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Linear Equations
in Linear Algebra

1.1 SOLUTIONS

Notes: The key exercises are 7 (or 11 or 12), 19-22, and 25. For brevity, the symbols R1, R2,..., stand
for row 1 (or equation 1), row 2 (or equation 2), and so on. Additional notes are at the end of the section.

1 x+5x,=17 1 5 7
L 2x,-Tx,=-5 -2 -7 -5
_ X +5x,=7 15 7
Replace R2 by R2 + (2)R1 and obtain:
3x,=9 10 3 9
X +5x,=17 15 7
Scale R2 by 1/3:
x,=3 0 1 3
X, =-8 1 0 -8
Replace R1 by R1 + (-5)R2:
x,=3 0 1 3
The solution is (x;, x,) = (-8, 3), or simply (-8, 3).
5 3x, +6x,=-3 36 3
S Sx +7x,=10 5 7 10
i X +2x, =-1 1 -1
Scale R1 by 1/3 and obtain:
5x, +7x, =10 15 10
X +2x, =—1 1 2 -1
Replace R2 by R2 + (-5)R1:
-3x, =15 |10 -3 15
X +2x, =-1 1 2 -1
Scale R2 by —1/3:
X, =-5 10 1 =5
X, =9 1 0 9
Replace R1 by R1 + (-2)R2:
X, ==5 0 1 -5

The solution is (xy, x;) = (9, =5), or simply (9, -5).

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley. 1



2 CHAPTER1 < Linear Equations in Linear Algebra

3. The point of intersection satisfies the system of two linear equations:
X +2x,=4 {1 2 4}

x—x, =1 I -1 1
. x+2x,= 4 1 2 4
Replace R2 by R2 + (—1)R1 and obtain:
=3x, =-3 0 -3 3
x+2x,= 4 1 2 4
Scale R2 by —1/3:
x=1 0 1 1
X = 1 0 2
Replace R1 by R1 + (-2)R2:
X, = 10 1 1
The point of intersection is (x, x;) = (2, 1).
4. The point of intersection satisfies the system of two linear equations:
X +2x, =-13 1 2 -13
3, -2x,= 1 3 =2 1
, X +2x,= —13 1 2 -13
Replace R2 by R2 + (—3)R1 and obtain:
-8x,= 40 10 -8 40
X +2x,= —13 1 2 -13
Scale R2 by —1/8:
x,= =5 0 1 =5
X, = -3 1 0 -3
Replace R1 by R1 + (-2)R2:
X, = =5 0 1 -5

The point of intersection is (xi, x;) = (=3, =5).

5. The system is already in “triangular” form. The fourth equation is x, = -5, and the other equations do
not contain the variable x,. The next two steps should be to use the variable x; in the third equation to
eliminate that variable from the first two equations. In matrix notation, that means to replace R2 by
its sum with —4 times R3, and then replace R1 by its sum with 3 times R3.

6. One more step will put the system in triangular form. Replace R4 by its sum with —4 times R3, which
1 6 4 0 -1

0o 2 -7 0
produces 0 0 L After that, the next step is to scale the fourth row by —1/7.
o o0 o0 -7 14

7. Ordinarily, the next step would be to interchange R3 and R4, to put a 1 in the third row and third
column. But in this case, the third row of the augmented matrix corresponds to the equation O x; + 0
X+ 0x; =1, or simply, 0 = 1. A system containing this condition has no solution. Further row
operations are unnecessary once an equation such as 0 =1 is evident. The solution set is empty.

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



1.1 + Solutions

8. The standard row operations are:

1 =5 4 0 0] 1 =5 4 0 0] 1 =5 4 0 0][1 =5 4 0 0
o 10 10/]0 10 10/ |0 100010 1000
0 0 3 00/ /0 03000 03000 0100
O 00 20/]/0 0010/ |0 00 T10/1]0 00T1°0
1 =5 0 0 0] 1 0000
0 100 0[]0 1 00 0
“lo 0o 1 0 0|00 10 0
0 00 1 0/]0 00 10

The solution set contains one solution: (0, 0, 0, 0).

9. The system has already been reduced to triangular form. Begin by replacing R3 by R3 + (3)R4:
1 -1 0 0 -5 1 -1 0 0 -5
o 1 -2 0 -7 o 1 -2 0 -7

o o 1 -3 2 (0 0 1 0 14
o o o 1 4, /0 0 O0 1 4

Next, replace R2 by R2 + (2)R3. Finally, replace R1 by R1 + R2:

1 -1 0 0 =51 [1 0 0 0 16
0 100 21| |0 10 0 21
1o 0 1 0 14/ 00 1 0 14
0 00 1 4/ 100 o0 1 4

The solution set contains one solution: (16, 21, 14, 4).

10. The system has already been reduced to triangular form. Use the 1 in the fourth row to change the 3

and -2 above it to zeros. That is, replace R2 by R2 + (-3)R4 and replace R1 by R1 + (2)R4. For the
final step, replace R1 by R1 + (-3)R2.

130 =2 7] [1 300 -117[1 0 0 0 —47
010 3 6/ /0100 12//0 100 12
001 0 2/ loo 10 2|00 10 2
o000 1 —2//0o00 1 =2/]0o00 1 =2

The solution set contains one solution: (—47, 12, 2, -2).

11. First, swap R1 and R2. Then replace R3 by R3 + (-2)R1. Finally, replace R3 by R3 + (1)R2.
0 1 5 4 1 4 3 2 1 4 3 =2 1 4 3 2
1 4 3 2/~f0 1 5 4|~10 1 5 4|~/0 1 5 4
2 7 1 =2 2 7 1 =2 0O -1 -5 2 0 0 0 2

The system is inconsistent, because the last row would require that 0 = -2 if there were a solution.
The solution set is empty.

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.
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4 CHAPTER1 < Linear Equations in Linear Algebra

12. Replace R2 by R2 + (-2)R1 and replace R3 by R3 + (2)R1. Finally, replace R3 by R3 + (3)R2.
1 -5 4 3 1 -5 4 3 1 -5 4 3
2 -7 3 2|~/0 3 -5 4|~|0 3 -5 4
-2 1 7 -1 0 -9 15 -7 0 0 0 5

The system is inconsistent, because the last row would require that O = 5 if there were a solution.
The solution set is empty.

1 0 -3 8 1 0 -3 8 1 0 -3 8 1 0 -3 8
13. |12 2 9 7|~/0 2 15 -9(~|0 1 5 =22|~{0 1 =2
0O 1 5 =2 0O 1 5 =2 0 2 15 -9 0 0 -5
1 0 -3 8 1 0 0 5]
~10 1 5 2|~|0 0 3 |. The solution is (5, 3, —1).
0 0 1 -1 0 0 1 -1]
2 0 -6 -8 1 0 -3 4 1 0 3 -4 1 0 -3 -4
14. |0 1 2 3(~10 1 2 3(~10 1 2 31~10 1 2 3
3 6 2 -4 36 2 4|0 6 7 8 0 0 -5 -10
1 0 -3 4 1 0 -3 4 1 0 0 2
~10 1 2 3|~10 1 0 -1{~{0 1 0O -1|. The solutionis (2, -1, 2).
0 0 1 2 0 0 1 2 0O 0 1 2

15. First, replace R3 by R3 + (1)R1, then replace R4 by R4 + (1)R2, and finally replace R4 by R4 + (-
1)R3.

1 = 0 0 5] [1t 6 005 [1 6 005 [1 6 00 5
0 1 =4 1 0/l0 1 =4 10/l0 1 4 100 1 =41 o0
1 6 153/ lo o 158 o 0o 152¢8/]/0o 0o 15 8
0 -1 5 4 0ll0 -1 540/ /0 0 150/ /0 0 00 -8

The system is inconsistent, because the last row would require that 0 = -8 if there were a solution.

16. First replace R4 by R4 + (3/2)R1 and replace R4 by R4 + (-2/3)R2. (One could also scale R1 and R2
before adding to R4, but the arithmetic is rather easy keeping R1 and R2 unchanged.) Finally, replace
R4 by R4 + (-1)R3.

200 -4 -101[2 00 -4 -101[2 0 0 —4 1012 0 0 -4 -10
o33 0 ollo33 0o ollo33 0 0033 0 o0
00 1 4 -1/ oo 1 4 -1]]oo 1 4 -1]]o o0 1 4 -1
3 23 1 510 23 -5 -10] /0 0 1 -5 -10/ [0 0 0 -9 -9

The system is now in triangular form and has a solution. In fact, using the argument from Example 2,
one can see that the solution is unique.

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.
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23.

24.

1.1 + Solutions 5

Row reduce the augmented matrix corresponding to the given system of three equations:
2 3 -1 2 3 -1 2 3 -1
6 5 O0(~0 4 3(~/0 4 3
2 =5 7 0 -8 8 0o 0 2

The third equation, 0 = 2, shows that the system is inconsistent, so the three lines have no point in
common.

Row reduce the augmented matrix corresponding to the given system of three equations:
2 4 4 4 2 4 4 4 2 4 4 4
o 1 -2 2|~10 1 -2 2|~|0 1 =2 =2
23 0 O 0O -1 4 -4 0 0 -6 -6

The system is consistent, and using the argument from Example 2, there is only one solution. So the
three planes have only one point in common.

1 h 4 1 h 4 ) ..
~ Write ¢ for 6 — 3h. If ¢ = 0, that is, if & = 2, then the system has no

13 6 8 0 6-3n -4
solution, because 0 cannot equal —4. Otherwise, when & # 2, the system has a solution.
1 h -5 1 h -5 . ..
~ Write ¢ for =8 —2h. If ¢ = 0, that is, if & = —4, then the system
12 -8 6 0 -8-2h 16

has no solution, because 0 cannot equal 16. Otherwise, when & # —4, the system has a solution.

1 4 -2 1 4 -2
~ Write ¢ for 7 —12. Then the second equation cx, = 0 has a solution
13 h -6 0 h-12 O

for every value of c. So the system is consistent for all /.

{—4 12 &

4 12 h
2 -6 —3}~

h
h | The system is consistent if and only if —3+— =0, that is, if
0 0 -3+-— 2
2
and only if 7 = 6.

a. True. See the remarks following the box titled Elementary Row Operations.
b. False. A 5 x 6 matrix has five rows.

c. False. The description applies to a single solution. The solution sef consists of all possible
solutions. Only in special cases does the solution set consist of exactly one solution. Mark a
statement True only if the statement is always true.

d. True. See the box before Example 2.

a. False. The definition of row equivalent requires that there exist a sequence of row operations that
transforms one matrix into the other.

b. True. See the box preceding the subsection titled Existence and Uniqueness Questions.

e

False. The definition of equivalent systems is in the second paragraph after equation (2).

d. True. By definition, a consistent system has at least one solution.

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



6 CHAPTER1 < Linear Equations in Linear Algebra

1 4 7 g 1 4 7 g 1 -4 7 g
0O 3 -5 h|~|0 3 -5 h |~/0 3 -5 h
-2 5 -9 % 0 -3 5 k+2¢g 0 0 O k+2g+h

Let b denote the number k + 2g + h. Then the third equation represented by the augmented matrix
above is 0 = b. This equation is possible if and only if b is zero. So the original system has a solution
ifand only if k + 2g + h = 0.

25.

W

26. Row reduce the augmented matrix for the given system:

2 4 f 1 2 f/2 1 2 f12
c d g c d g 0 d-2¢c g—-c(fl2)
This shows that d — 2¢ must be nonzero, since f and g are arbitary. Otherwise, for some choices of f

and g the second row would correspond to an equation of the form O = b, where b is nonzero. Thus
d #2c.

27. Row reduce the augmented matrix for the given system. Scale the first row by 1/a, which is possible
since a is nonzero. Then replace R2 by R2 + (—c)R1.

a b f 1 bla fla 1 bla fla
c d g c d g 0 d—-cbla) g-c(fla)
The quantity d — c(b/a) must be nonzero, in order for the system to be consistent when the quantity

g — c¢(f/a) is nonzero (which can certainly happen). The condition that d — c(b/a) # 0 can also be
written as ad — bc # 0, or ad # bc.

28. A basic principle of this section is that row operations do not affect the solution set of a linear
system. Begin with a simple augmented matrix for which the solution is obviously (3, -2, —1), and
then perform any elementary row operations to produce other augmented matrices. Here are three
examples. The fact that they are all row equivalent proves that they all have the solution set (3, -2, —
1).

1 0 0 3 1 0 0 3 1 0 0 3
0 1 0 2|~12 1 0 4|~12 1 0 4
0o 01 -1 |0 0O 1 -1] |2 O 1 5

29. Swap R1 and R3; swap R1 and R3.

30. Multiply R3 by —1/5; multiply R3 by -5.

31. Replace R3 by R3 + (—4)R1; replace R3 by R3 + (4)R1.
32. Replace R3 by R3 + (—4)R2; replace R3 by R3 + (4)R2.

33. The first equation was given. The others are:
T,=(T,+20+40+T,)/4, or 4T,-T,-T,=60
T,=T,+T,+40+30)/4, or 4I,-T,-T,=70
T,=(10+T7,+T;+30)/4, or 4T,-T,-T,=40

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



1.1 + Solutions

7

Rearranging,
AT, - T, - T, = 30
-1, + 4T, - T, = 60
-, + 41, - T, = 70
-1 - T, + 41, = 40
34. Begin by interchanging R1 and R4, then create zeros in the first column:
4 -1 0 -1 30 -1 0 -1 4 40 -1 0 -1 4 40
-1 4 -1 0 60 -1 4 -1 0 60 0 4 -4 20
0 -1 4 -1 70| |0 -1 4 -1 70 |0 -1 -1 70
-1 0 -1 4 40 4 -1 0 -1 30 0 -1 4 15 190
Scale R1 by —1 and R2 by 1/4, create zeros in the second column, and replace R4 by R4 + R3:
(10 1 -4 40 1 0 1 -4 40 1 0 1 -4 40
o 1 0 -1 5 01 0 -1 5 01 0 -1 5
1o -1 4 -1 70| /0 0 4 2 75/ |0 0 4 2 75
0 -1 4 15 190 0 0 4 14 195 0 0 0 12 270

Scale R4 by 1/12, use R4 to create zeros in column 4, and then scale R3 by 1/4:

1 0 1 4 40| |1 0 1 O 500 |1 0 1 0 50
o 1 0 -1 510 1 0 0 275 0 1 0 0 275
1o o4 =2 75/7]0 0 4 0 120000 1 0 30
0 0 0 1 225 0 0 0 1 225 0 0 0 1 225
The last step is to replace R1 by R1 + (-1)R3:
(1 0 0 0 200
0O 1 0 0 275 L
~ . The solution is (20, 27.5, 30, 22.5).
0 0 1 0 300
0 0 0 1 225

Notes: The Study Guide includes a “Mathematical Note” about statements, “If ... , then ... .”

This early in the course, students typically use single row operations to reduce a matrix. As a result,
even the small grid for Exercise 34 leads to about 80 multiplications or additions (not counting operations
with zero). This exercise should give students an appreciation for matrix programs such as MATLAB.
Exercise 14 in Section 1.10 returns to this problem and states the solution in case students have not
already solved the system of equations. Exercise 31 in Section 2.5 uses this same type of problem in
connection with an LU factorization.

For instructors who wish to use technology in the course, the Study Guide provides boxed MATLAB
notes at the ends of many sections. Parallel notes for Maple, Mathematica, and the TI-83+/84+/89
calculators appear in separate appendices at the end of the Study Guide. The MATLAB box for Section
1.1 describes how to access the data that is available for all numerical exercises in the text. This feature
has the ability to save students time if they regularly have their matrix program at hand when studying
linear algebra. The MATLAB box also explains the basic commands replace, swap, and scale.
These commands are included in the text data sets, available from the text web site,
www.pearsonhighered.com/lay.

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



8 CHAPTER1 < Linear Equations in Linear Algebra

1.2 SOLUTIONS

Notes: The key exercises are 1-20 and 23-28. (Students should work at least four or five from Exercises
7-14, in preparation for Section 1.5.)

1. Reduced echelon form: a and b. Echelon form: d. Not echelon: c.

2. Reduced echelon form: a. Echelon form: b and d. Not echelon: c.

1 2 4 8] [1 2 4 8 [1 2 4 8
3.2 4 6 8|~|0 0 2 -8|(~[0 0 1 4
36 9 12/ {0 0 =3 -12/ [0 0 -3 -I2
1 2 4 8 [D2 0 -8 (D 2 4 8
~l0 0 1 4]|~|{0 0 (O 4|. Pivotcolsland3. |2 4 (& 8
0 0 0 0] |0 00 O 3.6 9 12
1 2 4 571 2 4 5 1 2 4 5 1 2 4 5
4.2 4 5 4|~]0 0 3 —6|~|0 -3 -—12 -18|~|0 1 4 6
4 5 4 2/]0 -3 -12 -18/ |0 0 3 6| 1|0 0 -3 -6
12 45124 5[0 o0 1 (D 2 4 5
~10 1 4 6|~|0 1 0 —2|~lo0 (D o —pf Pivotcols 1oz 5 4
" 1,2,and 3
0 0 1L 2|00 1 2(]0 0@ 2 4 5@ 2

71347_13471347@)30—5
'3976_00—5—15001300®3

+ 3
Corresponding system of equations: @ "

The basic variables (corresponding to the pivot positions) are x; and x;. The remaining variable x; is
free. Solve for the basic variables in terms of the free variable. The general solution is

x, is free

X, =3

Note: Exercise 7 is paired with Exercise 10.

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



1.2 ¢ Solutions 9

3 1 -3 0 -5 1 -3 0 -5 1 -3 0 5] (Mo o 4
S -3 7 0 9 0 -2 0 -6 0 1 0 3 0o Mo 3
Corresponding system of equations: @ @ _ 3

The basic variables (corresponding to the pivot positions) are x; and x,. The remaining variable x; is
free. Solve for the basic variables in terms of the free variable. In this particular problem, the basic
variables do not depend on the value of the free variable.

x =4
General solution: <x, =3

x; is free

Note: A common error in Exercise 8 is to assume that x; is zero. To avoid this, identify the basic
variables first. Any remaining variables are free. (This type of computation will arise in Chapter 5.)

901—231—34—6@0—23
11 3 4 6| |0 1 2 3|0 @® -2 3
- 2x; = 3

@—2x3=

Corresponding system: @

X, =3+2x,
Basic variables: x;, x,; free variable: x;. General solution: { x, =3+ 2x;
X, 1s free
w |12 oAt 2 -1 4 D 2 0 2
|2 4 -5 6] |0 0 -7 14] 0 0D -2
- 2 = 2
Corresponding system: @ 2 @ _
X =2+2x,
Basic variables: x;, x3; free variable: x,. General solution: 1 x, is free
X, =2
3 -2 4 0 3—240@—2/34/30
1. |9 -6 12 0|~|0 O O O0|~|0 0 0 0
6 4 8 0 O o0 o0 o0 0 0 0 0
2
- =x, + —x; =0
@ 372 37
Corresponding system: 0 =0
0 =0

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



10 CHAPTER 1 <« Linear Equations in Linear Algebra

N 2 4
=—x, ——x
1 3 2 3 3

Basic variable: x;; free variables x,, x3. General solution: < x, is free

x; 1s free

12. Since the bottom row of the matrix is equivalent to the equation 0 = 1, the system has no solutions.

1 3 0 -1 0 2]t 3 0 0 9 2][™o o 0 -3 5
130100—410100—410@00—41
“lo 0o 0o 1 9 4[]0 0 0 1 9 4//0 0 0o (D 9 4
o o0 o o0 o0 o 0O 0 0 O 0 O 0O 0 0 0o 0 O
@ - 3x =5
- 4x; = 1
Corresponding system: @ =
+ 9% = 4
0 =0
X, =5+ 3x;
X, =1+4x;
Basic variables: x;, x,, x4; free variables: x3, xs. General solution: < x; is free
Xy =4-9x;
X5 1s free
Note: The Study Guide discusses the common mistake x3 = 0.
1 0 5 0 -8 3o -5 0 0 3
|01 -1 0 6/ |0 O 4 -1 0 6
“lo 0 0 o0 1 o/ lo o 0 o Qo
0O 0 0 O 0 0 0O 0 0 0 0 O
@ - Sx = 3
+ 4 - = 6
Corresponding system: @ % & _ 0
0 =20
X, =3+5x,

X, =6—4x, +x,
Basic variables: x;, x,, xs; free variables: x3, x4. General solution: 1 x; is free

x4 is free

xs=0
15. a. The system is consistent. There are many solutions because x; is a free variable.

b. The system is consistent. There are many solutions because x; is a free variable.

