections 7.1 and 7.2 provide the foundation for the rest of the chapter.

KEY IDEAS

The main point here is to learn how a change of variable, x = Py, with P an orthogonal matrix,
can transform a quadratic form into a new quadratic form with no cross-product terms.

The equation x = Py expresses X as a linear combination of the columns of P, using the en-
tries in y as weights. If the columns of P are used as a basis B for R”, then the entries in y are the
coordinates of x relative to the basis B. See Section 4.4 (or Section 2.9). As Section 7.2 shows,
the columns of P are eigenvectors of the matrix A of the quadratic form x"Ax.

If you were fortunate enough to study Section 5.6 or 5.7, you saw the same equation x = Py,
with P constructed from eigenvectors of A! The key difference here is that P must be an orthogo-
nal matrix as well as a matrix that diagonalizes A. Nothing less will do. The change of variable
x = Py will work only if P = P! (and A = PDP™).

If your course covers the various classes of quadratic forms (or, equivalently, classes of sym-
metric matrices), you should learn both the definitions and the characterizations (in Theorem 5)
of these classes. Exercise 24 describes another useful way to characterize quadratic forms, often
used in multivariable calculus courses. (The 2 X 2 case can be generalized to n X n matrices.)

SOLUTIONS TO EXERCISES
5 1/3)l«x S5x, +(1/3)x
1. a. x"Ax= = ! :
2 xAx=ly m[m 1}[%} b x2]{(1/3))q+x2:}

=5x" +(2/3)x,x, + x;
b. When x = (6, 1), X’Ax = 5(6)> + (2/3)(6)(1) + (1)* = 185.
¢. When x = (1, 3), X’Ax = 5(1)* + 2/3)(DA3) + 3)* = 16.

1 5
7. The matrix of the quadratic form is A= |:5 J . The characteristic polynomial is
A* =2\ =24 = (L - 6)(M + 4); eigenvalues are 6 and —4.

1 11
For A =6: aneigenvector is L} , normalized: u, = —I: :|

211

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.




EB Brief Table of Contents || EB Table of Contents

7.2+ Quadratic Forms 7-7

-1 -1
For A =-4: an eigenvector is { lj]’ normalized: u, =—1—|: }

V211
1 -1 6 0
Thus A = PDP ' and D = P"'AP = PAP, when P=—\/%[l J and D=[ }

The desired change of variable is x = Py, so that
x'Ax = (Py)'A(Py) = y'P'APy = y'Dy *)
=6y —4y;

Study Tip: To make the “change of variable” requested in Exercise 7, you should: (1) write
the equation x = Py and specify P; (2) show the matrix algebra in (*) that produces the new
quadratic form; and (3) include the new quadratic form. Find out how much of this information
you should supply if a problem like Exercise 7 were to appear on an exam.

1 3
9} . The characteristic polynomial is

13. The matrix of the quadratic form is A =[

A? — 10A = M\ — 10); the eigenvalues are 10 and 0. Thus the quadratic form is positive
semidefinite. To find the change of variable, proceed as in Exercise 7:

1 . 1|1
E normalized: u; = —=

V10| -3

: 13 . 13
For A=0: aneigenvector is Nk normalized: w, =—=

Jio| 1

1 3 10 0
Take P = L and D= . Since P orthogonally diagonalizes A, the desired
Jiol-3 1 00

change of variable is x = Py, and
X'Ax = (Py)’A(Py) = y'P'APy = y'Dy =10y;

The new quadratic form is 10y .

For A =10: an eigenvector is [

19. Because 8 is larger than 5, you should make the x; term as large as possible. The constraint
x7 +x2 =1 keeps x, from exceeding 1. When x, =0 and x, = 1, the value of the quadratic
form is 5(0) + 8(1) = 8.

See the definition before Example 1.

. See the paragraph following Example 3.

See the Principal Axes Theorem and the Diagonalization Theorem (in Section 5.3).

. Check the definition.

See Theorem 5.

See the Numerigal INatemfterExamiplontvesley. All rights reserved.
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25. The text’s answer showed that x’B'Bx > 0 for all x. To show B'B is positive definite,
suppose that x’B"Bx = 0. Then (Bx)"Bx = 0, so that IBxII> = 0 and Bx = 0. If B is invertible,
then x = 0, which shows that, in this case, the form x”B'Bx is positive definite.

26. The quadratic forms xXTAx and xTBx are both positive definite, by Theorem 5, because all
eigenvalues of A and B are positive. Then for any nonzero x, XT(A + B)x = xT(Ax + Bx) =
xTAx + xTBx > 0, so the quadratic form xT(A + B)x is positive definite. Also, the matrix
A + B is symmetric, because (A + B)T = AT + BT = A + B. By Theorem 5, A + B has
positive eigenvalues.

Mastering Linear Algebra Concepts: Diagonalization and Quadratic Forms

Since the end of the course draws near, I recommend that you prepare a review sheet that contrasts the
Diagonalization Theorem in Section 5.3 with Theorem 2 in Section 7.1. You might begin by copying
the statements of these theorems, and then use the following questions to guide your review:

» What special properties does an orthogonal diagonalization have that are not present in all
diagonalizations? Consider the eigenvalues, the eigenspaces, the eigenvectors, and the
matrix P in PDP™.

« Suppose A is symmetric, and all eigenspaces are one-dimensional. What differences are
there between a general diagonalization and an orthogonal diagonalization of A? What
differences are there when A is symmetric and one eigenspace is two-dimensional?

« Why is an orthogonal diagonalization needed to simplify a quadratic form? Make the
change of variable x = Py in x’Ax and show the algebra involved.

o If you studied Section 5.6 or 5.7, compare Figure 4 in Section 5.6 with Figure 3 in Section
5.7. How do the general shapes of the trajectories differ? Why do they differ? Could
Figure 5 in Section 5.6 or Figure 5 in Section 5.7 be associated with a symmetric matrix?

7.3 CONSTRAINED OPTIMIZATION

This section is important in its own right, since constrained optimization problems arise in many
mathematical problems and applications. The main results of the section are also used in the
following two sections.

KEY IDEAS

Theorem 6 gives the main idea. The maximum value of a quadratic form x’Ax over the set of all
unit vectors can be computed by finding the greatest eigenvalue of A; this maximum value is
attained at a corresponding eigenvector. The key step in the proof is to diagonalize A by P,
substitute x = Py, and use the fact that in this case, x and y have the same norm.

Example 6 presents a topicophatnisowide br.discagsesd meelgmantary geonamics texts.
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SOLUTIONS TO EXERCISES

1. We are given an equality of two quadratic forms:

5x2 +6x2 +7x2 +4xx, —dx,x, =9y +6y2 +3y]

5 2 0
The matrix of the left quadratic formis A={2 6 -2].
0 -2 7

The equality between the two quadratic forms indicates that the eigenvalues of A are 9, 6, 3.
(Proof: The diagonal matrix D of the quadratic form 9y} +6y> +3y? obviously has

eigenvalues 9, 6, 3. Since A is similar to D, A has the same eigenvalues as D.) The standard
calculations produce a unit eigenvector for each eigenvalue. Don’t forget to normalize each

gigenvector.
1/3 2/3 -2/3
A=9:wu,=| 2/3|; A=6:u,=|1/3|; A=3:u,=| 2/3
-2/3 2/3 1/3

These eigenvectors are mutually orthogonal because they correspond to distinct eigenvalues.
So the desired change of variable is

/3 2/3 -2/3
x=Py, where P=| 2/3 1/3 2/3
-2/3 2/3 1/3

Study Tip: Review the matrix algebra that leads from x’Ax to y’Dy. Also, be sure you can
show that x|l = Ilyll when P is an orthogonal matrix.

-2 20
7. The matrix of Q(x)=-2x —x, +4xx, +4dx,x,is A=| 2 -1 2],
0 2 0

The hint in the exercise lists 2, -1, and —4 as the eigenvalues. The greatest eigenvalue is 2,
not —4, because “greatest” here refers to the eigenvalue that is farthest to the right on the real
line. The maximum value of Q(x) (for x a unit vector) is attained at a unit eigenvector for

A = 2. Standard calculations produce the eigenvector:

1/2 1 1/3
v,=| 1 |[,scaledto | 2|, and normalized to u, = 2/3 .
1 2 2/3

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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Warning: Exercise 7 illustrates the potential error of selecting —4 instead of 2 as the greatest
eigenvalue.

12. This exercise can be done by using a theorem, but try to do it by direct computation, using
the hint in the text.

13. If m = M and x is the unit eigenvector u,, then x'Ax=u] Au, =u’ (mu,) =m . Otherwise, set
a=(t - m)/(M - m). The hint in the text shows that 0 < o < 1 whenm < r< M. For such
o, let x=+/1-om, ++/om,. Then the vectors v1—-au, and \/Z‘(_ll] are orthogonal because

they are eigenvectors for different eigenvalues (or one of the vectors is 0). By the
Pythagorean Theorem,

x'x=lxIF= “mun HZ + “\/Eulnz

=l-allu, I +lallh, P

=(l-a)+a=1

because u,, and u, are unit vectors and 0 < o< 1. Also, using the fact that w, and u, are
orthogonal, compute

x"Ax = (J1-ou, +Jau, ) ANT-ou, +Jou,)
= W1-oau, +Jom,)) (mJ1-ou, + M-Jou,)

=ll-almalu, + aIlMujy, =(1-)m+aM =t

Thus the quadratic form x’Ax assumes every value between m and M for a suitable unit
vector X.

7.4 THE SINGULAR VALUE DECOMPOSITION

This section is the capstone of the text. It completes the story of the linear transformation x > Ax
for a general m X n matrix A and, in so doing, gives you an opportunity to review many basic
concepts from Chapters 4-7. In addition, this section opens the door into the modern world of
applied linear algebra. An understanding of the singular value decomposition is essential for
advanced work in science and engineering that requires matrix computations.

KEY IDEAS

The first singular value ¢, of an m X n matrix A is the maximum of llAxIl over all unit vectors.
This maximum value is attained at a unit eigenvector v, of A’A corresponding to the greatest
eigenvalue A; of ATA. The second singular value is the maximum of lIAxll over all unit vectors
orthogonal to v;. The following algorithm produces the singular value decomposition for A. (As

mentioned in the text, other more reliable methods are used in professional software.)
Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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Procedure for Computing a Singular Value Decomposition

1. Find an orthonormal basis {v,, ..., v,} for R" consisting of eigenvectors of
ATA, arranged so that the associated eigenvalues satisfy A; > ** > A, >0 and
A1 = =0, where r = rank A.

2. Construct the n X n orthogonal matrix V=[v, = v,].

3. Let g, = \/Z (1 £ j £ n), and construct the m X n diagonal matrix ¥ whose
(, N-entry is ¢; (1 < j < n) and has zeros elsewhere.

4. The set {Avy, ..., Av,} is orthogonal and ¢; = llAv/l. Compute u; = (1/6)Av; for

1<j<r

5. Extend {u, ..., u,} to an orthonormal basis {u,, ..., u,} for R”. Write the
m X morthogonal matrix U=[u; = u,].

6. A=UZV.

The diagram below illustrates how the SVD splits the action of A into first multiplication by
V' (which amounts to an orthogonal change of basis in R"), then a scaling by X in the directions
of the standard basis vectors ey, ..., €,, and finally multiplication by U (an orthogonal change of
basis in R™).

yT z U
Vi > € % » 01 ————— O
o, ' X
v, > & ~ » G ————3 Ol
0 » 0 /:7 6O — 0

A ei——————> Uy

ey —— > U,
V, ——— > ¢,

The Singular Value Decomposition: A = ULV’

Note that the so-called left singular vectors of A are the columns of U (because U appears on the
left in the factorization of A), even though u,, ..., u, appear on the right side of the diagram
above.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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SOLUTIONS TO EXERCISES

1 0 7 10 ) . T
1. A= 0 3 , AA= 0 9l Eigenvalues and eigenvectors of A’A are:

0 1
A=9: VI:L} A =1: sz[o}

(Remember to arrange the eigenvalues in decreasing order.) Thus

et

The singular values are o, = V9 =3 and 63 = 1. The matrix Z is the same shape as A, and

=l o ]

Next, compute

and normalize:

1 1] 0 0 1{1 1
ul:—Avlz— = s u2:—— =
o, 31-3] | -1 0,0} |0

Finally, {u, u,} is already a basis for R?, so the basis for R? is complete, and

This happens to
equal V.

0 1 r 0 1(3 00 1
U= ,and A=UZV' =
-1 0 -1 0|0 1§10

2 -1 8 2
7. A= L 2} . ATlA= {2 5} . Find the eigenvalues of A"A from the characteristic equation.

0=AM-131+36=A-NA-4); AM=9 A =4

Corresponding unit eigenvectors for AA (calculations omitted) are:

o las ‘v_—l/\/§
2‘_9'“{1/6} A= 2—{ 2/\/5}

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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Take
L2145 —1/6}
L5 25

The singular values are o, = J9 =3 and o,= 4 =2. The matrix T is the same shape as A

o 0 30
and X = = . Next, compute
0 o 0 2

2 12145 [3/45 2 -1 -uys] -4
AV':L 2}{1/\/_5}_[6/\/5}’ sz_L 2}{ 2/\/5}{ 2/«/5}

To check your work at this point, verify that Av; and Av, are orthogonal. (They are.) Then

normalize:
L, 113/45| (145 1 1| -4/5] =245
u, =—AvV, =— = . u, =—=— =
Yo 3leids| (205 T oy 2] 25| | U4
1/ =2/~5
Since {w;, u,} is a basis for IRZ, take U = \/— \/_ . Thus
25 145
/45 =2/451013 0 2/45 1/45
A=UZVT= \/_ \/_[ :| \/_ \/— UseVT,notV.
2/d5  UNSIL0 2] -1/45 2745

Study Tip: Your answer for a singular value decomposition may differ from that given in the
text. To check your work, compute AV and UE. If AV = U, then A = ULV’ and your answer is
correct (provided U and V truly are orthogonal matrices).

13. The matrix A"A is 3 X 3. Because the text has not given you practice computing and solving
a cubic characteristic equation, the Hint suggests that you consider A” instead of A. (You are
free to work on A itself, if you prefer.) Using A”, compute

3

2
3 2 2 17 8
(AT)TAT = AAT = 2 3=
2 3 2 5 8 17

The characteristic equation is
0=A"—34A+225=(A-25)(A-9); A; =25, A =9
The corresponding unit eigenvectors and the matrix V are

_ .V_“\/E. _ _v_—llx/i, vz -2
21—25 1_{1/\/511’ 12—9 2—|: I/ﬁ:l’ V—[l/ﬁ 1/\/5}

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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50
The singular values are 0; =5 and 65 =3. Thus Zis |0 3, the same size as A”. To getu;
0 0

and u,, compute A’v, and A”v,,

3 i{l/\/i —1/\/5}

A'lv, v,]=|2
S PO S VANCI TN

5/\2 -1/42
={5/\2 12
0 —4/\2
and normalize:
1/42 ~1/4/18
w=1/42, u,=| 1/J/18
0 —4/18

We need one more vector, orthogonal to u; and u,. So write the equations u]Tx =0 and

ulx =0 and solve for x. Simpler equations are

J2u'x = 0 X, + x, =0
or
\/1—8u§x=0 —X +x —4x =0
The solution is x; = —2x3, x, = 2x3, x; free. A suitable unit vector is
-2/3
u, = 2/3
1/3
Thus an SVD of A” is
50
A'=[uy w, w]l0 3|[v v,
00

So an SVD of A appears by taking transposes:
VNG VNG T

12 -142105 0 o
A= 2 ‘/_{ }—1/\@ 1718 —4/418
/2 1420 3 0
2/V3 273 1/3

This is an SVD because the outside matrices are orthogonal matrices, and the center matrix
is a diagonal matrix of the proper type. Another way to find u; is to realize that u, and u,
form an orthonormal basis for Col A" = Row A. The remaining u; must be a basis for
(Row A)" = Nul A.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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Helpful Hint: The last remark in the solution of Exercise 13 applied to A” because the main
SVD construction was for A In an SVD for A, the missing vectors u,, ..., u, form an
orthonormal basis for Nul A”. (See Frg 4 on page 479.) One way to obtain U, ..., U, is t0
construct a basis for the solution set of A"x = 0 and then perform the Gram-Schmidt process

Study Tip: Exercises 15 and 16 make good exam questions.

19. Let A = UTV’, Then
TA = (uzvhTuzv' = v2TU UV

= V(ZT):) v? Because U and V are orthogonal
If 6y, ..., 0, are the nonzero diagonal entries in Z, then XX is diagonal, with diagonal entries
o}, ..., o} and possibly some zeros. Thus V diagonalizes ATA. By the Diagonalization
Theorem in Section 5.3, the columns of V are eigenvectors of A’A, and o7, ..., 7 are the
nonzero eigenvalues of ATA. Hence g, ..., 0, are the nonzero singular values of A. A
similar calculation of AA” shows that the columns of U are eigenvectors of AA”.
23. From the proof of Theorem 10, UL =[ou; - ocu, 0 - 0]. The column-row
expansion of a matrix product shows that
vi
A=UZV" =UY)| | |=om,v] +--+0u,v’
VT

n

This expansion generalizes the spectral decomposition in Section 7.1.

25. Consider the SVD for the standard matrix of T, say, A = UZV'. Let B= {v,, ..., v,} and
C = {u,, ..., u,,} be bases constructed from the columns of V and U, respectively. Observe
that, since the columns of V are orthonormal, V 'v; = e;, where ¢; is the jth column of the
n X nidentity matrix. To find the matrix of T relative to B and C, compute

T(v) = Av; = UZV'v; = UZe; = Ude; = gUe,; = o,

So [T(v))]; = o, Formula (4) in the discussion at the beginning of Section 5.4 shows that
the “diagonal” matrix X is the matrix of 7 relative to B and C.

MATLAB The Singular Value Decomposition

The command [P D] = eig(A’*A) produces an orthogonal matrix P of e1genvectors
and a diagonal matrix D of eigenvalues of A"A, but the eigenvalues in D may not be in de-
creasing order. In such a case, you will have to rearrange things to form V and X (denoted
below by §). For instance, if P is 3 X 3, the command

vV = P(:,[1 3 2])
Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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interchanges columns 2 and 3 of P to form V. The commands
8 = zeros(size(A)); S(2,2) = sqrt(D(3,3))

produce a zero matrix for “X” the same size as A and place the square root of the (3,3)-entry
of D into the (2,2)-entry of S. Other diagonal entries for § can be entered similarly. To
form U for the SVD, first normalize the nonzero columns of A*V and place them in a matrix
U. Tt U is square, you are finished. If U is not square, the missing columns must form an
orthonormal basis for Nul A”. (See Fig. 4 on page 479.) The command null (A’)
produces this orthonormal basis. Thus, the square matrix U is given by

U= [U null(a’)]

This construction of the SVD helps you to think about properties of the factorization. In
practical work, however, you should use the much faster and more numerically reliable
command [U S V] = svd(Aa).

7.5 APPLICATIONS TO IMAGE PROCESSING AND
STATISTICS

If you find remote sensing or image processing interesting, or if you plan to use multivariate
statistics later in your career, then you will want to study this section thoroughly. You may have
difficulty finding an elementary explanation of this material elsewhere. The idea for the
application to image processing came from a student in my linear algebra class—a geography
major who was taking an undergraduate course in remote sensing. The book by Lillesand and
Kiefer, referenced in the text, was one of the texts for her course.

KEY IDEAS

The first principal component of the data in the matrix of observations is a unit eigenvector u,
corresponding to the largest eigenvalue of the covariance matrix S. If w; = (cy, ..., ¢,), then the
entries in u, are weights in a linear combination of the original variables, xi, ..., x,, that creates a
new variable y, (sometimes called a composite score or index):

—nlTw —
y=u X=cx +oetc,x,

The variance of the values of this index is the largest possible among all indices whose
coefficients cy, ..., ¢, form a unit vector. (The variance of y, is the largest eigenvalue of S.) The
second principal component is the unit eigenvector corresponding to the second largest
eigenvalue of S. The entries in the second principal component determine the index with greatest
variance among all possible indices (determined by a unit vector) that are uncorrelated (in a
statistical sense) with y,. Additional principal components are defined similarly.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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Checkpoints: (1) If the variables x; and x; are uncorrelated, what can you say about the
covariance matrix $? (2) What is the covariance matrix of the new variables y,, ..., y, formed
from the principal components of S?

SOLUTIONS TO EXERCISES

19 22 6 3 2 20

, and the sample mean M is
22 6 9 15 13 S

1. The matrix of observations 1s X :[

12
[l 0} . Subtract M from each column of X to obtain

2 4 -1 5 3 -5

The sample covariance matrix is

[7 10 -6 -9 -10 8:|
B=

7 2

10 —4

1 . 1[7 10 -6 -9 -10 8] -6 -1
S=——BB =-

N-1 512 4 -1 5 3 5|l 9 5

-10 3

. 8 5]

Usually, § contains decimals.

_1[ 430 —135}{ 86 —27]

T5-135 80| (-27 16

Study Tip: Note that the formula for the sample mean involves division by N, but for
statistical reasons, the covariance matrix formula involves division by N — 1.

7. Let x;, x, denote the variables for the two-dimensional data in Exercise 1. The characteristic
equation of the covariance matrix S from Exercise 1is A> — 102\ + 647 = 0. By the
quadratic formula, the roots of this equation are A; = 95.20 and A, = 6.80 (to two decimal
places). The first principal component of the data is a unit eigenvector corresponding to A,,
which turns out to be (-.95, .32), or (.95, —.32). The two possible choices for the new
variable are y; = -.95x; + .32x; and y; = .95x; - .32x,. The variance of y, is 95.20, while the
total variance is 95.20 + 6.80 = 102. Since 95.20/102 = .933, the new variable y, explains
about 93.3% of the variance in the data.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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11. a. The solution in the text shows that the Y, are in mean-deviation form, where Y, = PX,
for some p X p matrix P.

b. By part (a), the covariance matrix of Y, ..., Yy is
1 T
—1Y. Y, I[Y, Y
— ¥, - VY, oY)
1 T
=—PT[X, X, )(P"[X, X,])
N -1
1
=P (—[x] X, X, XN]TJP
N -1
=P'SP

because X, ..., Xy are in mean-deviation form.

13. Let M be the sample mean of the data, and for k=1, ..., N, write f(k for X, ~M. LetB=

%,

expansion of BB’ the sample covariance matrix is

X N] , the matrix of observations in mean deviation form. By the column-row

XT
1
s=—L " =1 (% X, :
N-1 N-1 o
XN
- SR & =X, M)XK, MY
No15 T N ¢

Answers to Checkpoints: (1) The (1, 3)-entry and (3, 1)-entry of § are zero. (2) The covariance
matrix of y,, ..., y, is the diagonal matrix formed from the eigenvalues of S. This matrix is
diagonal because the new variables are pairwise uncorrelated.

MATLAB Computing Principal Components

The command mean (X’) produces a row vector whose jth entry lists the average of the
jth row of X, and diag(mean(X’)) creates a diagonal matrix whose diagonal entries
are the row averages of X. (Be careful not to use mean (X), which lists the averages of the
columns of X.) Finally, the command diag(mean(X’)) *ones (size(X)) createsa
matrix the size of X, whose columns are all the same, each one listing the row averages of X.
To convert the data in X into mean-deviation form, use

B =

X - diag(mean(X’)) *ones (gize (X))

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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The sample covariance matrix is produced by
S = B*B’/(N-1)

The principal component data is produced by
[U,D,V] = svd(B’/sqgrt(N-1))

The columns of V are the principal components of the data, and the diagonal entries of D*2
list the variances of the new variates.

CHAPTER 7 SUPPLEMENTARY EXERCISES

7. If A = R'R, where R is invertible, then A is positive definite, by Exercise 25 in Section 7.2,
Conversely, suppose that A is positive definite. Then by Exercise 26 in Section 7.2, A = B'B
for some positive definite matrix B. Since the eigenvalues of B are positive, 0 is not an
eigenvalue and so B is invertible. In particular, the columns of B are linearly independent.
By Theorem 12 in Section 6.4, B = QR for some n X n matrix Q with orthonormal columns
and some upper triangular matrix R with positive elements on its diagonal. Since Q is
square, Q'0=1 So

A=B"B=(0R)(OR)=R'Q"OR = R'R

and R has the required properties.

11. Start with an SVD decomposition, A = USV'. Since Uis orthogonal, U'U=1I,andso A =
ULU'UV' = PQ, where P= UXU" = UZU ™ and Q = UV" . The matrix P is symmetric,
because X is symmetric, and P has nonnegative eigenvalues because it is similar to £ (which
is diagonal with nonnegative entries). Thus P is positive semidefinite. The matrix Q is
orthogonal because it is the product of orthogonal matrices.

CHAPTER 7 GLOSSARY CHECKLIST

Check your knowledge by attempting to write definitions of the terms below. Then compare your
work with the definitions given in the text’s Glossary. Ask your instructor which definitions, if
any, might appear on a test.

condition number (of A): The quotient ¢i/c;, where . .. .

covariance (of variables x;and x; for i# j): The entry in the covariance matrix S for a matrix of
observations, where x; and x; vary over the . . . coordinates, respectively of the
observation vectors.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.



EB Brief Table of Contents || EEi

Table of Contents

7-20 CHAPTER 7 +  Symmetric Matrices and Quadratic Forms

covariance matrix (or sample covariance matrix): The p X p matrix S defined by S=.. .,
where B is a p X N matrix of observations . . . .

indefinite matrix: A symmetric matrix A such that . . . .
indefinite quadratic form: A quadratic form @ such that g(x) . . ..
left singular vectors (of A): The columns of . . . in the singular value decomposition A =. . ..

matrix of observations: A p X N matrix whose columns are . . ., each column listing p
measurements made on . . ..

mean-deviation form (of a matrix of observations): A matrix whose . . . vectors are . . . .
Moore-Penrose inverse: See pseudoinverse.

negative definite matrix: A symmetric matrix A such that . . . .

negative definite quadratic form: A quadratic form Q such that O(x) . . ..

negative semidefinite matrix: A symmetric matrix A such that. . ..

negative semidefinite quadratic form: A quadratic form Q such that. . ..

orthogonally diagonalizable: A matrix A that admits a factorization, A = PDP™', with P . . .
andD . ...

positive definite matrix: A symmetric matrix A such that . . ..

positive definite quadratic form: A quadratic form Q such that O(x) . . ..
positive semidefinite matrix: A symmetric matrix A such that. . ..
positive semidefinite quadratic form: A quadratic form Q such that . . ..

principal axes (of a quadratic form x"Ax):  The orthonormal columns of an orthogonal matrix P
such that . . ..

principal components (of the data in a matrix of observations B): The . . . eigenvectors of a
sample covariance matrix S for B, with the eigenvectors arranged so that the
corresponding . . . .

projection matrix (or orthogonal projection matrix): A symmetric matrix B such that .. ..
A simple exampleis B=. . ..

pseudoinverse (of A): The matrix . .., when UDV' is a reduced singular value decomposition
of A.

quadratic form: A function Q defined for x in R" by Q(x) =. .., where Aisann X n. ..
matrix A (called the matrix of the quadratic form).

reduced singular value decomposition: A factorization A =. . ., for an m X n matrix A of
rank r, where Uis __ X __ with orthonormal columns, Dis __ X __ with...,and Vis

___ X __ with orthonormal columns.
right singular vectors (of A): The columns of . . . in the singular value decomposition A =. . ..

row sum: The sum of the entries . . . .

sample mean: - The average . of & §e33f ¥ESIO adtvon wedly AIVEROLMGT - -
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singular value decomposition (of an m X nmatrix A): A=...,where Uisan__ X
matrix, Visan __ X __ ... matrix,and Zisan__ X __ ... matrix with . ...

singular values (of A): The... of the eigenvalues of . . . , arranged . . . .

spectral decomposition (of A): A representation A=. .., where. ...
symmetric matrix: A matrix A such that . . ..
total variance: The ... of the covariance matrix S of a matrix of . . ..

uncorrelated variables: Any two variables x; and x; (with i # j) that range over the ith and jth
coordinates of the observation vectors in an observation matrix, such that . . ..

variance of a variable x; The diagonal entry . . . in the . . . matrix S for a matrix of
observations, where x; varies over the jth coordinates of the . . . .

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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Technology Index of Procedures and Terms

The references here are to sections (not pages) that contain
information about the use of technology with various
procedures and objects considered in the text exercises.
For MATLAB, consult the MATLAB boxes in the main
Study Guide sections. For Maple, Mathematica, or the TI
and HP calculators, consult the corresponding sections in
the appropriate technology appendix.

Access exercise data, 1.1, 1.3
Augment a matrix, 1.3
Change-of-coordinates matrix, 4.7
Column of A4, 2.1

Compare two vectors or matrices, 2.3
Compute a determinant, 3.2

Compute a product of numbers, 3.2
Condition number, 2.2

Construct a covariance matrix, 7.5
Construct an inverse, 2.2

Construct a matrix, 1.3, 2.4
Diagonalize a matrix, 5.3, 7.1

Display on screen, see format, 1.1, 5.8
Entry (in a matrix), 1.1, 2.1

Entrywise computation, 4.1, 5.6, 5.7, 6.6
Evaluate a polynomial at many points, 5.2
Exercise data, 1.1, 1.3

Extract diagonal entries, 3.2

Find a basis for a column space, 4.3
Find a basis for a null space, 4.3

Find a basis for an eigenspace, 5.1, 7.1
Find a characteristic polynomial, 5.2
Find eigenvalues and eigenvectors, 5.1
Find the zeros of a polynomial, 4.8
Function of a vector, 4.1, 6.6

Generate a sequence, 1.10, 5.6
Gram-Schmidt process, 6.4

Graph a polynomial, 5.2

Graph several functions, 4.1, 5.2, 6.8
Graph a trajectory, 5.6

Identity matrix, 2.1, 2.2

Inner product, 2.1, 6.1

Inverse power method, 5.8
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LU factorization, 2.5
Matrix notation and operations, 2.1
Matrix power, 2.1
Matrix-vector multiplication, 1.4
Numbers in MATLAB,

displayed, 1.1

rational, 1.6, 5.1
Orthogonal projection, 6.2, 6.3, 6.4
QOuter product, 2.1
Partitioned matrix, 2.4
Permuted LU factorization, 2.5
Power of a vector function, 4.1
Power method, 5.8
QR factorization, 6.4
Random matrix, 2.1, 2.3
Recall previous commands, 1.3, 1.10
Reduced echelon form, 2.8, 2.9, 4.3
Rowof A, 2.1
Row operations, 1.1
Row reduction, 1.4
Scientific notation, 1.10
Select part of a matrix, 2.1
Sequence, generate, 1.10, 5.6
Singular value decomposition, 7.4
Solve Ax=0, 1.5
Solve Ax=Db, 14, 2.5
Special matrices, 2.1

Hilbert matrix, 2.3
Trajectory, 5.6
Test for orthogonality, 6.2
Transpose, 2.1
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Introduction to MATLAB

MATLAB stands for MATrix LABoratory. Originally written by Cleve Moler for college linear
algebra courses, MATLAB has evolved into the premier software for linear algebra computations
in science and industry, all over the world. Using MATLAB in this course will save you time on
homework, help you learn linear algebra, and give you a glimpse of how linear algebra is applied
in practical work.

At the ends of many Study Guide sections, MATLAB “boxes” will show you how to avoid
routine arithmetic calculations, so you can focus on new concepts. Later in the course, you will
run several state-of-the-art programs. For instance, given a 32x32 matrix A (which is small by
today’s standards), MATLAB’s eigenvalue program provides important and accurate information
about A in a fraction of a second, after performing about one million arithmetic operations.