16. a. The system is inconsistent. (The rightmost column of the augmented matrix is a pivot column).

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.
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18.

19.

20.

21.

22.

1.2+ Solutions 11

b. The system is consistent. There are many solutions because x; is a free variable.

1 -1 4] [ -1
~ © The system has a solution for all values of 4 since the augmented
-2 3 k] |0 D h+38

column cannot be a pivot column.
1 3 1] [ -3

1
~ If 3k + 6 is zero, that is, if &7 =2, then the system has a
h 6 2| |0 3h+6 —h-2

solution, because 0 equals 0. When / # —2, the system has a solution since the augmented column
cannot be a pivot column. Thus the system has a solution for all values of A.

E Z /j{%) 8—h4h kis}

a. When & =2 and k #8, the augmented column is a pivot column, and the system is inconsistent.

b. When & # 2, the system is consistent and has a unique solution. There are no free variables.

c¢. When & =2 and k = 8, the system is consistent and has many solutions.

1 -3 1 -3 1
2 h ok 0 h+6 k-2
a. When & =-6 and k # 2, the system is inconsistent, because the augmented column is a pivot

column.

b. When h # -6, the system is consistent and has a unique solution. There are no free variables.

¢. When & =-6 and k =2, the system is consistent and has many solutions.

a. False. See Theorem 1.

b. False. See the second paragraph of the section.

c. True. Basic variables are defined after equation (4).

d. True. This statement is at the beginning of Parametric Descriptions of Solution Sets.

e. False. The row shown corresponds to the equation 5x4 = 0, which does not by itself lead to a
contradiction. So the system might be consistent or it might be inconsistent.

a. True. See Theorem 1.

b. False. See Theorem 2.

c. False. See the beginning of the subsection Pivot Positions. The pivot positions in a matrix are
determined completely by the positions of the leading entries in the nonzero rows of any echelon
form obtained from the matrix.

d. True. See the paragraph just before Example 4.

e. False. The existence of at least one solution is not related to the presence or absence of free
variables. If the system is inconsistent, the solution set is empty. See the solution of Practice
Problem 2.

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



12 CHAPTER 1 <« Linear Equations in Linear Algebra

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Since there are four pivots (one in each row), the augmented matrix must reduce to the form
@) 0 0 a @ = a
0 0 0 b = b
and so @
0 D o0 ¢ ®) = ¢
00 0Q@ 4 ® = d

No matter what the values of a, b, ¢, and d, the solution exists and is unique.

0
@
0

The system is consistent because there is not a pivot in column 5, which means that there is not a row
of the form [0 O O O 1]. Since the matrix is the augmented matrix for a system, Theorem 2 shows
that the system has a solution.

If the coefficient matrix has a pivot position in every row, then there is a pivot position in the bottom
row, and there is no room for a pivot in the augmented column. So, the system is consistent, by
Theorem 2.

Since the coefficient matrix has three pivot columns, there is a pivot in each row of the coefficient
matrix. Thus the augmented matrix will not have a row of the foom [0 O 0 O O 1], and the
system is consistent.

“If a linear system is consistent, then the solution is unique if and only if every column in the
coefficient matrix is a pivot column; otherwise there are infinitely many solutions. ”

This statement is true because the free variables correspond to nonpivot columns of the coefficient
matrix. The columns are all pivot columns if and only if there are no free variables. And there are no
free variables if and only if the solution is unique, by Theorem 2.

Every column in the augmented matrix except the rightmost column is a pivot column, and the
rightmost column is not a pivot column.

An underdetermined system always has more variables than equations. There cannot be more basic
variables than there are equations, so there must be at least one free variable. Such a variable may be
assigned infinitely many different values. If the system is consistent, each different value of a free
variable will produce a different solution, and the system will not have a unique solution. If the
system is inconsistent, it will not have any solution.

x + x + x = 4
Example:
2x, + 2x, + 2x =5
Yes, a system of linear equations with more equations than unknowns can be consistent.

x + x, = 2
Example (in whichx; =x,=1): x - x, = 0
3 + 2x, = 5

According to the numerical note in Section 1.2, when n = 20 the reduction to echelon form takes
about 2(20)3/ 3 = 5,333 flops, while further reduction to reduced echelon form needs at most (20)2 =
400 flops. Of the total flops, the “backward phase” is about 400/5733 = .07 or about 7%. When n =
200, the estimates are 2(200)*/3 ~ 5,333,333 flops for the reduction to echelon form and (200)* =
40,000 flops for the backward phase. The fraction associated with the backward phase is about
(4x10% /(5.3x10% = .007, or about .7%.
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33. For a quadratic polynomial p(?) = ap + at + a2t2 to exactly fit the data (1, 6), (2, 15), and (3, 28), the
coefficients ay, a,, a, must satisfy the systems of equations given in the text. Row reduce the
augmented matrix:

1 11 6] [1 1 1 6] [1 1 1 6] [1 1 1 6
1 2 4 15(~|0 1 3 9(~/0 1 3 9|~/0 I 3 9
1 3 9 28/ (0 2 8 22/ (0 0 2 4|/ |0 0 1 2
1 1 0 4 0 0 1
~lo 10 3|~jo @ o 3
00 1 2/ ]0 0@ 2
The polynomial is p(f) = 1 + 31 + 27",
34. [M] The system of equations to be solved is:
a + a0 + a-0° + a-0° + a,-0" + a0 = 0
a + a-2 + a-2> + a-2° + a2 + a2 = 290
a, + a-4 + a4 + a4 + a4 + a4 = 148
a + a6 + a6 + a6 + a6 + a5-6 = 396
a + a8 + a,-8 + ;-8 + a,-8 + a8 = 743
a, + a-10 + a,-10° + a;-10° + a, 10" + a,-100 = 119
The unknowns are ay, a, ..., as. Use technology to compute the reduced echelon of the augmented
matrix:
m o o0 o0 0 0 ol 1 o 0 0 0 0 0]
1 2 4 8 16 32 29| [0 2 8 16 32 29
1 4 16 64 256 1024 148| |0 0 8 48 224 960 9
1 6 36 216 1296 7776 39.6| |0 0 24 192 1248 7680 30.9
1 8 64 512 4096 32768 743| |0 0 48 480 4032 32640 627
|1 10 10 10° 10° 10° 119] [0 0 80 960 9920 99840 104.5
(1 0 0 0 0 0 o] [1 0 0 0 0 0]
0 2 4 8 16 32 29010 2 4 8 16 32 29
0 0 8 48 224 960 9/ |0 0 8 48 224 960 9
10 0 0 48 576 4800 39| |0 0 O 48 576 4800 3.9
0 0 O 192 2688 26880 87| |0 O O O 384 7680 —6.9
|0 0 0 480 7680 90240 14.5| [0 O O 0 1920 42240 -24.5]
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10 0 0 o 0] 1 0 0 0 0 0
0 2 4 8 16 32 29/ |0 2 4 8 16 32 29
0 0 8 48 224 960 9| |0 0 8 48 224 960 9
1o 0 0 48 576 4800 39| |0 0 0 48 576 4800 3.9
0 0 0 0 38 7680 —69| |0 0 0 0 38 7680 —6.9
00 0 0 0 3840 10/ |0 0 0 0 0 10026
10 0 0 0 0 0] 10 0 0 0 0 0]
0 2 4 8 16 0 28167 01000 0 17125
0 0 8 48 224 0  6.5000 00 10 0 0 —1.1948
1o 0 0 48 576 0 -86000/ |0 0 O 1 0O O  .6615
00 0 0 38 0 -26900 0000 10 —0701
000 0 0 1 .002604] 00000 1 .0026

Thus p(f) = 1.7125¢ — 1.1948¢ + .6615¢ — .0701¢* + .0026¢, and p(7.5) = 64.6 hundred Ib.

Notes: In Exercise 34, if the coefficients are retained to higher accuracy than shown here, then p(7.5) =
64.8. If a polynomial of lower degree is used, the resulting system of equations is overdetermined. The
augmented matrix for such a system is the same as the one used to find p, except that at least column 6 is
missing. When the augmented matrix is row reduced, the sixth row of the augmented matrix will be
entirely zero except for a nonzero entry in the augmented column, indicating that no solution exists.

Exercise 34 requires 25 row operations. It should give students an appreciation for higher-level
commands such as gauss and bgauss, discussed in Section 1.4 of the Study Guide. The command
ref (reduced echelon form) is available, but I recommend postponing that command until Chapter 2.

The Study Guide includes a “Mathematical Note” about the phrase, “If and only if,” used in Theorem
2.

1.3 SOLUTIONS

Notes: The key exercises are 11-16, 19-22, 25, and 26. A discussion of Exercise 25 will help students
understand the notation [a; a, a;], {a,, a,, a3}, and Span{a,, a,, a;}.

1] [3] [-1+(=3)] [+4
1. u+v= + = = .
2] | -1] 2+(-D 1
Using the definitions carefully,

o e SR
u-2v= +(-2) = + = = , or, more quickly,
2] -1 2 (-2)(-1) 2+2 4

—1] _[-3] [-1+6] [5 _ . , ,
u—-2v= -2 = = . The intermediate step is often not written.
2 -1 242 4
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HEMEhH
2. u+v=| |+ = = .
2 -1 2-1 1
Using the definitions carefully,
s B g ol R
u-2v= +(-2) = + = = , or, more quickly,
2 -1 2 (-2)(-1) 242 4

3 2 3-4 -1 , . . .
u-2v= { } - 2{ } = { } = { 4} . The intermediate step is often not written.

2 -1 2+2
4.
Xz X2
u—2v
u—2v —2v oy
u— v u
u —2v u+v
u+v v X
-\ y .
v
3 5 2 3x 5x, 2 3x, +5x, 2
S. x| 2 |+x,| O|=|-3|, |2x |+ O |=|-3], -2x, |=|-3
8 -9 8 8x, —9x, 8 8x, —9x, 8
3, + 5x, = 2
-2x = -3
8 — 9%x, = 8

Usually the intermediate steps are not displayed.

3 7 2| 10 3x Tx, —2x; 0 3x, +7x, —2x; 0
. X +x| |t X = |, + + = =
-2 3 1 0 —2x 3x, X3 0 =2x, +3x, + x5 0
3x, + Tx, — 2x; = 0

-2x + 3x, + x3 =0

Usually the intermediate steps are not displayed.

. See the figure below. Since the grid can be extended in every direction, the figure suggests that every
vector in R” can be written as a linear combination of u and v.
To write a vector a as a linear combination of u and v, imagine walking from the origin to a along
the grid "streets" and keep track of how many "blocks" you travel in the u-direction and how many in
the v-direction.
a. Toreach a from the origin, you might travel 1 unit in the u-direction and —2 units in the v-
direction (that is, 2 units in the negative v-direction). Hence a = u — 2v.
b. To reach b from the origin, travel 2 units in the u-direction and -2 units in the v-direction. So
b = 2u - 2v. Or, use the fact that b is 1 unit in the u-direction from a, so that
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b=a+u=@u-2v)+u=2u-2v
c. The vector ¢ is —1.5 units from b in the v-direction, so
c=b-15v=_2u-2v)-1.5v=2u-3.5v

d. The “map” suggests that you can reach d if you travel 3 units in the u-direction and —4 units in
the v-direction. If you prefer to stay on the paths displayed on the map, you might travel from the
origin to —3v, then move 3 units in the u-direction, and finally move —1 unit in the v-direction. So

d=-3v+3u-v=3u-4v
Another solution is
d=b-2v+u=QCQu-2v)-2v+u=3u-4v

Figure for Exercises 7 and 8

8. See the figure above. Since the grid can be extended in every direction, the figure suggests that every
vector in R? can be written as a linear combination of u and v.

w. To reach w from the origin, travel —1 units in the u-direction (that is, 1 unit in the negative
u-direction) and travel 2 units in the v-direction. Thus, w = (-1)u + 2v, or w = 2v — u.

x. To reach x from the origin, travel 2 units in the v-direction and —2 units in the u-direction. Thus,
x = —2u + 2v. Or, use the fact that x is —1 units in the u-direction from w, so that

X=w-u=(-u+2v)—u=-2u+2v
y. The vector y is 1.5 units from x in the v-direction, so
y=x+ 1.5v=(-2u+2v)+ 1.5v=-2u+3.5v

z. The map suggests that you can reach z if you travel 4 units in the v-direction and —3 units in the
u-direction. So z = 4v — 3u = —3u + 4v. If you prefer to stay on the paths displayed on the “map,”
you might travel from the origin to —2u, then 4 units in the v-direction, and finally move —1 unit
in the u-direction. So

z=-2u+4v—-—u=-3u+4v

X + 5% =0 X, +5x3 0

9. 4x, + 6x, — x3; = 0, 4x, +6x, —x; [=|0
-x + 3x, - 8x3; = 0 —x; +3x,—8x; | | 0]

0 X, 5x, 0 0 1 51 [0]

4x, |+| 6x, |+| —x;|=|0], x| 4|+x|6|+x|-1{=(0
—X 3x, —8x; 0 -1 3 -8] | 0]

Usually, the intermediate calculations are not displayed.
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Note: The Study Guide says, “Check with your instructor whether you need to “show work” on a
problem such as Exercise 9.”

3, — 2x, + 4x; = 3 3%, —2x, +4x, | [3

10. 2%, — 7x, + 5x = 1, —2x,=Tx,+5x; |=| 1
Sx{ + 4x, - 3x; = 2 Sx;+4x,-3x; | 2]

3x, —2x, 4x, 3 3 -2 41 [3

=2x, [+ =Tx, |+| 5x;5|=|1], |2 |+x|-T|+x| 5(=|1

5% 4x, -3x, 2 5 4 -3 2]

11.

Usually, the intermediate calculations are not displayed.

The question

Is b a linear combination of a;, a,, and a;?
is equivalent to the question

Does the vector equation x;a; + x,a, + x3;a; = b have a solution?
The equation

1 0 5 2
x| =2 {+x| 1|+x|-6|=|-1 (*)
0 2 8 6
T T T T
a, a, a, b

has the same solution set as the linear system whose augmented matrix is

1 0 5 2
M=|-2 1 -6 -1
0 2 8 6

Row reduce M until the pivot positions are visible:
(10 5 21 Do 5 2
M~0 1 4 3|~l0 ® 4 3
10 2 8 6 0 0 0 O

The linear system corresponding to M has a solution, so the vector equation (*) has a solution, and
therefore b is a linear combination of a,;, a,, and as.
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12.

13.

14.

15.

The equation
1 -2 —6 11
x| 0|+x,| 3|+x| 7|=|-5
1 -2 5 9
T T T 1
a, a, a, b

has the same solution set as the linear system whose augmented matrix is

1 -2 -6 11
M=0 3 7 -5
1 -2 5 9

Row reduce M until the pivot positions are visible:
-2 -6 11
mM~lo @ 7 =

0o 0o @ =

The linear system corresponding to M has a solution, so the vector equation (*) has a solution, and
therefore b is a linear combination of a,;, a,, and as.

Denote the columns of A by a,, a,, a;. To determine if b is a linear combination of these columns,
use the boxed fact in the subsection Linear Combinations. Row reduce the augmented matrix
[a; a, a; b] until you reach echelon form:

1 4 2 3 4 2 3
[a, a, a; b]=| 0 3 5 —7|~|]0 Q@ 5 -7
2 8 -4 3110 0o o0 O

The system for this augmented matrix is inconsistent, so b is not a linear combination of the columns
of A.

Row reduce the augmented matrix [a; a, a; b] until you reach echelon form:

1 0 5 2 1 0 5 2
[a, a, a3 b]=]2 1 -6 -1|~({0 1 4 3|~
2 8 6

The linear system corresponding to this matrix has a solution, so b is a linear combination of the
columns of A.

1 -5 3] [1 -5 3 1 -5 3] -5 3
[a, a, b]=| 3 -8 -5|~|0 7 -14|~l0 1 -2[~/0 (D -2 |.Thevectorb
-1 2 k| |0 =3 h+3| |0 -3 hA+3| |0 O hK-3

is in Span{a,, a,} when & — 3 is zero, that is, when & = 3.

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.

)



1.3 ¢ Solutions 19

1 =2 h] [1 =2 h D 2 h
16. [v; v, y]=| O 1 3|~(0 1 -3 |~|0 (@ -3 |.Thevectoryisin
-2 7 =5 0 3 -5+42n 0 0 4+2h

Span{vy, v,} when 4 + 2h is zero, that is, when h = -2.

17. Noninteger weights are acceptable, of course, but some simple choices are 0-v; + 0-v, = 0, and

3 ~4 -1 7
I'Vl + 0'V2 =11 , O‘Vl + 1'V2 = 0 . 1‘V1 + 1'V2 = 1 . I'Vl - 1'V2 =11
2 1 3 1

18. Some likely choices are 0-v; + 0-v, = 0, and

1 -2 -1 3
1'vi+0vy=| 1], Ovi+1lv=| 3|, I'vy+1v,=| 4|, 1'vi—1v,=|-2
-2 0 -2 2

19. By inspection, v, = (3/2)v,. Any linear combination of v, and v, is actually just a multiple of v,. For
instance,

avy + bv, = av, + b(3/2)v, = (a + 3b/2)v,
So Span{v, v,} is the set of points on the line through v, and 0.

Note: Exercises 19 and 20 prepare the way for ideas in Sections 1.4 and 1.7.

20. Span{v,, v,} is a plane in R through the origin, because neither vector in this problem is a multiple
of the other.

h 2 2 K|l @ 2 h _ .
21. Lety= .Then[u v y]= ~ . This augmented matrix
k -1 1 k| |0 @ k+h/2

corresponds to a consistent system for all 4 and k. So y is in Span{u, v} for all / and k.

22. Construct any 3x4 matrix in echelon form that corresponds to an inconsistent system. Perform
sufficient row operations on the matrix to eliminate all zero entries in the first three columns.

23. a. False. The alternative notation for a (column) vector is (-4, 3), using parentheses and commas.

-5
b. False. Plot the points to verify this. Or, see the statement preceding Example 3. If [ } were on

-2 -5 -2
the line through { 5} and the origin, then { 2} would have to be a multiple of { 5} , which is

not the case.
c. True. See the line displayed just before Example 4.
d. True. See the box that discusses the matrix in (5).
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24.

25.

26.

27.

28.

P ae T

®

False. The statement is often true, but Span{u, v} is not a plane when v is a multiple of u, or
when u is the zero vector.

False. Span{u, v} can be a plane.

True. See the beginning of the subsection Vectors in R".

True. See the comment following the definition of Span{vy, ..., v,}.
False. u—-v)+v=u-v+v=u

False. Setting all the weights equal to zero results in a legitimate linear combination of a set of
vectors.

There are only three vectors in the set {a,, a,, a3}, and b is not one of them.

There are infinitely many vectors in W = Span{a,, a,, a;}. To determine if b is in W, use the
method of Exercise 13.

1 0 -4 411 0 -4 4 0 —4 4
[a, a a;s bl=| 0 3 =2 1]~[0o 3 =2 1]~lo ® =2 1
26 3 —4| 1o 6 -5 4] o 0 O 2

The system for this augmented matrix is consistent, so b is in W.

. a; = la; + O0a, + Oas. See the discussion in the text following the definition of Span{v,, ..., v,}.
2 0 6 10 1 0O 3 5 1 0 3 5 1 0 3 5
[a, a, a3 b]=|-1 8 5 31~ -1 8 5 3|~(0 8 8 8(~|0 8 8
1 -2 1 7 1 -2 1 7 o -2 =2 2 0O 0 0 4

No, b is not a linear combination of the columns of A, that is, b is not in W.

. The second column of A is in W because a, = 0-a; + 1-a, + 0-as.

Sv, is the output of 5 days’ operation of mine #1.

. . 240
. The total output is x;v; + x,V, so x; and x, should satisfy x,v, +x,v, :{ } .

2824

30 40 240} {1 0 1.73}

[M] Reduce the augmented matrix
600 380 2824 0 1 470

Operate mine #1 for 1.73 days and mine #2 for 4.70 days. (This is an approximate solution.)

The amount of heat produced when the steam plant burns x, tons of anthracite and x, tons of
bituminous coal is 27.6x; + 30.2x, million Btu.

. The total output produced by x; tons of anthracite and x, tons of bituminous coal is given by the

27.6 30.2
vector x| 3100 |+ x, | 6400 |.
250 360
27.6 30.2 162
[M] The appropriate values for x; and x, satisfy x| 3100 |+ x,| 6400 |=| 23,610 |.
250 360 1,623

To solve, row reduce the augmented matrix:
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27.6 302 162 1.000 0 3.900
3100 6400 23610 |~ 0 1.000 1.800
250 360 1623 0 0 0

The steam plant burned 3.9 tons of anthracite coal and 1.8 tons of bituminous coal.

29. The total massis4 +2+ 3 +5=14. So v = (4v, +2v, + 3v; + 5v,)/14. That is,

2 —4 4 1 8—-8+12+5 17/14 1.214
V=i 4 -2 1+2] 2|+3] 0|+5/-6 =i —8+4+0-30|=|-17/7 |=| —2.429
4 3 -2 0 16+6-6+0 8/7 1.143
30. Let m be the total mass of the system. By definition,

1 m my
V=—(mV,+-+mv,)=—vV +--+—V,
m m m

The second expression displays v as a linear combination of vy, ..., v;, which shows that v is in
Span{vy, ..., v;}.

1 0 8 2 10/3
31. a. The center of massis —| 1- +1- +1- = .
3 1 1 4 2

b. The total mass of the new system is 9 grams. The three masses added, w,, w,, and w3, satisfy the
equation

T R Y

which can be rearranged to

o firsen (ot n [

] o [T [2)-[2]

The condition w; + w;, + w3 = 6 and the vector equation above combine to produce a system of
three equations whose augmented matrix is shown below, along with a sequence of row

and

operations:
1 1 1 6|1 1 1 6][1 1 1 6
0 8 2 8|~/0 8 2 8|~|0 8 2 8
1 1 4 12] |0 0 3 6/ |0 0 1 2
1 1 0 4] 1 0 0 35/ [1 0 0 35
~|0 8 0 4|~|0 8 0 4|~/0 1 0 5
00 1 2[00 1 2[00 1 2

Answer: Add 3.5 gat (0, 1), add .5 gat (8, 1), and add 2 g at (2, 4).
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Extra problem: Ignore the mass of the plate, and distribute 6 gm at the three vertices to make the center
of mass at (2, 2). Answer: Place 3 gat (0, 1), 1 gat (8, 1), and 2 g at (2, 4).

32. See the parallelograms drawn on the figure from the text that accompanies this exercise. Here ¢y, ¢,
c3, and ¢y are suitable scalars. The darker parallelogram shows that b is a linear combination of v,
and v,, that is

C1Vy + CrVy + 0'V3 =b
The larger parallelogram shows that b is a linear combination of v, and vs, that is,
C4V1 + 0'V2 + C3V3 = b

So the equation x;v; + x,V, + x3v3 = b has at least two solutions, not just one solution. (In fact, the
equation has infinitely many solutions.)

33. a. Forj=1,..., n, the jth entry of (u+ v) + wis (& + v;) + w;. By associativity of addition in R, this
entry equals u; + (v; + w)), which is the jth entry of u + (v + w). By definition of equality of
vectors, (W +Vv)+w=u+ (V+w).

b. For any scalar c, the jth entry of c(u + v) is c(u; + v;), and the jth entry of cu + cv is cu; + cv; (by
definition of scalar multiplication and vector addition). These entries are equal, by a distributive
law in R. So c(u + v) = cu + cv.

34. a. Forj=1,...,n,u; + (-u; = (-1)u; + u; = 0, by properties of R. By vector equality,
u+hHhu=-Hu+u=0.

b. For scalars ¢ and d, the jth entries of c(du) and (cd )u are c(du;) and (cd )u;, respectively. These
entries in R are equal, so the vectors c(du) and (cd)u are equal.

Note: When an exercise in this section involves a vector equation, the corresponding technology data (in
the data files on the web) is usually presented as a set of (column) vectors. To use MATLAB or other
technology, a student must first construct an augmented matrix from these vectors. The MATLAB note in
the Study Guide describes how to do this. The appendices in the Study Guide give corresponding
information about Maple, Mathematica, and the TI calculators.
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SOLUTIONS

Notes: Key exercises are 1-20, 27, 28, 31 and 32. Exercises 29, 30, 33, and 34 are harder. Exercise 34
anticipates the Invertible Matrix Theorem but is not used in the proof of that theorem.

1.

The matrix-vector Ax is not defined because the number of columns (2) in the 3x2 matrix A does not
match the number of entries (3) in the vector x.

The matrix-vector Ax is not defined because the number of columns (1) in the 3x1 matrix A does not
match the number of entries (2) in the vector x.

I 1 21 [-2 6 4
Ax=| -3 1_§:(—2)—3+31= 6|+ 3|=| 9/, and
16" - 1 6| |-2| [18] |16

! 2‘-_2_ [ 1-(-2)+2-3 4
Ax=|-3 1 5|7 (=3)-(2)+1-3|=| 9
1 6] 7 | 1:(-2)+6-3 16

1 3 —4 1 3 —4 1+6-4 3
Ax = 2|=1- +2- +1- = = , and
R H N N R Wt N

_ 1

1 3 —4 1-1+3-2+(-4)-1 3
AX = 2= =

13 2 1 3-1+2-24+1-1 8

—_—

On the left side of the matrix equation, use the entries in the vector x as the weights in a linear
combination of the columns of the matrix A:

e C L

On the left side of the matrix equation, use the entries in the vector x as the weights in a linear
combination of the columns of the matrix A:

-3 |21
3 2 1
-3 +5- =
=5 |49
-2 1 11

The left side of the equation is a linear combination of three vectors. Write the matrix A whose
columns are those three vectors, and create a variable vector X with three entries:
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4 =5 7 4 -5 7
X
-1 3 -8 -1 3 -8 _ _
A= = and X=| x, |. Thus the equation Ax =b is
7 -5 0 7 -5
X3
—4 1 2 —4 I 2
4 =5 T|- - 6
X
-1 3 -8 -8
X2 -
7 -5 0 0
X3
-4 I 2" |7

For your information: The unique solution of this equation is (5, 7, 3). Finding the solution by hand
would be time-consuming.

Note: The skill of writing a vector equation as a matrix equation will be important for both theory and
application throughout the text. See also Exercises 27 and 28.

8.

10.

The left side of the equation is a linear combination of four vectors. Write the matrix A whose
columns are those four vectors, and create a variable vector with four entries:

3
2 -1 —4 0 2 -1 4 0 2, .
A= = ,and z = . Then the equation Az=b
—4 5 3 2 -4 5 3 2 25
2y
3y
) 2 -1 4 0]z 5
is = .
-4 5 3 2]z 12
24

For your information: One solution is (8, 7, 1, 3). The general solution is z; =37/6 + (17/6)z; —
(1/3)z4, 70 = 22/3 +(5/3)z5 — (2/3)z4, With z3 and z4 free.

. The system has the same solution set as the vector equation

“lofrela) =[]

and this equation has the same solution set as the matrix equation

X -
5 1 3 8

X, |=
0 2 4 0

X i

3

The system has the same solution set as the vector equation

4 -1 8
x|5|+x,| 3(=|2
3 -1 1

and this equation has the same solution set as the matrix equation
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11. To solve Ax = b, row reduce the augmented matrix [a; a, a; b] for the corresponding linear

system:
1 3 4 =2 1 3 4 2 1 3 4 2 13 0 21 (DO 0 -1
1 5 2 4/~l0 2 6 6/~/0 1 3 3/~<j0o 1 0 3/~l0@ o
3 -7 6 12/ |/0 2 =6 6/ |0 0 1 o|]0o o0 1 o] |00 @
x = -1 X -11
The solutionis {x, = 3. As a vector, the solutionis x= | x, |=| 3].
X, = 0 X 0

12. To solve Ax = b, row reduce the augmented matrix [a; a, a; b] for the corresponding linear
system:
1 2 -1 1 1 2 -1 1 1 2 -1 1 1 2 -1 1

-3 4 2 2(~0 2 -1 5(~j0 -8 8 g(~/0 1 -1 1

5 2 -3/ 10 -8 8 -8 |0 2 -1 5| |0 2 -1 5
1 2 -1 1 1 20 4/ (DO 0 —4
~l0 1 -1 1{~|0 1 0 4|~l0 D 0 4
00 130013 00® 3
x = -4 X —4
The solutionis {x, = 4 .Asa vector, the solutionisx= | x, |=| 4
x, = 3 X, 3

13. The vector u is in the plane spanned by the columns of A if and only if u is a linear combination of
the columns of A. This happens if and only if the equation AX = u has a solution. (See the box
preceding Example 3 in Section 1.4.) To study this equation, reduce the augmented matrix [A u]

3 -5 0 11 471 1 41 4

2 6 4|~|2 6 4|~|0 8 12(~[0 (® 12

1 1 4 3 5 0 0 -8 -12 0 0 O
The equation Ax = u has a solution, so u is in the plane spanned by the columns of A.

For your information: The unique solution of Ax = u is (5/2, 3/2).

14. Reduce the augmented matrix [A u] to echelon form:
2 5 -1 4 1 2 0 4 1 2 0 4 @ 2 0 4
o 1 -1 -1{~j0 1 -1 -1|~/0 1 -1 —1~0®—1—1
1 2 0 4| (2 5 -1 4/ |0 1 -1 4| |0 0 0 &
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15.

16.

17.

18.

19.

The equation Ax = u has no solution, so u is not in the subset spanned by the columns of A.

~1 b B -1 b }

, which is row equivalent to
-9 3 b 0 0 b +3h

This shows that the equation Ax = b is not consistent when 3b; + b, is nonzero. The set of b for
which the equation is consistent is a line through the origin—the set of all points (b, b,) satisfying b,
= —3b1.

The augmented matrix for Ax = b is {

1 -2 -1 b
Row reduce the augmented matrix [A b]: A=| -2 2 0|,b=|b,|.
4 -1 3 by
1 -2 -1 p 1 2 -1 b
-2 2 0 b|~0 =2 =2 b+2h
4 -1 3 b 0 7 7 by-4p
1 2 -1 b, © 2 - b,
~lo 2 - b, +2b, =0 & -2 b, +2b,

0 0 0 b—4b+(/Dby+2b)| [0 0 0 3b+(7/2)b, +b,

The equation Ax = b is consistent if and only if 3b, + (7/2)b, + b; = 0, or 6b; + 7b, + 2b; = 0. The set
of such b is a plane through the origin in R°.

Row reduction shows that only three rows of A contain a pivot position:
1 3 0 3 1 3 0 3 1 3 0 3/ [®3 o0 3
A_—l -1 -1 1~O 2 -1 4~0 2 -1 4~0@—1 4
|0 4 2 -8/ |0 4 2 -8/ (0 0 0 0] |0 O 0 ®
2 0 3 -1 0o -6 3 -7 0 0 0 5 0 0 0 O

Because not every row of A contains a pivot position, Theorem 4 in Section 1.4 shows that the
equation AX = b does not have a solution for each b in R*.

Row reduction shows that only three rows of B contain a pivot position:
1 4 1 2 1 4 1 2 14 1 20/ 4 1 2
3—013_4~013_4~013_4~0@3_4
1o 26 7,10 26 7,10 00 15/ (0 0 0 (19
2 9 5 0O 1 3 -11] |0 O O 7 0 0 0 O
Because not every row of B contains a pivot position, Theorem 4 in Section 1.4 shows that not all
vectors in R* can be written as a linear combination of the columns of B. The columns of B certainly

do not span R?, because each column of B is in R*, not R®. (This question was asked to alert students
to a fairly common misconception among students who are just learning about spanning.)

The work in Exercise 17 shows that statement (d) in Theorem 4 is false. So all four statements in
Theorem 4 are false. Thus, not all vectors in R* can be written as a linear combination of the columns
of A. Also, the columns of A do not span R*.
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20. The work in Exercise 18 shows that statement (d) in Theorem 4 is false. So all four statements in
Theorem 4 are false. Thus, the equation Bx =y does not have a solution for each y in R*, and the
columns of B do not span R*,

21. Row reduce the matrix [v; Vv, Vs3] to determine whether it has a pivot in each row.

1 o 1] [t o 111 o 11D o 1
0 -1 ol |0 -1 ol o -1 o] ]o Q@ o

-1 0 o] 1]o o 1/]o o 1|0 o QU

The matrix [v; v, v3] does not have a pivot in each row, so the columns of the matrix do not span

o 1 -1y /0 1 -1y O O -1|] |O O O

R4, by Theorem 4. That is, {v,, v, v3} does not span R*.

27

Note: Some students may realize that row operations are not needed, and thereby discover the principle
covered in Exercises 31 and 32.

22. Row reduce the matrix [v; Vv, Vvs] to determine whether it has a pivot in each row.

23.

24.

25.

26.

0 0 4] [ 9 -6

0 -3 2|~ 0

2

-3 9 -6 0 0 @

The matrix [v; v, v;] has a pivot in each row, so the columns of the matrix span R3, by Theorem 4.
That is, {vy, V5, v3} spans R’.

a. False. See the paragraph following equation (3). The text calls Ax = b a matrix equation.

b. True. See the box before Example 3.

c. False. See the warning following Theorem 4.

d. True. See Example 4.

e. True. See parts (c) and (a) in Theorem 4.

f. True. In Theorem 4, statement (a) is false if and only if statement (d) is also false.

a. True. This statement is in Theorem 3. However, the statement is true without any "proof”
because, by definition, Ax is simply a notation for x;a, + - - - + x,a,, where a,, ..., a, are the
columns of A.

b. True. See the box before Example 3.

c. True. See Example 2.

d. False. In Theorem 4, statement (d) is true if and only if statement (a) is true.

e. True. See Theorem 3.

f. False. In Theorem 4, statement (c) is false if and only if statement (a) is also false.

By definition, the matrix-vector product on the left is a linear combination of the columns of the

matrix, in this case using weights -3, —1, and 2. So ¢; =-3, ¢, =—1, and ¢; = 2.

The equation in x; and x, involves the vectors u, v, and w, and it may be viewed as

[u v]{ } = w. By definition of a matrix-vector product, x;u + x,v = w. The stated fact that

X
X3

2u — 3v — w = 0 can be rewritten as 2u — 3v = w. So, a solution is x; = 2, x, = —3.
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27. The matrix equation can be written as ¢;V; + €2V, + C3V3 + C4V4 + C5Vs = Vg, Where

ci=-3,c=1,¢c3=2,ca=-1,¢c5=2, and

S H HER RS B

28. Place the vectors q, q, and q; into the columns of a matrix, say, Q and place the weights x;, x,, and
X3 into a vector, say, X. Then the vector equation becomes

X
Ox=v,where 0=[q; q, qs]and x=| x,
X3

Note: If your answer is the equation Ax = b, you need to specify what A and b are.

29. Start with any 3x3 matrix B in echelon form that has three pivot positions. Perform a row operation
(a row interchange or a row replacement) that creates a matrix A that is not in echelon form. Then A
has the desired property. The justification is given by row reducing A to B, in order to display the
pivot positions. Since A has a pivot position in every row, the columns of A span R’, by Theorem 4.

30. Start with any nonzero 3x3 matrix B in echelon form that has fewer than three pivot positions.
Perform a row operation that creates a matrix A that is not in echelon form. Then A has the desired
property. Since A does not have a pivot position in every row, the columns of A do not span R’, by
Theorem 4.

31. A 3x2 matrix has three rows and two columns. With only two columns, A can have at most two pivot
columns, and so A has at most two pivot positions, which is not enough to fill all three rows. By
Theorem 4, the equation Ax = b cannot be consistent for all b in R’. Generally, if A is an mxn matrix
with m > n, then A can have at most n pivot positions, which is not enough to fill all m rows. Thus,
the equation Ax = b cannot be consistent for all b in R,

32. A set of three vectors in R* cannot span R*. Reason: the matrix A whose columns are these three
vectors has four rows. To have a pivot in each row, A would have to have at least four columns (one
for each pivot), which is not the case. Since A does not have a pivot in every row, its columns do not
span R*, by Theorem 4. In general, a set of n vectors in R” cannot span R” when 7 is less than m.

33. If the equation Ax = b has a unique solution, then the associated system of equations does not have
any free variables. If every variable is a basic variable, then each column of A is a pivot column. So

0 0
0@ o
the reduced echelon form of A must be .
0 0@
0 0 O
Note: Exercises 33 and 36 are difficult in the context of this section because the focus in Section 1.4 is on

existence of solutions, not uniqueness. However, these exercises serve to review ideas from Section 1.2,
and they anticipate ideas that will come later.

34. Given Au; = v; and Au, = v,, you are asked to show that the equation Ax = w has a solution, where

W =V, + v,. Observe that w = Au; + Au, and use Theorem 5(a) with u; and u, in place of u and v,
respectively. That is, w = Au; + Au, = A(u; + u,). So the vector X = u,; + u, is a solution of w = Ax.
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35. Suppose that y and z satisfy Ay = z. Then 5z = 5Ay. By Theorem 5(b), 5Ay = A(5y). So 5z = A(5y),
which shows that Sy is a solution of Ax = 5z. Thus, the equation Ax = 5z is consistent.

36. If the equation Ax = b has a unique solution, then the associated system of equations does not have
any free variables. If every variable is a basic variable, then each column of A is a pivot column. So

o oo
0 o 0 » . o
the reduced echelon form of A must be 0 0 @ 0 . Now it is clear that A has a pivot position in
00 00
each row. By Theorem 4, the columns of A span R,
7 2 -5 8 7 2 -5 8 2 -5 8
- -5 3 4 9| |0 —11/7 3/7 =23/7| |0 /D 3/7 -23/7
' 6 10 -2 7| |0 58/7 16/7 1/7| |0 0(30/1D —189/11
-7 9 2 15 0 11 -3 23 0 0 0 0
@D 2 -5 8
imatel 0 QL5 429 329 to three significant i The original matrix d
or, approximate , to three significant figures. The original matrix does
bp Yo o0 -17.2 £ £ £
0 0 0 0

not have a pivot in every row, so its columns do not span R*, by Theorem 4.

4 -5 -1 8 4 -5 -1 8 -5 -1 8
38, [M] 37 —4 2| |0 -13/4 -13/4 4| |0 CI3/3 -13/4 —4
5 -6 -1 4| |0 1/4 /4 -6| |0 0 0
9 1 10 7 0 49/4 49/4 -11 0 0 0 0
With pivots only in the first three rows, the original matrix has columns that do not span R*, by
Theorem 4.
10 -7 1 4 6 10 -7 1 4 6
-8 4 -6 -10 -3 0 -8/5 -26/5 -34/5 9/5
39. [M] ~

-7 11 -5 -1 -8 0 61/10 -43/10 9/5 -19/5
3 -1 10 12 12 0 11/10 97/10 54/5 51/5

10 -7 1 4 6 -7 1 4 6
0 -8/5 =26/5 -34/5 9/5 0—26/5 -34/5 9/5

0 0 —193/8 —193/8 49/16| | 0 0 ~193/8 49/16
0 0  49/8  49/8 183/16] | 0 0 0 0

The original matrix has a pivot in every row, so its columns span R*, by Theorem 4.

5 11 -6 -7 12 5 11 -6 =7 12

-7 3 4 6 -9 0 62/5 -62/5 -19/5 39/5
40. [M] ~

11 5 6 -9 3 0 -96/5 96/5 32/5 -147/5

-3 4 -7 2 7 0 53/5 -53/5 -11/5 71/5
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5 11 -6 7 12 11 -6 7 12
0 62/5 —62/5 —-19/5 39/5 0 —62/5 —19/5 39/5
0 0 0 16/31 -537/31] |0 0 0 d6/3D -537/31

0 0 0  65/62 467/62| [0 0 0 0

The original matrix has a pivot in every row, so its columns span R*, by Theorem 4.

41. [M] Examine the calculations in Exercise 39. Notice that the fourth column of the original matrix,
say A, is not a pivot column. Let A° be the matrix formed by deleting column 4 of A, let B be the
echelon form obtained from A, and let B° be the matrix obtained by deleting column 4 of B. The
sequence of row operations that reduces A to B also reduces A° to B°. Since B’ is in echelon form, it
shows that A° has a pivot position in each row. Therefore, the columns of A° span R*.