GETTING STARTED WITH MATLAB

You need access to the MATLAB program, either on a personal computer (PC or Mac) or on a
shared computer network system at your school. If the school network is prepared for your
course, someone may have already installed special MATLAB programs written for this course,
along with data for about 850 exercises in the text. Accessing a matrix or some vectors for a
problem requires only a few keystrokes. (This avoids data entry error and saves you time.) And
then MATLAB performs the computations for you. Once you see how much time you can save,
you'll probably start using MATLAB for most of the numerical exercises!

If you plan to work at a computer away from school, you can purchase a Student Version of
MATLAB at modest cost. You need to download the special programs and exercise data from
the Web, at http://www.laylinalgebra.com. These programs and data are in a folder called the
Laydata Toolbox. Download the folder into the main MATLAB folder and then add the Laydata
Toolbox to the MATLAB PATH. A ReadMe file in the Toolbox has instructions. When that is
done, MATLAB will have immediate access to everything in the Toolbox.

The next four paragraphs provide basic information about the MATLAB environment, inclu-
ding how to save and print a copy of your work. After that, the MATLAB boxes in this Guide
will form your “lab manual” for the use of MATLAB during the course. (Begin with Section
1.1.) For your reference, an index of commands is included at the end of this appendix.

How to Start, Stop, And Run MATLAB

Once you start MATLAB (by clicking on a menu or icon), you will see the MATLAB logo as the
program loads, followed by a prompt symbol —, or EDU—, in what is called the command

Copyright © 2006 Pearson Addison-Wesley. All rights reserved. ML-1



EB Brief Table of Contents || EEi

Table of Contents

ML-2 Getting Started with MATLAB

window. Recent versions of MATLAB have two other windows, which you may close or resize.
The Study Guide focuses mainly on the command window. Type a MATLAB command at the
prompt and press (Enter). MATLAB's response will follow. Here are some simple commands:

xX=2%*3

X 5*x

aA

clsl

who

clear
help cl
help

quit

{1 2 3;4 -5 6]

ear

Sets up a variable x in your "workspace" and stores 6 in it.
The symbols +, —, *,/, and * (for exponents) are used for arithmetic.

Sets up a new variable with the value 30. MATLAB is case-sensitive.
Extra spaces are ignored. They were inserted here for readability.

Creates a matrix with 1, 2, 3 in the first row and 4, -5, 6 in the second row.
One or more spaces separate entries in each row.

Requests data for exercises in Chapter 1 Section 1, for example.
See the MATLAB box at the end of Study Guide notes for Section 1.1.

Lists the variables in your workspace (a portion of computer memory that
stores the variables created since you turned on the program).

Removes all variables (and their contents) from the workspace.
Tells you about the clear command.
Displays a long list of topics for which help is available.

Immediately clears the workspace and terminates MATLAB.
exit does the same.

You can place several commands on one line, if you wish, separated by commas or semicolons.
A semicolon after a command instructs MATLAB not to display the result of the command.

How To Format Matlab Output

Ordinarily, MATLAB displays up to 5 digits for each number and places a line feed between each
object it displays. The following commands allow you to modify this standard display style.

format

format
format
format

format

compact

long
short

rat

Suppresses extra line-feeds, so you can see more output on one screen.
Many students turn this on at the beginning of a work session.

Displays all 15 digits that were used in the calculation.
Displays only 5 digits.
Displays numbers as fractions, as accurately as possible.

Restores the standard display style.
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Use help format to see other formatting options.

How To Save and Print a Copy of Your Work

You can save a record of every keystroke you make, along with MATLAB’s responses, in a file
you choose by turning on the “diary” feature. For instance, if you select the filename project].txt,
use the commands:

diary projectl.txt  Writes output (following this command) to the file named.
If the file already exists, the output is appended to the file.

diary off Stops the recording

diary on Starts writing output again to Projectl.txt, named earlier.
Places new output at the end of the file.

The file project1.txt will be located in the “current directory,” which initially is the main directory
that holds MATLAB and all of its subdirectories. You can change this directory, but the easiest
way to control where your file goes is to include a path at the front of the name, for instance,
diary a:\projectl.txt . If you are working on a school network, the designation for the
floppy disk drive might be something other than a: . MATLAB version 6 displays the current
directory in a toolbar at the top of the screen; you can use that to change the current directory.

Once your output is in a text file, you can use any convenient text editor to add comments to
your work, delete extraneous output or errors in typing, and then print the file. If you want to
print while working on a network, you may need to find out what special network commands are
required.

This concludes the main part of the MATLAB appendix. You should be ready to use MAT-
LAB with your homework (as soon as the Laydata Toolbox is installed). Enjoy yourself!

SCRIPT M-FILES

When you have some experience using MATLAB, you may wish to experiment with script
m-files to prepare homework assignments and projects. The diary process works reasonably well
for short homework assignments. But, for longer projects, the diary file can be quite long and
require extensive editing, particularly if you make multiple attempts to get the project working

A script M-file is simply a sequence of normal MATLAB commands stored in a text file that
has “.m” as its extension. Instead of running these commands at the command prompt, you type
the name of the script M-file at the prompt and press (Enter). For example, if you name your
script file projectl.m, and place it in the MATLAB working directory, then projectl
becomes a new MATLAB “command.” Entering projectl at the prompt causes the com-
mands in the file to be executed, as if you had entered them one at a time.
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The main advantage of using a script M-file instead of the diary to create a project report is
that errors in the script can be corrected easily and the entire script run again with no effort. If
you discover a mistake in the middle of a project that is being recorded by the diary, you have to
repeat all the commands. (Later, you’ll also have to edit out the first set of commands that did
not work properly.) A second reason for using a script is that you can reuse it later if you need to
solve a similar problem. Just make a few appropriate edits and you are ready to go.

How to Create a Script M-file

M-files are ordinary text files that you can create and modify with any text editor or word
processor that can save a file as plain ASCII text. On Unix systems, this includes pico, vi,
textedit, and emacs. On Windows and Macintosh systems, MATLAB comes with its own M-file
Editor/Debugger, which you access from the toolbar or the File menu. The first line of a script
M-file should be

echo on Displays the commands along with results. Without this command, only the
results will be displayed

Place the MATLAB commands next. The last line of the file should be

echo off Turns off the previous echo command

Remember to place a .m extension on your file, and save it in the current working directory.

How to Prepare a Final Report

When the script M-file is running satisfactorily, you need to document with your work with
comments, which are statements in the file that begin with a percent sign. Comments are used to
outline the steps in your calculations and to interpret the results of various computations. For
example:

%The system is inconsistent, because 0 = 5/2 is not true.
MATLAB ignores all such comments, but your instructor will appreciate them.

To create a printed copy of your work, use the diary command. If your file is projectl.m,
enter the following commands at the command prompt:

diary projectl.txt  Records all commands and output that follow.

probleml Executes the commands in projectl and displays all comments in the file on
the screen. The diary captures these comments as well

diary off Stops the recording.

Now you have a text file that shows all your work. Depending on the requirements of your
course, you can either print the file for submission or attach the file to an email.
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Index of MATLAB commands
\ (backslash), 2-28, 4-16, 6-16, 6-19

: (colon), 2-4

/ (divide entry-wise), 5-29

A (exponent), 2-4, 4-4, 6-20

' (transpose), 2-4

? (up-arrow), 1-15, 1-46, 5-33

abs, 5-33
ans, 1-6, 1-20
bgauss, 1-20
cond, 2-14
cos, 4-4, 6-20
det, 3-8
diag, 2-4, 3-8, 7-18
eig, 5-5, 5-15, 5-22, 5-29
exp, 6-20
eye, 2-4,2-9, 5-4
for..end, 5-25
format, 1-6
compact, 1-6
long, 1-46, 2-14
rat (rational), 1-29, 2-14, 5-5
short, 1-29, 1-46, 2-14, 5-5
gauss, 1-20
grid, 4-4, 5-9, 5-26
gs, 6-12
hilb, 2-14
help, 2-4
hold, 4-4, 5-9
imag, 5-22, 5-29
inv, 2-14, 2-28
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linspace, 4-4, 5-9, 6-26
log, 6-20

lu, 2-28

max, 5-33

mean, 7-18

norm, 6-2, 6-9
nulbasis, 5-4, 5-15, 5-29
null, 7-16

ones, 2-4

plot, 4-4, 5-9, 5-26
poly, 5-9

polyval, 5-9

prod, 3-8

proj, 6-12

qr, 6-12

rand, 2-4, 2-14
randomint, 2-4, 4-24
randstoc, 4-35

rank, 2-41, 4-24

real, 5-22, 5-29

ref, 2-38, 2-41, 4-11, 4-24, 6-16
replace, 1-6

roots, 4-32

rref, 2-38, 4-4

scale, 1-6

size, 2-4, 7-16

sqrt, 7-16

svd, 7-16

swap, 1-6

zeros, 1-25, 2-4,7-16
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Notes for the Maple
Computer Algebra System

GETTING STARTED WITH MAPLE

Using Maple with Linear Algebra and Its Applications

The Maple commands for most linear algebra operations, including the manipulation of vectors
and matrices, can be found in the linalg package that comes with Maple. The laylinalg
package contains Maple implementations of the special MATLAB commands presented in the
text, data for many problems in the text, and data for the Maple Projects. The current version
of the laylinalg package can be used in either Maple 7 or Maple 8 and can be downloaded
from http://www.laylinalgebra.com/.

To make the laylinalg package accessible within Maple it is necessary to expand the
downloaded archive and to instruct Maple where to find these files. First, unzip (or unstuff if
you are using a Macintosh computer) the archive containing the laylinalg package into a new
folder named laylinalg. When this has been successfully completed, the laylinalg folder
will contain three files: maple.hdb, maple.ind, and maple.lib. (The fourth file in the archive,
MapleReadMe.txt, contains a more detailed version of the information in this paragraph.) To
instruct Maple where to find the laylinalg package, the full pathname of this new directory
must be added to the list of directories in libname. For example, if the full pathname is
C:\\laylinalg then the command

> libname := "C:\\laylinalg", libname:
must be executed. To ensure these steps are performed every time you use Maple, this command
should be placed in a Maple initialization file. The MapleReadMe.txt file contains additional
information about Maple initialization files; see also the Maple help page produced by the
command ?mapleinit. If you experience any difficulties with this installation process, please
check with your instructor for specific instructions for your site.

To load a Maple “package” into a Maple session, use the with command. The command

> with( laylinalg );
loads the laylinalg package and displays all of the commands in the package. This particular
command also loads Maple’s own 1inalg package and modifies the display of Maple vectors so
they appear as n x 1 column matrices.!

Each Maple command must end with a semicolon or colon. The semicolon tells Maple to
display the result of the command; a colon suppresses the output. Maple is case-sensitive but
ignores all whitespaces (blanks) around numbers, names, keywords, and operators in com-

!To have vectors displayed horizontally, execute the command pvac := false;. The command pvac stands
for print vectors as columns.
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mands. For example, Maple will not recognize with( LayLinAlg ); but will understand
with(laylinalg);. The commands in these notes include extra spaces to increase readability.

Entering Matrices in Maple

There are many ways to create matrices in Maple. In general, a matrix is created with the
matrix command. The first two arguments of this command are the number of rows and
columns in the matrix, respectively. If there are only two arguments, then the elements of the
matrix are unassigned (see matrix A, below). The optional third argument is used to specify
the entries of the matrix. If the third argument is a list or vector, these quantities are used to
fill the matrix row-by-row from left-to-right (see matrices B and C). The third argument can
also be a Maple function of two variables. In this case each element of the matrix is assigned
value by evaluating the function with the corresponding row and column indices (see matrix
E). Diagonal matrices are easily defined using the diag command from the linalg package
(see matrix F).

> A := matrix( 2, 3 );
A:=array(1..2,1. 3,[))

> evalm( A );

Arr Arp Az
Ag1 Az Az

> B := matrix( 2, 3, [1,2,3,4,5,6] );
1 2 3
Bl il 0]
> C := matrix( 2, 3, [1,2,3,4] );
1 2 3
C =
[4 Ca 2 C2,3]
> E := matrix( 2, 3, (i,j) -> 1/@G+j) );
1 1 1
|2 3 1
Ei= { 11 1 }
3 1 §
> F := diag( 1, 2, 3 );
1 0 0
F=10 2 0
0 0 3
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The entermatrix command, from the linalg package, provides a somewhat more user-
friendly interface for entering the entries of a matrix:

> G := matrix(2,3): # define the matrix G

> entermatrix(G);

enter element 1,1 > 1; # note that the semicolon is required
enter element 1,2 > 2;

enter element 1,3 > 3;

enter element 2,1 > 4;

enter element 2,2 > 5;

enter element 2,3 > 6;

A more graphical but seldom-used method for defining a matrix with between two and four
rows and two and four columns is to use the Matrix Palette. You are strongly advised to not
use the Matrix and Vector Palettes with the laylinalg package. The commands produced
by the Matrix and Vector Palettes create Maple objects with type Matrix and Vector. These
objects are designed for use with Maple’s LinearAlgebra package, not the type matrix and
vector objects used by the linalg and laylinalg packages.

Using Maple’s Online Help

These notes are intended to be self-contained. If, however, you are interested in additional
information, you should first consult Maple’s online help. The command help( laylinalg
); or, equivalently, ?laylinalg accesses the help worksheet with an overview the laylinalg
package. Help worksheets exist for all Maple commands, including all commands in the 1inalg
and laylinalg packages. For example, the command ?gauss accesses the help worksheet for
the gauss command in the laylinalg package.

The Help menu on the Maple user interface can also be used to search for help on a specific
keyword. A Full Text Search lists all help worksheets containing keywords that you specify.
A Topic Search interactively shows all help worksheets whose topic matches the search string.
For example, there is a long list of help topics that begin with the string 1a. When the search
string is expanded to lay the list of matching help topics reduces to all of the help worksheets
for the laylinalg package.
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STUDY GUIDE NOTES

At the beginning of each Maple session for this linear algebra course, enter the command:
> with( laylinalg );
Notice the use of a colon to suppress the output.

SECTION 1.1 Row Operations

The data for the exercises in this section are contained in the laylinalg package. The list of
exercises within chapter 1 section 1 for which Maple data is available is displayed by execut-
ing the command: c1s1();. If Maple simply repeats your input, it is likely that the with(
laylinalg ); command has not been executed.

The data for a specific problem, such as Exercise 13 in Section 1.1, can be loaded with the
command: c1s1( 13 ); or c1s1(13);. (The spaces around 13 are optional.) The output from
this command displays each assignment that Maple has made. In this section the data for each
exercise are stored in a matrix M. To see the current contents of the matrix M, execute the
command: evalm( M );.

Row operations on M can be performed using commands from either the laylinalg or the
linalg package. Table 1 summarize the commands for the three elementary row operations.

laylinalg Command Syntax | Description

replace( M, r, m, s ); row 7 «—row r + m * row s
swap( M, r, s ); ITOW T <> TOW §
scale( M, r, ¢ ); rowr —c*¥rowrof M

linalg Command Syntax | Description

addrow( M, s, r, m ); TOW 7 «<— row r + m * row s
swaprow( M, r, s ); TOW T <= IOW §
mulrow( M, r, ¢ ); row r «— ¢ ¥*rowr of M

Table 1: Comparison of elementary row operations in the laylinalg and linalg packages.

Notes:

e The syntax and functionality of the commands in the linalg and laylinalg packages
are almost identical. The names in the linalg package are used throughout Maple;
those used in laylinalg more closely match those used elsewhere in the textbook. The
laylinalg commands will be used throughout this appendix.

e The name of any matrix in your current Maple session can be inserted in place of M in
the commands above.
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e The letters r and s are positive integers corresponding to row numbers. The names m
and c are scalar expressions (often numbers, but sometimes symbolic expressions) that
you choose.

If you enter one of the row operation commands, say,
> swap( M, 1, 3);
then the new matrix produced from M is not given a name. You can refer to this result using
%, the history operator. If, instead, you type
> Ml := swap( M, 1, 3 );
then the answer is stored in the matrix M1. If the next operation is
> M2 := replace( M1, 2, 5, 1 );
then the result after performing this row operation on M1 is placed in M2, and so on. Note the
use of :=in assignments; the symbol = is used to create an equation.
One advantage of giving a new name to each new matrix is that you can easily go back a
step if you do not like what you just did to a matrix. If you type
> M := replace( M, 2, 5, 1 );
then the result is placed back in M and the “old” M is lost. Of course, the “reverse” operation
> M := replace( M, 2, -5, 1 );
will recreate the original matrix M.

Notes:

e For the problems in this section and the next, the multiple m needed in the replace or
addrow command will usually be a small integer or fraction that you can compute in your
head. The next two paragraphs describe how to use Maple in situations where m is not
easily computed mentally.

The entry in row r and column ¢ of a Maple matrix M is denoted by M[r,c]. If the number
stored in M[r,c] is a floating-point number, that is, it is displayed with a decimal point,
then the number may be accurate to only about eight (8) digits. It is generally more
accurate — and simpler — to use M[r,c] instead of re-typing the displayed values in
computations.

o For instance, to use the entry M[s,c] to change M[r,c] to 0, enter the commands:
>m := -M[r,c] / Mis,c]; # mult of row s to add to row r

> ML := replace( M, r, m, s ); # adds m * row s to row r
Or, you could use the single command:

> M1 := replace( M, r, -M[r,c]l/M[s,cl, s );

e The environment variable Digits controls the number of significant digits Maple uses in
floating-point computations. The default is 10. While this should be more than sufficient
for the problems in this text, you can change this by assigning a new value to Digits. In
general, you should expect a floating-point computation to be accurate to approximately
Digits-2 digits.
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SECTION 1.1 Symbolic Row Operations

A powerful feature of Maple is its ability to work with matrices and vectors that involve un-
specified parameters. For example, Exercise 25 in Section 1.1 can be solved using Maple and
the laylinalg package in the following steps

> clsl1( 25 );

> evalm( M ); # display the augmented matrix

> M1l := replace( M, 3, 2, 1 ); #add2 x row1torow3

> M2 := replace( M1, 3, 1, 2 ); # add row 2 to row 3

> M2[3,4] = 0; # eqn to make system consistent

Symbolic multipliers can be used in replace and scale, for example: replace( A, 3, a,
1 );, but all row numbers must be explicit integers.

SECTION 1.3 Constructing a Matrix

To see the exercises with data for Section 1.3, execute the command:

> cl1s3( );
The data for Exercise 25, for example, consists of the matrix A4, the right-hand side vector b,
and the columns of the matrix, a;, as, ag. The corresponding Maple names, A, b, al, a2, and
a3, can be assigned by executing the command:

> c¢c1s1( 25 );
The command

> M := augment( al, a2, a3, b );
creates a matrix with the given vectors as its columns. The same matrix could also be created
by

> M := augment( A, b );

Exercises 11-14, 24-28, and 31 can be solved using the laylinalg commands replace, swap,
and (occasionally) scale (or the similar linalg commands: addrow, swaprow, and mulrow),
described in the Maple Note for Section 1.1 on page MP-4.

SECTION 1.4 gauss and bgauss

To solve Ax = b, row reduce the augmented matrix
> M := augment( A, b );

The command
> x := vector( [5,3,-7] );
creates a column vector, x, with entries 5, 3, and -7. Matrix-vector multiplication is
> evalm( A &* x );
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The laylinalg package contains two commands, gauss and bgauss, that can be used
to speed up row reduction of a matrix. Use the command with( laylinalg ); to load the
laylinalg package. A ZIP file containing the laylinalg package can be downloaded from the
WWW.

To make row reduction of M = [ A b ] more efficient, the command gauss( M, r );
chooses the leading entry in row r of M as a pivot and uses row replacements to create zeros
in the pivot column below this pivot entry. The result can be assigned to a name, otherwise
the only way to access the result is with the history operator (%). In either case, the result is
displayed to the screen.

For the backward phase of row reduction, use bgauss( M, r ); which selects the leading
entry in row r of M as the pivot, and creates zeros in the column above the pivot. Use scale
to create leading 1’s in the pivot positions.

Note:

e Exercise 19 of this section can be solved using symbolic row operations as discussed in
the Maple Note for Section 1.1.

SECTION 1.5 Zero Matrices

The command vector( m, O ); creates the zero vector in R™ and matrix( m, n, 0 ); cre-
ates an m X n matrix of zeros. To solve an equation Ax = 0, use the command

> M := augment( A, vector( m, 0 ) );
to augment A with the column vector containing m zeros, then use gauss, swap, bgauss, and
scale to complete the row-reduction of M.

SECTION 1.6 Rational and Floating-Point Format

Chemical equation-balance problems are studied best using exact or symbolic arithmetic. This
is because the balance variables must be whole numbers (with no round-off allowed). When
the chemical equations have integer coefficients — as they do here — Maple will perform exact
computations. That is, when laylinalg row operations are applied to an integer- or rational-
valued matrix, the resulting matrix will have integer or rational entries. No floating-point
approximations will be used. Once you find a rational solution of a chemical equation-balance
problem, you can multiply the entries in the solution vector by a suitable integer to produce a
solution that involves only whole numbers.

Notes:

e To convert the entries of a Maple matrix, M, to floating-point numbers, use either evalf (
evalm(M) ); or map( convert, M, float );.

e The command map( convert, M, rational ); returns the matrix in which each entry
of the matrix is replaced with an approximately equal rational number.
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SECTION 1.10 Generating a Sequence

The data for Exercises 9-13 in Section 1.10 consists of the migration matrix, M, and the initial
population vector xp. The following set of commands generates the first ten (10) terms in the
sequence defined by xx+1 = Mxy:

> x|10 := evalm(x0); # display initial population
> for k from 0 to 9 do # execute loop 10 times

> x| (k+t1) := evalm( M &* x|k ); # compute xp41 from xi
> end do;

Note that the first command reassigns x0 to itself. This command can be omitted if you do not
wish to include the initial population in the output.

Numbers are entered in Maple without commas. Maple uses scientific notation for numbers
larger than 1,000,000 (10%) or smaller than 10~%. In Maple, numbers in scientific notation can
be entered as 4.0 * 1075 or 2.46 * 10~(-3). Note that the parentheses around a negative
exponent are required. When the mantissa is entered as a floating point number, the number
is displayed (and computed) with Digits digits. The default setting of Digits, 10, should be
more than sufficient for all computations in this text.

SECTION 2.1 Matrix Notation and Operations

Several methods for defining a matrix in Maple have been described previously in this appendix.
Refer to these discussions for information about creating your own matrices.

Recall that, in Maple, the (i, j)-entry of A is A[i,j]. One or more columns or rows of
A can be obtained with the col or row command. For example, col(A,3) is column 3 of A
and row(A,2) is row 2 of A. To extract the first two columns of A, use col(4,1..2). (The
expression a. .b represents the integers from a to b.) Be aware that both row and col return a
sequence of one or more (column) vectors.

Multiple vectors can be assembled as the columns of a new matrix with augment, as described
in Section 1.4. For example, augment ( col(A,1..2) );. To create a matrix from the rows of
an existing matrix, either take the transpose of the result from augment or use the stackmatrix
command.

The command submatrix( A, a..b, c..d ); returns a matrix whose entries come from
rows a through b and columns ¢ through d of A. The number of rows in A is given by rowdim(A)
and the number of columns by coldim(A).

Maple uses + and - to denote matrix addition and subtraction, respectively. Multiplica-
tion of a matrix or vector by a scalar can be obtained with the commutative multiplication
operator *; the non-commutative operator &* must be used for matrix multiplication, including
matrix—vector products. If A is square and k is an integer, A"k denotes the kth power of A.
The evalm command is needed to force Maple to display the result of commands that produce
vectors or matrices.

The transpose of A is transpose (A). The outer product of u and v can be obtained with the
command evalm( u &* transpose(v) );. The command innerprod(u,v); gives the inner
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product of u and v, and this scalar is displayed without using evalm. (If the entries of u
and/or v are complex, then you probably want to use dotprod instead of innerprod; see also
the Maple Note for Section 6.1.)

Maple commands for the construction of many special matrices are given below:

> M := matrix( 5, 6, 0 ); # a 5 X 6 matrix of zeros

>M := matrix( 3, 5, 1 ); # a 3 x 5 matrix of ones

> M := diag( 3, 5, 7, 2, 4 ); # a5 x5 diagonal matrix

> M := diag( 1$6 ); # the 6 x 6 identity matrix

> M := randomint( 6, 4 ); # a 6 X 4 matrix (-9 < entries < 9)

SECTION 2.2 The Identity Matrix and A~1

When A is 5 x 5, the command M := augment( A, diag( 1$5 ) ); creates the augmented
matrix [ A I]. Use gauss, swap, bgauss, and scale to reduce the augmented matrix to
[I A~1], if possible. See the Maple Note for Section 1.4 on page MP-6.

There are other Maple commands that row reduce matrices, invert matrices, and solve
systems Ax = b. They will be introduced later, after you have studied the concepts and
algorithms of this section.

SECTION 2.3 inverse, cond, and hilbert

Determining whether a matrix is invertible is not always a simple matter. A fast and fairly
reliable method is to use the command inverse( A );, which computes the inverse of A. The
error message Error, (in inverse) singular matrix is displayed if the matrix is singular.

In Exercises 4144 of this section, the Maple command cond( A ); computes the condition
number of any matrix A using quantities called the singular values of A (discussed in Sec-
tion 7.4). To perform the experiment described in Exercise 42 you can use the following Maple
commands:

> x := randvector( 4 ); # random 4-d vector

>b := evalm( A &* x ); # compute exact RHS

> x1 := evalm( inverse(A) &* b ); # solution using A™!

> evalm( x - x1 ); # exact - computed
Because Maple uses exact arithmetic for integers, x and x1 should be the same. To force Maple
to use floating-point computations, replace the definition of b with b := evalf( evalm( A &*
x) ;.

For Exercise 45, the command hilbert( n ); produces the n x n Hilbert matrix. To obtain
the n x n Hilbert matrix with floating-point entries use evalf ( hilbert( n ) );.
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SECTION 2.4 Partitioned Matrices

Partitioned matrices can be created in Maple with the blockmatrix command. For example,
if A, B, C, E, F, and G are matrices of appropriate sizes, then the command

> M := blockmatrix( 2, 3, [4,B,C, E,F,G] );
creates a larger matrix of the form

Mz{ABC]

E F G

Once M is formed, there is no record of the partition that was used to create M. For instance,
although B is the (1,2)-block used to create M, the value of M[1,2] is the same as the (1,2)-
entry of A. You should be aware, however, that if A[1,2] is an unevaluated name at the time
the blockmatrix command is executed and is subsequently assigned a value, this assignment to
A[1,2] changes all instances of A[1,2] in the current Maple session. In this case, an assignment
of a value to A[1,2] will also change the (1,2)-entry of M.

Other linalg commands that can be useful in the creation of new matrices from existing
matrices include: stackmatrix, augment, concat, delrows, delcols, diag, extend, minor,
and submatrix.

SECTION 2.5 LU Factorization and the 1linsolve Command

Row reduction of A using the command gauss will produce the intermediate matrices needed
for an LU factorization of A. You can try this on the matrix in Example 2, stored as Exercise 33
of this section in the laylinalg package. The matrices in (5) for Example 2 (page 145 of the
text) are produced by the commands:

> ¢c285( 33 ); # load matrix A

> U = gauss(A,1); # Uhas 0's below the first pivot
> U = guass(U,2); # now U has 0’s below pivots 1 and 2
> U = gauss(U,3); # the echelon form

You can copy the information from the screen onto your paper, and divide by the pivot entries
to produce L as in the text.

To construct a permuted LU factorization, use the Maple command

> U :=gauss( U, r, v );

where r is the row index of the pivot and v is a row vector that lists the rows to be changed
by replacement operations. For example, if A has 5 rows and the first pivot is in row 4, use
U := gauss( A, 4, [1,2,3,5] );. If the next pivot is in row 2, use U := gauss( U, 2,
[1,3,5] );. To build the permuted matrix L, use full columns from A or the partially reduced
U, divided by the corresponding pivot. Then change entries to zero if they are in a row already
selected as a “pivot row”.

The Maple command U := LUdecomp( A, L=’L’, P="P’ ); produces a permuted LU fac-
torization, A = PLU, for any matrix A.
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When A is invertible, the simplest way to solve Ax = b with Maple is to use the linsolve
command: x := linsolve(A,b);. The command x := inverse(A) &* b; is less efficient and
can be less accurate.

SECTION 2.8 rref

The Maple command rref (A) ; produces the reduced echelon form of the matrix A. From this
matrix you can write a basis for Col A or write the homogeneous equations that describe Nul A.
(Do not forget that A is a coefficient matrix, not an augmented matrix.)

SECTION 2.9 rank

You can use rref( A ); to check the rank of a matrix A. For a matrix with floating-point
entries, roundoff error or an extremely small pivot can produce an incorrect echelon form. A
more reliable command for computing the rank of a matrix A is rank( A );.

SECTION 3.2 Computing Determinants

To compute det A, define U:=4A; and then repeatedly use the commands U:=gauss(U,r); and
U:=swap(U,r,s); as needed to reduce A to an echelon form U (see the Maple Note for Sec-
tion 1.4 on page MP-6). Then, the determinant of A is given by the command
> detA := (-1)"k * mul( U[i,i], i=1l..n );

where A is an n X n matrix and k is the number of row swaps made while reducing A to U.

The command det( A ); can be used to check your work, but the longer sequence of
commands is preferred — at this time — because it emphasizes the process of computing
determinants.

SECTION 4.1 Graphing Functions

The following command can be used to graph the function f in Exercise 37:

> plot( f, t=0..2%Pi );
In Maple’s plot command, the first argument is the function (or list of functions) to be plotted
and the second argument contains the name of the independent variable (here, t) and an interval
on which the plot is to be created. Note that Pi is Maple’s name for the constant 7. Consult
Maple’s online help for the plot command and plots package for optional arguments and
additional examples.

SECTION 4.3 rref and genmatrix

The Maple command rref (A) produces the reduced row echelon form of the matrix A. From
this matrix you can write a basis for Col A or write the homogeneous equations that describe
Nul A. (Do not forget that A is a coefficient matrix, not an augmented matrix.)
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For Exercises such as 37 and 38 the genmatrix command can be used to generate the co-
efficient matrix A from a list or set of linear equations involving a set of unknowns, say c[1],

c[2], .... For example, the coefficient matrix for Exercise 38 can be obtained by the following
commands:

> EQN := add( c[j] * cos(t)"j, j=0..6 ) = 0; # genl form of eqn

> eq[0] := eval( EQN, t=0 ); #eqnw/t=0

> eq[6] := eval( EQN, t=Pi ); #eqmw/t=m

> A := genmatrix( [ eq[k] § k=0..6 1, # coef matrix

> [ clk]l $ k=0..6 1 );

SECTION 4.4 linsolve

The Maple command linsolve( A, b ); produces the solution of Ax = b when A4 is invertible.
The 1linsolve command has additional capabilities that will be introduced later, after you have
the appropriate background.

SECTION 4.6 rref, rank and randomint

In this course, you can use either rref( A ); or rank( A ); to check the rank of a matrix A.
In practical work, particularly with floating-point matrices, you should use the more reliable
rank( A );.

The laylinalg command randomint ( m, n ); creates an m X n matrix of random integers
between -9 and 9.

Note:

e In earlier editions the randomint command was called randint. The name change was
necessary because MATLAB now has a randint command in its Communications Tool-
box.

SECTION 4.7 Change-of-Coordinates Matrix

The laylinalg package includes data for Exercises 7-10 and 17-19. The Maple command rref
can be used to row reduce a matrix such as

[c1 c2 by by

to the desired form. The command augment, introduced in the Maple Note for Section 1.3 on
page MP-6 can be used to create a matrix from a collection of column vectors.

SECTION 4.8 solve and polyroots

In Exercises 7-16 and 25-28, the coefficients of the polynomial in the auxiliary equation are
stored in a vector p. The coefficients are stored in descending order. For example, the polyno-
mial 22 + 6z + 9 would be represented with p := vector(3,[1,6,9]);.
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The polyroots command in the laylinalg package computes floating-point approxima-
tions to all (real and complex) roots of the polynomial whose coefficients are stored in the vector
p- The syntax is polyroots( p );.