It is possible to delete column 3 of A instead of column 4. In this case, the fourth column of A
becomes a pivot column of A°, as you can see by looking at what happens when column 3 of B is
deleted. For later work, it is desirable to delete a nonpivot column.

Note: Exercises 41 and 42 help to prepare for later work on the column space of a matrix. (See Section
2.9 or 4.6.) The Study Guide points out that these exercises depend on the following idea, not explicitly
mentioned in the text: when a row operation is performed on a matrix A, the calculations for each new
entry depend only on the other entries in the same column. If a column of A is removed, forming a new
matrix, the absence of this column has no affect on any row-operation calculations for entries in the other
columns of A. (The absence of a column might affect the particular choice of row operations performed
for some purpose, but that is not being considered here.)

42. [M] Examine the calculations in Exercise 40. The third column of the original matrix, say A, is not a
pivot column. Let A° be the matrix formed by deleting column 3 of A, let B be the echelon form
obtained from A, and let B° be the matrix obtained by deleting column 3 of B. The sequence of row
operations that reduces A to B also reduces A° to B°. Since B° is in echelon form, it shows that A° has
a pivot position in each row. Therefore, the columns of A° span R*.

It is possible to delete column 2 of A instead of column 3. (See the remark for Exercise 41.)
However, only one column can be deleted. If two or more columns were deleted from A, the
resulting matrix would have fewer than four columns, so it would have fewer than four pivot
positions. In such a case, not every row could contain a pivot position, and the columns of the matrix
would not span R*, by Theorem 4.

Notes: At the end of Section 1.4, the Study Guide gives students a method for learning and mastering
linear algebra concepts. Specific directions are given for constructing a review sheet that connects the
basic definition of “span” with related ideas: equivalent descriptions, theorems, geometric interpretations,
special cases, algorithms, and typical computations. I require my students to prepare such a sheet that
reflects their choices of material connected with “span”, and I make comments on their sheets to help
them refine their review. Later, the students use these sheets when studying for exams.

The MATLAB box for Section 1.4 introduces two useful commands gauss and bgauss that
allow a student to speed up row reduction while still visualizing all the steps involved. The command
B=gauss(A,1) causes MATLAB to find the left-most nonzero entry in row 1 of matrix A, and use
that entry as a pivot to create zeros in the entries below, using row replacement operations. The result is a
matrix that a student might write next to A as the first stage of row reduction, since there is no need to
write a new matrix after each separate row replacement. I use the gauss command frequently in lectures
to obtain an echelon form that provides data for solving various problems. For instance, if a matrix has 5
rows, and if row swaps are not needed, the following commands produce an echelon form of A:

B = gauss(A,1), B = gauss(B,2), B = gauss(B,3), B = gauss(B,4)
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If an interchange is required, I can insert a command such as B = swap(B,2,5) . The command
bgauss uses the left-most nonzero entry in a row to produce zeros above that entry. This command,
together with scale, can change an echelon form into reduced echelon form.

The use of gauss and bgauss creates an environment in which students use their computer
program the same way they work a problem by hand on an exam. Unless you are able to conduct your
exams in a computer laboratory, it may be unwise to give students too early the power to obtain reduced
echelon forms with one command—they may have difficulty performing row reduction by hand during an
exam. Instructors whose students use a graphic calculator in class each day do not face this problem. In
such a case, you may wish to introduce rref earlier in the course than Chapter 4 (or Section 2.8), which
is where I finally allow students to use that command.

1.5 SOLUTIONS

Notes: The geometry helps students understand Span{u, v}, in preparation for later discussions of sub-
spaces. The parametric vector form of a solution set will be used throughout the text. Figure 6 will appear
again in Sections 2.9 and 4.8.

For solving homogeneous systems, the text recommends working with the augmented matrix, al-
though no calculations take place in the augmented column. See the Study Guide comments on Exercise 7
that illustrate two common student errors.

All students need the practice of Exercises 1-14. (Assign all odd, all even, or a mixture. If you do not
assign Exercise 7, be sure to assign both 8 and 10.) Otherwise, a few students may be unable later to find
a basis for a null space or an eigenspace. Exercises 28-36 are important. Exercises 35 and 36 help
students later understand how solutions of Ax = 0 encode linear dependence relations among the columns
of A. Exercises 3740 are more challenging. Exercise 37 will help students avoid the standard mistake of
forgetting that Theorem 6 applies only to a consistent equation Ax = b.

1. Reduce the augmented matrix to echelon form and circle the pivot positions. If a column of the
coefficient matrix is not a pivot column, the corresponding variable is free and the system of
equations has a nontrivial solution. Otherwise, the system has only the trivial solution.

2 -5 8 0|2 -5 80l [@ -5 8 0
2 -7 1 0|~|0 -12 9 0|~|0 C1D 9 0
4 2 7 0o|l]|0o 12 9 0o/ ]0 0 0 0

The variable x; is free, so the system has a nontrivial solution.
1 -2 3 0 -2 3 0
2.1-2 -3 4 0]|~|0 2 0
2 =4 9 o| o 0o Qo

There is no free variable; the system has only the trivial solution.

IR g

- 0
. The variable x; is free; the system has nontrivial
2 5 4 0] [0 /3 28/3 0} ’ Y

solutions. An alert student will realize that row operations are unnecessary. With only two equations,
there can be at most two basic variables. One variable must be free. Refer to Exercise 29 in Section
1.2.
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4. __z :i z g}~ﬁ 16/§ g}.The variable x5 is free; the system has nontrivial
solutions. As in Exercise 3, row operations are unnecessary.
2 2 4 0 2 2 4 0 112 0ol [®o 1 0
5|4 -4 -8 0[~]0 0 0 O|~/0 1 1 o|~l0 D 1 0
' 0 3 -3 0] [0 3 3 0/|0 0 O0 0 |O OO O
@ + x =0
@ + x, = 0. The variable x; is free, x; = —x3, and x; = —x;3.
0=0
X —X; -1
In parametric vector form, the general solutionis X=| x, |=| —x; | = x;3| —1
X X ] 1
1 2 3 ol [t 2 =3 0ol [1 2 -3 0][®o -1 o0
6.2 1 -3 0|~|0 -3 3 0|~[0 1 -1 Of~[0 O -1 0
-1 1 0 O 0O 3 3 0 0 0 0 O 0 0 0 O
@ - x=0
@ - Xy = 0. The variable x; is free, x; = x3, and x, = x3.
0=0
X X3 1
In parametric vector form, the general solutionis X=| x, |=| x; [=x;|1].
X X3 1
7{13 —370}{@0 9 -8 o}@ +9x —8x, =0
01 4 5 0] 0®4 50 ®-4x+5x=0

The basic variables are x; and x,, with x3 and x,; free. Next, x; = —-9x3 + 8x4, and x, = 4x3 — 5x4. The
general solution is

X —9x, +8x, | [-9x, 8xy -9 8
X, 4x, —5x, 4x;, =5x, 4 -5
X = = = =X +x,
X, X X 0 1 0
X, X, 1L O X, 0 1
g [ 3 8 5 0] [@o =2 -7 0] &) -2x-T7x=0
o1 2 40l 0 ® 2 4 0] @ty -4x=0

The basic variables are x; and x,, with x3 and x, free. Next, x; = 2x3 + 7x4 and x, = —2x3 + 4x4. The
general solution in parametric vector form is

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



1.5 ¢ Solutions 33

X 2xy+Tx, 2x; Tx, 2 7

X —2x; +4x -2x 4x -2 4
x=|"= 3 4| _ 3|2 X +x,

X X X, 0 1 0

Xy Xy 0 X4 0 1

9{3—6 60}{1—2 20}{1 —220}[@—200}
-2 4 2 0] |2 4 2200 0200 0O
(- 2x, =0

®=0

The solution is x; = 2x, , x3 = 0, with x, free. In parametric vector form,

2x, 2x, 2
X=X, |[=] x, |=x,]|1
X 0 0

10. {—1 -4 0 -4 0}{1 4 0 4 o}{l 4 0 4 0}[@ 0 0 4 0}
2 -8 0 8 0 2 -8 0 8 O [0 1T O O O 0@000
* +4x, =0
®) =0
The basic variables are x; and x,, so x; and x4 are free. (Note that x; is not zero.) Also, x; = —4x,. The
general solution is

X —4x, 0 —4x, 0 —4

X, 0 0 0 0 0
X = = = + =x|  |+x,

X3 X3 X 0 1 0

X, X, 0 X, 0 1

11.

1 4 -2 0 3 -5 0 (1 4 -2 0 0 70 -4 0 0 0 5 0
0 O 0 0 -1 0/ |0 0 1 0 0 -1 0[]0 0@®WO 0 -1 0
0 0 0 0 I -4 0/ /0 0 0 0 1 -4 0[]0 00 0 @O-4 0
o o0 o o0 o o0 0,0 0 0 O O OO0 ]0 OO OO OO
@— 4x, + 5x, =0

@ - x =0
() = 4x, =0
0=0
The basic variables are x;, x3, and xs. The remaining variables are free. In particular, x, is free (and

not zero as some may assume). The solution is x; = 4x, — Sxg, X3 = X6, X5 = 4xg, With x,, x4, and x¢ free.
In parametric vector form,
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x| [4x,-5x] [4x, 0] [-5x] 4 0 -5
Xy Xy X, 0 0 1 0 0
X3 Xg 0 0 Xg 0 0 1
X = = = + + =x,| [+x,|  |+x
Xy Xy 0 X, 0 0 1 0
X5 4x, 0 0 4x, 0 0 4
_xd L X% ] LO] [O] | x | 10| 10 ] | 1)

Note: The Study Guide discusses two mistakes that students often make on this type of problem.

12.
1 -2 3 6 5 0 0]t -2 3 6 500][D-230 2 00
0 0 0 1 4 =600 00 1 400 |0 0 0@ 40 0
o 00 0 o0 10/jo 00 0 o010 o 000 0Qo
o 0 0 0 0 0O0/[0 00 0 00O0O0 0 000 000

@) 2%, + 3x, +29x, =0

+ 4x, =0
®=0
0=0

The basic variables are x;, x4, and x; the free variables are x,, x3, and xs. The general solution is
2x2 —3x3—29x5, x4 = — 4x5, and Xo = 0.In parametrlc vector form, the solution is

x| [2x%-3x%-29x] [2x,| [-3x] [-29x; | 21 [-3]  [-29]

X, Xy X, 0 0 1 0 0

X, X, 0 X, 0 0 1 0
X= = = + + =X| |+x + X5

X, —dx, 0 0 —4x, 0 0 —4

Xs Xs 0 0 Xs 0 0 1

x| | 0 JltojJlo ][ o] o] [o | o

13. To write the general solution in parametric vector form, pull out the constant terms that do not
involve the free variable:

X S5+4x; 5 4x,
X=|x, [=|2=-Tx; |=|2|+|-Tx; |=| -2 +x3 =7 |=p+xq.

X3 X3 0 X3 1

T
q

5 4
Geometrically, the solution set is the line through | — } in the direction of | -7 |.
1
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15.

16.
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To write the general solution in parametric vector form, pull out the constant terms that do not
involve the free variable:

X Sx, 0 Sx, 0 5
X, 3-2x, 3 —2x, 3 -2
X= = = |+ =| _|+x, =p+xq
X 2+5x, 2 Sx, 2 5
Xy X, 0 Xy 0 1
T T
P q

The solution set is the line through p in the direction of q.

Solve x; + 5x, — 3x3 = =2 for the basic variable: x; = -2 — 5x, + 3x3, with x, and x; free. In vector
form, the solution is

x| [-2-5x,+3x, =21 [-5x,] [3x -2 -5 3
X=|x, = X, = O|+| x, |[+| O |=| O|+x,| 1|+x]0
5] | X, 0 0 | X 0 0 1
The solution of x; + 5x, — 3x3= 0 1s x; = — 5x, + 3x3, with x, and x; free. In vector form,
(x| [-5x,+3x, =5x, 3x, -5 3
X=|x, |= X, =l x, |+| 0 [=x| 1|+x]0]=xu+xv
X, X, 0 X, 0 1

The solution set of the homogeneous equation is the plane through the origin in R’ spanned by
u and v. The solution set of the nonhomogeneous equation is parallel to this plane and passes through
-2
the pointp=| 0.
0

Solve x; — 2x, + 3x3 = 4 for the basic variable: x; = 4 + 2x, — 3x3, with x, and x;3 free. In vector form,
the solution is

x| [4+2x,-3x, 41 |2x, =3x; 4 2 -3
X=|x, = X, = 0+ x, |[+| O |=| O|+x,| 1|+x5 O
B X3 0 0 X5 0 0 1
The solution of x; — 2x, + 3x3 = 0 1s x; = 2x, — 3x3, with x, and x; free. In vector form,
(x| [2x,-3x, 2x, -3x, 2 -3
X=|x, |= X, =l x [+ 0 |=x| l|+x] 0| =xu+xv
B 0 X, 0 1

The solution set of the homogeneous equation is the plane through the origin in R spanned by u and
v. The solution set of the nonhomogeneous equation is parallel to this plane and passes through the
4

pointp=| Of.
0
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17. Row reduce the augmented matrix for the system:
2 2 4 8 2 2 4 8 2 2 4 8 1 1 2 4 1

-4 4 -8 -16|~(0 O O Of|~0 3 -3 12/~j0 1 1 —4|~|0

0
1

1
1

0o -3 -3 12 o 3 -3 12/ {0 0O O O |O O O Of (O O O

X, + X, = 8. Thus x; =8 — x3, xo = —4 — x3, and x; is free. In parametric vector form,
x, +x; = -4
0= 0
X 8—x, 81 [—x, | 8 -1
X=|x, |=|4-x; |=| 4 |+|—x |=| 4 |+x] -1
X, X, 0 X3 | 0 1
8
The solution set is the line through | —4 |, parallel to the line that is the solution set of the
0

homogeneous system in Exercise 5.

18. Row reduce the augmented matrix for the system:
1 2 -3 5 1 2 -3 5 1 2 -3 5 0o -1 7
2 1 3 13|~]0 =3 3 3|~j0 1 -1 -1|{~j0 @© -1 -1
-1 1 0 -8 0 3 -3 3 0O 0 0 O 0O 0 0 O

@ - X; = 7. Thus x; =7 + x3, x, = —1 + x3, and x; is free. In parametric vector form,
®-x= -l
0= 0
X T+ x, T | x 7 1
X=|x, [=|-1+x; |=|-1|+]| x5 |=|-1|+x;]1
X, X, 0] |x 0 1
7
The solution set is the line through | —1 |, parallel to the line that is the solution set of the
0

homogeneous system in Exercise 6.

19. The line through a parallel to b can be written as X = a + ¢ b, where f represents a parameter:
X -2 -5 x, =—2-5t
X= = +t , or
X, 0 3 x, =3t
20. The line through a parallel to b can be written as x = a + th, where ¢ represents a parameter:

'xl 3 —7 x1:3_7t
X= = +t , or
x| |2 6 X, =—2+6t
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3 4
The line through p and q is parallel to q — p. So, given p :{ 3} and q :{ } , form

73 |, and write the 1 rigep =] led !
—P= = , and write the line as x = -p) = )
P74 PHAA=PI=| 51ty
i . . -3 0
The line through p and q is parallel to q — p. So, given p = 5 and q = 5| form

) 3 and write the line as x + #( ) -3 +1 3
— = = . WI1 1 = —_ =
7P= 3 57| s R S Y A

Note: Exercises 21 and 22 prepare for Exercise 26 in Section 1.8.

23.

24.

25.

26.
27.

a. True. See the first paragraph of the subsection titled Homogeneous Linear Systems.

b. False. The equation Ax = 0 gives an implicit description of its solution set. See the subsection
entitled Parametric Vector Form.

c. False. The equation Ax = 0 always has the trivial solution. The box before Example 1 uses the
word nontrivial instead of trivial.

d. False. The line goes through p parallel to v. See the paragraph that precedes Fig. 5.

e. False. The solution set could be empty! The statement (from Theorem 6) is true only when there
exists a vector p such that Ap = b.

False. The trivial solution is always a solution to a homogeneous system of linear equations.
. False. A nontrivial solution of Ax = 0 is any nonzero x that satisfies the equation. See the
sentence before Example 2.

s

c. True. See the paragraph following Example 3.

d. True. If the zero vector is a solution, then b=Ax =A0=0.
e. True. See Theorem 6.

Suppose p satisfies Ax =b. Then Ap = b. Theorem 6 says that the solution set of Ax = b equals the
set S ={w: w=p + v, for some v, such that Av, = 0}. There are two things to prove: (a) every vector
in § satisfies Ax = b, (b) every vector that satisfies Ax=b is in S.
a. Let w have the form w = p + v, where Avy, = 0. Then
Aw =A(p + vp) = Ap + Avy,. By Theorem 5(a) in section 1.4
=b+0=Db
So every vector of the form p + vy, satisfies Ax =b.
b. Now let w be any solution of Ax = b, and set v, = w — p. Then
Avp,=AW-p)=Aw-Ap=b-b=0
So vy, satisfies Ax = 0. Thus every solution of Ax = b has the form w = p + v,

When A is the 3x3 zero matrix, every X in R? satisfies Ax = 0. So the solution set is all vectors in R®.

(Geometric argument using Theorem 6.) Since AX = b is consistent, its solution set is obtained by
translating the solution set of Ax = 0, by Theorem 6. So the solution set of Ax = b is a single vector if
and only if the solution set of Ax = 0 is a single vector, and that happens if and only if Ax = 0 has
only the trivial solution.
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28.

29.

30.

31.

32.

33.

34.

35.

36.

CHAPTER 1 « Linear Equations in Linear Algebra

(Proof using free variables.) If Ax =b has a solution, then the solution is unique if and only if there
are no free variables in the corresponding system of equations, that is, if and only if every column of
A is a pivot column. This happens if and only if the equation Ax = 0 has only the trivial solution.

a. When A is a 3x3 matrix with three pivot positions, the equation Ax = () has no free variables and
hence has no nontrivial solution.

b. With three pivot positions, A has a pivot position in each of its three rows. By Theorem 4 in
Section 1.4, the equation Ax = b has a solution for every possible b. The term "possible" in the
exercise means that the only vectors considered in this case are those in R’, because A has three
TOWS.

a. When A is a 4x4 matrix with three pivot positions, the equation Ax = 0 has three basic variables
andone free variable. So Ax = 0 has a nontrivial solution.

b. With only three pivot positions, A cannot have a pivot in every row, so by Theorem 4 in Section
1.4, the equation Ax = b cannot have a solution for every possible b (in R?).

a. When A is a 2x5 matrix with two pivot positions, the equation Ax = 0 has two basic variables and
three free variables. So Ax = 0 has a nontrivial solution.

b. With two pivot positions and only two rows, A has a pivot position in every row. By Theorem 4
in Section 1.4, the equation Ax = b has a solution for every possible b (in R?).

a. When A is a 3x2 matrix with two pivot positions, each column is a pivot column. So the equation
Ax = 0 has no free variables and hence no nontrivial solution.

b. With two pivot positions and three rows, A cannot have a pivot in every row. So the equation Ax
= b cannot have a solution for every possible b (in R?), by Theorem 4 in Section 1.4.

No. If the solution set of Ax = b contained the origin, then 0 would satisfy AQ= b, which is not true
since b is not the zero vector.

Look for A =[a; a, as]suchthat1-a; + 1-a, + 1-a3 =0. That is, construct A so that each row sum
(the sum of the entries in a row) is zero.

Look for A =[a; a, a;] such that2-a, — 1-a, + 1-a; = 0. That is, construct A so that subtracting the
third column from the second column is twice the first column.

-1 -3
Look at x;| 7|+x,| 21| and notice that the second column is 3 times the first. So suitable values
-2 -6

3
for x; and x, would be 3 and —1 respectively. (Another pair would be 6 and -2, etc.) Thus x ={ J

satisfies Ax = 0.
Inspect how the columns a, and a, of A are related. The second column is —2/3 times the first. Put

2
another way, 2a; + 3a, = 0. Thus {3} satisfies Ax = 0.