Given the coefficient vector p the corresponding polynomial can be created with the follow-
ing commands:

>n := vectdim(p); # degree of polynomial

> P := add( p[kl*x~(n-k), k=1..n ); # polynomial w/ coefs p
The exact roots of the polynomial can now be found using

> solve( P=0, x );
Note, however, that it might not be possible to find all roots for a polynomial of degree 5 or
higher.

SECTION 4.9

The Maple box for Section 1.10 contains information that is useful for the Exercises in this
section.

SECTION 5.1 Finding Eigenvectors

The laylinalg package contains a command that will simplify your homework by automatically
producing a basis for an eigenspace when you know the eigenvalue. For example, if A isa 3 x 3
matrix with eigenvalue A = 7, then the command nulbasis( A-7*diag(1$3) ); returns a
matrix whose columns form a basis for the corresponding eigenspace. The command nulbasis(
C ); returns a matrix whose columns form a basis for Nul C (the same basis you would get if
you started with rref (C); and computed the basis by hand).
Additional Maple commands for computing eigenvalues and eigenvectors will be discussed
later. You should use nulbasis now, to reinforce the basic concepts of this chapter.
For Exercises 37-40 use the eigenvalues command to obtain the eigenvalues of a matrix.
For example, the commands
> lambda := eigenvalues( A ); # eigenvalues of A
> nulbasis( A - lambda[2]*diag(1$5) ); # basis for e-space of A
compute a basis for the eigenspace corresponding to the second eigenvalue of a 5 X 5 matrix
A. To avoid typing or numerical errors, you are encouraged to avoid looking at the list of
eigenvalues and explicitly typing the eigenvalue in the argument of the nulbasis command. It
is much safer — and faster — to reference the eigenvalues as in the commands above.

SECTION 5.2 charpoly

The Maple command charpoly can be used to check your answers in Exercises 9-14. Note
that if A is n x n, charpoly(A,lambda) is det(A] — A). If n is even, this is the characteristic
polynomial of A. When n is odd, this is the negative of the characteristic polynomial of A (as
defined in the text).
For Exercises 28 and 29, create a 4 x4 matrix with random integer entries with the command
randomint( 4 );. For Exercise 29, use gauss and perhaps swap to create the echelon form
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without row scaling. See also the Maple Note for Section 1.4 on page MP-6.

The following commands create the graph of the characteristic polynomial of the matrix 4
in Exercise 30 for all values of the parameter a in a list a_vals:
> p := charpoly( A, lambda ); # char poly in terms of parameter a
> P := [seq( p, a=a_vals )]; # char poly for each value of a
> plot( P, lambda=0..3 ); # graph all char polys on same axes

SECTION 5.3 Diagonalization and eigenvalues

To practice the diagonalization procedure in this section, you should use the nulbasis command
to produce eigenvectors. For Exercises 33-36, the command ev := eigenvalues( A ); can
be used to provide the eigenvalues. See also the Maple Note for Section 5.1 on page MP-13.

SECTION 5.5 Diagonalization and eigenvectors

Once you become familiar with the diagonalization process described in the Maple Note for
Section 5.3, you can use other Maple commands to simplify the process of determining the
eigenvectors for a matrix.

The command eigenvectors(4) ; returns, for each eigenvalue of A, a list containing three
pieces of information: the eigenvalue, the (algebraic) multiplicity of the eigenvalue, and a basis
for the corresponding eigenspace. The data structure is a little complicated, but the following
sequence of commands illustrates how to find the matrices P and D such that AP = PD:

> EV := [ eigenvectors( A ) ]; # e-values and e-spaces
> lambda := seq( op(1l,e)$op(2,e), e=EV ); # e-values (w/repetition)
> espace := seq( op(op(3,e)), e=EV ); # e-space basis

> DD := diag( lambda ); # diag e-value matrix
>P := augment( espace ) # e-vector matrix

Note that the matrix P may not be the same as the one you find by hand. A quick check that
your answer is correct is: iszero( A&*P - P&*DD );. The result will be true if the argument
is a zero matrix. When the matrices involve floating-point entries, Maple may return false
when one entry is very small (but not exactly zero). In any case, a visual inspection should be
performed on the difference AP — PD.

SECTION 5.5 Complex Eigenvalues, Re, and Im

If Ais a2 x 2 real matrix and if eigenvalues( A ); returns a pair of complex conjugate
eigenvalues, you can use the nulbasis command to find a complex eigenvector v corresponding
to one of these eigenvalues. Then, build a 2 x 2 real matrix P from the real and imaginary parts
of v and compute C = P~!AP. This can be done with the following commands:
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>V := nulbasis( A - lambda[1]*diag(1$2) ); # complex e-vector

> Vr := evalm( Re( V) ); # real part

> Vi := evalm( Im( V ) ); # imaginary part

> P := augment( Vr, Vi );

> C := evalm( inverse(P) &* A &* P );
In general, the real and imaginary parts of a complex-valued vector v are obtained with the
commands evalm( Re(v) ); and evalm( Im(v) );, respectively.

SECTION 5.6 Plotting Discrete Trajectories

The following sequence of commands creates the sequence of vectors x, Ax, A%x, ..., APx for
a given initial vector x:

> x := vector( [1,0] ); # initial vector (change as needed)

> T := convert( x, list ): # initialize list of points

> for j from 1 to 15 do # change 15 to number of iterations

>  x := evalm( A&*x ); # compute the “next” point

> T :=T, convert( x, list ); # add new point to list

> end do;

These points can be plotted with the command

> plot( [T], style=POINT );
Omitting the second argument of the plot command will “connect the dots” between the points.
Other optional arguments can be used to further customize the plot. The display command
— in the plots package — can be used to combine multiple trajectories into a single plot. (Do
not forget to execute the command with(plots); to load the plots package.)

For Exercise 17, the following commands create a graph of the first component in each data

point in the list T constructed above

> T1 := [seq( [i-1,T[i,1]1]1, i=1..nops([T]) )];

> plot( T1 );
To graph the sum of the first two components of each data point in T replace T1 with T2 defined
by

> T2 := [seq( [i-1,T[i,1]1+T[i,2]], i=1..nops([T]) )];
Similarly, to plot the quotient of the first two components in each data point in T replace T1
with T2 defined by

> T3 := [seq( [i-1,T[i,11/T[i,2]], i=1..nops([T]) )];

SECTION 5.7 Plotting Trajectories for Differential Equations

The following template of Maple commands can be used to create a plot of the direction field
and a solution curve for the 2 x 2 system of differential equations in Example 1.
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> with( DEtools ); # load DEtools pkg

> A := matrix( 2, 2,

> [ [-1.5, 0.5], [1, -11 1 );  +# enter coef matrix

> 8YS := [ diff(y1(t),t) # DO NOT CHANGE
> = Al1,1])*y1(t) + A[1,2]*y2(t), # DO NOT CHANGE
> diff(y2(t),t) # DO NOT CHANGE
> = A[2,1]*y1(t) + A[2,2]*y2(t) ]; # DO NOT CHANGE
>IC := [ y1(0)=5, y2(0)=4 1; # enter init cond

> RANGE := t = 0..10; # enter time interval
> WINDOW := y1 = -5..5, y2 = -4..4; # enter plot window
> DEplot( SYS, [y1(t),y2(t)], # DO NOT CHANGE
> RANGE, [IC], WINDOW ); # DO NOT CHANGE

To create plots for other systems, simply modify the coefficient matrix and the initial condition
then modify the time interval and window to create the desired plot.

Note:

e The with( DEtools ); command needs to be entered only once — anytime before the
first use of DEplot.

SECTION 5.8 Power Method and Inverse Power Method

A Maple implementation of the Power Method (page 363 of the text) assumes that A is an nxn
matrix with a strictly dominant eigenvalue and an initial vector xq:

> x := evalm( x0 ); # initial vector

> for k from 1 to 15 do # change 15 to number of iterations
> mu := norm( x ); # largest element in x

> x := evalm( A &* x/mu ); # next iterate in power method

> end do;

The value of ;1 should approach the dominant eigenvalue and the vector x should approach a
corresponding eigenvector.
One possible implementation of the Inverse Power Method is:

> I3 := diag(183); # 3 x 3 identity matrix

> alpha := 3.3; # initial guess at e-value

> x := vector( [1,1,1] ); # initial guess at e-vector

> for k from 1 to 15 do # change bounds as needed
> y := linsolve( A-alpha*I3, x ); # solve (A — al)yr = xi

> mu := norm( y ); # largest element in abs value
> nu := alpha + 1/mu; # updated approx to e-value
> x := evalm( y/mu ); # updated approx to e-vector
> end do;
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Notes:

o The initial value of a should be reasonably close to the desired eigenvalue and x is a
vector whose largest element (in absolute value) is 1.

o Recall that norm(x) returns the maximum of the absolute values of the entries in x.

SECTION 6.1 innerprod and norm

The Maple command innerprod(u,v) returns the inner product of two real-valued column
vectors u and v. The associated length of a vector v is norm(v,2). (See also the Maple Note
for Section 2.1 on page MP-8.)

SECTION 6.2 Orthogonality

In Exercises 1-9 and 17-22, a fast way to test the orthogonality of a set such as {uj, ug, us} is
to create a matrix
> U := augment( ul, u2, u3 );
whose columns are the vectors from the set, and test whether
> evalm( transpose(U) &* U);
yields a diagonal matrix.

Notes:

e To understand how this works, see Theorem 6 on page 390.

e The orthog command could also be used, but this does not emphasize the essential
properties of orthogonality.

SECTION 6.3 Orthogonal Projections

The orthogonal projection of a vector onto a single vector was described in the Maple Note for
Section 6.2. The orthogonal projection onto the set spanned by an orthogonal set of vectors
is the sum of the one-dimensional projections. Another way to construct this projection is to
normalize the orthogonal vectors, place these orthonormal vectors in the columns of a matrix U,
and apply Theorem 10. For instance, if {y1,y2,y3s} is an orthogonal set of nonzero vectors,
then the matrix U defined by the Maple command:

> U := augment( y1/norm(y1,2),

> y2/norm(y2,2),

> y3/norm(y3,2) );
has orthonormal columns. The orthogonal projection of y onto Span{yi,y2,ys} is obtained
with the command:

> evalm( U &* (transpose(U) &* y) );
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SECTION 6.4 The Gram-Schmidt Process, proj, and gs

If A has only two linearly independent columns, then the Gram-Schmidt process is:

> vl := col(A,1);

> v2 := evalm({ col(4,?2)

> - innerprod(col(4,2),v1)/innerprod(vi,vi) * vi );
If A has three columns, add the command:

> v3 := evalm( col(A,3)

> - innerprod(col(4,3),v1)/innerprod(vi,vl) * vi

> - innerprod(col(A,3),v2)/innerprod(v2,v2) * v2 );
The generalization to larger matrices should now be apparent.

Notice that Maple commands in the form

> evalm( innerprod(y,u)/innerprod(u,u) * u );
provide the orthogonal projection of a vector y onto a vector u. A simpler, but less illustrative,
alternative is to use the proj command from the laylinalg package. The syntax is:

> proj( y, convert(u,matrix) );
After you are familiar with the Gram-Schmidt process, use the command proj( x, V ); to
compute the projection of a vector x onto the subspace spanned by the columns of a matrix V.
For example:

> v2 := evalm( col(A,2) - proj( col(A,2), augment(vi) ) );

> v3 := evalm( col(A,3) - proj( col(A,3), augment(vi,v2) ) );
Although you should construct the QR decomposition of a matrix A using the approach in
the text, you can check your construction of the matrix @ with the command Q := gs(A);.
The gs command from the laylinalg package provides an even faster method of applying the
Gram-Schmidt process. The syntax is simply: gs(A);. After you are very familiar with the
Gram-Schmidt process the use of gs saves time.

SECTION 6.5 linsolve and leastsqrs

When A has linearly dependent columns, you can write the general description of all least-

squares solutions on paper after you row reduce the augmented matrix for the normal equations:
> rref( augment( transpose(A)&*A, transpose(A)&*b ) );

When A has linearly independent columns, a Maple command to solve the normal equations is:
> linsolve( transpose(A)&*A, transpose(A)&*b );

Other approaches to solving the normal equations include the use of rref as described above

and the explicit use of (AT A)~1. For Exercises 15 and 16, see the Numerical Note on page 415

in the text and use linsolve( R, transpose(Q)&xb ); to solve Rx = Q7b.

When A is not square but has linearly independent columns, a common algorithm for solving
the overdetermined system Ax = b is to find Q and R and then solve Rx = Q7 b. You should use
the normal equations or the QR factorization. This will give you a solid conceptual background
for applying least-squares techniques later in your career.

For Exercise 26, the command A := stackmatrix( A1, A2 ); creates the (partitioned)
matrix whose top block is 4; and bottom block is As. Of course, each block must have the
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same number of columns. (See also the Maple Note for Section 2.4 on page MP-10 for more
information on partitioned matrices.)

SECTION 6.6 Computing Regression Coefficients

Maple can be used to construct the design and observation vectors from a list of data points.
For example, for Exercise 1:

> c6s6( 1 ); # load data from laylinalg

>n := vectdim( x ); # number of data points

> X := augment( vector(n,1), x ); # design matrix
The least squares solution to X3 =y as described in the Maple Note for Section 6.5.

SECTION 6.6 leastsqrs, Functions of Vectors, and map

Once you create the design matrix X and the observation vector y, your computation for least-
squares solutions here are the same as those described in the Maple Note for Section 6.5. Here,
A and b are replaced by X and y, respectively. The Maple command

> rref( augment( transpose(X)&*X, transpose(X)&*y ) );
leads to the general description of all least-squares solutions. When X has linearly independent
columns, the command

> linsolve( transpose(X)&+*X, transpose(X)&*y );
creates the least-squares solution. In subsequent courses, you may choose simply to use
leastsqrs( X, y );, which also produces all least-squares solutions.

To construct the design matrix for an exercise in this section, you may need Maple’s map
command to apply a function to each element of a vector. If x is a vector and f is a Maple
function, then map( £, x ); is a vector the same size as x whose entries are the result of
applying f to the entries in x. For example, in Exercise 7 the x vector can be created as above
and the vector of the square of each element is x2 := map( u->u"2, x );. The design matrix
is now easily constructed with the use of augment. When f is a built-in Maple function, say
the exponential function exp, the syntax is somewhat simpler: map( exp, x );.

SECTION 6.7 int and Inner Products on C[0, 27|

The Maple command to evaluate the definite integral [ (f fdtisint( £, t=a..b );. To solve
Exercise 28, begin by creating a Maple procedure to compute the inner product of two functions
in C[0, 2~}:

> ip := (f,g) -> int(f*g,t=0..2%Pi);
The inner product procedure, ip, and the four functions py, pi, p2, and p3 can be defined by
executing ¢6s7(28) ;. The Gram—Schmidt process described in the Maple Note for Section 6.4
on page MP-17 is applicable here. For example, the first two steps are:

> q0 := pO;

>ql := p1 - ip(p1,q0)/ip(q0,q0) * qO;
Observe that the only difference between these commands and the ones introduced in Section 6.4

is that innerprod is replaced with the newly-defined inner product ip.
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SECTION 6.8 Graphing Functions

The plot command can be used to plot one or more functions. For example, the two plots in
Figure 3 for Example 4 on page 442 in the text can be created as follows:

>f = t; # define function f

>F3 := Pi - 2*sin(t) - sin(2xt)

> - 2/3*sin(3*t); # 3rd-order Fourier approx
> plot( [f,F3], t=0..2*%Pi ); # Figure 3 (a)

> F4 := F3 -~ 2/4xsin(4xt); # 4th-order Fourier approx
> plot( [f,F4], t=0..2%Pi ); # Figure 3 (b)

The Maple Note for Section 4.1 on page MP-11 contains additional information about Maple’s
plot command.

SECTION 7.1 Orthogonal Diagonalization

Use the eigenvalues and nulbasis commands to find the eigenvalues and corresponding eigen-
vectors as in Section 5.3 on page MP-14. If you encounter a two-dimensional eigenspace, with
a basis {v1, va}, use the command

> v2 := evalm( v2 - innerprod(v2,vl)/innerprod(vi,vl) * vi );
or

> v2 := evalm( v2 - proj(v2,augment(v1)) );
to make the two eigenvectors orthogonal. See the Maple Note for Section 6.4 on page MP-17.
After you normalize the vectors and create P, check whether PT P = [ to verify that P is indeed
an orthogonal matrix.

SECTION 7.4 The Singular Value Decomposition

The singular value decomposition of a matrix A is constructed from the orthogonal diagonal-
ization of AT A. The orthogonal diagonalization of a matrix is discussed in the Maple Note
for Section 7.1 on page MP-20. Note that the eigenvalues of A7 A may not be sorted in de-
creasing order. You may need to reorder some of the information from the orthogonal diag-
onalization when creating the diagonal matrix D and matrix of right singular vectors V. For
example, if ATA is a 3 x 3 matrix and lambda is a list of the eigenvalues of AT A with, say,
lambda[3] > lambda[1] > lambda[2], then the command

> Sigma := diag( seq( sqrt(lambdalil), i=[3,1,2] ) );
creates the diagonal matrix of singular values of A. Note that ¥ must have the same dimensions
as A; the extend command can be used to add one or more rows or columns of zeros to the
diagonal matrix created above. For example,

> Sigma := extend( Sigma, 1, 0, 0 );
adds one row of zeros to the bottom of the diagonal matrix. The matrix V would then be
created by:

> V := augment( seq( col(P,i), i=[3,1,2] ) );
The matrix of left singular vectors, U, can be formed by normalizing the nonzero columns of the
product AV. If U is not square, the missing columns must be chosen to form an orthonormal
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basis for Nul AT. (See Figure 4 on page 479 in the text.) The command
> GramSchmidt( nullspace( transpose(A) ), normalized );
produces this orthonormal basis. Thus, the square matrix U defined by
> U := augment( U, op(GramSchmidt( nullspace( transpose(4) ),
> normalized )) );

This construction helps you to think about the fundamental properties of the singular value
decomposition. There are two additional Maple commands that can be used to directly obtain
information about the singular values of a matrix. The singularvals command returns the
singular values of A as a list but does not provide any information about the singular vectors.
The Svd command computes floating-point approximations to the singular values and vectors
of a numeric matrix A. The command

> SV := evalf( Svd( A, U, V) );
returns the singular values in the table SV. The matrices U and V contain the right and left
singular vectors, respectively. To create the diagonal matrix ¥ from the table of singular values,
use the command:

> Sigma := diag( SV[i] $ i=1..vectdim(SV) );

SECTION 7.5 Computing Principal Components

The p-dimensional vector containing the mean of each row of a p x N matrix X can be created

with the command:
> Rmean := vector([ seq( add( x, x=convert(row(X,i),list) )

> / coldim(X), i=1..rowdin(X) ) 1);
The p x N matrix containing IV copies of the row averages is obtained with:
> augment( Rmean $ coldim(X) );
Thus, to convert the data in X into mean-deviation form, use
> B := evalm( X - augment( Rmean $ coldim(X) ) );
The sample covariance matrix is produced by:
> S := evalm( B &* transpose(B) / (coldim(X)-1) );
The principal component analysis is completed by performing a singular value decomposition
on the matrix A = ﬁBT. (See the Numerical Note at the end of Section 7.5 of the text.)
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general commands sqrt, MP-20
* (multiplication, scalar), MP-8 Svd, MP-21
+ (plus), MP-8 with, MP-1

- (minus), MP-8

-> (arrow operator), MP-19

.. (range), MP-8

:= (assignment), MP-5

= (equality), MP-5

7, see help

% (history operator), MP-5, MP-7

&* (multiplication, matrix), MP-6, MP-8

"~ (power), MP-8

add, MP-12, MP-13, MP-21

convert, MP-7, MP-18, MP-21

DEplot (DEtools package), MP-16

diff, MP-16

Digits, MP-5, MP-8

display (plots package), MP-15

evalf, MP-7, MP-21

evalm, MP-4, MP-6 to MP-8

float, MP-7

for..do..end do (repetition statement),
MP-8, MP-15

help, MP-3

In (imaginary part), MP-15

int, MP-19

ip, MP-19

laylinalg, MP-3

libname, MP-1

linalg, MP-3

LinearAlgebra, MP-3

map, MP-19

mul, MP-11

op, MP-14

Pi, MP-11

plot, MP-11, MP-14, MP-15, MP-20

rational, MP-7

Re (real part), MP-15

seq, MP-14, MP-20, MP-21

solve, MP-13

MP-22

laylinalg package, MP-1, MP-3, MP-4

bgauss, MP-7, MP-9

gauss, MP-3, MP-7, MP-9 to MP-11,
MP-13

gs, MP-18

nulbasis, MP-13 to MP-15, MP-20

polyroots, MP-13

proj, MP-18, MP-20

randomint, MP-9, MP-12, MP-13

replace, MP-4, MP-5

scale, MP-4, MP-7, MP-9

swap, MP-4, MP-5, MP-7, MP-9, MP-11,
MP-13

linalg package, MP-1, MP-3, MP-4

addrow, MP-4, MP-5

augment, MP-6 to MP-10, MP-12, MP-14,
MP-17 to MP-21

blockmatrix, MP-10

charpoly, MP-13, MP-14

col, MP-8 MP-18, MP-20

coldim, MP-8, MP-21

concat, MP-10

cond, MP-9

delcols, MP-10

delrows, MP-10

det, MP-11

diag, MP-2, MP-9, MP-10, MP-13, MP-14,
MP-20, MP-21

eigenvalues, MP-13, MP-14, MP-20

eigenvectors, MP-14

entermatrix, MP-3

extend, MP-10, MP-20

genmatrix, MP-12

GramSchmidt, MP-21

hilbert, MP-9

innerprod, MP-8, MP-9, MP-18 to MP-20
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inverse, MP-9

iszero, MP-14

leastsqrs, MP-19

linsolve, MP-11, MP-12, MP-16, MP-18,
MP-19

LUdeconp, MP-10

matrix, MP-2, MP-7, MP-9

minor, MP-10

mulrow, MP-4

norm, MP-16, MP-17

nullspace, MP-21

orthog, MP-17

randvector, MP-9

rank, MP-11, MP-12

row, MP-8

rowdim, MP-8, MP-21

rref, MP-11 to MP-13, MP-18, MP-19

singularvals, MP-21

stackmatrix, MP-8, MP-10, MP-18

submatrix, MP-8, MP-10

swaprow, MP-4

transpose, MP-8 MP-17 to MP-19, MP-21

vectdim, MP-13, MP-19, MP-21

vector, MP-6, MP-7, MP-16, MP-21
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Computer Algebra System

GETTING STARTED WITH MATHEMATICA

Using Mathematica with Linear Algebra and Its Applications

To use Mathematica for your homework in this course, you will need additional Mathematica files
which were created specifically for your text. At some schools, the campus-wide version of Math-
ematica already has these files available on some or all computers. Ask your instructor. If you
have your own copy of Mathematica at home, you will need to download the additional Mathemat-
ica files off the Web. To do this, go to www.laylinalgebra.com and follow the instructions there
for downloading Mathematica files. One of the extracted files, LayFunctions.m, contains addi-
tional Mathematica commands needed in this course. We will refer to this file as the LayFunctions
package. The other downloaded files contain selected exercise data for the text. In order for the
LayFunctions package to work properly, you must create a new folder called LayData (be sure to
spell this exactly as it appears here with a capital L and a capital D) inside the Mathematica folder
called ExtraPackages and then place LayFunctions.m inside this folder. For Mathematica 3.0, the
path to ExtraPackages is

Wolfram Research / Mathematica / 3.0 / AddOns / ExtraPackages

(If you have a later version of Mathematica, the path to ExtraPackages is the same except 3.0 is
replaced by the version number of your copy of Mathematica.)

Mathematica Notebooks

The electronic data downloaded from the web correspond to selected exercises in Linear Algebra
and Its Applications. These files are interactive documents called notebooks and each of these
notebooks has a name of the form C(chapter#)S(section#).nb or C(chapter#)Ssuppl.nb. For
example, the notebook C253.nb contains electronic data for selected exercises in Section 3 of Chap-
ter 2 and C2Ssuppl.nb contains electronic data corresponding to the Supplementary Exercises at the
end of Chapter 2.

Each notebook is divided up into a sequence of individual units called cells. Each cell, except
for the cell containing the title, has a corresponding cell bracket appearing in the right margin of the
notebook. The first cell contains the title of the notebook. The second cell in the notebook contains
instructions for working with the palette appearing in the third cell. A palette is similar to a set
of calculator buttons, providing you with shortcuts to typing in commands from the keyboard. To
activate the palette, follow the instructions appearing in the second cell.

i . . MM-1
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The remaining cells in the notebook contain selected data for the homework exercises followed
by a final cell group containing an initialization cell. The initialization cell has been deliberately
placed out of the way at the end of the notebook because it will automatically be evaluated for you
when you begin working with the notebook. You do not need to do anything with this cell.

For the purposes of documentation, the contents of the initialization cell are briefly described
here, but it is not necessary than you understand this information and therefore feel free to skip the
remainder of this paragraph if you like. The initialization cell contains the following five commands
(separated by semicolons):

Off[General::spelll];
Needs[“LayData‘LayFunctions™];

Needs[ “LinearAlgebra‘GaussianElimination™];
Needs| “LinearAlgebra‘MatrixManipulation"|;
$Post := If[MatrixQ[#], MatrixForm[#], #] &;

The first command in the initialization cell instructs Mathematica to ignore displaying particular
types of warning messages. The next three lines in the initialization cell are Needs commands that
instruct Mathematica to load additional commands into memory. The first Needs instruction loads
all of the commands found in the LayFunctions package. This package was created specifically
for Linear Algebra and Its Applications. The remaining two Needs commands in the initialization
cell instruct Mathematica to load all commands found in the GaussianElimination and MatrixMa-
nipulation packages. We will refer to the commands in these three packages as standard add-on
commands since they are part of the standard Mathematica software package. Since Mathematica
does not display matrices in the standard matrix form you find in your textbook, a final command
was added to the initialization cell instructing Mathematica to output all matrices in matrix form.
(This command involves the advanced concept of pure functions and it is not necessary to under-
stand how this command works.)

Mathematica Representation of a Matrix

Most of the data in the electronic notebooks for Linear Algebra and Its Applications consists of
matrices. The Mathematica representation of the matrix

ail ai12 cee Qln
azr a2 ... Qin
aml Am2 ... Amn
is { { a11,a12,...,01n }, { @21,a20,...,a20 }s ..., { @m1,@m2,. ... amn } }. Each set of objects

contained in brackets {. ..} is called a /ist and therefore a matrix is just a list of lists.
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Using Notebook Data

To illustrate how to work with the electronic data found in the notebooks, start the Mathematica
program and then open the notebook C253.nb. After the palette cell, you will see a cell containing
the text Exercise 1. This cell is called a closed cell because its contents are hidden from view. To
see the contents of the cell (i.e. to open the cell), double click on right cell bracket associated with
this cell. After the cell is opened, you will see a text cell with the phrase Think before you compute.
This is just some general advice telling you to study the problem before solving it with Mathematica.
The next cell contains the assignment statement A = { { 5, 7 } , { -3, -6 } }. To execute this
assignment statement, click anywhere inside the cell containing the assignment statement and then
press Shift+Enter (on some computer platforms, pressing Return or Enter will also work). When
you do this, a window with the title Ask Init will appear asking you the question Do you want to
automatically evaluate the initialization cells in the notebook “S2C3.nb"7?. Always choose Yes
so that Mathematica automatically executes the commands in the initialization cell. A label In[6]:=
will then appear in the assignment statement and a output cell beginning with Out[6]:= will appear
displaying the matrix used in the assignment statement.

Inf6;)=A={{57},{-3,-6, }}

Out[6]//MatrixForm= ( _g _g )

The labels In[6]:= and Out[6]= indicate that five commands (contained in the initialization cell)
were automatically executed prior to this input statement. Throughout these notes, dialogs with
Mathematica are shown with the In[n}:= and Out[n]= labels. The first input statement in each
section of these notes will usually be In[1]:= for the sake of simplicity, even though the first input
number that you see will be larger.

Typically you will only be working with a small number of exercises in a given notebook. You
can work problems within a notebook in any order, skipping any homework data cells you want. If
you wish to print out the notebook after you complete your work, first delete all of the cells you
skipped to save paper. To do this, click on all the brackets corresponding to exercises you skipped
while holding down the Ctrl key and then press Delete.

Creating Matrices with Mathematica

When working with one of the notebooks, you may on occasion want to enter your own data into
the notebook. For instance, to create your own matrix, you first need to form a new input cell. To do
this, use your mouse and click between the two cells where you want to put your matrix and a new
cell will appear as soon as you begin entering information in from the keyboard or palette. Suppose

1 2 3 4
you want to define A to be the matrix | 5 6 7 8 |. One way to do this is to enter the
9 10 11 12

following assignment statement.
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In[1l:=A={{1,2,34},{56,7.8},{9 10, 11,12 } }

1 2 3 4
Out[1l]//MatrixForm =| 5 6 7 8
9 10 11 12

A semicolon (;) can be placed at the end of an input statement to prevent output from being
displayed.

In[l}:=A={{1,234}, {5678},{910,11,12} };

The entry in the ith row and jth column of matrix A is accessed by entering A[[i, j]]. (Comments
appearing in (*...*) are used to help you better understand the input and output statements and they
ignored by Mathematica.)

In[2]:=A[[ 2, 3]] (* Display the entry in row 2 and column 3 of A *)
Out[2):=7 (* The corresponding entry in A is displayed *)

A more natural way to enter a matrix is to use the palette. Activate the notebook palette and
then select a location in the notebook where you wish to begin a new cell. Type in A= and then

click on the button in the palette containing . To create another row in the matrix, press

o 0
Ctrl+-Enter. To create another column, press Ctri+, (Ctrl4+-comma). Suppose you have created a
matrix with 3 rows and 4 columns. To enter numbers, click on the box in row 1 and column 1, enter
the first number, and use the Tab key to move from one entry to the next. When finished, press
Shift+Enter. Your notebook might contain lines such as

1 2 3 4 1 2 3 4
in[3;=A = 5 6 7 8 Out[3]//MatrixForm = 5 6 7 8
9 10 11 12 9 10 11 12

Mathematica commands are reserved words that cannot be used in assignment statements. For
example, executing the following input statement results in an error message stating that N is a
protected symbol.

In[4):=N = ( s )

Set::wrsym: Symbol N is Protected.

Out[4]//MatrixForm = ( :1)) i >

One way to avoid this problem is to use a lower case letter n instead of a capital N in the
assignment statement. This is due to the fact that all Mathematica commands and functions begin
with a capital letter and therefore a word beginning with a lower case letter will never result in a
protected symbol error. Another way around this problem is to use an entire word (starting with a
lower case letter) for the name of a matrix in an assignment statement. For example, we let matN
represent the matrix in the following assignment statement (the output is not displayed here). Any
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such word created by the user may end with a digit (0—9), but cannot begin with a digit and no
spaces can occur in the word.

In[5):=matN = ( ; : )

It is not always necessary to assign a name to a matrix since Mathematica automatically attaches
the name QOut[n] to the matrix entered immediately after the In[n]:= prompt. For example, the name
Out[6] is assigned to the matrix in the output of the following assignment statement.

1 2 . 1 2
In[6]:= ( 3 4 ) Out[6]//MatrixForm = ( 3 4 )
The matrix is retrieved simply by typing and executing %6, which is short for Out[6].

In[7]:=%6  Out[7]//MatrixForm = ( zl)) Z >

Basiclnput Palette

On some homework exercises, you will find it useful to use the Basiclnput palette which contains
additional shortcuts for computing powers, square roots and so forth. To open this palette, choose
File from the menu, then Palettes followed by Basiclnput. Drag Basiclnput to the side of the
notebook window and change the size of your notebook window if necessary so that the palette and
the notebook appear separately in two nonoverlapping windows.

Online Help

The question mark (?7) is used to obtain a precise definition of a given Mathematica command.
For example, by executing 7Pi, a brief description of the Pi command will be displayed. For more
information about Mathematica commands, consult the Help menu.

STUDY GUIDE NOTES

SECTION 1.1 Row Operations

The LayFunctions package contains the following commands that perform elementary row opera-
tions on a matrix, denoted here by M:

ReplaceRow[ M, r, m, s ] (* Replaces row r of M by row r plus m times row s. *)
Swap[ M, r, s ] (* Interchanges rows r and s of the matrix M. *)
Scale[ M, r, ¢ ] (* Multiplies row r of M by a scalar c. *)
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The letters r and s, are integers while m and ¢ can be any scalar expressions. Any of these variables
can be a symbolic expression as well.

To illustrate how these commands are used, open C1S1.nb and activate the notebook palette.
Then open the cell for Exercise 11 and execute the assignment statement (be sure to choose Yes in
the Ask Init window). You will then see input and output statements.

In6l:=M={{0,1,4 51} {135 2}, {3,776}

01 4 -5
Out[6]//MatrixForm = | 1 3 5 -2
3 77 6

Suppose you want to begin the row reduction process by switching rows 1 and 2 of M. Then
execute the command Swap[M, 1, 2] or Swap[%6, 1, 2]. Then the matrix, whose rows have been
switched, appears in Out[7]. Next, ReplaceRow| %7, 3, -3 , 1] can be used in the next step of row
reduction and so on.

Note: For simple problems, the multiple m you need in ReplaceRow([%n, r, m, s] is usually a
small integer or fraction that can be computed in your head. In general, m may not be so easy to
compute mentally. The next two paragraphs describe how to handle such cases.

For a given matrix appearing in Out[n], %n[[s, c]] is the entry in row s and column ¢ of this
matrix. Now suppose you want to use the entry in row s and column c¢ of the matrix appearing in
Out([8] to change %8|[[r, c]] to 0. Enter the commands (where / is the division key)

In[9):=m = —%8[[ r, c]] / %8[[s, c]];  (* The multiple of row s to be added to row r *)
In[10]:=ReplaceRow[ %8, r, m, s | (* Add m times row s to row r *)
Or, just use one command: M=ReplaceRow|[ %8, r, —%8[[ r, c ]|/ %8[[s. c]]. s ].

Exact and Approximate Calculations

Mathematica will perform exact calculations as long as all the numbers used in your work are inte-
gers or rational numbers not containing any decimal points. For example, 4/9 is an exact number,
but 4.0/9 or 4./9 are approximate numbers which Mathematica assumes are only accurate to a fixed
number of decimal places.

If you perform a calculation involving both an approximate number and an exact number, then
the result will be an approximate number. For example, Mathematica interprets the sum 2 4 1. to
equal the approximate number 3. (containing a decimal point).

At first it may seem that you would always want to perform exact calculations in order to obtain
exact answers. But it takes Mathematica more computer time to perform exact calculations and
when performing computations with large matrices, results may be slow in coming if you use exact
numbers. In other instances, Mathematica will not be able to perform exact calculations. Therefore
at times it will be necessary to enter approximate numbers to obtain approximate results.
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Symbolic Elementary Row Operations

Mathematica works with variables and unspecified parameters as in the following example.

'n[lllzz( CCL Z ) Out[ll]//MatrixForm:( Z Z )

In[12]):=ReplaceRow[ %11, 2, —c/a, 1] Out[lQ]//MatrixFormz( 8 __bcb+d )
a

SECTION 1.3 Transpose

The transpose of a given matrix A is a matrix whose ith column is the ith row of A. The command
1 3 5

7 0 8 ) Then executing

Transpose[A] creates this matrix. For example, suppose A = (

1
Transpose[A] results in an outputof | 3 0
5 8

Representation of a Vector

U1
V2
A vector v which is either represented as ( v1, v2, ..., U, ) OF as . in the textbook, can
Un
either be represented by a list { v1, va, ..., vp }orasthe matrix { { v1}, {v2}, ..., {vn } }in
Mathematica. We also refer to { vy, v, ..., vp } as being in row form. Executing the command
Transpose[ { v } Jturns v = { v1, w2, ..., vy }into {{ w1}, {we}, ..., {vn}}

Constructing a Matrix

For matrix A and vector b, each with the same number of rows, Augment[ A, b ] forms the aug-
mented matrix [A b]. Consider the following example. (The semicolon appearing in In[1] allows
you to enter multiple commands into a single input cell and the output corresponding to the com-
mand preceding each semicolon is not displayed.)

In[l;=A={{a b c} {def}}ib={{g},{h}};Augment[A b]

. _{(a b c g
Out[1])//MatrixForm= ( de fh )
The command TakeColumns[ A, {i} ] 1 forms column ¢ of A. The data for Exercise 25, for
example, consists of a matrix A, the vector b and then three TakeColumns commands which are

used to create al, a2, a3, namely columns 1, 2, and 3 of A, respectively. Executing the command
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Augment[ al, a2, a3, b ] creates the matrix [a; ap ag b |. The same matrix can be created using
Augment[ A, b].

Exercises 11-14 and 25-28, and 31 can be solved using the commands ReplaceRow, Swap, and
(occasionally) Scale.

SECTION 1.4 Gauss and BGauss

To solve Ax = b, row reduce the matrix M = [A b]. For example, the assignment statement
b={ {0}, {-5}, {7} } creates a column vector b with entries 0, —5 and 7 and the command
Augment[A b] can be used to form M provided that A contains exactly three rows. The commands
Gauss, BGauss and Scale speed up the row reduction process. Gauss[A, r] uses the leading entry
in row r of A as a pivot, and uses row replacements to create zeros in the pivot column below this
pivot entry. In the backward phase of row reduction, use BGauss[A, r], which selects the leading
entry in row 7 of A as a pivot, and creates zeros in the pivot column above the pivot. Use Scale to
create leading 1’s in the pivot positions.

Multiplying a Matrix and a Vector

A period (.) is used to multiply a matrix and a vector.

-1
01 2 3 6 . 36
In[l]:=A = < 55 8 7 ) r = 0 ; Ax  Out[l]=//MatrixForm= < 95 >
10

Mathematica also allows multiplication of a matrix and a vector when the vector is in row form .

0123\  _ , ] _
In[2]:=4 = (5 5 g 7),2: ={ —-1,6,0,10 }; Ax Out[2] = {36, 95 }

SECTION 1.5 The Zero Matrix

The command ZeroMatrix[m, n] creates a m x n matrix of zeros. The following example demon-
strates how to set up an augmented matrix M corresponding to Ax = 0 using the Augment com-
mand.
1 2 .
In[1]:=A = ( 5 4 ); M = Augment[ A, ZeroMatrix[2, 1] ];

Then use Gauss, Swap, BGauss, and Scale to row reduce M completely.
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SECTION 1.6 Rational Format

Chemical equation-balance problems are studied best using exact or symbolic arithmetic, because
the balance variables must be whole numbers (with no round-off allowed). Mathematica will display
the exact (rational) value of every entry during row reduction as long as each number you enter is
an integer or rational number not containing a decimal point (.).

Once you find a rational solution of a chemical equation-balance problem, you can multiply the
entries in the solution by a suitable integer to produce a solution that involves only whole numbers.

SECTION 1.10 Generating a Sequence
a

b ) With Mathe-

Recall that we can identify a geometric point (a, b) with the column vector (

matica, the ordered pair (a, b) is represented by { a, b }.
The data for Exercise 13, Section 1.10, is used here to demonstrate how to generate a sequence.
Open C1S10.nb and then open the cell corresponding to Exercise 13. Execute the input cell.

In[1]:= M = {{ .95, .03 },{ .05, .97 }}; z0 = { 600000, 400000 };
»0 = { 350000, 650000 };

Suppose you want to create the first 20 terms of the sequence {x;, X2, X3, ...} using the linear
difference equation X1 = Mx, fork =0, 1, 2, ..., where x¢9 = x0. You can do this by first
creating a function z satisfying z[k] = x; for k = 0, 1, 2, ... . When defining a new function
with Mathematica, it is good practice to first clear out any previously defined values of the function
using the Clear command as demonstrated in the first part of In[2] below. Next, the assignment
statement x[0]:=x0 defines the value of z[0] to be x0 and then z[1], z[2], x[3], ... are recursively
defined by letting x[k_]:=M.x[k-1]. The underscore immediately following % on the left hand side
of the assignment statement is necessary in order to define & to be a variable and the colon-equals
sign(:=), which is called a delayed equals sign, must be used instead of an equals sign ( = ), when
defining a function recursively

In[2]:=Clear[ x ]; x[ 0] :=x0; x[k-]:=Mx{k-1};
Now that the function z is defined, the value of x,, is retrieved by simply executing z[n].

In[3]:=x[ 100 ] (* For example, determine the value of x1gp *)

Out[3]={ 375054., 624946. } (* The value of x;qo is displayed in row form *)
Notice that Mathematica displays 6 significant digits for each entry in Out[3]. To see n digits of
precision, replace x[100] with N[ x[100], n ] in In[3].

Executing Table[ x[k], {k, 1, n} ]//TableForm generates and displays the values of

z[1],z[2],...,z[n] in a table where z[k] is displayed horizontally on the kth line of the table (the
output is not displayed here).

In[4]:=Table[ x[k], { k, 1, 20 } ]//TableForm  (* Generates the values of x;, Xz, - - ., X20 *)
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Note that Mathematica notation for evaluating the function x at k is x[k] where square brackets
([-..]) are used instead of the more natural notation of z(k) that is typically seen in mathematics.
Be sure to use square brackets because Mathematica uses round brackets to group terms, but not in
defining or using functions.

SECTION 2.1 Matrix Operations

Matrix addition and subtraction are performed using the plus (+) and minus (—) signs, respectively.
Matrix multiplication is performed using a period (.). To compute A* for an n x n matrix A, as
defined on page 114 in the textbook, execute x1 = MatrixPower| A, k ]. Computing A"k returns
a matrix whose entries are the kth powers of the corresponding entries in A. Multiplying a scalar ¢
and matrix A is performed by entering ¢ A, leaving a space (or asterisk (x)) between the ¢ and the
A. This product can also be produced using an asterisk (x) or parenthesis by executing ¢ * A, ¢(A)
or (¢)A. To compute AT F, enter Transpose[ A ].F . Here are a few other examples (the output is
not displayed):

1 2 3 5 0 =3 2 3
'”[1]::’4:(0—1 4);B:<87 5>;F:<1 o>;
In[2]:=A+B  In[3]:=A-B  In[4]:=F.A  In[5]:=5 A  In[6]:=MatrixPower[ F, 25 ]

If u and v are vectors are in row form and have the same size, then u.v represents their inner
product, and the outer product u - vT is computed with Transpose[ { u } |.{v } .

Special Matrices

Mathematica has commands that construct many special matrices. For example,

In[7]:=ZeroMatrix|[ 5, 6 | (* A5 x 6 matrix of zeros *)

In[8]:=IdentityMatrix[6] (* The 6 x 6 identity matrix *)
In[9]:=DiagonalMatrix[{3, 5, 7, 3}] (* A 4 x 4 diagonal matrix *)

In[10]:=RandInt{ 6 ] (* A 6 x 6 matrix with random integer entries *)
In[11]:=RandInt[ 6, 4 ] (* A 6 x 4 matrix consisting of random integer entries *)

Place the question mark (?) in front of any command to learn all the features of the command. For
example, execute ?RandInt to learn more about the RandInt command.

SECTION 2.2 IdentityMatrix

The n X n identity matrix is denoted by IdentityMatrix[n]. If A is 5 x 5, then the command
M=Augment| A, IdentityMatrix[ n ] ] creates the augmented matrix [A I|. Use Gauss, BGauss
and Scale (introduced in Section 1.4) to reduce [A I]. See page 1-17 in the Study Guide for more
details on finding an inverse.
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Mathematica has other commands that row reduce matrices, invert matrices, and solve equations
Ax = b. They will be introduced later, after you have studied the concepts and algorithms in this
section.

SECTION 2.3 Inverse

Determining whether a matrix is invertible is not always a simple matter. A fast and fairly reliable
method is to use the command Inverse[A], which computes the inverse of A. If all the entries in
A are in exact form (i.e., none of the entries in A contain decimal points) and if A is singular
(noninvertible), then a message is displayed stating that A is singular. If at least one of the entries
in A contains a decimal point, a warning message is given if A is singular or almost singular. In the
latter case, Mathematica might not be able to find the inverse. But if you first replace each entry in
A with its exact, rational equivalent, then the inverse is computed and displayed, even if it is almost
singular.

Note that for large matrices, computing the inverse of A with Mathematica will be very slow if
all the entries in A are exact, rational numbers. If you have already created a matrix A whose entries
are exact integers or exact rational numbers, then the assignment statement A=N[A] or A=A//N
will convert all entries in A to approximate real numbers. Mathematica will then be able to compute
the approximate value the inverse of A much more quickly.

For Exercises 41-44, the command ConditionNumber[A] computes the condition number of a
square matrix A, using what are called the singular values of A (discussed in Section 7.4). All
of the entries in A must be approximate real numbers containing a decimal point. To perform the
experiment described in Exercise 42, be sure the A contains approximate real numbers and then
execute the following Mathematica instructions

In[1]:=x=RandInt[4,1]; b=A.x; x1=Inverse[A].b; x-x1

Since A consists of approximate real numbers, the remaining computations will also result in ap-
proximate numbers since computations involving exact and approximate numbers always result in
approximate numbers. Displaying the value of x — x1 is the best way to compare z and z1. You
can execute the assignment statement again to repeat the experiment.

SECTION 2.4 Partitioned Matrices

The command A[[ {%;, 2, ..., ir}, {j1, J2,-.-, Js} || creates a r x s submatrix of A whose

entries consist of the numbers contained in rows %;, ¢2, ..., i, and in columns ji, ja,..., Js.
The BlockMatrix command creates partitioned matrices. For instance, if A, B, F, G, H, and J

are matrices having appropriate sizes, the command BlockMatrix[{{A,B,F},{G,H,J}}] creates the

la i A B F
rgermatrix |~ o 5 ).
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SECTION 2.5 LU Factorization

Row reduction of A using the command Gauss will produce the intermediate matrices needed for
an LU factorization of A. You can try this on the matrix in Example 2, stored as Exercise 33 in
C2S5.nb. The matrices in (5) on page 145 in the text are produced by the following commands
(assuming we have created an assignment statement for matrix A in statement In[1]).

In[2]:=Gauss[A, 1] In[3]:=Gauss[%2, 2]  In[4]:=Gauss[%3, 3]

You can copy the information from the screen onto your paper, and divide by the pivot entries
to produce L as in the text. For most text exercises, the pivots are integers and so are displayed
accurately.

To construct a permuted LU factorization, use Gauss[U,r,v], where r is the row index of the pivot
and v is a row vector that lists the rows to be changed by replacement operations. For example, if
A has 5 rows and the first pivot is in row 4, use

In[5]:= Gauss|A, 4, {1, 2, 3, 5}]
If the next pivot is in row 2, use
In[6]:=Gauss[%5, 2, {1, 3, 5}]

To build the permuted matrix L, use full columns from A or the partially reduced %6, divided by
the pivots. Then change entries to zero if they are in a row already selected as a “pivot row”.

The add-on package GaussianElimination in the LinearAlgebra folder contains a command LU-
Factor that produces a permuted LU factorization of any square matrix A. Another command in
the package, LUSolve, uses LUFactor to solve Ax = b. These commands become useful when you
need to solve Ax = b repeatedly with a different b each time. For details, consult the Mathematica
documentation.

When A is invertible, an efficient way to solve Ax = b with Mathematica is to use the command
LinearSolve[A, b]. Mathematica proceeds to compute a permuted LU factorization of A and then
uses L and U to compute x. The alternative command x = Inverse[A].b is less efficient and can be
less accurate.

SECTION 2.8 RowReduce and Rank

The command RowReduce[A] produces the reduced row echelon form of A. From this matrix, a
basis for the column space of A is obtained and the homogeneous equations describing the null
space of A are formed by appending an extra column of zeros to the matrix.

Mathematica does not contain a Rank command. If the entries of A are all exact, rational
numbers, RowReduce[A] reveals the rank of A, since Mathematica performs exact arithmetic in
finding the reduced row echelon form of A. If at least one of the entries of A contains a decimal
point, then roundoff error or an extremely small pivot entry can produce an incorrect echelon form.
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SECTION 3.2 Computing Determinants

To compute z", execute x"n or use (07 in the Basiclnput palette to enter ™ in a more natural way.
To compute det A, define A and then repeatedly use Gauss|[%n, r} and Swap[%n, r, s] (where n
is chosen so that %n refers to the output of the previous step of row reduction) as needed to reduce
A to an echelon form.
Now suppose the echelon form is obtained on line Out[10]. On line In[11], let U = %10. The
command Product[ f[i], {i, 1, n} | computes the product f[1]f[2] - - - f[n]. Thus, if k represents the
number of row swaps used in the reduction of A to U, then the determinant of A is given by

In[12]:=(—1)"k Product[ U[[i, i]], { i, 1, Length[U]} ]
A space between (—1)* and Product indicates scalar multiplication in Mathematica. An asterisk
() or parenthesis can also be used for scalar multiplication.

In[12]:=(—1)"k * Product| U[[i, ]}, { i, 1, Length[U]} ]

In[12):=(—1)"k(Product[ U[[i, i]], { i, 1, Length[U]} )
You can use the command Det[A] to check your work, but the longer sequence of commands is
preferred - at this time - because it emphasizes the process of computing determinants.

SECTION 4.1 Graphing Functions

You can use the following commands to define and plot the function f given in Exercise 37.
In[1]:=f[t_]):=1 - 8 Cos[t]?> + 8 Cos[t];
In[2]:=Plot][ f[t].{t, 0, 27} ]

SECTION 4.3 RowReduce and LinearEquationsToMatrices

The command RowReduce[A] produces the reduced row echelon form of A. From that you can
write a basis for Col A or write the homogeneous equations that describe Nul A. (Don’t forget that
A is a coefficient matrix, not an augmented matrix.)

Two consecutive equal signs, == , represent an equal sign appearing in an equation. For Exer-
cise 37 in Section 4.3, an assignment statement is used to let eq represent equation (5), where c1,
¢2, c3, and c4 are constants representing ci, ¢z, ¢3, and ¢4, respectively.

In[1}:=eq = c1 t + c2 Sin[t] + c3 Cos[2 t] + ¢4 Sin[t] Cos[t] == 0

To generate a system of four equations and 4 unknowns, use the Table command to replace equation
(5) with the values of £ = 0, 1, 2, and 3 (Out[2] is not displayed).

In[2]:=Table[ eq, { t, 0, 3 } ]

Suppose eqlist is a list of linear equations containing unknowns z1, Z3, . . ., T,. The command
LinearEquationsToMatrices| eqlist, { x1, x2, ..., xn } ] returns the list { A, b }, where A and
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b form the matrix equation Ax = b equivalent to eqlist. The coefficient matrix A and vector b,
corresponding to set of equations given in Out[2], are found using In[3] (Out[3] is not displayed).
In[3]:={ A, b } = LinearEquationsToMatrices[ %2, { cl, c2, 3, c4 } ]
For Exercise 34: If t is a vector and & is a positive integer, then Cos[t] "k is a vector of the same
size as t, formed entry wise from t using the function cos*( ).

SECTION 4.4 LinearSolve

The command LinearSolve[A, b] solves Ax = b where 4 is m x n. If Ax = b is inconsistent, then
a message is returned stating that a solution does not exist. If more than one solution exists, one
possible solution is returned. LinearSolve has additional capabilities that will be introduced later,
after you have the appropriate background.

SECTION 4.6 Rank and Random Matrices

Mathematica does not contain a Rank command. If the entries of A are in exact, rational form,
RowReduce[A] reveals the rank of A, since Mathematica performs exact arithmetic in finding the
reduced row echelon form of A. If at least one of the entries of A contains a decimal point, then
roundoff error or an extremely small pivot entry can produce an incorrect echelon form.

The command RandInt[ m, n, r, k ] can be used to create an m x n matrix of rank r containing
random integers between —k and k and RandInt] m, n, r | creates a m x n matrix of rank r with
random integers between —9 and 9.

SECTION 4.7 Change-of-Coordinates Matrix

The notebook C4S7.nb has data for Exercises 7-10 and 17-19 and the vectors are provided in matrix
form. Given vectors ¢, ¢2, by, and by in R?, the command

In[1]:=M = Augment[ c1, ¢2, bl, b2 ]
produces a 2 x 4 matrix whose columns are ci, cg, by, and bg, respectively. (See the note for
Section 1.3 for more information about Augment.) The command RowReduce[M] row reduces M
to the desired form.

SECTION 4.8 Solve

In Exercises 7—16 and 25—28, the coefficients of the polynomial in the auxiliary equation are stored
in row vector form, with coefficients in ascending order. For instance, the polynomial 2 — 25 from
Exercise 15 is represented by p = {-25, 0, 1}.

The Mathematica command PolyRoots[p] produces a row vector whose entries are the roots of
the polynomial described by p.
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SECTION 4.9 RandomStochastic

The command RandomStochastic[ n ] creates a random n x n stochastic matrix P with exact,
rational entries. In Exercise 22, execute the assignment statement P=RandomStochastic[ n ]//N
so that the entries in P are approximate numbers. You can then compute P* with the MatrixPower
command. (The option //N is added because otherwise Mathematica will compute P* using exact
arithmetic which could be very slow.)

Mathematica

See Section 1.10 for information on how to use Mathematica in these exercises.

SECTION 5.1 Finding Eigenvectors

The LayFunctions package contains a command that simplifies your homework by automatically
producing a basis for an eigenspace when you know an eigenvalue. For example, if Aisa 3 x 3
matrix with eigenvalue 7, the command
In[1]:=NulBasis| A — 7 IdentityMatrix[3] ]

produces a matrix whose columns form a basis for the eigenspace corresponding to A = 7. Note the
space before the identity matrix, which indicates multiplication by the number 7. (An asterisk ()
can also be used for scalar multiplication.) In general, ldentityMatrix[k] is the k x k identity matrix,
and NulBasis[C] is a matrix whose columns from a basis for Nul C (the same basis you would get
if you started with the reduced echelon form of A and computed the basis by hand).

For Exercises 37-40, you need the command Eigenvalues[A], which lists the eigenvalues of A.
For example, enter

In[2]:=ev=Eigenvalues[A];

[n[3]:=NulBasis[ A — ev[[2]] IdentityMatrix[3] ]
to compute a basis for the eigenspace corresponding to the second eigenvalue listed in ev, repre-
sented by ev[[2]] (in general, ev[[k]] is the kth number in the list ev).

SECTION 5.2 The Characteristic Polynomial and Plot

To obtain the characteristic polynomial of an n x n matrix A, execute Det[A-\ IdentityMatrix[n]],
leaving a space between A and ldentityMatrix[n] for scalar multiplication (an asterisk () or paren-
thesis can also be used for scalar multiplication). You can use this to check your answers in Exer-
cises 9-14. For example,

In[1]:=Det[A-X ldentityMatrix[5]]
returns the corresponding characteristic polynomial of a 5 x 5 matrix A. To plot the characteristic
polynomial represented by %1 (the output to In[1]), execute

In[2]:=Plot] %1, { A\, a, b } ]
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and the graph will be displayed for values of A ranging from a to b. (The greek letter A can be found
in the palette.) The option PlotStyle—~RGBColor[r, g, b] will add color to your plot. For instance,
RGBColor{1,0,0], RGBColor[0,1,0], RGBColor[0,0,1], RGBColor[1,1,0], and RGBColor{1,.5,0] rep-
resent the colors red, green, blue, yellow and orange respectively. For instance, to plot the curve in
blue, execute Plot[ %1, { A, a, b }, PlotStyle—~RGBColor[1,0,0] ].

For Exercises 28 and 29, use RandInt[4] to create a 4 x 4 matrix with random integer entries.
For Exercise 29, use Gauss and perhaps Swap to create the echelon form without scaling. See the
Mathematica notes for Section 1.4.

To produce graphs of the characteristic polynomials for the matrix A in Exercise 30, first execute
the assignment statement containing the data for Exercise 30 in the notebook C552.nb.

InBl:l=a=32, A={{ —6, 28, 21}, {4, —15, —12}, { —8, a, —25}}
You can then form the characteristic polynomial for A, assign it a name such as p and then plot the
polynomial. The polynomial is assigned the name plotl.

In[4]:=p=Det[A-)\ IdentityMatrix[3]]; plotl = Plot[ p, { A, 0, 3 } ]
Feel free to add color to the plot using the option PlotStyle—RGBColor(r, g, b]. To create the
characteristic polynomial for A when a = 31.9, change the assignment statement in In[3] so that a
equals 31.9 and then reexecute In[3]. Then change the name plot1 to plot2 in In[4] and reexecute
the command to obtain a new plot. In a similar manner, obtain plots plot3, plot4 and plot5 corre-
sponding to the remaining values of a. Show[ plotl, plot2, plot3, plot4, plot5 | will then display
all the graphs on one coordinate system.

SECTION 5.3 Diagonalization and Eigensystem

To practice the diagonalization procedure in this section, you should use NulBasis to produce eigen-
vectors. For Exercises 33-36, enter the command ev=Eigenvalues[A] to provide the eigenvalues.
See the Mathematica notes for Section 5.1.

In later work, you may automate the diagonalization process. The command Eigensystem[A]
finds both eigenvalues and eigenvectors, returning a list of eigenvalues followed by a list of cor-
responding eigenvectors (displayed in row form). Assuming that A has been defined in In[1], the
assignment statement in In[2] below assigns the names evals and evecs to the list of eigenvalues and
eigenvectors, respectively. In this way evecs|[i]] is an eigenvector corresponding to the eigenvalue
evals[[i]] fori = 1,2,...,n. Line In[3] creates the diagonal matrix D (we use the name matD since
D is a reserved Mathematica symbol). Since evecs lists the eigenvectors in row form, the transpose
of this list produces P in In[4]. The command In[5] verifies that the diagonalization is correct. The
//Simplify command is needed to simplify the products. A warning message will occur if matrix P
in not invertible. If A is 4 x 4 or larger and the entries of A are rational numbers, then Mathematica
may not be able to quickly compute the eigenvalues and eigenvectors of A. In this case, the entries
of A should be entered in decimal form.
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In[2]):={evals, evecs} = Eigensystem[A];
In[3]:= matD = DiagonalMatrix[evals];
In[4]:=P = Transpose[evecs|;
In[5]:=A—P.matD.Inverse[P] //Simplify

SECTION 5.5 Complex Eigenvalues, Re and Im

The letter | is a protected Mathematica symbol representing the imaginary number . If A is a
2 x 2 real matrix and if Eigenvalues[A] contains a complex eigenvalue, then you can use NulBasis
to find a corresponding complex eigenvector v. To build a 2 X 2 real matrix P from the real and
imaginary parts of v, use the Mathematica expressions Re[v] and Im[v], respectively. Then compute
C =P 'AP.

SECTION 5.6 Plotting Discrete Trajectories

For a given 2 x 2 matrix A, if xx11 = Axy then the following commands are used to create xy,
fork = 1,2,3,.... As an example, the matrix A and initial vector x0 defined in In[1] are found
in Example 6 in your textbook. The purpose of statement In[2] is to define a function x where x[k]
represents Xi. Statement In[3] uses the Table command to define a list called pts representing x[0]
through x[50]. Then the command ListPlot[pts] points is used plot the points in the zy-plane and
the trajectory is assigned the name trajl. The optional PlotStyle command is added to increase the
size of the displayed points on the screen (without this optional command, the plotted points are
small and barely visible).

In[1}:=A = _81 150 ); x0={0, 2.5};

In[2]:=Clear[x]; x[0] = x0; x[i-] := Ax[i—1];

In[3]:=pts = Table[ x[i], { i, 0, 50 } ]; trajl = ListPlot[ pts, PlotStyle—PointSize[.02] ]
To create another trajectory, repeat the assignment statement on line In[1] with a different value of
x0 and then repeat In[2] and In[3], replacing trajl with traj2 to represent the new trajectory. If neces-
sary, repeat this process to obtain traj3, traj4, . . ., trajn and then execute Show([trajl, traj2,. .. trajn]
to display all the trajectories on a single plot.

For Exercise 17, create x[0] through x[8] representing zq, . . . , zs. Then x[0]{[1]] through x[8]{[1]]
represent the number of juveniles in years 0 through 8, respectively and x[0][[2]] through x{8]{[2]]
represent the number of adults in years 0 through 8, respectively. The following commands will
produce a graph of the juvenile population.

In[4]:=juv = Table[ {i, x[i][[1]]}, {i, 0,8 } ]

In[5]:=ListPlot[ juv, PlotStyle—PointSize[.02] ]

To graph the sum of the two entries in each of x[0] through x[8], execute the following two com-
mands.
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In[6]:=sum = Table[ {i, x[i][[1]]+x[]{[2]]}. {i. 0.8 } ]

In[7]:=ListPlot[ sum, PlotStyle—PointSize[.02] ]
To graph the ratio of juveniles to adults, execute the following two commands, where / is the
division key.

In[8]:=ratio = Table[ {i, x[i}{[1]}/ x[i][{2]]}, { i, O, 8 } |;

In[9]:=ListPlot[ sum, PlotStyle—PointSize[.02] ]

SECTION 5.7 Solutions to Differential Equations

To find the eigenvalues of A, use evals=Eigenvalues[A]. The eigenvectors shown in the text’s an-
swers were produced using commands such as evecs=NulBasis|[A—evals|[1]] |dentityMatrix[3] . If
the eigenvalue evals[[1]] is complex, the corresponding eigenvector v will be complex. The real and
imaginary parts of evecs are Re[evecs] and Im[evecs], respectively.

If you use the command { evals, evecs } = EigenSystem[A], your eigenvectors will be in row
form and they should be multiples of those in the text’s answers (when the eigenspaces are one-
dimensional). To test whether a vector v is a multiple of a vector w, compute v/w. This divides
each entry in v by the corresponding entry in w. If v is a multiple of w, the result of v/w should
be a vector whose entries are all equal.

SECTION 5.8 The Power Method

The steps for estimating the dominant eigenvalue appear on page 365 in your textbook. The func-
tion MaxMag determines the number in a list having the largest absolute value. In[1] below is an
application of the power method algorithm to Example 2, beginning on the bottom of page 359,
in your textbook. The goal of this string of commands is to create a list called lis which contains
the sequence of numbers and vectors converging to the eigenvalue and a corresponding eigenvector,
respectively. The command For[k=0, k<=5, k++, body] evaluates the body of commands for
k=0,1,...,5. The value of y stores the current value of Axy, u stores the current value of yj, and
then Append]lis, {u, x}] adds the values of 1 and x to lis. Finally x is overwritten with (1/4) v,
representing X in the power method algorithm. After the For loop, the lis statement causes the
list to appear in an output statement (which is not displayed here). The greek letter 1 can be found

in the Basiclnput palette.
In[l]:=4 = < ? g ); is={},x={0,1 }

For[ k=0, k<=5, k-++,
y = Ax;
1 = MaxMag[ y [;
lis = Append[ lis, { 1, x } |;
x=(1/u)y: J:

lis
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The Inverse Power Method

The inverse power method is a modification of the power method. The following code corresponds
to Example 3 starting on page 367 in the textbook. The greek letters & and u can be found in the
Basiclnput palette.

10 -8 —4
In[1]]:=4 = -8 13 4 |;lis={}x={1,1,1 },a = 19;
-4 5 4

For[k=0, k<=5, k++,
y = LinearSolve[ A— « ldentityMatrix[3], x ];
p = MaxMag[ y |;

v=a+ 1/
lis = Append[ lis,{ 1, x } |;
x=(1/p)yli

lis

SECTION 6.1 Inner product and Norm

If u and v are vectors in row form, then u.v is their inner product. The length or norm of v is
Sqrt[v.v]. Using the /O button on the palette, you can also enter /v.v to compute the norm. See
the Mathematica notes for Section 2.1.