Note: Exercises 35 and 36 set the stage for the concept of linear dependence.
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Since the solution set of Ax = 0 contains the point (4,1), the vector x = (4,1) satisfies Ax = (. Write
this equation as a vector equation, using a; and a, for the columns of A:

4-a;+1-a,=0
Then a, = —4a,. So choose any nonzero vector for the first column of A and multiply that column by

1 -4
— 4 to get the second column of A. For example, set A = L 4} .
Finally, the only way the solution set of Ax =b could not be parallel to the line through (1,4) and the
origin is for the solution set of Ax = b to be empty. This does not contradict Theorem 6, because that
theorem applies only to the case when the equation Ax = b has a nonempty solution set. For b, take
any vector that is not a multiple of the columns of A.

Note: In the Study Guide, a “Checkpoint” for Section 1.5 will help students with Exercise 37.

38.

39.

40.

If w satisfies Ax = 0, then Aw = 0. For any scalar ¢, Theorem 5(b) in Section 1.4 shows that
A(cw)=cAw = c0 = 0.

Suppose Av = 0 and Aw = 0. Then, since A(v + w) = Av + Aw by Theorem 5(a) in Section 1.4,
AV+w) =Av+Aw=0+0=0.

Now, let ¢ and d be scalars. Using both parts of Theorem 5,
A(cev + dw) = A(cv) + A(dw) = cAV + dAw = c0 + d0 = 0.

No. If Ax = b has no solution, then A cannot have a pivot in each row. Since A is 3x3, it has at most
two pivot positions. So the equation Ax =y for any y has at most two basic variables and at least one
free variable. Thus, the solution set for Ax =y is either empty or has infinitely many elements.

Note: The MATLAB box in the Study Guide introduces the zeros command, in order to augment a
matrix with a column of zeros.

1.6

SOLUTIONS

1. Fill in the exchange table one column at a time. The entries in a column describe where a sector's

output goes. The decimal fractions in each column sum to 1.
Distribution of

Output From:
Goods Services Purchased by:
output | l input
2 7 - Goods
.8 3 - Services

Denote the total annual output (in dollars) of the sectors by ps and ps. From the first row, the total
input to the Goods sector is .2 pg + .7 ps. The Goods sector must pay for that. So the equilibrium
prices must satisfy

income expenses

Pe = 2pg+.7p;g
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From the second row, the input (that is, the expense) of the Services sector is .8 pg + .3 ps.
The equilibrium equation for the Services sector is

income expenses

Ds = 8ps+.3ps

Move all variables to the left side and combine like terms:

8pg = ps
-8p; + Ipg

Row reduce the augmented matrix:

g =7 0 R
-8 7 0 0

O -875 0
0 0

The general solution is pg = .875 ps, with py free. One equilibrium solution is ps = 1000 and p; =
875. If one uses fractions instead of decimals in the calculations, the general solution would be
written pg = (7/8) ps, and a natural choice of prices might be ps = 80 and ps = 70. Only the ratio of
the prices is important: pg = .875 ps. The economic equilibrium is unaffected by a proportional

change in prices.

2. Take some other value for ps, say 200 million dollars. The other equilibrium prices are then
pc = 188 million, pr = 170 million. Any constant nonnegative multiple of these prices is a set of
equilibrium prices, because the solution set of the system of equations consists of all multiples of one
vector. Changing the unit of measurement to another currency such as Japanese yen has the same
effect as multiplying all equilibrium prices by a constant. The ratios of the prices remain the same,

no matter what currency is used.

3. a. Fill in the exchange table one column at a time. The entries in a column describe where a sector’s
output goes. The decimal fractions in each column sum to 1.

Distribution of Output From:

Fuels and Power

output l
10
.80
.10

Manufacturing  Services Purchased by :
l l input
10 .20 - Fuels and Power
.10 40 - Manufacturing
.80 40 - Services

b. Denote the total annual output (in dollars) of the sectors by pr, py, and ps. From the first row of
the table, the total input to the Fuels & Power sector is .1pg + .1py + .2ps. So the equilibrium

prices must satisfy

income

Pr =

App +.1py +2pg

From the second and third rows of the table, the income/expense requirements for the
Manufacturing sector and the Services sector are, respectively,

py =-8pp +.1p,, +.4pg
ps =.1pp +.8py +.4pg

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



1.6 ¢ Solutions 41

Move all variables to the left side and combine like terms:

9pp —.1Apy, —2ps =0 9 -1 -2 0
-8pp +9py, —4ps =0 -8 9 -4 0
—1pp—8py, +.6pg =0 -1 -8 6 0

[M] You can obtain the reduced echelon form with a matrix program.
9 -1 -2 0] [ 0 -301 0| Thenumber of decimal
-8 9 -4 0|~|0 (D -712 0| places displayed is
-1 -8 6 0 0 O 0 0| somewhat arbitrary.
The general solution is pp=.301 ps, py = .712 ps, with ps free. If pg is assigned the value of 100,
then pr = 30.1 and p,, = 71.2. Note that only the ratios of the prices are determined. This makes
sense, for if they were converted from, say, dollars to yen or Euros, the inputs and outputs of each

sector would still balance. The economic equilibrium is not affected by a proportional change in
prices.

Fill in the exchange table one column at a time. The entries in each column must sum to 1.

Distribution of Output From:

Mining Lumber Energy Transportation Purchased by :
output 2 \2 \2 2 input
.30 15 .20 20 - Mining
.10 15 15 .10 — Lumber
.60 .50 45 .50 - Energy
0 .20 .20 .20 - Transportation

. [M] Denote the total annual output of the sectors by py, pr, pe, and pr, respectively. From the first

row of the table, the total input to Agriculture is .30py + .15p; + .20pg + .20 pr. So the
equilibrium prices must satisfy

income expenses
py = 30p, + .15p, + 20p, + 20p;
From the second, third, and fourth rows of the table, the equilibrium equations are
p. = .10py, +.15p, +.15p, +.10p;
pg = .60p,, +.50p, +.45p, +.50p,
pr = 20p, +.20p; +.20p;

Move all variables to the left side and combine like terms:
10py, —.15p, —20p; —.20p; =0
-10p,, +.85p, —.15p. —.10p; =0
-.60p,, —.50p, +.55p; —.50p, =0
-20p, —.20p, +.80p, =0

Reduce the augmented matrix to reduced echelon form:
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Jo —-15 =20 -20 O @ 0 0 -137 0
—-.10 g5 =15 =10 0 _ 0 @ 0 -84 0
-60 -50 55 -50 O 0 0 @ -3.16 0
0 -20 -20 .80 O 0 0 O 0 0
Solve for the basic variables in terms of the free variable pr, and obtain py, = 1.37pr, pr = .84pr,

and pg = 3.16p;. The data probably justifies at most two significant figures, so take py =100 and
round off the other prices to py, = 137, p; = 84, and pz = 316.

5. a. Fill in the exchange table one column at a time. The entries in each column must sum to 1.

Distribution of Output From:

Agriculture  Manufacturing  Services Transportation Purchased by :
output \2 \2 2 \’ input
.20 35 .10 20 - Agriculture
.20 10 20 .30 - Manufacturing
.30 35 .50 .20 - Services
.30 .20 .20 .30 - Transportation

b. [M] Denote the total annual output of the sectors by pa, pu, ps, and pr, respectively. The
equilibrium equations are

py, = .20p,+.35p, +.10ps +.20p;
py = .20p,+.10p, +.20p¢ +.30p;
ps = 30p,+.35p, +.50ps +.20p;
pr = 30p,+.20p, +.20ps +.30p;

Move all variables to the left side and combine like terms:
.80p, —.35p,, —.10ps —.20p, =0
-20p, +.90p,, —.20ps —.30p, =0
-30p, —.35p,, +.50p; —.20p, =0
-30p, —.20p,, —.20ps +.70p; =0
Reduce the augmented matrix to reduced echelon form:
80 -35 —-10 -20 O @ 0 0 =79 O
-20 90 -20 -30 O 0 @ 0 -836 0
~30 -35 50 -20 0] [0 0 @ -1.465 0
-30 -20 -20 .70 O 0 0 O 0 O
Solve for the basic variables in terms of the free variable pt, and obtain ps = .799pr, py = .836p7,
and ps = 1.465pr. Take pr = $10.00 and round off the other prices to p, = $7.99, py = $8.36, and
ps = $14.65 per unit.
c¢. Construct the new exchange table one column at a time. The entries in each column must sum to 1.

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



1.6 ¢ Solutions 43

Distribution of Output From:

Agriculture Manufacturing Services Transportation Purchased by :
output J J 2 \2 input
.20 35 .10 .20 — Agriculture
10 10 .20 .30 - Manufacturing
40 .35 .50 .20 - Services
.30 .20 .20 .30 - Transportation

d. [M] The new equilibrium equations are

py, = .20p,+.35p, +.10ps +.20p;
py = .10p,+.10p, +.20p¢ +.30p;
ps = 40p,+.35p, +.50ps +.20p;
pr = 30p,+.20p, +.20ps +.30p;

Move all variables to the left side and combine like terms:
.80p, —.35p,, —.10p; —.20p, =0
-10p, +.90p,, —.20ps —.30p; =0
-40p, —.35p,, +.50p; —.20p,; =0
-30p, —.20p,, —.20ps +.70p; =0
Reduce the augmented matrix to reduced echelon form:
80 -35 —-10 =20 O 0 0 =781
~10 90 -20 -30 o |0 @ o -767
~40 -35 50 -20 o] |0 0o @ -1562
-30 -20 -20 .70 O 0 0 O 0

Solve for the basic variables in terms of the free variable pr, and obtain ps = .781pr, py = .767pr,
and

ps = 1.562p. Take pr = $10.00 and round off the other prices to p, = $7.81, py, = $7.67, and

ps = $15.62 per unit. The campaign has caused unit prices for the Agriculture and

Manufacturing sectirs to go down slightly, while increasing the unit price for the Services sector
to increase by $.10 per unit. The campaign has benefited the Services sector the most.

S O O O

6. The following vectors list the numbers of atoms of aluminum (Al), oxygen (O), and carbon (C):

0 1 0| aluminum
ALO;: |3, C:|0|, Al:|0|, CO,:|2| oxygen
1 0 1| carbon

The coefficients in the equation x;-ALO; + x,C — x3-Al + x4-CO; satisfy
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2 0 1 0
X |3|+x|0|=x]0|+x,|2
0 1 0 1

Move the right terms to the left side (changing the sign of each entry in the third and fourth vectors)
and row reduce the augmented matrix of the homogeneous system:

20 -1 00 |10 -1/2 0 0} |1 0 -1/2 0 O

30 0 -2 0(~|3 O 0o -2 0|~0 0 3/2 -2 0
0 1 0 -1 0 0 1 0 -1 0 0 1 0 -1 0
1 0 -1/2 0 O 1 0 -1/2 0 0 1 0 0 -2/3 0
~10 1 0 -1 0f~(0 1 0 -1 0|~|0 1 O -1 0
0 0 3/2 -2 0 0 0 1 -4/3 0 0 0 1 -4/3 0

The general solution is x; = (2/3)xy, X, = X4, X3 = (4/3)x4, with x4 free. Take x4, = 3. Then x; = 2,
x, =3, and x; = 4. The balanced equation is
2A1,0; + 3C — 4Al + 3CO,

7. The following vectors list the numbers of atoms of sodium (Na), hydrogen (H), carbon (C), and

oxygen (O):
1 0 3 0 0| sodium
1 8 5 2 0| hydrogen
NaHCO,: | |, H;C,H;O,: , NayC H;0;: , H,0:| |, CO,:
1 6 6 0 1| carbon
3 7 7 1 2| oxygen

The order of the various atoms is not important. The list here was selected by writing the elements in
the order in which they first appear in the chemical equation, reading left to right:

X1 NaHCO3 + X5 - H3C6H5O7 — X3 Na3C6H5O7 + X4 HQO + X5 C02

The coefficients xy, ..., x5 satisfy the vector equation
1 0 3 0 0
1 8 5 2 0
X | + X, 6 =X, 6 + x4 0 + X5 |
3 7 7 1 2

Move all the terms to the left side (changing the sign of each entry in the third, fourth, and fifth
vectors) and reduce the augmented matrix:

1 0 -3 0 0 O 1 0 0 0 -1 0
1 8 -5 -2 0 O 01 0 0 -1/3 O
1 6 6 0 -1 0/ /0 01 0 -1/3 0
37 -1 -1 =2 0 0 0 0 1 -1 0

The general solution is x; = xs, x, = (1/3)xs, x3 = (1/3)xs, x4 = x5, and x5 is free. Take xs = 3. Then x, =
x4 =3, and x, = x3 = 1. The balanced equation is
3NaHCOg + H3C6H5O7 i Na3C6H5O7 + 3H20 + 3C02
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8. The following vectors list the numbers of atoms of hydrogen (H), oxygen (O), calcium (Ca), and
carbon (C):

3 0 2 0 0| hydrogen

1 3 1 0 2| oxygen
H,O: , CaCO,: , H,O: , Ca: , CO,: -

0 1 0 1 0| calcium

0 1 0 0 1| carbon

The coefficients in the chemical equation
X]'H30+ x2~CaCO3 —d X3'H20+ x4~Ca + X5'C02

satisfy the vector equation

3 0 2 0 0
1 3 1 0 2
X 0 +x, ) =X, 0 + x4 | + X5 0
0 1 0 0 1

Move the terms to the left side (changing the sign of each entry in the last three vectors) and reduce
the augmented matrix:

302 0 0 0]t 000 =2 0
1 3 -1 0 =2 ollo1 00 -1 0
01 0 -1 0 0/loo0o 1 0 =3 0
01 0 0 -1 0[]0 001 -1 0

The general solution is x; = 2xs, X, = x5, X3 = 3Xs, X4 = X5, and x5 is free. Take xs = 1. Then x; = 2, and
Xy =x4 =1, and x3 = 3. The balanced equation is

2H;0 + CaCO; — 3H,0+ Ca + CO,

9.The following vectors list the numbers of atoms of boron (B), sulfur (S), hydrogen (H), and oxygen
(0):

2 0 1 0| boron
3 0 0 1| sulfur
B,S;: , H,O: , H;BO;:| |, H,S:
0 2 3 2| hydrogen
0 1 3 0] oxygen
The coefficients in the equation x;-B,S; + x,-H,O —  x3-H3BOs + x4-H,S satisfy
2 0 1 0
3 0 0 1
X 0 + x, ) =X, 3 +x, )
0 1 3 0

Move the terms to the left side (changing the sign of each entry in the third and fourth vectors) and
row reduce the augmented matrix of the homogeneous system:

20 -1 0 0] [1 0 0 -1/3 0
30 0 -1 0[]0 10 =2 0
0 2 3 =2 0|10 0 1 —2/3 0
01 -3 00000 0 0
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The general solution is x; = (1/3) x4, X, = 2x4, x3 = (2/3) x4, with x4 free. Take x, = 3. Then x; =1,
X, = 6, and x3 = 2. The balanced equation is

BzS3 + 6H20 - 2H3BO3+3H2$

10. [M] Set up vectors that list the atoms per molecule. Using the order lead (Pb), nitrogen (N),
chromium (Cr), manganese (Mn), and oxygen (O), the vector equation to be solved is

(1] [o] [3] [o] [0] [O] lead

6 0 0 0 0 1| nitrogen
X|0+x,| 1 |=x]0|+x,|2]|+x5|0|+x,{0| chromium

0 2 0 0 1 0| manganese

10 ] 18] | 4| 3] 2] | 1| oxygen

The general solution is x; = (1/6)xg, X, = (22/45)x6, x3 = (1/18)x6, x4 = (11/45)x6, x5 = (44/45)x6, and x¢
is free. Take x = 90. Then x; = 15, x, =44, x3 =5, x, = 22, and x5 = 88. The balanced equation is

15PbNg + 44CrMn,0O5 —  5Pb30;4 + 22Cr,05 + 88MnO, + 90NO

11. [M] Set up vectors that list the atoms per molecule. Using the order manganese (Mn), sulfur (S),
arsenic (As), chromium (Cr), oxygen (O), and hydrogen (H), the vector equation to be solved is

(1] (0] (0] (1] 0] 0 [0] manganese
1 0 1 0 0 3 0| sulfur
0 2 0 0 1 0 0| arsenic
x| |+x + X, =X4| |+ X5 |+ X +x; .
0 10 0 0 0 1 0| chromium
0 35 4 4 0 12 1| oxygen
10| 0 | 12 ] 1] | 3] | 0 | 2| hydrogen

In rational format, the general solution is x; = (16/327)x7, x, = (13/327)x7, x3 = (374/327)x7,

x4 = (16/327)x7, x5 = (26/327)x7, xs = (130/327)x7, and x5 is free. Take x; = 327 to make the other
variables whole numbers. The balanced equation is

16MnS + 13As,Cr o035 + 374H,SO, — 16HMnO, + 26AsH; + 130CrS;0,, + 327H,0

Note that some students may use decimal calculation and simply "round off" the fractions that relate
X1, ..., X6 to x7. The equations they construct may balance most of the elements but miss an atom or
two. Here is a solution submitted by two of my students:

SMnS + 4ASQCT10035 + 115H2804 e 5HMHO4 + 8ASH3 + 4OCTS3012 + IOOHQO

Everything balances except the hydrogen. The right side is short 1 hydrogen atom. Perhaps the
students thought that it escaped!

12. Write the equations for each intersection:

Intersection  Flow in Flow out
A x+x, = X,
B X, = x;+100
C x+80 = Xy

Rearrange the equations:
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X - X + x, = 0
X, — X = 100
3 - x, = -80

Reduce the augmented matrix:

1 -1 0 1 0 0 0 O
0 1 -1 0 100|~-~0 @ 0 -
0 0 1 -1 -80 0 0@ -

1.6 ¢ Solutions

20
20
-80

The general solution (written in the style of Section 1.2) is

x; =20

x, =20+ x,
x; = —80+x,
x, is free

Since x; cannot be negative, the minimum value of x, is 80.

13. Write the equations for each intersection:

Intersection  Flow in Flow out
A x+30 = x+80
B Xtxs = x,tx,
C X, +100 = x5+40
D x,+40 = Xs +90
E x+60 = x+20
Rearrange the equations:
X = X = =50
X, — X3 ot X4, = X5 = 0
X5 — x, = 60
Xy - x, = 50
X - X = —40
Reduce the augmented matrix:
(1 -1 0 0 0 0 -50] M 0o -1 0 0 0 —40
0 1 -1 1 -1 0 0 0o O -1 0 0 10
o 0 0o o0 I -1 60f~-~0 0 0 (D 0 -1 50
0 0 O 1 0 -1 50 o0 0 0 0 (-1 60
110 -1 0 0 0 -40] 0 0 0 0 0 O 0]
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47



48 CHAPTER 1 <« Linear Equations in Linear Algebra

X =x,—40
X, =x;+10
.. | x5 isfree
a. The general solution is § °
X5 = x4 + 60
X 1s free

b. To find minimum flows, note that since x; cannot be negative, x; > 40. This implies that
x> 50. Also, since x¢ cannot be negative, x, > 50 and x5 > 60. The minimum flows are
X, =50, x3 =40, x; = 50, x5 = 60 (when x; = 0 and x¢ = 0).

14. Write the equations for each intersection:

Intersection Flow in Flow out
A 80 = x+tx
B x +x,+100 = Xy
C X, = x,+90
D Xy + Xs = x+90

Rearrange the equations:

X + x = 80
X o+ ox - X = -100
X, — X = =90

X3 - x, — X = =90

Reduce the augmented matrix:

10 0 0 1 80 00 0 1 80
1 1 0 -1 0 -100 0o Mo -1 -1 -180
01 -1 0 0 =9| |00 @®-1 -1 -9
00 1 -1 -1 =90 000 0 0 0

x, =80 —x;
Xy, =x, +x;—180

a. The general solution is § x; =x, + x5 —90

x, is free
X5 1s free
x, =80
.. | x=x,—180
b. If xs = 0, then the general solution is
x; =x,—90
x, is free

c. Since x, cannot be negative, the minimum value of x, when x5 = 0 is 180.
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15.  Write the equations for each intersection.
Intersection  Flow in Flow out
A X, +60 = X
B X = x,+70
C x, +100 = X,
D X, = x,+90
E x,+80 = Xs
F X5 =  x,+80
Rearrange the equations:
X
X = X
X, - X
X, = X,
X, = X
Xs
Reduce the augmented matrix:
(1 0 0 0 0 -1  60]
1 -1 0 0 0 O 70
o 1 -1 0 O O -100
0 0 1 -1 0 0 9]
0 0 O -1 0 =80
o 0 o0 o0 1 -1 80 |
X, =60+ x,
x, ==10+ x4
.. | x5 =90+ x,
The general solution is
Xy = Xg
x5 =80+ x;
X 1s free

Since x, cannot be negative, the minimum value of x; is 10.