SECTION 6.2  Orthogonality

In Exercises 1 - 9 and 17 - 22, a quick way in Mathematica to test a set {u;, uz, uz} for orthogonality

is to create a matrix U = Transpose[ { ul, u2, u3} ], where ul, u2, and u3 represent the vectors from

the set in row form, and to test whether Transpose[U].U is a diagonal matrix. Note: U is constructed

using the Transpose command in order to produce a matrix whose columns are uj, uo, ..., U,.
For row vectors y and u, the orthogonal projection of y onto u is

In[1]:=(y.u)/(u.u) u

SECTION 6.3 Orthogonal Projections

The orthogonal projection of a single vector onto a single vector is described in the Mathematica
note for Section 6.2. The orthogonal projection onto the set spanned by an orthogonal set of vectors
is the sum of the one-dimensional projections. Another way to construct this projection is to nor-
malize the orthogonal vectors, place them in the columns of a matrix U, and use Theorem 10. For
instance, if {y1, y2, y3} is an orthogonal set of nonzero vectors (in row form), then the command

In[1]:=U=Transpose[ { y1/v/y1.v1, y2/v/y2.y2, y3/v/¥3.y3 } ]
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creates U, containing orthonormal columns, and

In[2):=U.( Transpose[ U ].y )
produces the orthogonal projection of y onto Span{yi, y2, y3}. (The parentheses around the
command Transpose[U].y speeds up the computation by avoiding a matrix-matrix product.)

SECTION 6.4 The Gram-Schmidt Process

Let A be a matrix with n linearly independent columns. In Mathematica, the columns of A (in row
form) are Transpose[A][[k]] for k = 1,...,n. If n = 2, the Gram-Schmidt process is
In[1]:= x1 = Transpose[A][[1]]; x2 = Transpose[A][[2]];
In[2]:=vl = x1
In[3]:=v2 = x2 — ( x2.vl1 ) / (viwvl) vl
If A has three columns, add x3 = Transpose[A][[3]]; to the end of In[1] and then compute
In[4]:=v3 = x3 — ( x3.v1 ) / (vlwvl) vl — (x3.3v2 ) / ( v2.v2) v2

You should use these commands for a while, to learn the general procedure. After that, you
can use the command Proj[x, V], which computes the projection of the vector x onto the subspace
spanned by the columns of a matrix V. It is important to note that V' must be a matrix in floating
point form, i.e., a matrix whose entries are numbers containing decimal points. The command N[V]
converts the entries in V to floating point form. In the following, Transpose[{ v1 }] and converts
row vector v1 into a matrix and Transpose[{ v1, v2 }] forms the matrix | v1 v2 | whose columns
are vl and v2.

In[3]:=v2 = x2 — Proj[ x2 , N[ Transpose[{ vl }] ] ]
In[4]:=v3 = x3 — Proj[ x3, N[ Transpose[{ v1, v2 }] ] ]
To check your work, use the command GS[A], which uses the Gram-Schmidt process on the

columns of A to produce a matrix whose columns are orthogonal. When the columns are normal-
ized, they form the columns of () in the QR factorization of A.

SECTION 6.5 Finding a Least Squares Solution
When A has linearly dependent columns, you can write the general description of all least-squares
solutions on paper after you row reduce the augmented matrix for the normal equations:

In[1]:= RowReduce|[ Augment[ Transpose[A].A, Transpose[A]. Transpose[{ b }] ] ]

When A has linearly independent columns, use the LinearSolve command to find a solution to the
normal equations AT Ax = ATb.

In[2]:=LinearSolve[ Transpose[A].A, Transpose[A].b ]
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You can also enter (Inverse[Transpose[A].A).(Transpose[A].b) or use RowReduce as shown in In[1]
above. For Exercises 15 and 16, see the Numerical Note on page 415 in the text and use the
command LinearSolve[R, Transpose[Q].b] to solve Rx = QTb.

The command A=BlockMatrix|[ { {Al}, {A2} } ] can be used in Exercise 26 to create a
partitioned matrix whose top block is A1 and whose bottom block is A2.

SECTION 6.6 Least-squares Solutions and Functions of Vectors

Once you create the design matrix X and the observation vector y, your computations for the least-
squares solutions are the same as those described in the MATLAB box for Section 6.5. Here, A and
b are replaced by X and y, respectively. The Mathematica command

In[1]:= RowReduce[ Augment[ Transpose[X].X, Transpose[X].Transpose[{ y }]11]
leads to the general description of all least-squares solutions. When X has linearly independent
columns, the following command creates the least-squares solution.

In[2]:= LinearSolve[ Transpose[X].X, Transpose[X]. y ]

To construct the design matrix for an exercise in this section, you may need Mathematica’s
ability to compute functions of vectors. If x is a vector and & is a positive integer, then x"k is a
vector the same size as x whose entries are the kth powers of the entries in x. The function Cos[x] "k
was mentioned in the Mathematica notes in Section 4.3. The exponential function, Exp[x|, and the
natural logarithm function, Log[x], also act on each entry in x. The entries in the vector Exp[—.02 x],
for example, are computed by applying the function e~ 92% to the corresponding entries in x.

SECTION 6.7 Integrate Command

The Mathematica command Integrate[f[t], {t, a, b}] will attempt to compute f: f(t)dt when f is
integrable on [a, b]. Using the palette, you can enter the integral in a more natural way: fff[t] dt.
To solve Exercise 28 with the help of Mathematica, begin by creating an inner product function
where (f, g) = [ f(t)g(t)dt.
In[1]:= Clear[ip]; ip[f-, g] = f7" (f g) dx
Now define p1 through p4:
In[2]:= Clear[p1,p2,p3,p4]; pl = 1; p2 = Cos[t]; p3 = Cos[t]"2; p4 = Cos[t]"3;
Then perform the Gram-Schmidt process in a similar fashion as illustrated in the Mathematica notes
for Section 6.4, but using the newly defined inner product. The first two steps are shown here:
In[3]:= Clear[ql,92,93,94]; q1 = p1,
In[4]:= q2 = p2 - (ip[p2, q1] / ip[ql, a1]) q1;
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SECTION 6.8 Graphing Functions

In Exercise 16, after you find f4 and f5 by hand computations, you can use Plot to graph them. For
instance, to plot f(¢) = sint + sin 3¢, you can execute

In[1]:= Clear[f]; f[t-]:=Sin[t]+Sin[3t]

In[2]:= Plot[ f[t], { t, 0, 27 } ]
See the Mathematica notes for Sections 4.1 and 5.2 for more details.

SECTION 7.1  Orthogonal Diagonalization

Use Eigenvalues[A] for eigenvalues and NulBasis to obtain eigenvectors, as in the Mathematica
notes for Section 5.3. If you encounter a two-dimensional eigenspace, with a basis {vy,va}, use
the command

In[1]:= v2 = v2 — (v2.v1)/(v1.vl) v1;
to make a new eigenvector vy orthogonal to vi. See the Mathematica note for Section 6.4. After

you normalize the vectors and create P, verify that PT P — I equals zero to verify that P is indeed
an orthogonal matrix.

SECTION 7.4 The Singular Value Decomposition

The command { evals, evecs } = Eigensystem[ Transpose[A].A ] produces a list of eigenvalues
evals, in decreasing order, and a matrix evecs whose rows are the eigenvectors corresponding to the
eigenvalues in evals. Therefore, assigning ¥ to DiagonalMatrix[ v/evals ] produces ¥ and letting
V equal Transpose|evecs] produces the matrix V. To form U for the SVD, normalize the nonzero
columns of A.V. If U needs more columns, use the method of Example 4.

This construction helps you think about properties of the factorization. In practical work, how-
ever, you should use the command { Ut, o, V }=SingularValues[ Transpose[A].A] ] which produces
a list of singular values ¢ along with U and V' where U=Transpose[Ut].

SECTION 7.5 Computing Principal Components

The command rmean=RowMean[X] produces a row vector whose jth entry lists the mean average
of the jth row of X and DiagonalMatrix[rmean] creates a diagonal matrix whose diagonal entries
are the row averages of X. Finally, the command rmean.Table[ 1, {Length[X]}.{Length[X]} ]
creates a matrix the size of X, whose columns are the same, each one listing the row averages of
X. To compute the data in X into mean-deviation form, use

In[1]:=B = X—rmean.Table[ 1, {Length[X]}, {Length[X]} ]
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The sample covariance matrix is produced by
In[2]:=S = B.Transpose[B]/(Length[X]-1)
and the principle component data is produced by

In[3]:= { Ut , o, V } = SingularValues[ Transpose[B] / 1/Length[X] — 1 ]

where U=Transpose[Ut]. See the Numerical Note at the end of Section 7.5 of the text.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

MM-23




EB Brief Table of Contents || EB Table of Contents

INDEX OF MATHEMATICA COMMANDS

general and standard add-on commands MatrixPower, MM-10

+ (matrix addition), MM-10

— (matrix subtraction), MM-10

:= (delayed equals), MM-9

%n (Out[n]), MM-5

_ (underscore), MM-9

* (scalar multiplication), MM-13, MM-15

* (scalar-matrix multiplication), MM-10

A (power), MM-10, MM-13, MM-21

. (Matrix-vector multiplication), MM-8

. (inner product), MM-19

. (matrix multiplication), MM-8, MM-10

/ (division), MM-6, MM-18

: (semicolon), MM-4, MM-7

== (equation equal), MM-13

= (set equal), MM-3

? (question), MM-5, MM-10

Append, MM-18

BlockMatrix, MM-11, MM-21

Clear, MM-9, MM-21

Cos, MM-13, MM-14, MM-21

Det, MM-13, MM-15

DiagonalMatrix, MM-10,MM-17, MM-22

Eigensystem, MM-16 to MM-18, MM-22

Eigenvalues, MM-15, MM-16, MM-18,
MM-22

For, MM-18

IdentityMatrix, MM-10, MM-15, MM-18

Im, MM-17

Integrate, MM-21

Inverse, MM-11, MM-12, MM-21

| (imaginary number ¢), MM-17

LUFactor, MM-12

L USolve, MM-12

LinearEquationsToMatrices, MM-13

LinearSolve, MM-12, MM-14, MM-20,
MM-21

ListPlot, MM-17

MatrixForm, MM-2

MM-24

N, MM-4, MM-11, MM-15, MM-20

PlotStyle, MM-17

Plot, MM-13, MM-15, MM-16, MM-22

Product, MM-13

Re, MM-17

RowReduce, MM-12 to MM-14, MM-21

Show, MM-16, MM-17

Simplify, MM-16, MM-17

SingularValues, MM-22

Sin, MM-13

Sqrt, MM-19

TableForm, MM-9

Table, MM-9, MM-13, MM-17, MM-22

TakeColumns, MM-7

Transpose, MM-7, MM-10, MM-17,
MM-19 to MM-22

ZeroMatrix, MM-8, MM-10

LayFunctions Package, MM-1, MM-2, MM-5

Augment, MM-7, MM-8, MM-10,
MM-14, MM-21

BGauss, MM-8, MM-10

ConditionNumber, MM-11

GS, MM-20

Gauss, MM-8, MM-10, MM-12, MM-13,
MM-16

MatrixPower, MM-15

MaxMag, MM-18

NulBasis, MM-15 to MM-18, MM-22

PolyRoots, MM-14

Proj, MM-20

RandInt, MM-10, MM-11, MM-14,
MM-16

RandomStochastic, MM-15

ReplaceRow, MM-5, MM-6, MM-§

RowMean, MM-22

Scale, MM-5, MM-8, MM-10

Swap, MM-5, MM-6, MM-8, MM-13,
MM-16
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GETTING STARTED WITH A TI-83+ CALCULATOR

Entering Matrices: There are several ways to enter matrices in the TI-83+. One method consists
of entering the matrix directly as an expression, while another method is through the use of the

matrix editor found in the [EDIT] menu. Below are examples that illustrate the
creation of matrices and vectors using these methods. On the TI-83+, a (column) vector is simply

an nx1 column matrix. For additional information, consult the TI-83+ Guidebook.

Direct Entry: Begin a matrix with a square bracket, and each row of the matrix with a matching
pair of square brackets; separate the entries in the rows with commas. Figure 1 below shows how

. 1 2 3. . .
you can enter the matrix [4 5 6] directly and assign to it the name [A] from the

[EDIT] menu. The symbol > appears after pressing the key.

2,31 [4,5:611

[f1 2 3]
(4 5 611

(1,
+[A]

Figure 1: [A] entered directly.

The Matrix Editor: Press [EDIT]. The editor allows you to create a matrix by
specifying a variable name, a size—row size and column size—and the entries of the matrix.
After choosing [EDIT], a screen such as Figure 2 will appear. Select a name by pressing on
a particular matrix, input rows, columns, and entries, your screen should be similar to Figure 3.
To view the matrix from the home screen, press [ourT] to return home, and then choose
and select the matrix. You can create vectors in a similar fashion. Simply enter vectors in
as nx1 column matrices.

NAMES HMATH [Sdég MATRIX[A] W X3
[A] 2x3 [t 2 3 1
tIB] 3x1 [ g B 1
31 IC] 2x1
4: [D] 3x1
58 [E] 2x2
&t [F] 1x1
74 [G]
Figure 2: Matrix, edit menu Figure 3: Matrix editor
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GETTING STARTED WITH A T1-86 CALCULATOR

Entering Matrices: There are several ways to enter matrices and vectors into the TI-86. One
method consists of entering the matrix directly as an expression, another method is through the
use of the matrix (vector, respectively) editor found in the [MATRX] (L[VECTR], respectively)
menu. Below are examples that illustrate the creation of matrices and vectors using these
methods. The entries in a matrix or vector can be either real or complex (pairs of real numbers).
For additional information, consult the TI-86 Guidebook.

Direct Entry: Begin a matrix with a square bracket, and each row of the matrix with a matching
pair of square brackets; separate the entries in the rows with commas. Figure 4 below shows how

1 2 3
you can enter the matrix |4 S5 6| directly and assign to it the name MAT1 (case sensitive)—
7 8 9

the symbol > appears after pressing the key—press to display the matrix MAT1 on
the screen. For complex numbers, follow the same procedure, only enter the entries as pairs of
real numbers (i.e. (real, imaginary)).

?] [4,5:6117,8.9
{1 2 31
{4 5 6]
{v 8 911

Figure 4: MAT1 entered directly.

The Matrix Editor: Press (yellow key), [MATRX] ([T key), to see [EDIT] in the menu. The
editor allows you to create a matrix by specifying a variable name, a size—row size and column
size—and the entries of the matrix. The editor, Figure 5, is accessed by pressing the [F2) menu
key. Select from the matrix names shown or enter a new name for the matrix. For example to

enter the matrix Q = { s

4 .. .
3} , press Q and {ENTER] ; your screen should be similar to Figure 6.

[FATRR

Mame=

A b B b ¢ IMATIE & M
Figure 5: The matrix editor Figure 6: Matrix editor, ready
to receive the matrix Q.

The cursor is blinking at the top right, ready for you to enter the number of rows, press
and [ENTER); for the number of columns, press [3]} and . Type in the entries as prompted by

rows. With the TI-86 use the eyrsq2E oS QA WONGMHP W IRWRI iR A LR, or left and right in a
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row. Press the key to exit the editor. To view the matrix Q on the screen, press (blue

key), [Q] (@ key) and .

You can create vectors in a similar fashion. If using direct entry, a vector is entered as a
row vector: [1, 2, 3, 4]. If using the vector editor, the procedure is similar to the matrix editor
described above.

WARNING: Vectors and matrices are different objects on the TI-86. Operations in the [MATRX]
menu are only for matrices, and operations in the [VECTR] menu are only for vectors. Vectors can
also be entered as nx1 matrices; it will be impossible to use the operations in the [VECTR] menu
on these. In the following notes the term vector is never used for an nx1 matrix. The programs
[MtoV] and [VtoM] convert an nx1 matrix into a vector, or a vector into a matrix respectively.

GETTING STARTED WITH A TI-89 CALCULATOR

Entering Matrices: There are several ways to enter matrices into the TI-89. One method
consists of entering the matrix directly as an expression, another method is through the use of the
matrix editor found in the Data/Matrix Editor in the menu. Below are examples that
illustrate the creation of matrices using these methods. On the TI-89, a (column) vector is simply
an nx1 column matrix. For additional information, consult the TI-89 Guidebook.

Direct Entry: Begin a matrix with a square bracket, and each row of the matrix with a matching
pair of square brackets; separate the entries in the rows with commas. Figure 7 below shows how

.2 30 . .
you can enter the matrix [4 5 6} directly and assign to it the name aa—the symbol » appears

after pressing the key, press to display the matrix aa on the screen. Matrices can be
denoted by nearly any combination of letters and numbers, but double lower-case letters will be
used to denote matrices in this text. Entries can either be real or complex. To input complex
entries, simply input them in with the form a+bi.

[Py T TPl o] fE 1 e ]
Too15|A19¢bra|CatcfOtherPrImIDICIkan UF|

Jr 2 3]_)aa [1. 2. 3.]
45 6 4. 5. 6,
im:
MAIN RAD APPROR  FUNC 1730

Figure 7: aa entered directly.

The Matrix Editor: Press (aPP5), scroll down to the Data/Matrix Editor and press [ENTER]. See
Figure 8. You will be asked whether you want to work on the current data item, open a data item,
or make a new data item. Choose [New] to construct a new matrix. See Figure 9.
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(- APPLICATIONS Fix AFPLICATIONS
ome - 1tHome

1:H
2i¥= Edit. 2:Y= Edit.
3 wmdow Edlt,or‘ 3:Ldindou1.| Egitor
4=Gra§~h 2 Graph
53 Table H

- H 1Lor 3 Ia"‘:’ -
SJrTexg Edltor‘ » — ol

L1.2 3][4 ] 6][? 8 911->aa

AN

N B

Tl
1 2 31[4 35,6107 8 9]]~>aa
] RAD APPROR __FUNC 1730 RAD APPROX__ FUNC 1736

Figure 8: Choose data/matrix editor F igure 9: Choose new

Use the right arrow to select either Data, Matrix, or List. Choose [Matrix] by pressing
[ENTER]. Scroll down to Variable, type in the name of the matrix, input number of rows and
columns in the appropriate places, and press twice. See Figure 10. If the variable name is
not being used for anything else, the TI-89 will allow you to start inputing entries directly into
the matrix. See Figure 11.

NEW

Tere: Mokrix ¥ 2x3
Folder: main3 cl c2 [
Variable: 1 1. 2. 3.
Row dimension: | 2 5. 6.
ol dimansion: F__] 2
PTSETY
r£cl=4,
TYPE + [ENTERI=OK AND [ESCI=CANCEL MAIN RAD AFPROY FUNC
Figure 10:Choose name, rows and columns Figure 11:Input the matrix

Once the matrix has been input, go home by pressing the button. To view the
matrix, type in the name that you assigned to the matrix and press [ENTER]. You can create vectors
in a similar fashion. Simply enter vectors in as nx1 column matrices. If you want to change a
matrix, select [Open] instead of [New], and open an existing matrix.

STUDY GUIDE NOTES

Data and Program Files

To use your TI calculator with the text, you will need to download to a computer the appropriate
TI-data from the website www.laylinalgebra.com. Also available on this site is a selection of
supplemental programs that will be beneficial in your study of linear algebra. The files are
compressed and must be decompressed by a ZIP or Stuffit program (available from the website)
into a single new folder on the computer. Then, transfer the files to your calculator. (Consult
your TI guidebook for details.)

TI-83+ The data for each chapter of the text are stored in separate programs with names such as
CHAPTER1 or CHAPTER4. The program that includes the supplemental programs is called AL INEAR.
The files for each chapter are very large, so the chapters that are not in use must be either
archived or deleted from memory. If other large files are stored into the calculator’s RAM, they
may have to be archived as well. To put data files in archive memory, press [2ad [MeM] (5] and then
choose the file you want to archive. Pressing will send the file to archive memory where it
will no longer be accessible. To unarchive a file, follow the same steps with the UnArchive
function.
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When downloaded to the calculator, these programs will appear in the menu. To
run a program for a particular chapter, go to the menu, scroll down to the chapter in
question and press [ENTER]. The program will ask you for a section number and then an exercise
number. It will then display where the data for the exercise is located; in matrices ranging from
[A] to [F]. To run the program [ALINEAR], follow the same procedures and select the desired
program and follow the directions for what to input.

TI-86 The data for each section of the text are stored in separate programs with names such as
cls2 or c2s3 for chapter 1 section 2, or chapter 2 section 3 respectively. The supplemental
programs have names such as gauss, mdiav, or char. The files for each chapter are very large,
and if all are downloaded at the same time, your calculator may not have enough memory to
support them. Therefore you may want to download each chapter separately during the course.
However, there is space for every file on a calculator with average memory use. You can clear
unwanted things from your calculator’s memory by accessing the [MEM] [DELET] menu.

When downloaded to the calculator, these programs will appear in the menu. To
run a program for a particular chapter, go to the menu, select the chapter and section in
question and press ENTER]. The program will ask you for an exercise number. It will then display
where the data for the exercise is located. To run any of the supplemental programs, simply
select the desired program from the Program menu and follow the directions for what to input.

TI-89 The data for each chapter of the text are stored in separate programs with names such as
chapter] or chapter4. The program that includes the supplemental programs is called alinear. The
files for each chapter are very large, so the chapters that are not in use may have to be either
archived or deleted from memory. If other large files are stored into the calculator’s RAM, they
may have to be archived as well. However, there is space for every file on a calculator with
average memory use. To put data files in archive memory, press [2nd [VAR-LINK], choose the file you
want to archive, and then press [F1] [8]. Pressing will send the file to archive memory where
it will no longer be accessible. To unarchive a file, follow the same steps with the UnArchive
function.

When downloaded to the calculator, these programs will appear in the [vaR-LNK] menu. To
run a program for a particular chapter, go to the [var-LINK] menu, scroll down to the chapter in
question and press (ENTER]. The program will ask you for a section number and then an exercise
number. It will then display where the data for the exercise is located; in matrices ranging from
aa to ff. To run the program al inear, follow the same procedures and select the desired program
and follow the directions for what to input.

SECTION 1.1 Row Operations

TI-83+ In this exercise set, the data for each exercise are stored in a matrix [A]. Row operations
on [A] are performed by the following commands:

rowswap([A}.s,r) Interchanges row r and s of [A]
*row(m, [A],s) Multiples row s of [A] by a nonzero scalar m
*row+(m, [A],s,r) Replaces row r of [A] by (row r) + m*(row s)

These operations are found by pressing [MATH] and scrolling down to the bottom,
Figures 12 and 13.
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NAMES [EEME EDIT INAMES 2 EDIT
5ﬂdet( AtcumSum

iT Hiref(
3idimg Birref(
4iFil1¢C C:rowSwar(
Stidentitu] D:row+(
62 randM¢ E: #*row(
rlaugment. Hrrow+

Figure 12: Matrix, math menu Figure 13T_Matrix, math menu extended

If you enter one of these commands, say, rowswap([A],1,3), then the new matrix,
produced from [A], is stored in the "ANS" (for "answer"). If instead you enter,
rowswap ([A],1,3)>[B], the answer is stored in a new matrix [B].

The advantage of giving a new name to each new matrix is that you can easily go back a
step if you don't like what you just did to a matrix. If, instead you enter rowswap ([A].1,3)>[A],
then the result is placed back in [A] and the "old" [A] is lost. Of course the "reverse" operation
rowswap ([A],1,3)>[A], will bring back the old [A].

Note: For the simple problems in this section and the next, the multiple m you need in
the command *row+(m, [A],s,r) will usually be a small integer or fraction that you can
compute in your head. In general, m may not be so easy to compute mentally. The next two
paragraphs describe how to handle such a case.

The entry in row r and column ¢ of a matrix [A] is denoted by [A](r, ¢). If the number
stored in [A](r, ¢) is displayed with a decimal point, then the displayed values may be accurate to
only about five digits. In this case, use the symbol [A](r, ¢) instead of the displayed value in
calculations.

For instance, if you want to use the entry (pivot) [A](s, ¢) to change [A](r, ¢) to 0, enter
the commands

-[Al(r.c)/[Al(s,c)>m

*row+(m, [A],s,r)>[A]
or you can just use the command

*row+(-[A](r.c)/[Al(s,c) ., [A],s.r)>[A].

Multiple of row s to be added to row r
Adds m times row s to row r

TI-86 In this exercise set, the data for each exercise are stored in a matrix M. Row operations
on M are performed by the following commands:

rSwap(M,r,s) Interchanges rows r and s of M

multR(m,M,r) Multiplies row r of M by a nonzero scalar m

mRAdd(m,M,s,r) Replaces row r of M by (row r ) + m X (row s)

These operations are found on the second page of the [MATRX] [0PS] menu. (Press the
key followed by (7] to bring up the [MATRX1 menu, Figure 14. The row operations are found
when you press the 4] menu key followed by the key, Figure 15.)

NAMES

EMT  taTH ITEE CFLY
[ qu3 Irsward radd gtk ImRAd4M

Figure 14: The matrix menu Figure 15: Matrix menu: row operations
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To use the row operations efficiently it is convenient to store matrices in memory. The
name of any matrix in your calculator memory can be inserted in place of M; the letters r, m, and
s stand for numbers you choose. Press after each command.

If you enter one of these commands, say, rSwap(M,1,3), then the new matrix, produced
from M, is stored in the matrix "ANS" (for "answer"). If instead you enter rSwap(M,1,3)>M1,
then the answer is stored in a new matrix M1. If the new operation is mRAdd(5,M1,1,2)>M2, then
the result of changing M1 is placed in M2, and so on.

The advantage of giving a new name to each new matrix is that you can easily go back a
step if you don't like what you just did to a matrix. If, instead you enter mRAdd(5,M,1,2)>M, then
the result is placed back in M and the "old" M is lost. Of course the "reverse" operation mRAdd( -
5,M,1,2)>M, will bring back the old M.

Note: For the simple problems in this section and the next, the multiple m you need in the
command mRAdd(m,M,s,r) will usually be a small integer or fraction that you can compute in
your head. In general, m may not be so easy to compute mentally. The next two paragraphs
describe how to handle such a case.

The entry in row r and column ¢ of a matrix M is denoted by M(r, ¢). If the number stored
in M(r, c) is displayed with a decimal point, then the displayed values may be accurate to only
about five digits. In this case, use the symbol M(r, c¢) instead of the displayed value in
calculations.

For instance, if you want to use the pivot entry M(s, c) to change M(r, c) to 0, enter the
commands

-M(r,c)/M(s,c))>m Multiple of row s to be added to row r

mRAdd(m,M,s,r)>M Adds m times row s to row r

or you can just use the command
mRAAd(-M(r,c)/M(s,c) ,M,s,r)>M.

TI-89 In this exercise set, the data for each exercise are stored in a matrix aa. Row operations
on aa are performed by the following commands:

mRowAdd(m,aa,s,r)  Replaces row r of aa by (row r ) + m X (row s)

rowSwap(aa,r,s) Interchanges rows r and s of aa

mRow(m, aa,r) Multiplies row r of aa by a nonzero scalar m
These operations are found by pressing [MaTH], scrolling down to, or pressing (4] [Matrix] as
seen in Figure 16. Scrolling down again to [J]JRow ops. in Figure 17, and pressing the right
arrow shows these four options.

Fi~ 0 Fh~
i MATH Clean Up

OFEill . I
E: randtat ¢

thewMat ¢
G subMat ¢
H:Norms |
I:Dimensions »
PR o= »

RAD AFFEOR | |MRIN [T1] HPRIIH I.IC 1/30
Figure 16: Matrix menu Figure 17: Row ops in matrix menu

To use the row operations efficiently it is convenient to store matrices in memory. The
name of any matrix in your calculator memory can be inserted in place of aa; the letters r, m, and
s stand for numbers you choose. Press [ENTER] after each command.
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If you enter one of these commands, say, rowSwap(aa,1,3) then the new matrix,
produced from aa, is stored in the matrix "ans(1)" (for "answer"). If instead you enter
rowSwap (aa, 1,3)>bb, then the answer is stored in a new matrix bb. If the new operation is
mRowAdd (5, bb, 1, 2)>cc, then the result of changing bb is placed in cc, and so on.

The advantage of giving a new name to each new matrix is that you can easily go back a
step if you don't like what you just did to a matrix. If, instead you enter mRowAdd(5,aa,1,2)>aa,
then the result is placed back in aa and the "old" aa is lost. Of course the "reverse" operation
mRowAdd (-5, aa, 1,2)»aa, will bring back the old aa.

Note: For the simple problems in this section and the next, the muitiple m you need in
the command mRowAdd(m,aa,s,r) will usually be a small integer or fraction that you can
compute in your head. In general, m may not be so easy to compute mentally. The next two
paragraphs describe how to handle such a case.

The entry in row r and column ¢ of a matrix aa is denoted by aa[r, ¢]. If the number
stored in aa[r, c] is displayed with a decimal point, then the displayed values may be accurate to
only about five digits. In this case, use the symbol aa[r, c] instead of the displayed value in
calculations.

For instance, if you want to use the pivot entry aa[s, c] to change aafr, c] to 0, enter the
commands

-aa[r,c]/aa[s,c]>m Multiple of row s to be added to row r

mRowAdd(m,aa,s,r)>aa Adds m times row s to row r

or you can just use the command
mRowAdd(-aa[r,c]/aa[s,c].aa.s,r)>aa

SECTION 1.3 Constructing a Matrix

TI-83+ The augment ( operator concatenates two matrices or a matrix and a vector. For instance,
if [A] is a matrix and [B] is a vector b, then the augmented matrix for the equation Ax=b is given
by augment ([A], [B]1). To construct this, press [MATH] and select augment (. Fill in
[A] and [B] separated by a comma and press [ENTER]. Matrices must have the same number of rows
in order to augment them together. Given a vector equation such as x;a; + xa, + x;a; = b, you
might store a; in [A], a, in [B], a; in [C], and b in [D]. Then the augmented matrix for this
system is created by the command
augment (augment (augment ([A], [B]), [C]) . [D])>[E]

Excercises 11-14, 25-28, and 21 can be solved using the commands rowswap(, *row(, and
row+(, described in notes for Section 1.1.

TI-86 The aug operator concatenates two matrices or a matrix and a vector. (see the second
page of the [MATRX] [0PS] menu. Press [MATRX] to view the command, then [ to
select it, Figure 6. Fill in with the two desired arguments and press .) Matrices must have
the same number of rows in order to augment them together. Given a vector equation such as
x1a; + xa, + x3a; = b, the command aug(aug(al,a2),aug(a3,b))>M creates the matrix
[al a, a, b] and saves it as M; but, if you enter al,a2,a3 and b as vectors, you must

convert a1 and a3 to n X 1 matrices before using the aug command. (Use the [VtoM] program in
the menu.) The same matrix is created by the command aug(A,b)>M—assuming that the
matrix A and the vector b, have been created.

Exercises 11-14 and 25-28 and 21 can be solved using the commands mRAdd, rSwap, and

multR, described in notes for Section 1.1.
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TI-89 The augment ( operator concatenates two matrices or a matrix and a vector. For instance,
if aa is a matrix and bb is a vector b, then the augmented matrix for the equation Ax=b is given
by augment(aa,bb). It can be found by pressing [MatH], scrolling down to, or pressing [4]
{Matrix]. Then scroll down to [7] [augment]. Fill in aa and bb separated by a comma and press
[ENTER]. Matrices must have the same number of rows in order to augment them together. Given a
vector equation such as x;a; + xa, + x;a; = b, you might store a; in aa, a, in bb, a; in cc, and b
in dd. Then the augmented matrix for this system is created by the command
augment (augment (augment (aa, bb) ,cc) ,dd)»ee

Excercises 11-14, 25-28, and 21 can be solved using the commands mRowAdd(, rowSwap(,
mRow ( , described in notes for Section 1.1.

SECTION 1.4 Gauss and Bgauss

TI-83+ To solve Ax = b, row reduce the matrix C = [A b). Matrix [C], or any other for that
matter, can be constructed by the command

augment ([A], [B])>[C].

To speed up row reduction of [C], the program [GAUSS] (in the [ALINEAR] program) will use the
leading entry in row r of [C] as a pivot, and use row replacements to create zeros in the pivot
column below this pivot entry. The output of [GAUSS] is stored in the matrix [J]. If you wish,
you can assign [J] to some other variable, such as [A] (the first matrix in the list).

For the backward phase of row reduction, use the [BGAUSS] program, which selects the
leading entry in row r as the pivot, and creates zeros in the column above the pivot. Use *row(
to create leading 1's in the pivot positions. The output of [BGAUSS] is stored in the matrix [J]. If
you wish, you can assign [J] to some other variable, such as [A] (the first matrix in the list).

To run a program, see the notes on Data and Program Files at the beginning of the study
guide notes. Both [GAUSS] and [BGAUSS] will prompt the user for the matrix and the row
number,

TI-86 To solve Ax = b, row reduce the matrix C = [A b]. Matrix C, or any other for that matter,
can be constructed by the command

aug(A,B)>C.
To speed up row reduction of C, the program [GAUS] (in the menu) will use the leading
entry in row r of M as a pivot, and use row replacements to create zeros in the pivot column
below this pivot entry. The output of [GAUS] is stored in the matrix U. If you wish, you can
assign U to some other variable, such as M itself.

For the backward phase of row reduction, use the [BGAUS] program, which selects the
leading entry in row r as the pivot, and creates zeros in the column above the pivot. Use multR to
create leading 1's in the pivot positions. The output of [BGAUS] is stored in the matrix U. If you
wish, you can assign U to some other variable, such as M itself.

To run a program, see the notes on Data and Program Files at the beginning of the study
guide notes. Both [6AUS] and [BGAUS] will prompt the user for the matrix and the row number.

TI-89 To solve Ax = b, row reduce the matrix [A b]. Matrix C, or any other for that matter,
can be constructed by the command augment (aa, bb)>cc.

To speed up row reduction of C, the program [gauss] (in the [al inear] program) will
use the leading entry in row r of C as a pivot, and use row replacements to create zeros in the

pivot column below this pivot entléy. The output of { auss] is stored in the matrix xx.
Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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For the backward phase of row reduction, use the [bgauss] program, which selects the
leading entry in row r as the pivot, and creates zeros in the column above the pivot. Use mRow( to
create leading 1's in the pivot positions. The output of [bgauss] is stored in the matrix xx.

To run a program, see the notes on Data and Program Files at the beginning of the study
guide notes. Both [gauss] and [bgauss] will prompt the user for the matrix and the row
number.

SECTION 1.5 Zero Matrices

TI-83+ The command {m,n}>dim([A]) creates an mxn matrix and stores it in [A]. The
command dim( is found by pressing [MATH] and scrolling down. Using the command
Fil1( allows you to fill in a matrix with a particular value. Press [MATH] and select
Fit1(. Then press zero and matrix [A] separated by a comma, and press [ENTER]. Matrix [A]
should then be displayed with zeros as its entries.

TI-86 The command {m,n}>dim A creates an mxn matrix of zeros and stores it in A. The
same procedure applies to vectors. The '{' and '}' symbols are found in the [LIST] menu, and the
dim command is in the [MATRX] [O0PS] menu When solving the equation Ax = 0 create an
augmented matrix aug (A, Z)>M, and assign it to the variable M, or execute the commands:

AS>M

{m,n+1}>dim M m and n are the number of rows and columns of A
to reformat the matrix A as an mx(n + 1) matrix with a column of zeros appended and save it as
M. Then use [GAUST, [BGAUS] and multR to row reduce M completely.

TI-89 The command newmat(m,n)>aa creates an mxn matrix of zeros and stores it in aa. The
function newmat( is found by pressing (matH), and scrolling down to, or pressing
[{Matrix]. Then scroll down to newmat (.

SECTION 1.6 Rational Format

TI-83+ Chemical equation-balance problems are studied best using exact or symbolic arithmetic,
because the balance variables must be whole numbers (with no round-off allowed). To convert
floating-point numbers shown in matrices to rational answers, the command

[Frac]
will give the last answer in fractions, if possible. This function will convert a number or a matrix
into rational form. Once you find a rational solution of a chemical equation-balance problem, you
can multiply the entries in the solution vector by a suitable integer to produce a solution that
involves only whole numbers.

TI-86 Chemical equation-balance problems are studied best using exact or symbolic arithmetic,
because the balance variables must be whole numbers (with no round-off allowed). To convert

floating-point numbers shown in matrices to rational answers, the command
[MATHT [MISC] [Frac]
will give the last answer in fractions, if possible. This function will convert a number or a matrix

into rational form. Once you find a rational solution of a chemical equation-balance problem, you
can multiply the entries in the solution vector by a suitable integer to produce a solution that

involves only whole numbers,
y Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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TI-89 Chemical equation-balance problems are studied best using exact or symbolic arithmetic,
because the balance variables must be whole numbers (with no round-off allowed). To convert
floating-point numbers shown in matrices to rational answers, try setting the mode, page 2, to
exact. This will give the answers in fractions, if possible. This setting will convert a number or a
matrix into rational form. Once you find a rational solution of a chemical equation-balance
problem, you can multiply the entries in the solution vector by a suitable integer to produce a
solution that involves only whole numbers.

SECTION 1.10 Generating a Sequence

TI-83+ The data program for exercises 9-13 for Section 1.10 stores vectors into the matrix [B].
Use the command

[B]*x
to generate the next value in the sequence. To continue generating the sequence press *x
repeated times. This will compute the answer stored in memory times x.

TI-86 The data program for exercises 9-13 for Section 1.10 stores vectors into v1. Use the
command

v1*x
to generate the next value in the sequence. To continue generating the sequence press *x
repeated times. This will compute the answer stored in memory times X.

TI-89 The data program for exercises 9-13 for Section 1.10 stores vectors into the matrix bb.
Use the command

bb*x
to generate the next value in the sequence. To continue generating the sequence press *x
repeated times. This will compute the answer stored in memory times x.

SECTION 2.1 Matrix Notation and Operations

TI-83+ To create a matrix, begin with a square bracket, enter the data row-by-row, with a comma
between entries, each row of the matrix must begin and end with square brackets. For instance,
the command

([1.2,3][4.5,6]]>[A]
creates a 2x3 matrix [A]. If [A] is mXxn, then dim([A]) (found in the [MATH] menu)
is the list {m n}. The (i, j)-entry in the matrix [A] is [A](i, j). To extract either the jth row or the
jth column from a matrix, use program [JROW] or [JCOL] respectively. Each program will
prompt for a matrix, and row or column number, and display the item in question.

The TI-83+ uses the B, [, and keys to denote matrix addition, subtraction and
multiplication, respectively. (Multiplication shows on the screen and in these notes as *.) If [A]
is square and k is a positive integer, [A] k denotes the kth power of [A] ([A]l [, is
equivalent to [A] (7 2). The transpose of [A} is [A]T (the T operator is in the [MATH]
menu).

If [A] and [B] are two column vectors of the same size, their inner product (or dot
product) can be computed by [A]™*[B] or [B]™*[A].

In this section you can experiment with random matrices. The command randM( returns
a random matrix with integer entries in the interval [-9,9]. Go to the (2ndMATRX][MATH] menu to

activate the command; it requires that you enter the two arguments—row size and column size—
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then close the parenthesis and press ENTER). (To save the random matrix into memory press the
key and enter the name of the matrix before you press )

TI-86 To create a matrix, begin with a square bracket, enter the data row-by-row, with a comma
between entries, each row of the matrix must begin and end with square brackets. For instance,
the command
[[1.2.3][4.5.6]]>A

creates a 2x3 matrix A. If A is mxn, then dim A (found in the [MATRX] [0PS] menu) is the list
{m n}. The (i, j)-entry in the matrix A is A(i, j). A(i) is the ith row of the matrix A, given as a
vector. To extract the jth column of A, use the program [CO0L]. The program prompts for a matrix
and a column number /, and returns the jth column as a vector.

The TI-86 uses the , 3, and keys to denote matrix addition, subtraction and
multiplication, respectively. (Multiplication shows on the screen and in these notes as *.) If A is
square and k is a positive integer, A ) k denotes the kth power of A (A [, is equivalent to A
2). The transpose of A is AT (the T operator is in the [MATRX] [MATH] menu). Note: when A
has complex entries, the (i, j)-entry of AT is the complex conjugate of the (i, j)-entry of A.

If u and v are two vectors of the same size, then dot(u,v) is their inner product (the dot
operator is in the [VECTR] [MATH] menu). If the vectors are entered as nx1 matrices the inner
product is v'xu.

In this section you can experiment with random matrices. The command randM returns a
random matrix with integer entries in the interval [-9, 9]. Go to the [MATRX] [0PS] menu to
activate the command; it requires that you enter the two arguments—row size and column size—
then close the parenthesis and press . (To save the random matrix into memory press the
key and enter the name of the matrix before you press )

TI-89 To create a matrix, begin with a square bracket, enter the data row-by-row, with a comma
between entries, each row of the matrix must begin and end with square brackets. For instance,
the command

[[1.2,3][4.5,6]]>aa
creates a 2x3 matrix aa. If aa is mxn, then dim(aa) (found by pressing [MaTH], scrolling down
to, or pressing (4 [Matrix], scrolling down to [I]dimensions and pressing the right arrow.) is
the list {m,n}. The [i, j]-entry in the matrix aa is aa[i, j]. aa[i] is the ith row of the matrix aa,
given as a vector. To extract the jth column of aa, use the program [col], the program will
prompt for a matrix, and column number, it will return the jth column as a vector.

The TI-89 uses the (7, &), and keys to denote matrix addition, subtraction and
multiplication, respectively. (Multiplication shows on the screen and in these notes as *.) If A is
square and k is a positive integer, A [7] k denotes the kth power of A. The transpose of A is Al
(the " operator is found by pressing matH], and scrolling down to, or pressing (4] [Matrix]).

If u and v are two vectors of the same size, then dotP(u,v) is their inner product (the
dotP( operator is found by pressing matH], and scrolling down to, or pressing [Matrix].
Then scroll down to L:Vector ops and press the right arrow). The vectors can either be input as
nx1 matrices or 1xn matrices when computing dot products.

In this section you can experiment with random matrices. The command randMat(
returns a random matrix with integer entries in the interval [-9, 9]. Press [MaTH], scroll down
to, or press [4 [Matrix], and scroll down to randMat( It requires that you enter the two

arguments—row size and column size—then close the parenthesis and press [ENTER]. (To save the
Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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random matrix into memory press the key and enter the name of the matrix before you press
(ENTER].)

SECTION 2.2 The Identity Matrix and A™

TI-83+ The nxn identity matrix is identity(n) (the identity( command is in the
[MATH] menu). If [A] is an nxn matrix, then the command

augment ([A]. identity(n))>[B]
creates the augmented matrix [B] = [A I]. Use the [GAUSS] and [BGAUSS] programs, and the
*row( operation to reduce the augmented matrix [A 1] completely.

There are other commands that can be used to row reduce matrices, invert matrices, and
solve equations Ax = b, but they are not discussed here because they will not help you to learn
the concepts in this section.

TI-86 The nxn identity matrix is ident n (the ident command is in the [MATRXI [0PS]

menu). If A is nxn , then the command
aug(A,ident n)>M

creates the augmented matrix M = [A I]. Use the [GAUS] and [BGAUS] programs, and the multR
operation to reduce [A .

There are other commands that can be used to row reduce matrices, invert matrices, and
solve equations Ax = b, but they are not discussed here because they will not help you to learn
the concepts in this section.

TI-89 To get an nxn identity matrix press identity(n) (the command is found by pressing
maTH], and scrolling down to, or pressing (4] [Matrix]). If aa is an nXxn matrix, then the command
augment(aa, identity(n))>bb
creates the augmented matrix bb = [aa I]. Use the [gauss] and [bgauss] programs, and the
mRow ( operation to reduce [aa [].
There are other commands that can be used to row reduce matrices, invert matrices, and
solve equations Ax = b, but they are not discussed here because they will not help you to learn
the concepts in this section.

SECTION 2.3 Characterizations of Invertible Matrices

TI-83+ Determining whether a specific numerical matrix is invertible is not always a simple
matter. A fast and fairly reliable method is to enter the matrix [A] and press [A] [, which
computes the inverse of [A]. If the matrix in question is not invertible, the TI-83+ will either
display “S!NGULAR MAT.” or “ERR: INVALID DIM”

TI-86 Determining whether a specific numerical matrix is invertible is not always a simple
matter. A fast and fairly reliable method is to enter the matrix A and press A [, which
computes the inverse of A. If the matrix in question is not invertible, the TI-86 will display the
message "SINGULAR MAT". For exercises 38-41, the condition number, cond, is in the [MATRX]
[MATH] menu.

TI-89 Determining whether a specific numerical matrix is invertible is not always a simple
matter. A fast and faigly, reliablg scthodaisnte cRiekithematixa A and press [, which
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computes the inverse of A. If the matrix in question is not invertible, the TI-89 will either display
“Error: Dimension”, or "Singular matrix".

SECTION 2.4 Partitioned Matrices

TI-83+ The TI-83+ uses partitioned matrix notation. For example, if [A], [B], [C], [D], [E], and
[F] are matrices of appropriate sizes, then the command

augment (augment (augment ([A], [B]) ., [C])7, augment (augment ([D], [E]) . [F1)T)™>[G]
A B C
D E F

partition that was used to create [G]. For instance, although [B] was the (1, 2)-block used to form
[G], the number [G](1, 2) is the same as the (1, 2)-entry of [A].

creates a larger matrix of the form [G]={ } . Once [(] is formed, there is no record of the

TI-86 The TI-86 uses partitioned matrix notation. For example, if A, B, C, D, E, and F are
matrices of appropriate sizes, then the command
aug(aug(aug(A,B),C) ,aug(aug(D,E),F)T)™>M

. A B
creates a larger matrix of the form M= {D EF

partition that was used to create M. For instance, although B was the (1, 2)-block used to form
M, the number M(1, 2) is the same as the (1, 2)-entry of A.

} . Once M is formed, there is no record of the

TI-89 The TI-89 uses partitioned matrix notation. For example, if aa, bb, cc, dd, ee, and ff are
matrices of appropriate sizes, then the command
augment (augment (augment (aa,bb) ,cc) T, augment (augment (dd,ee) , ff)T)T>gg

creates a larger matrix of the form gg={ . Once gg is formed, there is no record of the

DEF}

partition that was used to create gg. For instance, although bb was the [1, 2]-block used to form
gg, the number gg[1, 2] is the same as the [1, 2]-entry of aa.

SECTION 2.5 LU Factorization

TI-83+ Row reduction of A using the [GAUSS] program will produce the intermediate matrices
needed for an LU factorization of A. You can try this on the matrix in Example 2. The matrices
in (5) on page 145 in the text are produced by running the commands

{GAUSS1[A] 1 Returns a matrix [J] with 0's below the first pivot

[GAUSS][J] 2  Returns a matrix [J] with ('s below pivots 1 and 2

[GAUSS][J]3  Returns an echelon form, [J]
You can copy the information from your screen onto your paper, and divide by the pivot entries
to produce L as in the text. For most text exercises, the pivots are integers and so are displayed
accurately.

The TI-83+ program [LU] produces U and an nX2n matrix J for some square matrices,
but it does not handle the general case. From J, you can perform row swaps to make L and P. The
left half of the matrix will form L and the right half will form P.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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TI-86 Row reduction of A using the [GAUS] program will produce the intermediate matrices
needed for an LU factorization of A. You can try this on the matrix in Example 2. The matrices
in (5) on page 145 in the text are produced by running the commands

[GAUSIA 1 Returns a matrix U with 0's below the first pivot

[GAUSIU 2 Returns a matrix U with 0's below pivots 1 and 2

[GAUSIU 3 Returns an echelon form, U
You can copy the information from your screen onto your paper, and divide by the pivot entries
to produce L as in the text. For most text exercises, the pivots are integers and so are displayed
accurately.

The TI-86 command LU(A,L,U,P) produces a permuted LU factorization for some square

matrices A, but it does not handle the general case.

TI-89 Row reduction of A using the [gauss] program will produce the intermediate matrices
needed for an LU factorization of A. You can try this on the matrix in Example 2. The matrices
in (5) on page 145 in the text are produced by running the commands

[gauss]aal  Returns a matrix xx with 0's below the first pivot

[gauss]xx 2  Returns a matrix xx with 0's below pivots 1 and 2

[gauss]xx 3  Returns an echelon form, xx
You can copy the information from your screen onto your paper, and divide by the pivot entries
to produce L as in the text. For most text exercises, the pivots are integers and so are displayed
accurately.

The TI-89 command LU aa, I I, uu,pp produces a permuted LU factorization for some
square matrices aa, but it does not handle the general case.

SECTION 2.8 rref

TI-83+ The command rref(in the [MATH] menu, produces the reduced row echelon
form of a given matrix. This form gives you enough information to write down a basis for Col A,
and the homogeneous equations that describe Nul A. (Don't forget that A is a coefficient matrix,
not an augmented matrix.) The command rref( does not work if the number of columns in A is
less than the number of rows in A. If this is the case, you can augment A with enough columns of
zeros, and work with a square matrix. Use the command as usual, then ignore the columns of
zeros when you interpret the output.

TI-86 The command rref A in the [MATRX] [0PS] menu, produces the reduced row echelon
form of A. This form gives you enough information to write down a basis for Col A, and the
homogeneous equations that describe Nul A. (Don't forget that A is a coefficient matrix, not an
augmented matrix.) The command rref does not work if the number of columns in A is less than
the number of rows in A. If this is the case, you can augment A with enough columns of zeros,
and work with a square matrix. Use the command as usual, then ignore the columns of zeros
when you interpret the output.

TI-89 The command rref(, found by pressing [matH], and scrolling down to, or pressing
[Matrix], produces the reduced row echelon form of a matrix A. This form gives you enough
information to write down a basis for Col A, and the homogeneous equations that describe
Nul A. (Don't forget that A is a coefficient matrix, not an augmented matrix.) The command

rref( does not work ¢f thenersherrol.co RimRs. i, i less.than,the number of rows in A. If this
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is the case, you can augment A with enough columns of zeros, and work with a square matrix.
Use the command as usual, then ignore the columns of zeros when you interpret the output.

SECTION 2.9 Rank

TI-83+ With a TI-83+, you should use an echelon form of A to determine the rank of A. You
can row reduce A using [GAUSS], or you can use one of the commands rref( or ref( from the
[MATH] menu. The ref([A]) command produces a row echelon form of [A]. (Don't
forget that A is a coefficient matrix, not an augmented matrix.) Both rref( and ref( only work
on matrices with at least as many columns as rows. However, you can augment A with enough
columns of zeros to make a square matrix, if necessary, and then ignore the columns of zeros
when you interpret the output. With each of these three methods, roundoff error from an
extremely small pivot entry can sometimes produce an incorrect echelon form.

TI-86 With a TI-86, you should use an echelon form of A to determine the rank of A. You can
row reduce A using [GAUS], or you can use one of the commands rref or ref from the [MATRX]
[0PS] menu. The ref A command produces a row echelon form of A. (Don't forget that A is a
coefficient matrix, not an augmented matrix.) Both rref and ref only work on matrices with at
least as many columns as rows. However, you can augment A with enough columns of zeros to
make a square matrix, if necessary, and then ignore the columns of zeros when you interpret the
output. With each of these three methods, roundoff error from an extremely small pivot entry
can sometimes produce an incorrect echelon form.

TI-89 With a TI-89, you should use an echelon form of A to determine the rank of A. You can
row reduce A using [gauss], or you can use one of the commands rref( or ref(found by
pressing MaTH], and scrolling down to, or pressing [Matrix]}. The ref(A) command
produces a row echelon form of A. (Don't forget that A is a coefficient matrix, not an augmented
matrix.) Both rref( and ref( only work on matrices with at least as many columns as rows.
However, you can augment A with enough columns of zeros to make a square matrix, if
necessary, and then ignore the columns of zeros when you interpret the output. With each of
these three methods, roundoff error from an extremely small pivot entry can sometimes produce
an incorrect echelon form.

SECTION 3.2 Computing Determinants

TI-83+ To compute det A, use the [GAUSS] program and rowswap( , repeatedly, to reduce A to a
matrix U, which is an echelon form of A. Keep track of how many times you swap rows. Then
except for a 1, the determinant is obtained by using the program [MDIAV] to extract the diagonal
of U, followed by the [PRDCT] program to compute the product of the diagonal. You can, of
course, use the det( selection from the [MATH] menu) to check your work, but the
longer sequence of commands helps you to think about the process of computing det A.

TI-86 To compute det A, use the [GAUS] program and rSwap, repeatedly, to reduce A to a
matrix U, which is an echelon form of A. Keep track of how many times you swap rows. Then,
except possibly for a factor of 1, the determinant is obtained by using the program [MdiaV] to
extract the diagonal of U, followed by the [PRDCT] program to compute the product of the
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menu) to check your work, but the longer sequence of commands helps you to think about the
process of computing det A. For Exercise 46, the condition number, cond, is in the [MATRX]
[MATH] menu.

TI-89 To compute det A, use the [gauss] program and rowSwap (, repeatedly, to reduce A to a
matrix U, which is an echelon form of A. Keep track of how many times you swap rows. Then,
except possibly for a factor of £1, the determinant is obtained by using the program [mdiav] (in
the [alinear] program) to extract the diagonal of U, followed by the [prdct] program to
compute the product of the diagonal. You can, of course, use the det( command found by
pressing (matH], and scrolling down to, or pressing @ [Matrix], to check your work, but the
longer sequence of commands helps you to think about the process of computing det A.

SECTION 4.3 ref and rref

TI-83+ With a TI-83+, you should use an echelon form of A to determine the rank of A. You
can row reduce A using [GAUSS], or you can use one of the commands rref( or ref( from the
[MATH] menu. The ref([A]) command produces a row echelon form of [A]. (Don't
forget that A is a coefficient matrix, not an augmented matrix.) Both rref( and ref( only work
on matrices with at least as many columns as rows. However, you can augment A with enough
columns of zeros to make a square matrix, if necessary, and then ignore the columns of zeros
when you interpret the output. With each of these three methods, roundoff error from an
extremely small pivot entry can sometimes produce an incorrect echelon form.

TI-86 With a TI-86, you should use an echelon form of A to determine the rank of A. You can
row reduce A using [GAUS], or you can use one of the commands rref or ref from the [MATRX]
[0PS] menu. The ref A command produces a row echelon form of A. (Don't forget that A is a
coefficient matrix, not an augmented matrix.) Both rref and ref only work on matrices with at
least as many columns as rows. However, you can augment A with enough columns of zeros to
make a square matrix, if necessary, and then ignore the columns of zeros when you interpret the
output. With each of these three methods, roundoff error from an extremely small pivot entry
can sometimes produce an incorrect echelon form.

TI-89 With a TI-89, you should use an echelon form of A to determine the rank of A. You can
row reduce A using [gauss], or you can use one of the commands rref( or ref(found by
pressing [matH], and scrolling down to, or pressing (4] [Matrix]. The ref(A) command
produces a row echelon form of A. (Don't forget that A is a coefficient matrix, not an augmented
matrix.) Both rref( and ref( only work on matrices with at least as many columns as rows.
However, you can augment A with enough columns of zeros to make a square matrix, if
necessary, and then ignore the columns of zeros when you interpret the output. With each of
these three methods, roundoff error from an extremely small pivot entry can sometimes produce
an incorrect echelon form.

SECTION 4.4 The Inverse Operator ™

TI-83+ If the equation Ax = b has a unique solution and A is a square matrix, the TI-83+ will
automatically produce x if you use the command

[AT-7*[B]>X
Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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In this section, the equation will probably have the form Pu = x, with u the B-coordinate vector
of x, and the command will be [P]-7*[X]>U

TI-86 If the equation Ax = b has a unique solution and A is a square matrix, the TI-86 will

automatically produce x if you use the command

A lkb>x
In this section, the equation will probably have the form Pu = x, with u the B-coordinate vector
of x, and the command will be P~ lxx>u.

TI-89 If the equation Ax = b has a unique solution and A is a square matrix, the TI-89 will
automatically produce x if you use the command

aa-'*bb>x
In this section, the equation will probably have the form Pu = x, with u the B-coordinate vector
of x, and the command will be pp-1*xx>uu.

SECTION 4.6 Rank and Random Matrices

TI-83+ With a TI-83+, you should use an echelon form of A to determine the rank of A. You
can row reduce A using [GAUSS], or you can use one of the commands rref( or ref( from the
[MATH] menu.

In this section you can experiment with random matrices. The command randM( returns a
random matrix with integer entries in the interval [-9,9]. Go to the [MATH] menu to
activate the command; it requires that you enter the two arguments—-row size and column size—
then close the parenthesis and press [ENTER]. (To save the random matrix into memory press the
key and enter the name of the matrix before you press (ENTER).)

TI-86 With a TI-86, you should use an echelon form of A to determine the rank of A. You can
row reduce A using [GAUS] or you can use one of the commands rref or ref from the [MATRX]
[OPST menu.

In this section you can experiment with random matrices. The command randM returns a
random matrix with integer entries in the interval {-9, 9]. Go to the [MATRX] [0PS] menu to
activate the command; it requires that you enter the two arguments—row size and column size —
then close the parenthesis and press ENTER]. (To save the random matrix into memory press the
key and enter the name of the matrix before you press [ERTER].)

TI-89 With a TI-89, you should use an echelon form of A to determine the rank of A. You can
row reduce A using [gauss], or you can use one of the commands rref( or ref( found by
pressing [2nd) [MaTH], and scrolling down to, or pressing (4] [Matrix].

In this section you can experiment with random matrices. The command randMat(
returns a random matrix with integer entries in the interval (-9, 9]. Press (MaTH], scroll down to,
or press [Matrix], and scroll down to randMat( It requires that you enter the two
arguments—row size and column size—then close the parenthesis and press [ENTER]. (To save the

random matrix into memory press the key and enter the name of the matrix before you press
(ENTER).)

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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SECTION 4.7 Change of Coordinates Matrix

TI-83+ The rref( command will completely reduce a matrix [¢, ¢, b, b,] to the desired
form. See the note for Section 1.3 to on how to construct this matrix.

TI-86 The rref command will completely reduce a matrix [¢, ¢, b, b,] to the desired

form. See the note for Section 1.3 to on how to construct this matrix.

TI-89 The rref( command will completely reduce a matrix [¢, ¢, b, b,] to the desired
form. See the note for Section 1.3 to on how to construct this matrix.

SECTION 4.8 Roots

TI-83+ To find the roots of a polynomial, use the solve( function. This can be found by
pressing [cataLog] “s” and then scroll down. While looking in the catalog, the TI-83+

automatically puts the alpha lock on. The command should look similar to this:
solve(polynomial,variable,guess, {lower bound,upper bound})
For additional help, consult your TI-83+ Guidebook.

TI-86 To find the roots of a polynomial, use the [POLY] sequence. Input the order (degree)
of the polynomial, and the coefficients as prompted (press after each entry), then press the
(sowver] menu key. The roots of the polynomial are displayed on the screen. Complex roots appear
as pairs of real numbers. Refer to your TI-86 Guidebook.

TI-89 To find the roots of a polynomial, use the solve( function found in the F2:Algebra
menu. Press on the correct function, input the equation and the variable, separated by a
comma, close the parentheses, and press [ENTER]. Refer to your TI-89 Guidebook for questions.

SECTION 4.9 Markov Chains

TI-83+ The notes for Section 1.10 contain information that is useful for the exercises in this
section.

TI-86 The notes for Section 1.10 contain information that is useful for the exercises in this
section.

TI-89 The notes for Section 1.10 contain information that is useful for the exercises in this
section.

SECTION 5.1 Finding Eigenvectors

TI-83+ The program [NULB] (in the [ALINEAR] program) will simplify your homework by auto-
matically producing a basis for an eigenspace. For example, if A is a 3x3 matrix with an
eigenvalue 7, first input [A], then use the keystrokes

[Al-7identity(3)>I[C]
to produce the matrix [C] = [A — 7I]. Then run the [NULB] program; at the prompt for a matrix,

enter [C]. The outpyt piysrig tgl%gg)%eggs]m\xlal&s&_%g%%ﬁ r&gggsgwp@sis for the eigenspace of A
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corresponding to A = 7. In general identity(k) (in the [MATH] menu) produces the
kxk identity matrix and [NULB] produces a matrix whose columns form a basis for Nul C (the
same basis you would get if you started with rref ([C])and calculated by hand).

Remarks:

1. The program [NULB] uses the command rref( and requires that the number of columns
of the input matrix be greater than or equal to the number of rows.
2. If the numbers in the basis matrix B are messy, try the sequence of keystrokes

[Frac] which shows the last answer in fractions, if possible.

TI-86 The program [NULB] (in the menu) will simplify your homework by automatically
producing a basis for an eigenspace. For example, if A is a 3x3 matrix with an eigenvalue 7, first
store A, then use the command

A-7xident 3 >C
to produce the matrix C = A — 71. Run the [NULB] program. At the prompt for a matrix, enter C.
The output is a matrix B whose columns form a basis for the eigenspace of A corresponding to
A =7.1In general ident k (in the [MATRXI[OPS] menu) produces the kxk identity matrix and
[NULB] produces a matrix whose columns form a basis for Nul C (the same basis you would get
if you started with rref C and calculated by hand).

Remarks:

1. The program [NULB] uses the command rref and requires that the number of columns of
the input matix be greater than or equal to the number of rows.

2. If the numbers in the basis matrix B are messy, try the sequence of keystrokes

[MATH] [MISC] [Frac] [ENIER], which shows the last answer in fractions, if possible.

TI-89 The program [nuib] (in the [alinear] program) will simplify your homework by
automatically producing a basis for an eigenspace. For example, if aa is a 3x3 matrix with an
eigenvalue 7, first store aa, then use the command
aa-7identity(3)>cc
to produce the matrix C= A — 71. Then run the [nuib] program; at the prompt for a matrix, enter
cc. The output is a matrix xx whose columns form a basis for the eigenspace of A corresponding
to A = 7. In general identity(k) (found by pressing [2nd) [wATH], and scrolling down to, or pressing
(@ [Matrix]) produces the kxk identity matrix and [nulb] produces a matrix whose columns
form a basis for Nul C (the same basis you would get if you started with rref(cc) and calculated
by hand).
Remarks:
1. The program [nulb] uses the command rref( and requires that the number of columns
of the input matrix be greater than or equal to the number of rows.
2. If the numbers in the basis matrix B are messy, try setting the mode, page 2, to exact.

SECTION 5.2 CHARA

TI-83+ You can use the [CHARA] program to check your answers in Exercises 9~14. Note that if
A is nxn, running this program produces a vector listing the coefficients of the characteristic
polynomial of A, in order of decreasing powers of A, beginning with A". If the polynomial is of
odd degree, the coefficients are multiplied by -1, to make +1 the coefficient of A"; this

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.




EB Brief Table of Contents || EB Table of Contents

5.3 Diagonalization  TI-21

corresponds to finding the determinant of AI — A. ([CHARA] works for matrices up to size 3x3.)

TI-86 You can use the [CHAR] program to check your answers in Exercises 9—14. Note that if A
is nxn, running this program produces a vector listing the coefficients of the characteristic
polynomial of A, in order of decreasing powers of A, beginning with A" . If the polynomial is of
odd degree, the coefficients are multiplied by —1, to make +1 the coefficient of A"; this
corresponds to finding the determinant of AI — A. ([CHAR] works for matrices up to size 3x3.)