S O O O = O

S O O = O O

60
70
—-100

90
-80
80

S O = O O O
S = O O O O

1.6

60 |

-10
90

80

Solutions

Note: The MATLAB box in the Study Guide discusses rational calculations, needed for

balancing the chemical equations in Exercises 10 and 11. As usual, the appendices cover this

material for Maple, Mathematica, and the TI calculators.

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.

49



50 CHAPTER 1 <« Linear Equations in Linear Algebra

1.7 SOLUTIONS

Note: Key exercises are 9-20 and 23-30. Exercise 30 states a result that could be a theorem in the text.
There is a danger, however, that students will memorize the result without understanding the proof, and
then later mix up the words row and column. Exercises 37 and 38 anticipate the discussion in Section 1.9
of one-to-one transformations. Exercise 44 is fairly difficult for my students.

1. Use an augmented matrix to study the solution set of x;u + x,v + x3w = 0 (¥), where u, v, and w are
5 7 9 0 7 9 0

the three given vectors. Since [0 2 4 0|~|0 (2 4 0], there are no free variables. So
0 6 -8 0| 0 0@ o

the homogeneous equation (*) has only the trivial solution. The vectors are linearly independent.

2. Use an augmented matrix to study the solution set of xju + x,v + x;w = 0 (*), where u, v, and w are
0O 0 -1 0 0 3 0

the three given vectors. Since |2 0 3 0(|~|0 =7/2 0], there are no free
3 8 1 0/0 o () o

variables. So the homogeneous equation (*) has only the trivial solution. The vectors are linearly
independent.

3. Use the method of Example 3 (or the box following the example). By comparing entries of the
vectors, one sees that the second vector is —2 times the first vector. Thus, the two vectors are linearly
dependent.

-3 be 3
ma c
o | MY

-1
4. From the first entries in the vectors, it seems that the second vector of the pair { 3},{

times the first vector. But there is a sign problem with the second entries. So neither of the vectors is
a multiple of the other. The vectors are linearly independent.

5. Use the method of Example 2. Row reduce the augmented matrix for Ax = 0:
0 -3 9 0 1 4 2 0 1 4 2 0 1 -4 2 0] (O -4 =2
2 1 -7 0 2 1 -7 0 0 9 3 0 0 9 -3 0 0o © -3
1 4 =5 0/ |-1 4 =500 0o -7 0 |0 0o -7 0|0 o)
1 4 2 0 0 -3 9 0 0 -3 9 0 0 0 8 O 0 0 O
There are no free variables. The equation Ax = 0 has only the trivial solution and so the columns of A
are linearly independent.

S O O O

6. Use the method of Example 2. Row reduce the augmented matrix for Ax = 0:

4 3 0 11 =5 0]t 1 =501 1 -5 0D 1 -5 0
0 -1 50/ |0 -1 5010 -1 500 -1 50 |0& 50

1 -5 0| |4 =3 00/ |0o 1 =20 0ollo o -150l0o o &» o
2 1 -10 0| |2 1 -10 0|0 -1 o0 0| |0 0O -5 0/ ]0 0 0 0
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10.
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There are no free variables. The equation Ax = 0 has only the trivial solution and so the columns of A
are linearly independent.

. Study the equation Ax = 0. Some people may start with the method of Example 2:

1 4 -3 0 0] 1 4 -3 0 0] [@M4 -3 0 0
2 -7 5 1 0|~/0 1 -1 1 0|~|0 ©-1 1 0
-4 -5 7 5 0 0 11 -5 5 0 00 & -6 0
But this is a waste of time. There are only 3 rows, so there are at most three pivot positions. Hence, at

least one of the four variables must be free. So the equation Ax = 0 has a nontrivial solution and the
columns of A are linearly dependent.

. Same situation as with Exercise 7. The (unnecessary) row operations are

1 2 3 2 o] 1 =2 3 20 [@®-=2 320
2 4 -6 2 0/~[0 0 0 6 0|~|j0 O -1 3 0
0 1 -1 3 0/|0 1 -1 3 0[]0 0 0® O

Again, because there are at most three pivot positions yet there are four variables, the equation
Ax = 0 has a nontrivial solution and the columns of A are linearly dependent.

a. The vector v; is in Span{v,, v,} if and only if the equation x,v, + x,v, = v3 has a solution. To find
out, row reduce [v; v, vs], considered as an augmented matrix:

1 3 51 [ -3 5
3 9 —7|~l0 0
2 =6 h| |0 0 h-10

At this point, the equation 0 = 8 shows that the original vector equation has no solution. So v; is
in Span{v,, v,} for no value of h.

b. For {v,, v, v3} to be linearly independent, the equation x;v; + x,v, + x3v3 = 0 must have only the
trivial solution. Row reduce the augmented matrix [v; v, v; 0]

1 3 5 0] 1 -3 5 o0ol[@®-350
3 9 -7 0(~|0 0 8 0[~]0 0® 0
2 -6 h O] |0 0 h-10 Ol [0 0 0 O

For every value of A, x; is a free variable, and so the homogeneous equation has a nontrivial
solution. Thus {vy, v,, v3} is a linearly dependent set for all 4.

a. The vector v is in Span{v,, v,} if and only if the equation x,v, + x,v, = v; has a solution. To find
out, row reduce [v; v, vs], considered as an augmented matrix:

1 -3 2] [ -3 2
3 9 5/1~j0 0o O
-5 15 k| |0 0 h+10

At this point, the equation O = 1 shows that the original vector equation has no solution. So v; is
in Span{vy, v,} for no value of h.
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b. For {v,, v, v3} to be linearly independent, the equation x;v; + x,V, + x3v; = 0 must have only the
trivial solution. Row reduce the augmented matrix [v; v, v; 0]

1 3 2 0] [1 -3 2 0 3 2 0
3 9 -5 0|~[0 0 1 ol~jo0 0o (D o
-5 15 h 0| |0 O h+10 O/ |0 O O O

For every value of A, x; is a free variable, and so the homogeneous equation has a nontrivial
solution. Thus {vy, v,, v3} is a linearly dependent set for all 4.

11. To study the linear dependence of three vectors, say v;, v,, v3, row reduce the augmented matrix
[vi v2 v3 O]

2 4 =2 0] 2 4 =2 0 4 -2 0
2 -6 2 0|~|0 =2 00~0@ 0 0
4 7 h 0| |0 =1 h+4 0| |0 0 h+4 O

The equation x;v; + x,V, + x3v3 = 0 has a nontrivial solution if and only if 4 + 4 = 0 (which
corresponds to x; being a free variable). Thus, the vectors are linearly dependent if and only if 7 = 4.

12. To study the linear dependence of three vectors, say v, v,, v3, row reduce the augmented matrix
[vi v2 v3 O]

3 6 9 0] [@® -6 9 0

6 4 h 0|~[0 (9D 0 0

1 -3 3 0 0O 0O h+18 O
The equation x,v; + x,V, + x3v3 = 0 has a nontrivial solution if and only if /2 + 18 = 0 (which

corresponds to x; being a free variable). Thus, the vectors are linearly dependent if and only if 7 =—
18.

13. To study the linear dependence of three vectors, say vy, v, V3, row reduce the augmented matrix
[vi v2 v3 Of

1 2 3 0l [-=2 3 o0
5 9 h 0|~|0 @ h-15 0
3 6 -9 0/ |0 0 0 0

The equation x,v; + x,v, + x3v3 = 0 has a free variable and hence a nontrivial solution no matter what
the value of /. So the vectors are linearly dependent for all values of 4.

14. To study the linear dependence of three vectors, say vy, v, V3, row reduce the augmented matrix
[vi v2 v3 O

1 -3 2 0 1 3 2 0 -3 2 0

2 7 1 0ol-lo 1 5 o|-]o @ 5 o

-4 6 h O 0 -6 h+8 O 0 O h+38 O
The equation x;v; + x,V, + x3v3 = 0 has a nontrivial solution if and only if 4 + 38 = 0 (which

corresponds to x; being a free variable). Thus, the vectors are linearly dependent if and only
if h=-38.
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16.
17.
18.

19.

20.
21.

22

23.

26.

27.

28.
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The set is linearly dependent, by Theorem 8, because there are four vectors in the set but only two
entries in each vector.

The set is linearly dependent because the second vector is —3/2 times the first vector.
The set is linearly dependent, by Theorem 9, because the list of vectors contains a zero vector.

The set is linearly dependent, by Theorem 8, because there are four vectors in the set but only two
entries in each vector.

The set is linearly independent because neither vector is a multiple of the other vector. [Two of the
entries in the first vector are — 4 times the corresponding entry in the second vector. But this multiple
does not work for the third entries.]

The set is linearly dependent, by Theorem 9, because the list of vectors contains a zero vector.
a. False. A homogeneous system always has the trivial solution. See the box before Example 2.
b. False. See the warning after Theorem 7.
c. True. See Fig. 3, after Theorem 8.
d. True. See the remark following Example 4.
a. True. See Theorem 7.
b. True. See Example 4.
1 2
c. False. For instance, the set consisting of | =2 | and | —4 | is linearly dependent. See the warning
3 6
after Theorem 8.
d. False. See Example 3(a).
m* 0 m
] * *
B * |0 m||0 O 0 m 0 0
, , 2410 m % 25. and
0 0][0 O][O0 O 0 0 0 0
0 0 m
0 0 0 0

] * *

0O m * , , . .

0 0 . The columns must be linearly independent, by Theorem 7, because the first column is

0 0 O

not zero, the second column is not a multiple of the first, and the third column is not a linear
combination of the preceding two columns (because a; is not in Span{a,, a,}).

All four columns of the 6x4 matrix A must be pivot columns. Otherwise, the equation Ax = 0 would
have a free variable, in which case the columns of A would be linearly dependent.

If the columns of a 4x6 matrix A span R*, then A has a pivot in each row, by Theorem 4. Since each
pivot position is in a different column, A has four pivot columns.

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



54

29.

30.

31.

32.

33.
34.
35.
36.

37.

38.

39.

40.
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A: any 3x2 matrix with one column a multiple of the other.

B: any 3x2 matrix with two nonzero columns such that neither column is a multiple of the other. In
this case the columns are linearly independent and so the equation Bx = 0 has only the trivial
solution.

a. n

b. The columns of A are linearly independent if and only if the equation Ax = 0 has only the trivial
solution. This happens if and only if Ax = 0 has no free variables, which in turn happens if and
only if every variable is a basic variable, that is, if and only if every column of A is a pivot
column.

Think of A =[a, a, a;]. The text points out that a; = a; + a,. Rewrite thisas a; +a,—a;=0. Asa
matrix equation, Ax =0 forx = (1, 1, -1).

Think of A =[a; a, a;]. The text points out that a; — 3a, = a;. Rewrite this as a; — 3a, —a; = 0. As
a matrix equation, Ax = 0 for x = (1, -3, -1).

True, by Theorem 7. (The Study Guide adds another justification.)
False. The vector v, could be the zero vector.
True, by Theorem 9.

False. Counterexample: Take v, and v, to be multiples of one vector. Take v; to be not a multiple of
that vector. For example,

1 2 1
v,=|1[,v,=[2]|,v;=|0
1 2 0

True. A linear dependence relation among vy, v,, v; may be extended to a linear dependence relation
among vy, v, V3, V4 by placing a zero weight on v,.

True. If the equation x;v; + x,V, + x3v3 = 0 had a nontrivial solution (with at least one of xy, x,, x3
nonzero), then so would the equation x;v; + x,v, + x3v3 + 0-v, = 0. But that cannot happen because

{vi, V5, v3, v4} is linearly independent. So {vy, v,, v3} must be linearly independent. This problem can
also be solved using Exercise 37, if you know that the statement there is true.

If for all b the equation Ax = b has at most one solution, then take b = 0, and conclude that the
equation Ax = 0 has at most one solution. Then the trivial solution is the only solution, and so the
columns of A are linearly independent.

An mxn matrix with n pivot columns has a pivot in each column. So the equation Ax = b has no free
variables. If there is a solution, it must be unique.
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3 -4 10 7 4| [3 —4 10 7 -4
-5 -3 -7 -1l 15| |0 -29/3 29/3  2/3 25/3
41. [M] A= -
3.5 2 1| |0 25/3 -25/3 -22/3 19/3
{ 8§ -7 23 4 15| [0 11/3 -11/3 -44/3 77/3
3 —4 10 7 —4 —4 10 7 —4
0 -29/3 29/3 2/3  25/3| |0 29/3 2/3  25/3
“lo 0 0 -196/29 392/29| |0 0 0 392/29
0 0 0 -418/29 836/29| |0 0 0 0 0
347
, -5 -3 -1l , ,
Use the pivot columns of A to form B = 3 5| Other choices are possible.
§ -7 4
(12 10 -6 8 4 -14] @2 10 -6 8 4 -14]
7 -6 4 -5 T 9 0 €1/9 1/2 -1/3 -14/3 5/6
2.M |9 9 9 9 9 -18/~—~[0 0 & 2 -6 -2
4 3 -1 0 -8 1 o 0 0 0 0
|8 7 -5 6 1 -11 0o 0 0 0 0 0 |

Use the pivot columns of Atoform B=| 9 9 -9  9|. Other choices are possible.

43. [M] Make v any one of the columns of A that is not in B and row reduce the augmented matrix
[B v]. The calculations will show that the equation Bx = v is consistent, which means that v is a
linear combination of the columns of B. Thus, each column of A that is not a column of B is in the set
spanned by the columns of B.

44. [M] Calculations made as for Exercise 43 will show that each column of A that is not a column of B
is in the set spanned by the columns of B. Reason: The original matrix A has only four pivot
columns. If one or more columns of A are removed, the resulting matrix will have at most four pivot
columns. (Use exactly the same row operations on the new matrix that were used to reduce A to
echelon form.) If v is a column of A that is not in B, then row reduction of the augmented matrix
[B v] will display at most four pivot columns. Since B itself was constructed to have four pivot
columns, adjoining v cannot produce a fifth pivot column. Thus the first four columns of [B v] are
the pivot columns. This implies that the equation Bx = v has a solution.

Note: At the end of Section 1.7, the Study Guide has another note to students about “Mastering Linear
Algebra Concepts.” The note describes how to organize a review sheet that will help students form a
mental image of linear independence. The note also lists typical misuses of terminology, in which an
adjective is applied to an inappropriate noun. (This is a major problem for my students.) I require my
students to prepare a review sheet as described in the Study Guide, and I try to make helpful comments on
their sheets. I am convinced, through personal observation and student surveys, that the students who
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prepare many of these review sheets consistently perform better than other students. Hopefully, these
students will remember important concepts for some time beyond the final exam.

1.8 SOLUTIONS

Notes: The key exercises are 17-20, 25 and 31. Exercise 20 is worth assigning even if you normally
assign only odd exercises. Exercise 25 (and 26) can be used to make a few comments about computer
graphics, even if you do not plan to cover Section 2.6. For Exercise 31, the Study Guide encourages
students not to look at the proof before trying hard to construct it. Then the Guide explains how to create
the proof.

Exercises 19 and 20 provide a natural segue into Section 1.9. I arrange to discuss the homework on
these exercises when I am ready to begin Section 1.9. The definition of the standard matrix in Section 1.9
follows naturally from the homework, and so I’ve covered the first page of Section 1.9 before students
realize we are working on new material.

The text does not provide much practice determining whether a transformation is linear, because the
time needed to develop this skill would have to be taken away from some other topic. If you want your
students to be able to do this, you may need to supplement Exercises 23, 24, 32 and 33.

If you skip the concepts of one-to-one and “onto” in Section 1.9, you can use the result of Exercise 31
to show that the coordinate mapping from a vector space onto R" (in Section 4.4) preserves linear
independence and dependence of sets of vectors. (See Example 6 in Section 4.4.)

S B MR P A H

/30 O] 3 1 /30 0lfa a/3
2. Tw)=Au=| 0 1/3 0| 6|=| 2|, Twm=| 0 13 0| b|=|b/3
0 0 1/3]|-9 -3 0 0 13| c c/3
1 0 -3 =2 1 0 -3 2 1 0 -3 =2
3. [A b]=|-3 1 6 3|~|0 1 3 3|~|0 1 -3 3
2 2 -1 -1 o 2 5 3 0O 0 -1 3
1 0 -3 =2 1 0 0 7 7]
~0 1 -3 3|~/0 1 0 6| x=| 6|, unique solution
0o 0 1 3 0 0 1 |
-2 3 -6 1 2 3 -6 1 -2 3 -6
4. [A b]=|0 1 -3 -4 {0 1 -3 —4|~|0 1 -3 -4
2 -5 6 =5 6 -1 0 7,10 0 -3 3
1 2 3 -6 1 0 0 -17 -17
~10 1 -3 4|~/0 1 0 -7| x=| =7/, unique solution
0O 0 1 -1 0 0 1 -l -1
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R P e R

. 3 o . .
Note that a solution is not [ e To avoid this common error, write the equations:

x, =3-3x,
) + 3x, = 3 o
; and solve for the basic variables: { x, =1—2x;
@ + 2x =1 .
x; is free
X 3-3x 3 -3
The general solutionis X=| x, |=|1-2x; |=|1 |+ x;| =2 |. For a particular solution, one might
X3 X 0 1
3
choose x3;=0and x=|1].
0
1 -3 2 1 3 2 1] 1 -3 2 1] o 8 10
3 8 8 0 1 2 310 12 3 10@® 2 3|_.
6. [A b]= ~ ~ ~ Write the
o 1 2 3 0 1 2 3 0 0 0 0] |0 O O O
I 0 8 10 0 3 6 9 0 0 0 0] [0 O 0 O
equations:
x, =10—8x;,
) + 8x; = 10 L
; and solve for the basic variables: {x, =3—2x;
@ + 2x, = 3 .
x; is free
X 10—-8x;, 10 -8
The general solutionis Xx=| x, |=| 3—2x; |=| 3 |+x;| =2 |. For a particular solution, one might
X, X, 0 1
10
choose x;=0and x=| 3
0

7. The value of a is 5. The domain of T is R’, because a 6x5 matrix has 5 columns and for Ax to be
defined, x must be in R’. The value of 4 is 6. The codomain of 7T is Rﬁ, because Ax is a linear
combination of the columns of A, and each column of A is in R®.

8. The matrix A must have 7 rows and 5 columns. For the domain of T to be R’, A must have five
columns so that Ax is defined for x in R’. For the codomain of 7 to be R’, the columns of A must
have seven entries (in which case A must have seven rows), because Ax is a linear combination of the
columns of A.

1 3 5 -5 0 1 3 5 -5 0 1 3 5 -5 0
9. Solve Ax=0: | 0 1 -3 5 0(~|0 1 -3 5 0(~|0 1 3 5 0
2 4 4 4 0 0 2 -6 6 0 o 0o 0 4 0
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_ =4
@ 0 -4 0 0 @ 3 4x3 -0 X X3
Xy =3x,
~0 M -3 0 0 (x) - 3x = 0, _
00 0 @ 0 _ 0 x; 1s free
- x, =0
X 4x;, 4]
Xy 3x; 3
X = = = _x%
X3 X3 1
X, 0 0]
3 2 10 -6 O 1 0 2 4 0 1 0 2 4 0
1 0 2 -4 0 3 210 -6 0/ (0 2 4 6 O
10. Solve Ax = 0. ~ ~
0o 1 2 o (o 1 2 3 0|0 1 2 3 O
1 4 10 8 0 1 4 10 0] |0 4 8 12 0
1 0 2 -4 0ol [o 2 -4 o0
0 1 2 3 0o/ |0 @ 2 3 0
0 2 4 6 0/ ]0 0 0O O0 O
0 4 8 12 0, |0 0 O O O
X =—2x; +4x, —2x;, 4x, -2 4
@ + 2x; - 4x, = 0 X, =—2x; —3x, —2x, N =3x, -2 N -3
X= =X X,
@ + 2x + 3x, =0 xy is free X 0 1l Mo
x, 1s free 0 Xy 0 1

11. Is the system represented by [A b] consistent? Yes, as the following calculation shows.
1 3 5 =5 1] 1 -3 5 =5 1] [O-3 5 -5 -1
0 1 =3 5 1|~/0 1 =3 5 1|~jo0 @O -3 5 1
2 4 4 4 0/ |0 2 -6 6 20 0 0EH O

The system is consistent, so b is in the range of the transformation X — AX.