TI-89 You can use the [chara] program to check your answers in Exercises 9-14. Note that if
A is nxn, running this program produces a vector listing the coefficients of the characteristic
polynomial of A, in order of decreasing powers of A, beginning with A". If the polynomial is of
odd degree, the coefficients are multiplied by —1, to make +1 the coefficient of A"; this
corresponds to finding the determinant of Al — A. ([chara] works for matrices up to size 3x3.)

SECTION 5.3 Diagonalization

TI-83+ To practice the diagonalization procedure in this section, you should use [NULB] to
produce eigenvectors. For Exercises 33-36, you have to find the eigenvalues first. See notes from
Section 5.1

The program [EIGEN] calculates eigenvalues for a given square matrix with less than
four rows. For each eigenvalue, use [NULB] on A — Al to create a matrix whose column(s) give a
basis for the eigenspace corresponding to the given eigenvalue.

TI-86 The command eigVl A>ev (eigV1 is in the [MATRX] [MATH] menu) produces a list, of
the eigenvalues of the matrix A. To learn the diagonalization procedure, you should use the
method of Section 5.1 to produce the eigenvectors. For each eigenvalue, use [NULB] on A —~ Al to
create a matrix whose column(s) give a basis for the eigenspace corresponding to the given
eigenvalue.

In later work you can automate the diagonalization process. The command eigVc>P
([eigVcl is in the [MATRX] [MATH] menu) produces a matrix P such that AP = PD, where D is
the diagonal matrix you can create from the list of eigenvalues, with the eigenvalues in the
diagonal. (Use the command 1i»vc, in the [LIST] menu, to change ev into a vector, then the
program [VdiaM], with ev as input, to produce D.) If A happens to be diagonalizable, then P will
be invertible. In any case, P is likely to be quite different from what you construct for your
homework. The columns of P may be scaled. (The sequence [Znd)[MATHIIMISCI[FracENTER)
shows the last answer in fractions, if possible.)

TI-89 The command eigVl(aa) (found by pressing (watHl, and scrolling down to, or
pressing [Matrix]) produces a list of the eigenvalues of the matrix aa. To learn the
diagonalization procedure, you should use the method of Section 5.1 to produce the eigenvectors.
For each eigenvalue, use [nulb] on A — Al to create a matrix whose column(s) give a basis for
the eigenspace corresponding to the given eigenvalue.

In later work you can automate the diagonalization process. The command eigVc>pp
(found by pressing [MaTH], and scrolling down to, or pressing (4] [Matrix]) produces a matrix
pp (or P) such that AP = PD, where D is the diagonal matrix you can create from the list of

eigenvalues, with the eigenvalues in the diagonal. If A happens to be diagonalizable, then P will
Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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be invertible. In any case, P is likely to be quite different from what you construct for your
homework. The columns of P may be scaled.

SECTION 5.5 Complex Eigenvalues

TI-83+ The 83+ does not compute complex eigenvalues and eigenvectors directly.

TI-86 The eigVl and eigVc functions (mentioned in Section 5.3) also work for matrices with
complex eigenvalues. In this case the resulting list of eigenvalues or the matrix containing the
eigenvectors as columns have some complex entries.

For any matrix V the real and imag functions in the [MATRX] [CPLX] menu produce the
real and imaginary parts of the entries in V, displayed as matrices of the same size as V.

TI-89 The eigvl( and eigvc( keys (mentioned in Section 5.3) also work for matrices with
complex eigenvalues. In this case the resulting list of eigenvalues or the matrix containing the
eigenvectors as columns have some complex entries. To view these complex values in the form
a+bi, the Complex format in the Mode menu must be set to rectangular.

SECTION 5.6 Plotting Discrete Trajectories

TI-83+ Given a vector [B] (representing a point xj) and a matrix [A] (the transition matrix) the

command [A]*[B]>[B] will compute the "next" point on the trajectory. Use the [EnTRY] keys
to repeat the command over and over.

TI-86 Given a vector x (representing a point X)) and a matrix A (the transition matrix) the
command Axx>x displays xp, 1, the "next" point on the trajectory, and stores it in x. Use the
[EnTRY] keys to repeat the command over and over.

TI-89 Given a vector x (representing a point Xi) and a matrix A (the transition matrix) the

command A*x>x will compute the "next" point on the trajectory. Use the key to repeat the
command over and over.

SECTION 5.8 Power Method and Inverse Power Method

TI-83+ Set your calculator to display as many decimal places as possible. The algorithms below
assume that A has a strictly dominant eigenvalue, and the initial vector is x, with largest entry 1
(in magnitude).

The Power Method: When the following steps are executed over and over, the values of
x (also known as matrix [B]) approach (in many cases) an eigenvector for a strictly dominant
eigenvalue. (The program [VAMX] prompts for a vector and returns the entry in the vector with
the maximum absolute value and stores it in M.)

[A]*[B]>[C] (1
[VAMX] Returns M = estimate for the eigenvalue (2)
[C]/M>[B] Estimate for the eigenvector 3)

As these commands are repeated, the numbers that appear are the f, that approach the dominant

eigenvalue. You can program your TI-83+ to perform this sequence a certain number of times by
Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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using a loop structure. See the TI-83+ Guidebook for more information about programming with
the TI-83+.

The Inverse Power Method: Store the initial estimate for the eigenvalue in the variable Z
and enter the command [A]-Z* Identity(n)>[C], where n is the number of columns of A. Then
enter the commands

[C]-"*[B]>[D] Solves the equation (A — Z)y = x )]
[VAMX] )
[ANS] E+Z>M M = estimate for the eigenvalue 3)
[C1/M>[B] Estimate for the eigenvector @)

As these commands are repeated, lines (3) and (4) produce the sequences {Vv, } and {x,}
described in the text.

TI-86  Set your calculator to display as many decimal places as possible. The algorithms
below assume that A has a strictly dominant eigenvalue, and the initial vector is x, with largest
entry 1 (in magnitude). (If your initial vector is called x¢, rename it by entering x,>x.)

The Power Method: When the following steps are executed over and over, the values of
x approach (in many cases) an eigenvector for a strictly dominant eigenvalue (the program
[VAMX] prompts for a vector and returns the entry in the vector with the maximum absolute value
and stores it in mu.)

AxX>y (1)
[VAMX] mu = estimate for the eigenvalue 2)
y/mu>x Estimate for the eigenvector 3)

As these commands are repeated, the numbers that appear are the 1, that approach the dominant

eigenvalue. You can program your TI-86 to perform this sequence a certain number of times by
using a loop structure. See the T1-86 Guidebook for more information about programming with
the TI-86.

The Inverse Power Method: Store the initial estimate for the eigenvalue in the variable a,
and enter the command A-a*ident n>C, where n is the number of columns of A. Then enter the
commands

C lkx>y Solves the equation (A —al)y =x )
[VAMX] 03]
[AnS] [-1+a>nu nu = estimate for the eigenvalue 3)
y/nu>x Estimate for the eigenvector “4)

As these commands are repeated, lines (3) and (4) produce the sequences {V,} and {x,}
described in the text.

TI-89 Set your calculator to display as many decimal places as possible. The algorithms below
assume that A has a strictly dominant eigenvalue, and the initial vector is x, with largest entry 1
(in magnitude).

The Power Method: When the following steps are executed over and over, the values of
x approach (in many cases) an eigenvector for a strictly dominant eigenvalue. The program
[vamx] prompts for a vector and returns the entry in the vector with the maximum absolute value
and stores it in m.

aa*xx>yy )
[vamx] m = estimate for the eigenvalue 2)
yy/m>xx Estimate for the eigenvector 3)

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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As these commands are repeated, the numbers that appear are the £, that approach the dominant
eigenvalue. You can program your TI-89 to perform this sequence a certain number of times by
using a loop structure. See the TI-89 Guidebook for more information about programming with
the TI-89.

The Inverse Power Method: Store the initial estimate for the eigenvalue in the variable z
and enter the command aa-z*identity(n)>yy, where n is the number of column of aa. Then
enter the commands

yy [{)*xx>zz Solves the equation (A — ZI)y = x (1)
[vamx] (2)
uu +2>m m = estimate for the eigenvalue 3)
yy/m>xx Estimate for the eigenvector (4)

As these commands are repeated, lines (3) and (4) produce the sequences {v,} and {x,}
described in the text.

SECTION 6.1 Inner Product and Norm

TI-83+ If [A] and [B] are two column vectors of the same size, their inner product (or dot
product) can be computed by [A]"*[B] or [B]™*[A]. To calculate the norm of a vector, you need
only take the square root of the dot product of a vector with itself. The keystrokes needed to find
the length of the vector stored in [A] are:

[A]T*[A] Computes the dot product of [A] with itself

(] [ans] (1.1) Computes the square root of the dot product
See the note for Section 2.1.

TI-86 The inner product of two vectors is found with the dot command in the [VECTR] [MATH]
menu. The norm command in the same menu produces the length of a vector. See the note for
Section 2.1.

TI-89 The inner product of two vectors is found with the dotP( command (found by pressing
MmatH), and scrolling down to, or pressing [Matrix], then choosing L:Vector ops). The
norm( command, in the same matrix menu but under H:Norms, produces the length of a vector.
See the note for Section 2.1.

SECTION 6.2 Orthogonality

TI-83+ In Exercises 1-9 and 17-22, the fastest way (counting keystrokes) with the TI-83+ to test
a set such as {u,, u,, u,} for orthogonality is to use a matrix [A] = [u, u, u,]. See the proof
of Theorem 6.

For vectors y and wu, the orthogonal projection of y onto u, (called [B] and [C]

respectively) is:
(IBJ™[C1/[C]™[C])*[C]

TI-86 In Exercises 1-9 and 17-22, the fastest way (counting keystrokes) with the TI-86 to test
a set such as {u,, u,, u,} for orthogonality is to use a matrix U =[u, u, wu,]. See the proof

of Theorem 6. For vectors y and u, the orthogonal projection of y onto u, is:

(dot(y,u)/dot(u,u))*u. ) )
Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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TI-89 In Exercises 1-9 and 17-22, the fastest way (counting keystrokes) with the TI-89 to test
a set such as {u,, u,, u,} for orthogonality is to use a matrix U =[u, wu, u,]. See the proof

of Theorem 6. For vectors y and u, the orthogonal projection of y onto u, denoted yy and uu, is:
(dotP(yy,uu)/dotP(uu,uu))*uu

SECTION 6.3 Orthogonal Projections

TI-83+ The orthogonal projection of y onto a single vector was described in the TI-83+ note for
Section 6.2. The orthogonal projection onto the set spanned by an orthogonal set of nonzero
vectors is the sum of the one-dimensional projections. Another way to construct this projection is
to normalize the orthogonal vectors, (use the [UNITV] program) place them in the columns of a
matrix [A], and use Theorem 10. For instance if {[B], [C], [D]} is an orthogonal set of nonzero
vectors, they can be normalized by running the [UNITV] program for each vector. Then, to
construct [A], input the following commands:

augment ([B], [C])>[A] Augments [B] and [C] together

augment ([A], [D])>[A] Augments [B] and [C] and [D] together
The resulting matrix [A] has orthonormal columns, and [A]*[A]™*y produces the orthogonal
projection of y onto the subspace spanned by {[B], [C], [D]}.

TI-86  The orthogonal projection of y onto a single vector was described in the TI-86 note for
Section 6.2. The orthogonal projection onto the set spanned by an orthogonal set of nonzero
vectors is the sum of the one-dimensional projections. Another way to construct this projection is
to normalize the orthogonal vectors, (use the unitV function in the [VECTR] [MATH] menu)
place them in the columns of a matrix U, and use Theorem 10. For instance if {y,, y,, ¥, } is an

b2 V) V3
norm(y,) norm(y,) mnorm(y,)

orthogonal set of nonzero vectors, then the matrix U =

can be created with the sequence:

unitVv yloul ul is a unit vector in the direction of y1
[VtoM] ul>U Convert ul to an nx1 matrix and store in U
unitVv y2>u2 u2 is a unit vector in the direction of y2
aug(U,u2)>U Appendu2 toU

unitVv y3>u3 u3 is a unit vector in the direction of y3
aug(U,u3)>u Append u3 to U.

The resulting matrix U has orthonormal columns, and U*U"*y produces the orthogonal projection
of y onto the subspace spanned by {y,, y,, ¥, }

TI-89 The orthogonal projection of y onto a single vector was described in the TI-89 note for
Section 6.2. The orthogonal projection onto the set spanned by an orthogonal set of nonzero
vectors is the sum of the one-dimensional projections. Another way to construct this projection is
to normalize the orthogonal vectors, (use the unitV( command by pressing [vatH], and
scrolling down to, or pressing (2] [Matrix] and then choosing L:Vector Ops) place them in the
columns of a matrix U, and use Theorem 10. For instance if {aa, bb, cc} is an orthogonal set of
nonzero vectors, they can be normalized by the unitV( command for each vector. Then to
construct U, input the following commands:

augment (aa, bb)>uu Augments aa and bb together
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augment (uu, cc)>uu Augments aa and bb and cc together
The resulting matrix U has orthonormal columns, and U*U™y produces the orthogonal
projection of y onto the subspace spanned by {aa, bb, cc}.

SECTION 6.4 The Gram-Schmidt Process

TI-83+ The program [PROJ] prompts for two vectors. It produces the orthogonal projection of
one onto the other. If you wish to compute the projection of a vector onto the subspace spanned
by a set of vectors given as columns of a matrix, [PROJV] will prove to be more useful.

TI-86 The program [PR0OJ] prompts for the vectors v2 and vl; it produces the orthogonal

projection of v2 onto v1. If A has three columns, then add the commands:
B(3)>x3
x3-(dot(x3,vl)/dot(vl,vl))*vl-(dot(x3,v2)/dot(v2Z,v2))*v2>v3

You can continue to use the program [PR0J], although in this situation the [PROJV] program—
which computes the projection of a vector x onto the subspace spanned by a set of vectors given
as columns of a matrix V—will prove to be more useful. For example,

TI-89 The program [proj] prompts for two vectors. It produces the orthogonal projection of
one onto the other. If you wish to compute the projection of a vector onto the subspace spanned
by a set of vectors given as columns of a matrix, [projv] will prove to be more useful.

SECTION 6.5 The Inverse Operator '

TI-83+ The least squares solution to Ax = b is the solution of ATAx=A"b. The reduced row
echelon form for the augmented matrix for the system is displayed by the command

rref augment([A]T[A], [A]T[B]).
from which the set of solutions can be determined by the method described in Section 1.2 of the
text.

If the matrix A is square and invertible, then Theorem 14 tells us that the unique least
squares solution to Ax = b is given by (ATA)'ATb. The solution in this case is displayed
explicitly as a nx1 matrix by the command

([AI™[A])-"*[A]T*[8]
For Exercises 15 and 16, see the Numerical Note on page 410 in the text. For Exercise 26, the
command

augment([A]T, [BIT)T
creates a (partitioned) matrix whose top block is [A] and the bottom block is [B]. This command
works as long as [A] and [B] have the same number of columns.

TI-86 The least squares solution to Ax = b is the solution of ATAx=A"b. The reduced row
echelon form for the augmented matrix for the system is displayed by the command

rref aug(ATA,ATD),
from which the set of solutions can be determined by the method described in Section 1.2 of the
text.

If the matrix A is square and invertible, then Theorem 14 tells us that the unique least
squares solution to Ax = b is given by (ATA)'A™. The solution in this case is displayed
explicitly as a nx] matrix by the command

(AT*A) 1xAT*b
Copyright © 2006 Pearson Addison-Wesley. All rights reserved.
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For Exercises 15 and 16, see the Numerical Note on page 410 in the text. For Exercise 26, the

command

aug (A1, A2")T
creates a (partitioned) matrix whose top block is Al and the bottom block is A2. This command
works as long as Al and A2 have the same number of columns.

TI-89 The least squares solution to Ax = b is the solution of ATAx=Ab. The reduced row
echelon form for the augmented matrix for the system is displayed by the command

rref augment(aaTaa,aa'™bb),
from which the set of solutions can be determined by the method described in Section 1.2 of the
text.

If the matrix A is square and invertible, then Theorem 14 tells us that the unique least
squares solution to Ax = b is given by (ATA)'A'b. The solution in this case is displayed
explicitly as a nx1 matrix by the command

(aa™aa)-"*aa*bb
For Exercises 15 and 16, see the Numerical Note on page 410 in the text. For Exercise 26, the
command

augment (aa',bbT)T
creates a (partitioned) matrix whose top block is aa and the bottom block is bb. This command
works as long as aa and bb have the same number of columns.

SECTION 6.6 Least-Squares Solutions, Functions of Vectors

TI-83+ Once you create the design matrix X and the observation vector y, your computations for
least-square solutions here are the same as those described in notes for Section 6.5. Here [A] and
[B] are replaced by X and y, respectively. The command

ref augment([A]1T[A], [A]T[B]).
leads to the general description of all least-squares solutions. When X has linearly independent
columns, the command

([AT™*[AD)-**[A1™[B]
creates the least-squares solution. In other courses, you may choose simply to use [A]-1*[B],
which also produces a least-squares solution, except when X is square and singular (or nearly
singular).
TI-86 Once you create the design matrix X and the observation vector y, your computations for
least-square solutions here are the same as those described in notes for Section 6.5. Here [A] and

[B] are replaced by X and y, respectively. The command

ref aug(ATA,ATb),
leads to the general description of all least-squares solutions. When X has linearly independent
columns, the command

(AT*A) 1%ATxb
creates the least-squares solution. In other courses, you may choose simply to use [A]-*[B],
which also produces a least-squares solution, except when X is square and singular (or nearly
singular).

TI-89 Once you create the design matrix X and the observation vector y, your computations for
least-square solutions here are the same as those described in notes for Section 6.5. Here [A] and

[B] are replaced by X and y, respectively. The command
ref augment(aa'aa,aa'bb),
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leads to the general description of all least-squares solutions. When X has linearly independent
columns, the command

(aa™*aa)-*aa’*bb
creates the least-squares solution. In other courses, you may choose simply to use [A]-7*[B],
which also produces a least-squares solution, except when X is square and singular (or nearly
singular).

SECTION 7.1 Orthogonal Diagonalization

TI-83+ The program [EIGEN] calculates eigenvalues for a given square matrix with less than
four rows. Once the eigenvalues have been found, use the [NULB] program to obtain
eigenvectors, as in Section 5.3.

TI-86 The eigVl and eigVc functions orthogonally diagonalize any symmetric matrix A, but
you miss the opportunity to learn the procedure of this section. Use eigV1 to find the eigenvalues
of the matrix and the [NULB] program to obtain eigenvectors, as in Section 5.3.

TI-89 The eigVl( and eigvc( keys orthogonally diagonalize any symmetric matrix A, but you
miss the opportunity to learn the procedure of this section. Use eigV1 ( to find the eigenvalues of
the matrix and the [nulb] program to obtain eigenvectors, as in Section 5.3.

SECTION 7.4 The Singular Value Decomposition

TI-83+ The T1-83+ does not have the capabilities to compute eigenvectors for this exercise.

TI-86 The commands eigVl ATAYEV and eigVc ATASP 1produce the list of eigenvalues EV and
an orthogonal matrix P of eigenvectors of the matrix A A, but the eigenvalues may not be in
decreasing order. In such a case, you will have to rearrange things to form V and 3.

TI-89 The commands eigVl(aa™aa)»e and eigVc(aa™aa)>pp produce the list of
eigenvalues e and an orthogonal matrix pp of eigenvectors of the matrix ATA, but the
eigenvalues may not be in decreasing order. In such a case, you will have to rearrange things to
form Vand ).
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index of TI-83+ Commands

Symbols

Addition key [+] TI-11

Answer key [ANS] T1-6,23,24

Bracket keys [(][1] TI-1

Catalog menu [CATALOG] TI-19

Exponent key [*] TI-11

Enter key TI-1,4,5,8,10-12,17,18,20
Entry key [ENTRY]TI-22

Inverse key [x1] TI-13,17,18,23,26,27

Math menu T1-10,20

Matrix menu [MATRIX] T1-1,5,8,10,11,13,15-18,20
Memory key [MEM] TI-4

Multiplication key [x] TI-11,22-27

Program menu TI-5

Quit key [QuiT] TI-1

Second key TI-1,4,5,8,10,11,13,15-20,22-24
Square root key [v7] TI-24

Squaring key [x7] TI-11

Store key TI-1,6,8-14,17-20,22,23,25
Subtraction key [-] T1-6,11,23

Supplemental Programs
ALINEAR TI-5,9,14,19
BGAUSS TI-9,13
CHARA TI-20,21
EIGEN TI-21,28

GAUSS TI-9,13,14,16-18
JCOL TI-11

JROW TI-11

LU TI-14

MDIAV TI-16

NULB TI1-19-21,28
PRDCT TI-16

PROJ TI-26

PROJV TI-26

UNITV TI-25

VAMX TI-22,23
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Archive TI-4

augment T1-8,9,13,14,25-27
det TI-16

dim TI-10,11

Fill TI-10

Frac TI-10,20

identity T1-13,19,20,23
randM TI-11,18

ref TI-16-18,27

*row TI-5,8,9,13
*row+ TI1-5,6,8
rowswap T1-5,6,8,16
rref T1 15-20,26

solve TI-19

T TI-11,14,24-27
UnArchive T1-4
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Symbols

Addition key [+] TI-12

Alpha key TI-3

Answer key [ANS] TI-7,23

Bracket keys [[][1] TI-2

Exponent key (] TI-12

Enter key T1-2,3,5,7,8,10-12,18,19,21
Entry key [ENTRY] TI-22

Exit key TI-3

Inverse key [x-1] TI-13,18,23,26,27

List menu [LIST] TI-10,21

Math menu [MATH] TI-10,20,21

Matrix menu [MATRX] T1-2,3,6,8,10,12,13,15-18,20-22
Memory key [MEM] TI-5

More key [MOREJTI-6,18

Multiplication key [x] TI-11,12,22-27

Poly key [POLY] TI-19

Program menu TI-5,8,9,20

Second key TI-2,6,8,10,13,19-23

Solver menu [SOLVER] TI-19

Squaring key (x?] TI-12

Store key T1-2,7-10,12-14,18,20-23,25,26
Subtraction key [-] T1-7,12,26

Vector menu [VECTR] T1-2,3,12,24,25

Supplemental Programs
BGAUS TI-9,10,13
CHAR TI-21

GAUS TI-9,10,13,15-18
MdiaV TI-16

MtoV TI-3

NULB TI-20,21,28
PRDCT TI-16

PROJ TI-26

PROJV TI-26

VAMX TI-23

VdiaM T1-21

VtoM TI-3,8,25
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Built in Commands
augment T1-8-10,13,14,25-27
cond TI-13,16

det TI-16

dim TI-10,12

dot TI-12,24,26
eigVe T1-21,22,28
eigV1 T1-21,22,28
Frac T1-10,20,21
ident TI-13,20,23
imag TI-22

1irve TI-21

LU TI-15

mRadd TI-6-8
multR TI1-6,8,9,13
norm TI-24
randM TI-12,18
real TI-22

ref TI-16-18,27
rref TI-15-20,26
rSwap TI-6-8,16
TT1-12,14,25-28
unitV TI-25
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Index of TI-89 Commands

Symbols

Addition key [+] TI-12

Answer key [ANS] TI-8

Apps menu TI-3

Bracket keys [[][1] TI-3

Exponent key [~] T1-12,13,18,24,27,28

Enter key T1-3-5,7,9,11-13,18,19,22

F1 key [F1) TI-5

F2 key [F2) TI-19

Home key TI-4

Math menu [MATH] TI-7,9,10,12,13,15-18,20,21,24,25
Matrix menu T1-4,7,9,10,12,13,15-18,20,21,24,25
Multiplication key [x] TI-7,12,22-28

Second key T1-5,7,9,10,12,15-18,20,21,24,25
Store key TI-3,8-10,12-14,18,20-24,26,28
Subtraction key (-] TI-12

Var-link [VAR-LINK] TI-5

Supplemental Programs
alinear T1-5,9,17,20
bgaus T1-10,13

col TI-12

chara TI-21

gauss T1-9,10,13,15-18
mdiav TI-17

nulb TI-20,28

prdet TI-17

proj TI-26

projv TI-26

vamx TI-23,24
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Archive TI-5
augment T1-9,13,14,26-28
det TI-17

dim TI-12

dotP TI-12,24,25
eigVe TI-21,22,28
eigV1 T1-21,22,28
identity TI-13,20,24
LU TI-15

mRow T1-7,9,13
mRowAdd T1-7-9
newMat TI-10
norm TI-23
randMat TI-12,18
ref TI-16-18,28
rowSwap TI-7-9
rref T1-15-20,27
solve TI-19
TTI-12,14,26-28
Unarchive TI-5
unitV TI-25
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NOTES FOR THE HP-48G CALCULATOR

GETTING STARTED WITH AN HP-48G CALCULATOR

Using the HP-48G with Linear Algebra ind its Applications

All of the commands contained in these notes are either standard functions on the HP-48G or are
functions in the directory which may be downloaded from www.laylinalgebra.com.
To download this directory onto the HP-48G, first download it onto a computer. By using the Serial
Interface Cable and a data transfer protocol such as Kermit or Xmodem, software may be downloaded
onto the calculator. Freeware may be used to handle the data transfer; see www.hpcalc.org and
the HP-48G User’s Guide for more information. The easiest way to transfer data from a PC
to a HP-48G is to use the HP Serial Interface Kit, which is available from HP distributors (see
www.hpcalc.org for a complete list with a price comparison). This package includes the
Serial Interface Cable and connectivity software which allows immediate sharing of information
between a PC and the HP-48G. The connectivity software is also available by a free download from
www . hp . com. Once the directory is on a HP-48, it may be transferred to another calculator via the
infrared interface.

Within the directory there are two subdirectories: | LT | and [TBOX|. See the HP-48G
Manual for information on the directory. The directory contains a variety of linear
algebra-related programs which are used at various points in the text, and are referred to in the
Study Guide Boxes which follow. The directory should be loaded onto the calculator for
the duration of the linear algebra course.

Also available for downloading from www . Laylinalgebra . com is the data for many of the
homework exercises from the text. The data is organized first into files which contain the data for
a chapter ar a half-chapter. Within these files there is a directory for each section of the text, and
then subdirectories for each exercise for which there is data. The menu keys in these subdirectories
provide the student with the appropriate data.

Creating Matrices with the HP-48G

There are several ways to create matrices on the HP-48G. The most direct way is to use the

. . 1 2
calculator’s command line. For example, to enter the matrix [ 3

45 6 ], the following sequence

of commands is used:

1. Press (purple key twice to open the delimiters for the matrix and for the first row.

HP-1
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2. Key in the first row: .

3. Press the E] key to move the cursor past the first ] delimiter.

4. Key in the rest of matrix — further brackets are unnecessary: @
5. Press .

Another way to enter a matrix is to assemble it from its column vectors; see the HP-48G Note for
Section 1.3 below for details on how to do this. Finally, the HP-48G has a MatrixWriter application
which can be used to enter and edit matrices. See Chapter 14 of the HP-48G User’s Guide for
directions on how to use this application.

STUDY GUIDE NOTES

SECTION 1.1  Row Operations

Row operations on a matrix A are performed by the following keys, which are found in the | MATH

menu: SwWaps rows, ales arow by a non-zero constant, and | RCIJ
| RSWE |

performs a row replacement operation. The | RSWP | key is on the second page of the menu. These
keys are used as follows; you may also find the User’s Guide (p. 14-19) helpful.

: With the matrix on level 1, enter the numbers of the rows you want swapped. For
example, 1 [ENTER | 2| ENTER || RSWP | will swap rows 1 and 2.

RCI|  Withthe matrix on level 1, enter the constant ¢ by which you want to multiply row
i. Next enter the row number i. For example, 5 [ENTER | 1 [ENTER | [RCI | will
multiply row 1 by 5.

: With the matrix on level 1, first enter the constant ¢ by which you want to multiply
row number i. Next enter the row number ¢ of the row you wish to multiply, then
enter the row number j of the row to which you want to add ¢ times row ¢. For
example, 5[ENTER | 1 [ENTER |2 [ ENTER ||RCIJ | will add 5 times row 1 to row
2.

The new matrix will now be on level 1 of the stack; if you wish to keep a copy of it for later use,
simply press ; a copy of it will then appear on level 2. If you then perform a row operation
that you don’t like for some reason, simply use (the purple backspace key) to remove it from
the stack. The old matrix on level 2 will now move down to level 1, ready for your next operation.
Make sure to recopy it using before proceeding. More permanent storage can be achieved
using the key; see the User’s Guide (p. 5-11) for more information.
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Note: For the simple problems in this section and the next, the multiple ¢ you will need in
the |[RCI | and |[RCIJ | commands will usually be a small integer or fraction that you can compute
in your head. In general, ¢ may not be so easy to compute mentally. The paragraphs that follow
describe a simple way to write ¢ in terms of the entries in A.

The (7, j) entry in A is denoted by the algebraic expression *A (i, j) . To use this expression
in calculations, it must be surrounded by single quotes, and the matrix A must be stored as a variable
in your current directory. You can use this expression to help you row reduce matrices.

For instance, if you want to scale row 7 of A to change the value of A (i, k) to 1, you can enter

A,then ‘A (i, k) ', thenpress|1/z |and . The proper scaling factor should now be on level

1. Finally, enter the row number 7 and press .
If you want to use a pivot entry A (i, j) to change A(k,j) to 0, you can enter A, then

‘A(k,j)" ‘A(i,]) E +/- to produce the proper factor. Then enter i, then &, then

press [RCTT]

SECTION 1.3  Constructing a Matrix

To create the matrix A = [ a; a; az b ], do the following steps. First enter a; as a vector.

This can be confusing — you must enter it as a row. Open one pair of brackets with the (purple

) key, then enter the entries of the vector from top to bottom as the cursor proceeds from left

to right. Separate the entries with a ; when you have completed typing the entries, press
. Enter ay, a3, and b onto the stack in similar fashion. You then enter the number of
columns (4 in this case), and press [ COL— |, which is found in the [MTH| [MATR | [COL|menu.

To append the column vector b to the matrix A4, thus forming [ A b ], first place A on the
stack, then enter b as described above. You then enter the number of the column in A which you
wish b to become, and press the key in the [MTH| [MATR| |COL | menu. Consult your
User’s Guide (pp.14-3, 14-5) for more details.

Exercises 11-14, 25-28, and 31 can be solved using the [RSWP], [RCI], and [RCIJ] keys
described in the HP-48G Note for Section 1.1.

SECTION 14 |GAUS|and [BGAU]|
To solve Ax = b, row reduce the matrix [ A b ], which you can create by the method outlined
in the HP-48G Note for Section 1.3. Recall that you enter column vectors as rows; thus the vector

1
x=| 2 | isenteredas [ 1 2 37].
3

To multiply a matrix A by a vector x place A on the stack, then place x on the stack and press .
The number of entries in x must match the number of columns in A. You should interpret the result
as a column vector.
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To speed up row reduction of the augmented matrix M = [ A | b ], the key in your
directory may be used. Place the matrix M on the stack, then enter the number of the
row you wish to use. The program will now use the leading entry in the given row of M
as a pivot, and use row replacements to create zeroes in the pivot column below this pivot entry.
The result is returned to the stack. For the backward phase of row reduction, use the key

which is also in your | TBOX | directory. The key works exactly as the | GAUS | key, except that the
program creates zeroes in the pivot column above the pivot entry. You may then use the |RCT | key

to create 1’s in the pivot positions. The directory which contains the | GAUS | and | BGAU |
programs is a subdirectory of the direct. The directory may be downloaded
from www . laylinalgebra. com, as is described in the above section “Getting Started with an
HP-48G Calculator.”