12. Is the system represented by [A b] consistent?

3 2 10 6 1] [1 0 2 -4 311 0 2 -4 3
10 4 3/ (3 210 6 -1| |0 2 4 6 -10
o 1 2 3 -1/ ]o 1 2 3 <1/ ]jo 12 3 -1
1 4 10 8 4| |1 4 10 8 4| |0 4 8 12 1
102 =4 311 0 2 -4 3
012 3 —1llo 1 2 3 4
“lo 2 4 ~10] o 0 0o o0 -8
0 4 8 12 1/]lo o o o 5
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The system is inconsistent, so b is not in the range of the transformation x > AX.

13. 14.

X2

Xz

u

/ T(v)
X4 \

T(w

T(u)

T(v) X

A reflection through the origin. A scaling by the factor 2.

The transformation in Exercise 13 may also be described as a rotation of & radians about the origin or
a rotation of —7 radians about the origin.

15. 16.

X2

AN

X2

Tv) |

:
:
X1 oL
N _.-7"u
ok
1 L it 11 L 1 1 L X'\

. T(v)
A reflection through the line x, = x;. A scaling by a factor of 2 and a projection onto the x,
axis.

17. T(Qu) = 2T(w) = 2 H_| 8 T(3)—3T()—3_1—_3 d
. u) = u) = U712 b V) = V) = 3_9,:&1n

TQu + 3v) = 2T(w) + 3T(v) = { 8} {‘3} _{ 5}
B REINEIN

18. Draw a line through w parallel to v, and draw a line through w parallel to u. See the left part of the
figure below. From this, estimate that w = u + 2v. Since T is linear, 7(w) = T(u) + 27(v). Locate T(u)
and 27(v) as in the right part of the figure and form the associated parallelogram to locate T(w).

X X, 2T(v)

2
4 /

2v v

T(w)

T(u)
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19.

20.

21.

22.

23.

24.

All we know are the images of e, and e, and the fact that 7 is linear. The key idea is to write

5 1 0
X = { 3} = 5{0} - 3[ J =5e, —3e,. Then, from the linearity of 7, write

T(x) = T(Se, - 3e3) = 5T(e,) — 3T(e,) = 5y, — 3y, = 5{ ﬂ _{_ﬂ ) [ﬂ

. . Xy X1 1 0
To find the image of , observe that x = =x| _|+x = x,e, + x,e, . Then

X, X, 0

2 -1
T(x) = T(xe; + x2€5) = x11(e;) + x,1(ey) = X |:5:| + X, |: :| :|:

2x —x,
6

S5x, +6x,

Use the basic definition of Ax to construct A. Write

Tx) N [ ] X, -3 7 A -3 7
X) =XV, +X,V,=|V, V = X, A=
1V1 T4 V2 1 V2 X 5 o 5 o

a. True. Functions from R" to R" are defined before Fig. 2. A linear transformation is a function
with certain properties.

b. False. The domain is R. See the paragraph before Example 1.

c. False. The range is the set of all linear combinations of the columns of A. See the paragraph
before Example 1.

d. False. See the paragraph after the definition of a linear transformation.
e. True. See the paragraph following the box that contains equation (4).

a. True. See the subsection on Matrix Transformations.
b. True. See the subsection on Linear Transformations.

c. False. The question is an existence question. See the remark about Example 1(d), following the
solution of Example 1.

d. True. See the discussion following the definition of a linear transformation.
e. True. T(0) = 0 See the box after the definition of a linear transformation.

a. When b =0, f (x) = mx. In this case, for all x,y in R and all scalars ¢ and d,
fex + dy) =m(cx + dy) = mex + mdy = c(mx) + d(my) = c:f (x) + d-f ()
This shows that fis linear.
b. When f (x) = mx + b, with b nonzero, f{0) = m(0) = b = b # 0. This shows that fis not linear,
because every linear transformation maps the zero vector in its domain into the zero vector in the
codomain. (In this case, both zero vectors are just the number 0.) Another argument, for instance,

would be to calculate f(2x) = m(2x) + b and 2f (x) = 2mx + 2b. If b is nonzero, then f (2x) is not
equal to 2f (x) and so fis not a linear transformation.

¢. In calculus, fis called a “linear function” because the graph of fis a line.

Let 7(x) = Ax + b for x in R". If b is not zero, 7(0) = A0 + b=b # 0. Actually, 7 fails both
properties

of a linear transformation. For instance, 7(2x) = A(2x) + b = 2Ax + b, which is not the same as 27(x)
=2(Ax + b) = 2Ax + 2b. Also,

Tx+y)=Ax+y)+b=Ax+Ay+b
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which is not the same as
Tx)+ T(y)=Ax+b+Ay+b

Any point x on the line through p in the direction of v satisfies the parametric equation
X = p + tv for some value of ¢. By linearity, the image 7(x) satisfies the parametric equation
Tx)=T +tv)=T(p) + T(v)
(*)
If T(v) =0, then 7(x) = T(p) for all values of #, and the image of the original line is just a single
point. Otherwise, (*) is the parametric equation of a line through 7(p) in the direction of 7(v).

a. From the figure following Exercise 22 in Section 1.5, the line through p and q is in the direction
of q — p, and so the equation of the lineisx=p+#H{q-p)=p+tq—-tp=(1-9)p +1q.
b. Consider x = (1 — #)p + #q for ¢ such that O < r < 1. Then, by linearity of 7,
Ix)=T((1-Np+1q) =1 -0T(p)+1T(q) 0<r<1
()
If 7(p) and T(q) are distinct, then (*) is the equation for the line segment between 7(p) and 7(q),
as shown in part (a) Otherwise, the set of images is just the single point 7(p), because

(1 -9T(p) + tT(q) =(1 - HT(p) + T(p) = T(p)

Any point x on the plane P satisfies the parametric equation X = su + #v for some values of s and ¢.
By linearity, the image 7(x) satisfies the parametric equation

T(x) = sT(u) + tT(v) (s, tin R)
The set of images is just Span{7(u), 7(v)}. If T(u) and T(v) are linearly independent, Span{7(u),
T(v)} is a plane through T(u), 7(v), and 0. If 7(u) and 7(v) are linearly dependent and not both zero,
then Span{7(u), 7(v)} is a line through 0. If 7(u) = T(v) = 0, then Span{7(u), 7(v)} is {0}.

Consider a point X in the parallelogram determined by u and v, sayx=au + bvfor0<a <1,
0 < b < 1. By linearity of 7, the image of x is

T(x) =T(au+ bv) =aT(u) + bT(v),for0<a<1,0<b< 1
This image point lies in the parallelogram determined by 7(u) and 7(v). Special “degenerate” cases
arise when 7(u) and 7(v) are linearly dependent. If one of the images is not zero, then the
“parallelogram” is actually the line segment from 0 to T(u) + 7(v). If both T(u) and 7(v) are zero,
then the parallelogram is just {0}. Another possibility is that even u and v are linearly dependent, in
which case the original parallelogram is degenerate (either a line segment or the zero vector). In this
case, the set of images must be degenerate, too.
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29.

30.

31.

32.

33.

34.

3s.

36.

Tiutv) u+v T(cu) cu
u lﬂ T(u) u
Tiv) v
Given any x in R", there are constants cy, ..., ¢, such that X = ¢,v; + - ¢,»,, because vy, ..., v, span

R". Then, from property (5) of a linear transformation,
I(x)=ciT(v) + =+ ¢, T(v)) =ci0+ +¢,0=0

(The Study Guide has a more detailed discussion of the proof.) Suppose that {v;, v,, v3} is linearly
dependent. Then there exist scalars ¢y, ¢,, 3, not all zero, such that

CiVi+ v +c3v3 =0
Then T(c v, + ¢V, + ¢3v3) = T(0) = 0. Since T is linear,
a1 T(vy) + c,T(vy) + c3T(v3) =0
Since not all the weights are zero, {T(v,), T(v,), T(v;)} is a linearly dependent set.

Take any vector (x;, x,) with x, # 0, and use a negative scalar. For instance, 7(0, 1) = (-2, —4), but
I(-1-0, 1)) =70, -1) = (-2, 4) # (-1)'T(0, 1).

One possibility is to show that 7" does not map the zero vector into the zero vector, something that
every linear transformation does do. 7(0, 0) = (0, -3, 0).

Take u and v in R? and let ¢ and d be scalars. Then

cu + dv = (cuy + dvy, cuy + dv,, cuz + dvs). The transformation 7 is linear because

T(cu + dv) = (cuy + dvy, cuy + dvo, — (cusz + dvs)) = (cuy + dvy, cuy + dvy, cus— dvs)
= (cuy, cuy, —cu3) + (dvy, dvy, —dvs) = c(uy, uy, —u3) + d(vy, va, —v3)
=cT(u) + dT(v)

Take u and v in R® and let ¢ and d be scalars. Then
cu + dv = (cuy + dvy, cuy + dvs,, cus + dvs). The transformation T is linear because
T(cu + dv) = (cu; + dvy, 0, cus + dvs) = (cuy, 0, cuz) + (dvy, 0, dv;)

=c(uy, 0, u3) + d(vy, 0, v3)

=cT(u) + dT(v)

Suppose that {u, v} is a linearly independent set in R" and yet T(u) and T(v) are linearly dependent.
Then there exist weights ¢, ¢,, not both zero, such that ¢;7(u) + ¢,7(v) = 0 . Because 7 is linear,
T(ciu + ¢c,v) = 0. That is, the vector X = ¢c;u + ¢,V satisfies 7(x) = 0. Furthermore, x cannot be the
zero vector, since that would mean that a nontrivial linear combination of u and v is zero, which is
impossible because u and v are linearly independent. Thus, the equation 7(x) = 0 has a nontrivial
solution.
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2 3 5 -5 0 0O 1 0 O X =—Xx; -1
-7 17 0 0 0 1 0 O =— -1
37. [M] 00 A T
34 1 3 0] |00 0@ of |xisfree 1
-9 3 -6 4 0 0O 0 00 O x, =0 0
(3 4 -7 0 0] [0 0 1 0] [x=-x -1
5 -8 7 4 0 0 0O 1 0 =— -1
38. [M] LR AT xey,
6 -8 6 4 0 0 0 @ 1 0 Xy ==X, -1
9 -7 =2 0 0 0 0 0 0 O x, is free 1
2 3 5 5 81 [@MoO0 1 0 1
77 0 0 7110 @D 1 0 2 o ,
39. [M] ~ ,yes, b is in the range of the transformation,
-3 4 1 3 5 0 0 O @ 0
-9 3 6 -4 3 0O 0 0 0 O
because the augmented matrix shows a consistent system. In fact,
X =1-x 1
L =2-x o 2
the general solution is ) ; when x; = 0 a solution is x= .
X, is free 0
x, =0 0
3 4 -7 0 4] Do o0 1 1
5 8 7 4 —4 oo 1 2 . .
40. [M] ~ , yes, b is in the range of the transformation,
6 -8 4 4l 1o o1 1

9 -7 2 0 7 0 00 0 O

because the augmented matrix shows a consistent system. In fact,

X =1-x 1
. =2y . 2
the general solution is ; when x4 = 0 a solution is x= .
X, =1-x, 1
x4 is free 0

Notes: At the end of Section 1.8, the Study Guide provides a list of equations, figures, examples, and
connections with concepts that will strengthen a student’s understanding of linear transformations. I
encourage my students to continue the construction of review sheets similar to those for “span” and
“linear independence,” but I refrain from collecting these sheets. At some point the students have to
assume the responsibility for mastering this material.

If your students are using MATLAB or another matrix program, you might insert the definition of
matrix multiplication after this section, and then assign a project that uses random matrices to explore
properties of matrix multiplication. See Exercises 34-36 in Section 2.1. Meanwhile, in class you can
continue with your plans for finishing Chapter 1. When you get to Section 2.1, you won’t have much to
do. The Study Guide’s MATLAB note for Section 2.1 contains the matrix notation students will need for
a project on matrix multiplication. The appendices in the Study Guide have the corresponding material for
Mathematica, Maple, and the TI-83+/84+/89 calculators.
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1.9 SOLUTIONS

Notes: This section is optional if you plan to treat linear transformations only lightly, but many
instructors will want to cover at least Theorem 10 and a few geometric examples. Exercises 15 and 16
illustrate a fast way to solve Exercises 17-22 without explicitly computing the images of the standard
basis.

The purpose of introducing one-fo-one and onto is to prepare for the term isomorphism (in Section
4.4) and to acquaint math majors with these terms. Mastery of these concepts would require a substantial
digression, and some instructors prefer to omit these topics (and Exercises 25—40). In this case, you can
use the result of Exercise 31 in Section 1.8 to show that the coordinate mapping from a vector space onto
R" (in Section 4.4) preserves linear independence and dependence of sets of vectors. (See Example 6 in
Section 4.4.) The notions of one-to-one and onto appear in the Invertible Matrix Theorem (Section 2.3),
but can be omitted there if desired

Exercises 25-28 and 31-36 offer fairly easy writing practice. Exercises 31, 32, and 35 provide
important links to earlier material.

=5
2
0
0

1. A=[T(e) T(er)]=

—_ W = W

2. A=[T(e) T(e,) T b8
A =[T(e)) T(ey) T(e3)]= 4 9 _3

1 1 0
3. T(e;)) =e; —3e, = [_3} ,T(e))=e,, A= L }

2 1 2
4. T(e1)=e1, T(e2)=e2+2e1= |:1:|,A=|: :|

0 1

0 1
5. T(e))=ey,T(e;)=—e,.A=[e, -—e]= | 0

0 1
6. T(el) =€y, T(eg) =—€;. A= [62 —el] = 1 0

7. Follow what happens to e, and e,. Since e, is on the unit
circle in the plane, it rotates through —37/4 radians into a

point on the unit circle that lies in the third quadrant and
on the line x, =x, (thatis, y=x in more familiar notation).

The point (—1,~1) is on the ine x, = x,, but its distance
from the origin is 2. So the rotational image of e, is
(—1/\/5 , “1A2 ) . Then this image reflects in the horizontal
axis to (—1/\/5 AR2 ) . Similarly, e, rotates into a point on

the unit circle that lies in the second quadrant and on the
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11.

12.

13.

14.
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line x, =—x,, namely, (1 /\/E ,—1 /\/E ) . Then this image reflects in the horizontal axis to

(1 /\/5 ,1 /\/5 ) . When the two calculations described above are written in vertical vector notation, the
transformation’s standard matrix [7(e;) 7(e,)] is easily seen:

. _{—1/\/5}%{—1/\5} . _{ 1/\/516{1/\/5} A{—l/\/i 1/@}
M ESYNG TN R YN BTN R TN TN

. The horizontal shear maps e, into e;, and then the reflection in the line x, = —x; maps e, into —e,. (See

Table 1.) The horizontal shear maps e, into e, into e, + 2e,. To find the image of e, + 2e; when it is
reflected in the line x, = —x, use the fact that such a reflection is a linear transformation. So, the
image of e, + 2e, is the same linear combination of the images of e, and e, namely,

—e; + 2(—e,) = — e; — 2e,. To summarize,

0 -1
e, —>e ——e, and e, > e, +2¢, > —¢, —2e,, SO A:{ | 2}

-1
. e, —>e —>—e, and e, > —e, > —€,, SO A:{

-1 0

0 -1
e, >e —e,and e, >—e, >—¢, so A=[e, —e1]={1 0}

The transformation 7 described maps e, — e, — —e, and maps e, — —e, — —e,. A rotation through

7 radians also maps e, into —e; and maps e, into —e,. Since a linear transformation is completely
determined by what it does to the columns of the identity matrix, the rotation transformation has the

: 2
same effect as T on every vector in R".

The transformation 7 in Exercise 10 maps e, — e, — e, and maps e, — —e, — —e,. A rotation about

the origin through 77 /2 radians also maps e, into e, and maps e, into —,. Since a linear
transformation is completely determined by what it does to the columns of the identity matrix, the

rotation transformation has the same effect as 7 on every vector in R”.

Since (2, 1)=2 e+ e,, the image of (2, 1) under T'is 27(e;) + T(e;), by linearity of 7. On the figure in
the exercise, locate 27(e;) and use it with 7(e,) to form the parallelogram shown below.

Xz

T(2,1)
2T(eq)e—__ .

e ' T(e)
Tiep) /’
.‘\ }

‘ 1

Since T(x)=Ax=[a, a,|x=xa, +x,a, =a, —2a,, when x = (1, -2), the image of x is located by
forming the parallelogram shown below.
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15.

16.

17.

18.

19.

20.

Kz

Ti1.-2)

N

_2320

1

a
(2 -4 0 x| [2x-4x,
By inspection, |1 0 —1||x, |=| x—x;
10 -1 3|x —X, +3x;
(3 =2 3x —2x,
X
By inspection, | 1 4 { 1} =| x; +4x,
X
10 1 g X,
To express 7(x) as Ax , write 7(x) and x as column vectors, and then fill in the entries in A by

inspection, as done in Exercises 15 and 16. Note that since 7(x) and x have four entries, A must be a
4x4 matrix.

X +2x, X I 2 0 0} x

0 Xy 0 0 0 Oflx
2x, +x, X3 0 2 0 1x
X, — X, X, 0 1 0 -1|x

As in Exercise 17, write T(x) and x as column vectors. Since X has 2 entries, A has 2 columns. Since
T(x) has 4 entries, A has 4 rows.

X, +4x, 1 4
0 | 4 {xl}_ 0 0 {xl}
x, —3x, X, 1 3 x
X 1 0

Since T(x) has 2 entries, A has 2 rows. Since X has 3 entries, A has 3 columns.

X X

{xl —5x, + 4x3} { } { 1 -5 4}
= A X, |= X,
3 3

Since 7(x) has 1 entry, A has 1 row. Since x has 4 entries, A has 4 columns.

X X

X X
[Bx, +4x; —2x,]=[ A ] =3 0 4 -=2]

X3 X3

Xy Xy
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X +x, 1 1 3
T(x) = = A . To solve T(x) = , row reduce the augmented
4x, +5x, |4 51| x, 8

matrix: {1 ! 3} F 3} { 0 7} { 7]
4 5 8] |0 —4] 10 @O —4 4
2x,—x, | 1 [0
I(x)=|-3x+x, |= { l]{xl}.To solve T(x) = | —1 |, row reduce the
X —3x, | 3 | —4
augmented matrix:
2 -1 0] [2 -1 o] 2 -1t 0] ([2 -1 0] [2 0 2 0 1
-3 1 -1{~{0 -1/2 -1|~|0 1 2(~|0 1 2(~l0 1 2|~|0 D 2|,
2 =3 4] [0 -2 -4 0o -2 4 0 0 0] |O O O 0 0 O

. True. See Theorem 10.

a

b. True. See Example 3.

c. False. See the paragraph before Table 1.
d

. False. See the definition of onto. Any function from R" to R" maps each vector onto another
vector.

®

False. See Example 5.

False. See Theorem 12.
. True. See Theorem 10.
True. See Theorem 10.

. False. See the definition of one-to-one. Any function from R" to R” maps a vector onto a single
(unique) vector.

e. False. See Table 3.

a6 Tw

A row interchange and a row replacement on the standard matrix A of the transformation 7 in
2 0 O

oM o0 -1
00 (3
00 0 0

the equation Ax = 0 has a nontrivial solution. By Theorem 11, the transformation 7 is not one-to-one.
Also, since A does not have a pivot in each row, the columns of A do not span R*. By Theorem 12, T
does not map R* onto R,

Exercise 17 produce . This matrix shows that A has only three pivot positions, so

The standard matrix A of the transformation 7 in Exercise 2 is 2x3. Its columns are linearly
dependent because A has more columns than rows. So 7 is not one-to-one, by Theorem 12. Also, A is

-2 3
row equivalent to E) @ 20} , which shows that the rows of A span R”. By Theorem 12, T maps

R’onto R
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27.

28.

29.

30.

31.

32.

33.

34.

- 4

® 6} . The columns of A

are linearly dependent because A has more columns than rows. So T is not one-to-one, by Theorem
12. Also, A has a pivot in each row, so the rows of A span R?. By Theorem 12, T maps R’ onto R*.