SECTION 1.5  Zero Matrices

To create an m X n matrix of zeroes, enter the list { m n }, then 0, then press the key in the
[MTH| |MATR | [MAKE | menu. To create a vector containing m zeroes, proceed as above, except
use the list { m }. When solving the equation Ax = 0, where A is an m X n matrix, you can
create the matrix [ A0 ] by entering A, then creating a vector of m zeroes by the above method.
Finally use the key in the [MTH| [MATR | | COL | menu (described in the HP-48G Note for
Section 1.3) to append the vector onto the matrix. You can then use the|GAUS |,|BGAU | and |RCT |
keys to row reduce [ A0 ] completely.

SECTION 1.6 Rational Format

Chemical equation-balance problems are studied best using exact or symbolic arithmetic, because
the balance variables must be whole numbers (with no round-off allowed). The key will take
a floating point number at level 1 of the stack and return a rational approximation for this floating
number. To find the key, press the left arrow (purple) key, then the @ key, then the
key. The key should now be one of the menu options. Note that this key will not work on
an entire matrix at one time. You must either retype the entry you want to convert, or reference the
entry in the *A (i, j) * format mentioned in the HP-48G Note for Section 1.1, then use the
key on that single floating point number.

Once you find a rational solution of a chemical equation-balance problem, you can multiply the
entries in the solution vector by a suitable integer to produce a solution that involves only whole
numbers.

SECTION 1.10  Generating a Sequence

To generate the sequence x;, Xz, . . ., enter and store the matrix M. You can then enter the vector
Xp onto the stack, and press | ENTER | to copy it. Press if necessary to produce a list of your
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variables, then press the menu key labelled @ The series of commands

will compute x; and copy it onto the stack. Repeating this process will yield the sequence of vectors
in order on your stack; the final vector in the sequence will appear twice. The stack will extend
upwards as long as the calculator has memory to hold it; you shouldn’t worry about exhausting your
calculator’s memory with the exercises in this section.

Numbers are entered into the HP-48G without commas. The number 6,000,000,000,000 in
HP-48G scientific notation is 6 . E12. A small number such as .0000000000012is 1.2E-12.

SECTION 2.1 Matrix Notation and Operations

To create a matrix, you may use the MatrixWriter; see Chapter 8 of your User’s Guide for more
information. You may also use the command line to enter a matrix. For example, the keystrokes

1 [sec] 2 [spc] 3 [»] 4 [sec] 5 [sec] 6

will create the 2 x 3 matrix

| s |
P

[SLEN )

S w

| S
»

If A is an m X n matrix, you can find its size by placing A on level 1 of the stack and pressing the
key in the |[PRG| |LIST| |[ELEM|menu. Thelist { m n } will be returned to the stack.
As was noted in Section 1.5, the (%, j) element in the matrix A is ‘A (1, 3) ’.

The HP-48G uses the [+], [=] and [x] keys to denote matrix addition, subtraction, and

multiplication, respectively. Note that the key will not operate on matrices, but the key
will. You can produce the transpose of a matrix by using the key in the
menu. To compute the inner product of two vectors, place them at levels 1 and 2 of the
stack and use the key in [MTH| | VECTR | menu. In order to take the outer product uv?’ of

two vectors, you must enter them as n X 1 matrices, and use the matrix commands and [x |
For complex vectors or matrices, consult your User’s Guide.

The|MTH| |MATR |and|MTH | [MATR | | MAKE | menus also contain commands which will help
you construct many special matrices. For example, the following sequences of commands yield the
following matrices; more information on these commands is available in the User’s Guide.
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[MTH| |MATR | | MAKE | menu:

{ 56 } 0 |CON A 5x 6 matrix of zeros
{35 } 1 CON A 3x5 matrix of ones

6 |IDN The 6x 6 identity matrix
{ 66 } A 6 x6 matrix with random integer entries in the range -9 to 9
menu:

[ 35724 ] 5 A 5x5 diagonal matrix

SECTION 2.2  Constructing A™*

To produce the n X n identity matrix, enter n and press the key in the[MTH| [MATR | [MAKE |
menu. You may augment the matrix A with an identity matrix by means of the | COL+ | command
mentioned in the HP-48G Note for Section 1.3. Use the [GAUS |, [BGAU] and [RCI | keys to row
reduce [ A T ].

There are other keys that can be used to row reduce matrices, invert matrices, and solve equations
Ax = b. They will be discussed later. after you have studied the concepts and algorithms in this
section.

SECTION 2.3 |1/z|,[COND}, and Hilbert matrices

Determining whether a specific numerical matrix is invertible is not always a simple matter. A fast
and fairly reliable method is to enter the matrix onto the stack and press | 1/z |, which computes
the inverse of the matrix. An error message is given if the calculator finds that the matrix is not
invertible.

For Exercises 41-44, the key inthe|MTH | [MATR | | NORM |computes a type of condition
number for the matrix on level 1 of the stack. Since this condition number is not the same type
of condition number as used in the text, your answers will not match those in the back of the text.
However, the note preceding Exercise 42 is still valid for the HP-48G’s condition number.

To perform the experiment described in Exercise 42, store the matrix A on the calculator. To
produce X, use the commands {41} [RANM], and store the result as X. The sequence of keystrokes

will produce x,. With this vector on level 1 of the stack, the keystrokes

® el [
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will compute x — x;. Displaying the value of x — x; is the best way to compare x and x;. To repeat
the process, create and store a new Xx.

The data from www.laylinalgebra.com which accompanies Exercises 44 and 45 is ac-
tually a program which produces, respectively, a Sx5 Hilbert matrix and a 12x 12 Hilbert matrix.
These programs may be edited to produce Hilbert matrices of any size.

SECTION 2.4  Partitioned Matrices
You may use the | COL+ | key in the [MTH| [MATR| | COL | menu and the key in the

MATR | [ROW [ menu to append matrices to each other, thus creating partitioned matrices. Consult
your User’s Guide (p. 14-5) for more details.

SECTION 2.5 LU Factorization and the [+ | Key

Row reduction of A using the key described in the HP-48G Note for Section 2.2 will produce
the intermediate matrices needed for an LU factorization of A. You can try this on the matrix in
Example 2 of Section 2.5. The matrices in equation (5) on page 145 of the text are produced by
placing A on the stack and keying

1 |GAUS This produces a matrix with 0’s below the first pivot
GAUS This produces a matrix with 0’s below pivots 1 and 2
3 |GAUS This produces the echelon form of the matrix

You can copy the information from your screen onto your paper, and divide by the pivot
entries to produce L as in the text. (For most text exercises, the pivots are integers and so are
displayed accurately.) The key in the[MTH] [MATR| | FACTR | menu produces the ingredients
for a permuted LU factorization of a square matrix A, but does not handle the general case. The
calculator produces three matrices on the stack. On level 1 you will find a matrix P, on level 2
an upper triangular matrix U, and on level 3 a lower triangular matrix L. Notice that in this case
the ones lie on the diagonal of U, not L. These three matrices satisfy the identity PA = LU,
or A = P71LU. The matrix P~'L is a permuted lower triangular matrix, so the factorization
A = (P~'L)U is a permuted LU factorization of A. As the algorithm used by the calculator differs
from that in your text, you should not expect your permuted LU factorization to agree with that of
the calculator.

When A is invertible, the best way to solve Ax = b is to use the El key. Enter b onto the
stack (as a vector), then enter A. Pressing E] now will cause x to be produced, again as a vector.
The HP-48G performs a permuted LU factorization on A and uses the matrices P, L, and U to
find A=l = U-'L-1P, then x = A~'b. The E operation uses 15-digit internal precision, which

provides for a more accurate answer than would be obtained by calculating A~! by using the
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operation. The | 1/z | operation also uses a permuted LU decomposition, but does not carry as great
an internal precision.

SECTION 2.8

By now, the row reduction algorithm should be second nature, so now it’s time to cut to the chase.
Applying the key in the[MTH | [MATR | | FACTR | menu to a matrix A produces the reduced
row echelon form of A. From that you will immediately be able to write a basis for Col A and to
write the homogeneous equations that describe Nul A. Don’t forget that A is a coefficient matrix,
not an augmented matrix.

SECTION 2.9

You can use the key to check the rank of A, but roundoff error or small pivot entries can
produce an incorrect reduced row echelon form. A more reliable strategy is to use . The
key is located on the second page of the [MTH| [MATR | [NORM| menu. By default the
HP-48G sets all “tiny” elements in a matrix to 0. This helps avoid problems with roundoff error in
calculations, but can also generate unexpected results. See the User’s Guide (pp. 14-9, 14-20, D-5)
for more information.

SECTION 3.2  Computing Determinants

To compute det A4, place A on the stack and then repeatedly use the | GAUS | and [RSWP | keys as
needed to reduce A to a matrix U which is in echelon form. (See the HP-48G Note for Section
2.2.) Keep track of how many times you swap rows. Then except for a £1, the determinant of
A can be found by placing U on the stack and executing the keystrokes | »DIAG]| [ PROD| The
ey is found on the second page of the menu; the | PROD | key is found in
the [ TBOX | directory. The [ —DIAG |key extracts the diagonal entries from U and places them in a
vector, and the | PROD | key computes the product of those entries. You can, of course, use the
key (found on the second page of the [MTH | |MATR | [NORM | menu) to check your work, but the
longer sequence of commands helps you to think about the process of computing det A.

SECTION 4.1  Graphing Functions

The following procedure will graph the function f in Exercise 37. Press the (aqua 8) key,
which will open an input form. You fill in the different pieces of data on this form, using the arrow
keys @E,E,E[)to maneuver bewteen input boxes. For example, if you highlight the “TYPE”
box and press the menu key labelled , a list of types of graphs will appear. Use the up and
down arrows to highlight the “Function” option, then press . To enter the function f, highlight
the “EQ” box and enter 1-8*COS (T) "2+8*COS (T) "4 then press . Similarly you enter T
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as INDEP (the independent variable) and O and 6.28 as the H-VIEW limits. You may choose to
have the calculator scale the vertical dimension of the graph automatically by placing a check in the
AUTOSCALE area (press to do this), or you may enter V-VIEW limits on your own. After
all of this is entered, press to erase any previous graph, then [DRAW | to create the graph.
See Chapter 24 of your User’s Guide for more information on plotting.

SECTION 4.3 and Applying Functions to Lists

Applying the key in the[MTH| [MATR ] | FACTR |menu to a matrix A produces the reduced
row echelon form of A. From that you will immediately be able to write a basis for Col A and to
write the homogeneous equations that describe NulA. Don’t forget that A is a coefficient matrix,
not an augmented matrix.

For Exercise 38: To form the necessary coefficient matrix in this case, you can first produce
each column then use the key (See the HP-48G Note for Section 1.3 or the User’s Guide
p. 14-3). To produce each column, you will want to apply the function cos*(t) to each element in a
vector. To do this, enter the vector on the stack enclosed not by brackets, but by set braces ({ and
}). This is an example of what the HP-48G calls a list. You may operate on lists just as you do on
numbers, so pressing k E will apply the function cos® (t) to each element in the list. To

change this list into a vector, press | OBJ— | [ >ARR |. These keys are found in the TYPE
menu. For more on lists, see Chapter 17 of the User’s Guide.

SECTION 4.4  The Division Key [ ]

If the equation Ax = b has a unique solution and A is a square matrix, you may calculate the
solution x by entering first b then A and pressing E] In this section, the equation will probably
have the form Pu = x.

This command actually computes A~'b, but uses 15-digit internal precision. This provides a
more precise result than computing A~'b by inverting A and multiplying. If A is not invertible, the
HP-48G will give you an “Infinite Result” error.

SECTION 4.6  |[RREF|,[RANK], and
In this course you may use either the or the key to check the rank of a matrix. In
practical work the key should be used, since this key uses a more reliable algorithm. This
algorithm is based on the singular value decomposition (see Section 7.4).

The key in the [MTH| [MATR | [ MAKE | menu produces a matrix with random integer
entries between -9 and 9; see your User’s Guide for details.

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.



EB Brief Table of Contents || EEi

Table of Contents

HP-10 Notes for the HP-48G Calculator

SECTION 4.7 Change-of-Coordinates Matrix

Data for Exercises 7-10 and 17-19 may be downloaded from www.laylinalgebra.com. The
key will completely row reduce the matrix [ c; ¢ by b ] to the desired form.

SECTION 4.8 Finding the Roots of a Polynomial

To find the roots of a polynomial, begin by entering a vector which contains the coefficients of the
polynomial in decreasing powers of the variable. For example, to find the roots of t* — 5¢ + 6, enter
the vector [ 1 -5 6 ]. Press the purple (left) arrow then the key, which sends you to an alternative

version of the | SOLVE | application. Press the | POLY | menu key, then the | PROOT | menu key. A

vector of roots will be returned to the stack.

SECTION 49 Generating a Sequence
The HP-48G Note for Section 1.10 contains information that is useful for homework here.

SECTION 5.1 Finding Eigenvectors

When you know an eigenvalue, your directory has a program that will simplify your
homework by helping to produce a basis for an eigenspace. For example, if A isa 5 x 5 matrix with

an eigenvalue 7, first place A on level 1 of the stack, then use the keystrokes

5 (258] 7 (] [5)

to produce the matrix A — 71. Then pressing the key will produce a set of vectors on the
stack which forms a basis for the eigenspace for A corresponding to A = 7. In general, &
produces the £ x k identity matrix, and C produces a set of vectors which is a basis for
Nul C.

For Exercises 37-40, you need the program, which is located on the second page of the
menu. This program produces a vector containing the eigenvalues of the matrix on
level 1 of the stack, which we stored as A. For example, the keystrokes

[ENTER] [Eovi] B [STO0) 5 [TON)EQ) =

compute a basis for the eigenspace corresponding to the second eigenvalue listed in the vector £.

It is dangerous to use and simply “look™ at the list of eigenvalues to use in the
command. You make a mistake when you type an eigenvalue, particularly when the HP-48G does

not show all of the nonzero digits of them.
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SECTION 5.2 |CHAR

You can use the key in the | TBOX | directory to check your answers in Exercises 9-14.
Note that if A is n X n, pressing this key with A at level 1 produces a vector listing the coefficients

of the characteristic polynomial of A, in order of decreasing powers of A, beginning with A™. If the
polynomial is of odd degree, the coefficients are multiplied by —1, to make +1 the coefficient of
A™. This corresponds to finding the determinant of AJ — A.

For Exercises 28 and 29, use the key to create a 4 x 4 matrix with random integer entries.
See the HP-48G Note for Section 2.1 on how to use this key. For Exercise 29, use the key
and perhaps the key to create the echelon form without row scaling. See the HP-48G Note
for Section 1.4.

SECTION 5.3  Diagonalization and

To practice the diagonalization procedure, you should use to produce the eigenvectors. For
Exercises 33-36, you should use the program to produce the eigenvalues. See the HP-48G
Note for Section 5.1.

In later work, you can automate the diagonalization process. The key in the
menu produces a vector containing the eigenvalues of A on level 1 of the stack, and a matrix
P on level 2 of the stack. To convert the vector containing the eigenvalues into the diagonal matrix
D, begin with that vector at level 1 of the stack. Enter the number of rows (or columns) of A onto
the stack, and press the key, which is on the second page of the menu. The
matrix D will now be at level 1 of the stack. The matrix P which is also produced by satifies
the equation AP = PD, where D is the diagonal matrix created from the vector of eigenvalues. If
P is invertible, then A is diagonalizable. Check whether PDP~! — A is the zero matrix. In any
case the P matrix generated by is likely to be quite different from what you construct for your
homework.

SECTION 5.5  Complex Eigenvalues

The | EGVL | and | EGV | keys also work for matrices with complex eigenvalues.

For a matrix on level 1 of the stack, the and keys in the | CMPL | menu produce the real
and the imaginary parts of the entries in a matrix, displayed as matrices the same size as the given

matrix. The | CMPL | menu is located on the second page of the menu.

SECTION 5.6  Plotting Discrete Trajectories

Given a vector x, you may compute the product Ax by placing x on the stack, then placing A on the
stack, pressing , then . The product vector will be left on the stack, and you may repeat
the above procedure over and over if you wish.
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The following program creates a “trajectory” matrix whose rows are the points x, Ax, A%x,
..., Ax. (Change 15 to any number you wish.) This program asssumes that the matrix A is on
level 2 of the stack and the vector v is on level 3 of the stack when the program is run from level 1
of the stack.

<= VA Inputs data.
< VDUP Places v on stack.
1 15 START This loop repeats the next line 15 times.
A SWAP x DUP Computes the next point on the trajectory.
NEXT End of the loop.
DROP DEPTH ROW— Assembles points into the matrix.
>
>

If you place this program on level 1 of the stack and press , the result is the trajectory
matrix. If you intend to use the program more than once, store it as a variable. If you want to
plot the points in the output matrix, store the matrix under some name and enter the PLOT utility.
Choose the plot type “Scatter” in the window labelled TYPE and choose your matrix in the window
labelled >DAT. You can also elect to change the corners of your viewing window at this point, if
you so desire. Pressing the ERASE and DRAW menu keys will produce a graph of the trajectory.
If you have the data for another trajectory stored in another matrix, you can plot both trajectories
on the same graph by plotting first one and then the other. Do not press ERASE in between your
plots. See Chapters 22, 23, and 29 in your User’s Guide for more information about programming
and plotting with the HP-48G.

For Exercise 17, you will first need to generate a appropriate vector of values y; for which you
wish to plot the points (1, y1), (2,y2), .- -, (8, ys). Place this vector on level 1 of the stack, then do

the following keystrokes (the and the keys are found in the menu).

[OBJ— | [DrOP]

1 [spc| 2 [spc] 3 [spc| 4 [spc| 5 [spc] 6 [sPC| 7 [spc| 8 |SPC| [ENTER]

{2 8} [ENTER]| [—ARR] 1 2 ‘A

The matrix A now holds the data you wish to plot. Use the above directions to do a scatter plot of
the entries in A.
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SECTION 5.7  Solutions of Differential Equations

For the eigenvalues of A, use the key and store the resulting vector of eigenvalues as E. If
the eigenvalue E'(1) is complex, then the corresponding eigenvector v will also be complex. The

and keys in the menu produce the real and the imaginary parts of v.

SECTION 5.8 Power Method and Inverse Power Method

The algorithms below assume that A has a strictly dominant eigenvalue, and the initial vector is x,
with largest entry 1 (in magnitude). Store A, then place A and your initial vector x on the stack.

You proceed as follows, using the key in your directory.

The Power Method When the following keystrokes are repeated over and over, the resulting
vectors approach (in many cases) an eigenvector for a strictly dominant eigenvalue:

)

estimate for eigenvalue at level 1 (2)
EI estimate for the eigenvector (3)

In (2), the program finds the entry of largest absolute value in the vector Ax. To repeat

the process, recall A to the stack and press | SWAP | As these commands are repeated, the numbers

that appear at level 1 after you press are the y;; that approach the dominant eigenvalue. You
could program your HP-48G to perform this algorithm a certain number of times by using a loop
structure (see the HP-48G Note for Section 5.6).

The Inverse Power Method Store the initial estimate of the eigenvalue in the variable B, then
perform the following keystrokes, where n is the number of columns in A4:

(2] [8] » [zon] [x] [-]

Store the resulting matrix as C. Place your initial vector x on the stack, followed by C. You then
enter the keystrokes

[] )
VAMX @
{E estimate for eigenvalue at level 1 3)
[+] estimate for the eigenvector @)
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You may now enter C onto the stack and repeat the keystrokes. As you repeat these keystrokes,
the numbers at level 1 after step 3 form the sequence referred to as {1} } in the text; the vectors at
level 1 after step 4 form the sequence {xy }.

SECTION 6.1 Inner Product and Norm

The inner product of two vectors may be found using the key in the [MTH| | VECTR | menu.
The key in the same menu produces the length of a vector. See the HP-48G Note for Section
2.1.

SECTION 6.2  Orthogonality

In Exercises 1-9 and 17-22, the quickest way to test a set such as {u;, uz, us} for orthogonality is to
create the matrix U = [ u; uz us ] whose columns are the vectors in the set, and test whether
UTU is a diagonal matrix. See the proof of Theorem 6.

To find the orthogonal projection of y onto u, compute the inner product of y and u and divide
by the inner product of u with itself. Take this number and multiply it by u. This process is easily
done using the stack; you should enter 3 copies of u and one copy of y, then use the following

keystrokes:
[DoT] [swaP] [ABS] (=] [x]

SECTION 6.3  Orthogonal Projections

The orthogonal projection of y onto a single vector was described in the HP-48G Note for Section
6.2. The orthogonal projection onto the set spanned by an orthogonal set of vectors is the sum
of the one-dimensional projections. Another way to construct this projection is to normalize the
orthogonal vectors, place them in the columns of a matrix I/, and use Theorem 10. That is, the
desired projectionis UUTy.

SECTION 6.4  The Gram-Schmidt Process, | PROJ},|GS | and [GS.O|

If A has only two columns, then the Gram-Schmidt process can be implemented using the following

keystrokes. The key in your directory will be used to get columns from A. Store
the matrix under the variable A.

1 ‘VI' [sTO
2 [GeoL| [ENTER| [vi] [DOT| [vi] [ENTER] [DOT] [+] =]

‘V2° 18TO
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If A has three columns, add the keystrokes
3 [ccon] [ENTER] [ENTER]| [vi] [DoT] [vi] [ENTER| [DOT] [+]
[swap] [v2] [poT]| [v2] [ENTER] [DOT] [+] [-]

‘V3’ |8TO

You should use these keystrokes for awhile, to learn the general procedure. After that, you can

use the | PROJ | key in your | TBOX | directory, which computes the projection of a vector x onto the
subspace spanned by a set of vectors. To use the | PROJ | program, place x on the stack, then enter

the set of vectors one by one onto the stack. If your set of vectors is the set of columns of a matrix,
you may enter the matrix then press | —COL | [ DROP |to enter the vectors. Pressing the key
will produce the projection of the first vector entered onto the span of the remaining vectors.

To implement the Gram-Schmidt process on a matrix A with three columns using | PROJ |, you
would use the following keystrokes:

1 ‘V1I* [sTO
2 [gcon] [vi] [PrOJ] 2 [ceon] [swap]| [=] “V2' [sTO

3 [geon] |vi]| [v2] [PrOJ] 3 [goon] [swap| [-] V3 [sTO

The set of vectors need not be orthogonal for the program to work, but if they are, the
resulting vector will usually agree with those computed via Theorem 10 in Section 6.3 to ten or
more decimal places.

To check your work or save time, you can use the|GS |and | GS . O | keys in the | TBOX | directory
to perform the Gram-Schmidt process on the columns of a given matrix. The L(E] key will produce a
matrix whose columns are orthogonal, while the key will produce a matrix with orthonormal
columns. Thus to find () for a matrix A, use the key.

Your calculator computes a permuted QR factorization of a matrix A with the key in the
|[MTH| [MATR ] | FACTR | menu. This command will produce matrices (), R, and P at levels 3, 2,
and 1 respectively. The matrix ¢) is orthogonal, R is upper triangular, and P is again a permutation
matrix (See the HP-48G Note for Section 2.5) such that AP = QR.

SECTION 6.5  The[=]and Keys

When A has linearly dependent columns, you can write down the general description of all least-
squares solutions on paper after you row reduce the augmented matrix for the normal equations:
[ ATA ATb ). When A has linearly independent columns, enter the matrix A7 4 and the vector

Copyright © 2006 Pearson Addison-Wesley. All rights reserved.



EB Brief Table of Contents || EEi

Table of Contents

HP-16 Notes for the HP-48G Calculator

ATb onto the stack and press the E key to solve the system. You could also use calculate

(AT A)~1 AT directly by using the | 1/z | key, or by row reducing the augmented matrix as above.
For Exercises 15 and 16, see the Numerical Note in Section 6.5 of the text. In these exercises, you
find the least-squares solution to Ax = b using the QR factorization: solve the system R% = Q7b
by using the E‘ key as above.

Yet another way to produce a least-squares solution to Ax = b is to use the key. This
key is located in the menu. To use it, enter b then A onto the stack directly and
press . While this operation is very easy, you should use the normal equations or the QR
factorization for computations here instead of the key. This will give you a solid conceptual
background for applying least-squares techniques later in your career.

For Exercise 26, you can create a (partitioned) matrix whose top block is A1 and bottom block
is A2 by placing Al and A2 on the stack, then entering the number of rows in Al plus 1. Now
pressing the key in the [MTH| |[MATR| |ROW | menu will produce the desired matrix.

SECTION 6.6  Least-Squares Solutions

Once you create the design matrix X and the observation vector y, your computations for least-
squares solutions here are the same as those described in the HP-48G Note for Section 6.5. Here, A
and b are replaced by X and y, respectively.

Row reducing the augmented matrix [ X7 X X7y ] for the normal equations keads to a
general description of all least-squares solutions. When X has linearly independent columns, enter
the matrix X7 X and the vector X Ty onto the stack and press the B key to solve the system. In
subsequent courses, you may choose simply to to use the key, as described in the HP-48G
Note for Section 6.5. This key also produces a least-squares solution.

SECTION 6.8  Graphing Functions

Once you find an ntP order Fourier approximation to a function f by hand computation, you can
plot the result using the advice in the HP-48G Note for Section 4.1,

SECTION 7.1  Orthogonal Diagonalization

You can use the [ EGVL | and | NULB | keys to orthogonally diagonalize a matrix by the procedure
of this section. You can obtain eigenvectors as in Section 5.3; if you encounter a two-dimensional
eigenspace with a basis {uy, uz}, replace uz with a new eigenvector vy orthogonal to u;. You can
use the key introduced in the HP-48G Note for Section 6.4 to help with this calculation.
After you normalize these vectors and create P, you can check that P is indeed an orthogonal matrix
by confirming that PTP = [.
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SECTION 7.4  The Singular Value Decomposition

Applying the operation on the matrix A7A will produce a matrix of eigenvectors and a vector
of eigenvalues for ATA, but there are two problems. First, the matrix of eigenvectors may not
be orthogonal. The procedure in the HP-48G Note for Section 7.1 can help you to produce an
orthogonal matrix of eigenvectors. Second, the eigenvalues in the vector may not be in decreasing
order. In such a case you will have to rearrange things things to form V and ¥. The key
in the [MTH | |MATR | | COL | menu allows you to swap columns just as allows you to swap
rows. To form U for the singular value decomposition, normalize the nonzero columns of AV. If
U needs more columns, use the method of Example 4.

After you thoroughly understand the singular value decomposition, you will want to use the
much faster and more numerically reliable key. This key is found in the [MTH| [MATR
menu. If you place the matrix A on level 1 of the stack and press l SVD |, the result will be
the matrix U on level 3, the matrix V' on level 2, and a vector of singular values on level 1. You can
create the matrix X from this vector by using the key (described in the HP-48G Notes for
Sections 2.1 and 5.3), then appending rows and/or columns of zeros if necessary.

SECTION 7.5  Computing Principal Components

The RMEAN menu key (abbreviated in the directory takes a matrix X on level
1 of the stack and produces a vector whose entries list the averages of the rows of X. With this
vector you may create a diagonal matrix whose diagonal entries are the row averages of X by using
the key in the menu. See the HP-48G Note for Section 2.6 for more
information. Finally multiplying this diagonal matrix on the right by a matrix of all ones creates a
matrix A which is the size of X, whose columns are all the same: each column of A lists the row
averages of X. To create a matrix of all ones of the appropriate size, place a copy of X on the stack,
enter a 1, then press the key in the [ MTH | [MATR | |MAKE | menu.

To convert the data in X into mean-deviation form, find the matrix A above, then use

B=X-A.

The sample covariance matrix S is produced by the formula
1
= ——BBT
5 N-1 k
where V is the number of columns in B.

The principal component data you need is produced by using the key in the
menu. If you place the matrix
BT
N -1
on level 1 of the stack and press [ SVD], the result will be the matrix U on level 3, the matrix V' on
level 2, and a vector of singular values on level 1. The columns of V' are the principal components
of the data, and the squares of the singular values list the variances of the new variates.
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Symbols

Arrow Keys (A,4,¥,»), HP-2, HP-5,
HP-8

Brackets ([1), HP-1, HP-3

Division Key (<), HP-7, HP-9, HP-13
HP-14, HP-15, HP-16

Minus Key (—), HP-5, HP-6, HP-10,
HP-13, HP-14, HP-15

Multiplication Key (x), HP-3, HP-4,
HP-5, HP-6, HP-10, HP-11, HP-13,
HP-14, HP-15

Plus Key (+), HP-5, HP-13, HP-15

Power Key (y*), HP-5, HP-9

Reciprocal Key (1/z), HP-3, HP-6,
HP-7, HP-8, HP-13, HP-16

Quotes (* '), HP-3, HP-4, HP-5,
HP-10, HP-12, HP-14, HP-15

Set Braces ({}), HP-9

Squaring Key (z?), HP-5, HP -14

Built-In HP-48G Commands and Menus
ABS, HP-14
—ARR, HP-9, HP-12
CHOOSE, HP-8
v/ CHK, HP-9
COL—», HP-3, HP-9
CoL+, HP-3, HP-4, HP-6, HP-7
—COoL, HP-15
CON, HP-4, HP-6, HP-17
COND, HP-6
ceos, HP-9
CSwp, HP-17
DET, HP-8
DIAG—, HP-6, HP-11, HP-17
—DIAG, HP-§,
DOT, HP-5, HP-14, HP-15
DRAW, HP-9
DROP, HP-2, HP-12, HP-13

HP-18
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EGV, HP-11, HP-17

EGVL, HP-10, HP-11, HP-13, HP-16

ENTER, HP-2, HP-3, HP-4, HP-5,
HP-10, HP-12, HP-13, HP-14, HP-15

ERASE, HP-9

EVAL, HP-3, HP-10

IDN, HP-6, HP-10, HP-13

IM, HP-11, HP-13

LSQ, HP-15, HP-16

LU, HP-7

MTH CMPL menu, HP-11, HP-13

MTH MATR menu, HP-5, HP-6,
HP-8, HP-10, HP-11, HP-17

MTH MATR COL menu, HP-3, HP-4,
HP-7, HP-17

MTH MATR FACTR menu, HP-7, HP-8,
HP-9, HP-15, HP-17

MTH MATR MAKE menu, HP-4, HP-5,
HP-6, HP-9, HP-17

MTH MATR NORM menu, HP-6, HP-8

MTH MATR ROW menu, HP-2, HP-7,
HP-16

MTH VECTR menu, HP-5, HP-14

NXT, HP-4

OBJ—, HP-9, HP-12

OK, HP-8

PLOT application, HP-8

PRG LIST ELEM menu, HP-5

PRG TYPE menu, HP-9, HP-12

PROOT, HP-10

—Q, HP-4

QR, HP-15

RANK, HP-8, HP-9

RCI, HP-2, HP-3, HP-4, HP-6

RCIJ, HP-2, HP-3

RE, HP-11, HP-13

ROW+-, HP-7, HP-16

RREF, HP-8, HP-9, HP-10
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RSWP, HP-2, HP-3, HP-8, HP-11,
HP-12, HP-17
SIZE, HP-5
SOLVE application, HP-10
Spc, HP-2, HP-3, HP-5, HP-12
sTO, HP-2 HP-10, HP-12, HP-14
SVD, HP-17
SWAP, HP-4, HP-6, HP-11, HP-13, HP-14
TRN, HP-5, HP-12
VAR, HP-4

Programs from www.laylinalgebra.com
BGAU, HP-4, HP-6
CHAR, HP-11
GAUS, HP-4, HP-6, HP-7, HP-8, HP-11
GCOL, HP-14, HP-15
GS, HP-14, HP-15
GS. 0, HP-14, HP-15
LALG directory, HP-1, HP-4
NULB, HP-10, HP-16
PROD, HP-8
PROJ, HP-14, HP-15, HP-16
RMEA, HP-17
TBOX directory, HP-1, HP-4, HP-8,
HP-10, HP-11, HP-13, HP-14, HP-17
VAMX, HP-13

! . . HP-19
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