The standard matrix A of the transformation 7 in Exercise 19 is {

The standard matrix A of the transformation 7 in Exercise 14 has linearly independent columns,
because the figure in that exercise shows that a; and a, are not multiples. So 7T is one-to-one, by
Theorem 12. Also, A must have a pivot in each column because the equation Ax = 0 has no free

] *
variables. Thus, the echelon form of A is {0 } Since A has a pivot in each row, the columns of A
[ ]

span R”. So T’ maps R” onto R®. An alternate argument for the second part is to observe directly from
the figure in Exercise 14 that a; and a, span R>. This is more or less evident, based on experience
with grids such as those in Figure 8 and Exercise 7 of Section 1.3.

By Theorem 12, the columns of the standard matrix A must be linearly independent and hence the
equation Ax = 0 has no free variables. So each column of A must be a pivot column:

] * %
*

A~ . Note that 7 cannot be onto because of the shape of A.

0 m
0 O
0 0 0

By Theorem 12, the columns of the standard matrix A must span R’. By Theorem 4, the matrix must

have a pivot in each row. There are four possibilities for the echelon form:
O m * * |0 m * * /0 0 m *,/0 0 m *
0O 0O m * |0 0 O m{ O O O m |0 O O m

Note that T cannot be one-to-one because of the shape of A.

“T is one-to-one if and only if A has n pivot columns.” By Theorem 12(b), T is one-to-one if and only
if the columns of A are linearly independent. And from the statement in Exercise 30 in Section 1.7,
the columns of A are linearly independent if and only if A has n pivot columns.

The transformation 7 maps R" onto R" if and only if the columns of A span R", by Theorem 12. This
happens if and only if A has a pivot position in each row, by Theorem 4 in Section 1.4. Since A has m
rows, this happens if and only if A has m pivot columns. Thus, “7 maps R" onto R" if and only A has
m pivot columns.”

Define 7:R" — R"™ by T(x) = Bx for some mxn matrix B, and let A be the standard matrix for 7.

By definition, A = [T(e;) --- T(e,)], where ¢; is the jth column of /,. However, by matrix-vector
multiplication, 7(e;) = Be; = b;, the jth column of B. SoA=[b;, --- b,]=B.
Take u and v in R? and let ¢ and d be scalars. Then
T(S(cu + dv)) = T(c-S(u) + d-S(v)) because S is linear
=c-T(S(m)) + d-T(S(v)) because T is linear

This calculation shows that the mapping x — 7(S(x)) is linear. See equation (4) in Section 1.8.
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If 7:R" — R" maps R" onto R"™, then its standard matrix A has a pivot in each row, by Theorem
12 and by Theorem 4 in Section 1.4. So A must have at least as many columns as rows. That is, m <
n. When T is one-to-one, A must have a pivot in each column, by Theorem 12, so m > n.

The transformation 7 maps R" onfo R" if and only if for each y in R" there exists an x in R" such that
y = T(x).

-5 -6 @D o 1
o @
0
0

-1
. There is no pivot in the fourth column of

oo
O W A
&
oo

0

0
5 -12]7 o D -
32 7 -2 0 0 0

the standard matrix A, so the equation Ax = 0 has a nontrivial solution. By Theorem 11, the
transformation 7 is not one-to-one. (For a shorter argument, use the result of Exercise 31.)

7 5 9 9 0 0 O
5 6 4 -4 0@ o o L
[M] ~ee . Yes. There is a pivot in every column of the
4 & 0 7 00 @O
0 0

-6 6 6 5 0

standard matrix A, so the equation Ax = 0 has only the trivial solution. By Theorem 11, the trans-
formation 7 is one-to-one. (For a shorter argument, use the result of Exercise 31.)

4 7 3 7 5] @ 0 0 5 0]
6 -8 5 12 -8 o O o 1 0
M] |[-7 10 -8 -9 14|~---~| 0 0 (O -2 0].Thereis not a pivot in every row,
3 5 4 2 -6 0o 0o o o O
-5 6 -6 -7 3 0 0 0 0 O]

so the columns of the standard matrix do not span R’. By Theorem 12, the transformation T does not
map R’ onto R’.

9 43 5 6 -] [}
14 15 =7 -5 4 0
[M] |-8 -6 12 -5 —9|~--~|0
-5 6 -4 9 8 0
113 14 15 3 11] 0

columns of the standard matrix span R°. By Theorem 12, he transformation 7 maps R onto R’

. There is a pivot in every row, so the

1. a. If x; is the number of servings of Cheerios and x; is the number of servings of 100% Natural

Cereal, then x; and x, should satisfy

nutrients nutrients quantities
x| per serving |+ x, | per serving of |=| of nutrients

of Cheerios 100% Natural required
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That is,
110 130 295
4 3 9
X +x, =
20 18 48
2 5 8
110 130 295
. . o 4 3 x 9 .
b. The equivalent matrix equation is 0 18 { } = a8’ To solve this, row reduce the
2 5 8
augmented matrix for this equation.
110 130 295] [ 2 5 4
4 3 9 4 3 9
20 18 48| | 20 18 24
2 5 8] |110 130 110 130 295
1 25 41 [1 25 1 0 15
0 -7 -7 0 1 1 0 1 1
“lo -16 -16/ |0 0o o] o o o0
0 -145 -145] [0 O O 0O 0 O

The desired nutrients are provided by 1.5 servings of Cheerios together with 1 serving of 100%
Natural Cereal.
2. Set up nutrient vectors for one serving of Shredded Wheat (SW) and Kellogg's Crispix (Crp):
Nutrients: SW Crp

calories 160 110

protein 5 2.
fiber 6 1
fat 1 4
160 110

5 2 3
a. Let B=[SW Crp|= , u={]

Then Bu lists the amounts of calories, protein, carbohydrate, and fat in a mixture of three servings
of Shredded Wheat and two servings of Crispix.

b. [M] Let u; and u, be the number of servings of Shredded Wheat and Crispix, respectively. Can

120
u .
these numbers satisfy the equation B{ ! } = 5 46 ? To find out, row reduce the augmented
U, .
.64

matrix
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160 110 130] [1 4 641 [1 4 641 [1 4 64] [1 0 4
5 2 32000 o0 ol [0 46 276| |0 1 6| |0 1 6
6 .1 246| |0 —23 -138] |0 =23 -138| [0 0o 0| o 0 o0
1 4 64| |0 46 276| |0 0 ol o o ofl o o o

Since the system is consistent, it is possible for a mixture of the two creals to provide the desired
nutrients. The mixture is .4 servings of Shredded Wheat and .6 servings of Crispix.

a. [M] Let xy, x,, and x3 be the number of servings ofAnnies’s Mac and Cheese, broccoli, and
chicken, respectively, needed for the lunch. The values of xy, x,, and x; should satisfy

nutrients nutrients nutrients quantities
X per serving + x, | per serving |+ x; | per serving |=| of nutrients
of Mac and Cheese of broccoli of chicken required

From the given data,

270 51 70 400
x| 10 |+x,| 54 [+x]15|=| 30
2 5.2 0 10
To solve, row reduce the corresponding augmented matrix:
270 51 70 400 1 0 0 99
10 54 15 30|~..~|0 1 0 154
2 52 0 10 0O 0 1 .79
.99 servings of Mac and Cheese
x=|154|= servings of broccoli
74 servings of chicken

b. [M] Changing from Annie’s Mac and Cheese to Annie’s Whole Wheat Shells and White Cheddar
changes the vector equation to

260 51 70 400
Xl 9)+x|54 |+x|15|= 30
5 5.2 0 10
To solve, row reduce the corresponding augmented matrix:
260 51 70 400 1 0 0 1.09
9 54 15 30|~..~|0 1 0O .88
5 52 0 10 0 0 1 103
1.09 servings of Shells
x=| .88 |=| servings of broccoli
1.03 servings of chicken

Notice that the number of servings of broccoli has decreased as was desired.
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4. Here are the data, assembled from Table 1 and Exercise 4:

Mg of Nutrients/Unit

Nutrients
. soy SO Required
Nutrient il flour whey prot. (milligrams)
protein 36 51 13 80 33
carboh. 52 34 74 0 45
fat 0 7 1.1 34 3

calcium 1.26 .19 .8 18

a. Let xy, x,, x3, x4 represent the number of units of nonfat milk, soy flour, whey, and isolated soy

protein, respectively. These amounts must satisfy the following matrix equation

36 51 13 80| 33
52 34 74 0 ||* 45
0 7 11 34||% 3
126 .19 .8 18] X4 .8

36 51 13 80 33 1 0 0 0 .64
by |52 3% 74 0 45 {0 1 0 0 54
0 7 11 34 3 00 1 0 —09
126 .19 8 .18 .8 00 0 1 =21

The “solution” is x; = .64, x, = .54, x3 =—-.09, x, = —.21. This solution is not feasible, because the
mixture cannot include negative amounts of whey and isolated soy protein. Although the
coefficients of these two ingredients are fairly small, they cannot be ignored. The mixture of .64
units of nonfat milk and .54 units of soy flour provide 50.6 g of protein, 51.6 g of carbohydrate,
3.8 g of fat, and .9 g of calcium. Some of these nutrients are nowhere close to the desired

amounts.

5. Loop 1: The resistance vector is

11| Total of RI voltage drops for current /|
r = -5 | Voltage drop for I, is negative; I, flows in opposite direction
1 0| Current/, does not flow in loop 1

0] Current/ does not flow in loop 1
Loop 2: The resistance vector is

—=5| Voltage drop for 1, is negative; I, flows in opposite direction

10| Total of RI voltage drops for current /,

r=
? —1| Voltage drop for I, is negative; I, flows in opposite direction
0| Current I, does not flow in loop 2
0 0 1 -5 0 0
-1 0 - -
AISO, ;= , Iy = . and R = [l'l I I3 r4] = 5 10 1 0 .
9 —2 0 -1 9 =2
—2 10 0 0 -2 10
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Notice that each off-diagonal entry of R is negative (or zero). This happens because the loop current
directions are all chosen in the same direction on the figure. (For each loop j, this choice forces the
currents in other loops adjacent to loop j to flow in the direction opposite to current /;.)

50

Next, set v= —40 . The voltages in loops 2 and 4 are negative because the battery orientation in
30
-30

each loop is opposite to the direction chosen for positive current flow. Thus, the equation Ri = v
becomes

11 -5 0 ol 4 50 I 3.68
_ _ I _ I _

> 10 1 O 72|40 . [M]: The solution is i = 2| ~1.90 .
0 -1 9 2|4 30 I 2.57
0 0 -2 101 [-30 I, -2.49

. Loop 1: The resistance vector is

6| Total of RI voltage drops for current I
_|—1| Voltage drop for I, is negative; I, flows in opposite direction
0| Current/ , does not flow in loop 1

0J Current I, does not flow in loop 1

Loop 2: The resistance vector is

—1| Voltage drop for /| is negative; I flows in opposite direction

9| Total of RI voltage drops for current 7,

r, =
—4 | Voltage drop for /, is negative; I, flows in opposite direction
0] Current I, does not flow in loop 2
0 [0 6 -1 0 O] 30
-4 0 -1 9 4 0 20 .
Also, r; = Ty = ,andR=[r; r, r; r4= .Setv= . Then Ri =
7 -2 o 4 7 2 40
-2 L7 0 0 -2 7] 10
v becomes
6 -1 0 0] 30 I, 6.36 |
-1 9 4 0|1, 20 N b £t 8.14
= . [M]: The solution is i = = .
0 4 7 2|4 40 A 11.73
0 0 =2 7] 10 1, 4.78 |
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7. Loop 1: The resistance vector is

12| Total of RI voltage drops for current / |
_|=7| Voltage drop for I, is negative; I, flows in opposite direction
0| Current/ , does not flow in loop 1
—4] Voltage drop for / . is negative; I, flows in opposite direction

Loop 2: The resistance vector is

=7| Voltage drop for 7 is negative; I, flows in opposite direction

15| Total of RI voltage drops for current I,

" —6 | Voltage drop for /, is negative; I, flows in opposite direction
0] Current/ . does not flow in loop 2
0 —4 12 -7 0 -4
Also, r; = 6 Ty = 0 ,and R=[r; r, r; r4= 7156 0 .
14 -5 0 6 14 -5
-5 13 -4 0 -5 13

Notice that each off-diagonal entry of R is negative (or zero). This happens because the loop current
directions are all chosen in the same direction on the figure. (For each loop j, this choice forces the
currents in other loops adjacent to loop j to flow in the direction opposite to current /;.)

40
30 . : S . .
Next, set v = ol Note the negative voltage in loop 4. The current direction chosen in loop 4 is
-10
opposed by the orientation of the voltage source in that loop. Thus Ri = v becomes
12 -7 0 4| 40 1, 11.43
-7 15 -6 0|1, 30 T 10.55
= . [M]: The solution isi = = .
0 -6 14 5|1 20 A 8.04
-4 0 -5 13|, -10 1, 5.84

8. Loop 1: The resistance vector is

9| Total of RI voltage drops for current /|

—1| Voltage drop for I, is negative; I, flows in opposite direction
Ti=1 0] Current 7, does not flow in loop 1

—1| Voltage drop for /, is negative; I, flows in opposite direction

—4] Voltage drop for /. is negative; /. flows in opposite direction

Loop 2: The resistance vector is
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—1| Voltage drop for /; is negative; /, flows in opposite direction
7| Total of RI voltage drops for current I,
5 =|-2| Voltage drop for I , 1s negative; /, flows in opposite direction

0| Current! , does not flow in loop 2

—3] Voltage drop for I, is negative; /, flows in opposite direction

0 -1 —4 9 -1 0 -1 -4 [ 50]
-2 0 -3 -1 7 =2 0 -3 =30
Also,rs=|10|,rs=|-3|,rs=|-3|,andR=| 0 -2 10 -3 -3|.Setv=| 20|.Note
-3 7 =2 -1 0 -3 7 =2 —40
| 3] | 2] |12 -4 -3 -3 2 12 0]

the negative voltages for loops where the chosen current direction is opposed by the orientation of
the voltage source in that loop. Thus Ri = v becomes:

9 -1 0 -1 4[] [ 50 1] [ 4.00]
-1 7 =2 0 -3|1,| |-30 I,| |—4.38
0 -2 10 -3 =3||I;|=| 20|. [M] Thesolutionis | I; |=| —90|.
-1 0 -3 7 =2|1,| |40 I,| |-5.80
-4 -3 -3 2 12||L] | O] L] | —.96]

. The population movement problems in this section assume that the total population is constant, with
no migration or immigration. The statement that “about 7% of the city’s population moves to the
suburbs” means also that the rest of the city’s population (93%) remain in the city. This determines
the entries in the first column of the migration matrix (which concerns movement from the city).

From:
City Suburbs  To:

.93 City
.07 Suburbs
Likewise, if 5% of the suburban population moves to the city, then the other 95% remain in the

.93 .05
suburbs. This determines the second column of the migration matrix:, M = { 07 95} . The

800,000
difference equation is x;,; = Mx; for k=0, 1,2, .... Also, X = { }

500,000

93 . 800,000
The population in 2011 (when k= 1) is x; = Mx, = { M }

769,000
.07 500,000 531,000

741,720
558,280

.93 .051| 769,000
The population in 2012 (when k = 2) is x, = Mx; =
.07 531,000
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10.

11.

The data in the first sentence implies that the migration matrix has the form:
From:
City Suburbs To:

.04 City
.06 Suburbs

The remaining entries are determined by the fact that the numbers in each column must sum to 1.
(For instance, if 6% of the city people move to the suburbs, then the rest, or 94%, remain in the city.)

L . 94 .04 . . 10,000,000
So the migration matrix is M = . The initial population is xy = .
.06 .96 800,000
.94 .04 || 10,000,000 9,432,000
The population in 2011 (when k= 1) is x; = Mx, = =
.06 .96 800,000 1,368,000
.94 .04| 9,432,000 8,920,800
The population in 2012 (when k = 2) is x, = Mx; = =
.06 .96|| 1,368,000 1,879,200

The problem concerns two groups of people—those living in California and those living outside
California (and in the United States). It is reasonable, but not essential, to consider the people living
inside California first. That is, the first entry in a column or row of a vector will concern the people
living in California. With this choice, the migration matrix has the form:

From:
Calif. Outside To:

Calif.
Outside
a. For the first column of the migration matrix M, compute

Calif. persons|
whomoved [ 516,100

= =.016372
{Total Calif. pop.} 31,524,000

The other entry in the first column is 1 —.016372 = .983628. The exercise requests that 5 decimal
places be used. So this number should be rounded to .98363. Whatever number of decimal places
is used, it is important that the two entries sum to 1. So, for the first fraction, use .01637.

outside persons|
whomoved | 381,262

[Total outside pop.} 228,680,000
entry is 1 —.00167 = .99833. Thus, the migration matrix is

=.00167 . The other

For the second column of M, compute

From:
Calif. Outside To:
98363 .00167 | Calif.
{01637 .99833} Outside

b. [M] The initial vector is xo = (31.524, 228.680), with data in millions of persons. Since X,
describes the population in 1994, and x; describes the population in 1995, the vector x4 describes
the projected population for the year 2000, assuming that the migration rates remain constant and
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there are no deaths, births, or migration. Here are the vectors x, through x, with the first 5 figures
displayed. Numbers are in millions of persons:

31.524||31.390| | 31.258 | | 31.129 | | 31.002 | | 30.877 | | 30.755
= b b b b b b = X .
o 228.68 || 228.82 || 228.95 || 229.08 | |229.20 | | 229.33 || 229.45 °

97 .05 .10 295 97 .05 .10 295 304
12. SetM=|.00 90 .05| and x,=| 55|.Thenx,;={.00 .90 .05|f 55|=| 57|, and
03 .05 .85 150 03 .05 .85 150 139
97 .05 .10 304 312
x=1.00 .90 .05]|| 57|=| 58]|.The entries in X, give the approximate distribution of cars on

.03 .05 .85} 139 130
Wednesday, two days after Monday.

13. [M] The order of entries in a column of a migration matrix must match the order of the columns. For
instance, if the first column concerns the population in the city, then the first entry in each column
must be the fraction of the population that moves to (or remains in) the city. In this case, the data in

, 95 .03 600,000
the exercise leads to M = and X =
05 97 400,000

a. Some of the population vectors are
523,293 472,737 439,417 417,456
X5 = » X0 = » X5 = » Xp0 =
476,707 527,263 560,583 582,544

The data here shows that the city population is declining and the suburban population is
increasing, but the changes in population each year seem to grow smaller.

350,000 e
b. When x, = , the situation is different. Now
650,000
358,523 364,140 367,843 370,283
X5 = > X0 = > X5 = > Xp0 =
641,477 635,860 632,157 629,717

The city population is increasing slowly and the suburban population is decreasing. No other
conclusions are expected. (This example will be analyzed in greater detail later in the text.)

14. Here are Figs. (a) and (b) for Exercise 13, followed by the figure for Exercise 34 in Section 1.1:

207 20° 0° 0° 200 20°
1 2 1 2
0 0° 10° 40°  10° ! 2 40
0 4 3 0° 10° 4 3 40° 10° 4 2 40
200 20° 10° 10° 307 30°
(a) (b) Section 1.1
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For Fig. (a), the equations are

AT, =0+20+T, +7,
AT, =T, +20+0+T,
AT, =T, +T,+0+20
4T, =0+T7,+T7;+ 20

To solve the system, rearrange the equations and row reduce the augmented matrix. Interchanging

rows 1 and 4 speeds up the calculations. The first five steps are shown in detail.

4 -1 0 -1 20 1 0 1 —4 -20 1 0 —4 20 0 —4 -20
-1 4 -1 0 20 -1 4 -1 0 20 0 4 -4 0 1 -1 0
0 -1 4 -1 20 ) 0 -1 4 -1 20 ) 0 -1 -1 20 ) -1 -1 20
-1 0 -1 4 20 4 -1 0 -1 20 0 -1 15 100 -1 15 100
1 0 1 -4 -2 1 0 1 -4 =20 1 0 0 10]
0 1 0 -l o| |0 0 -1 0 0 0 0 10
1o oo 4 =2 20| |o s =2 2| o 1 0 10
0 0 -4 14 100] |0 0 12 120 0 0 1 10]

AT, =10+0+T, + T,
4T, =7, +0+40+T;
AT, =T, +T, +40+10
AT, =10+T,+T; +10

For Fig (b), the equations are

Rearrange the equations and row reduce the augmented matrix:

4 -1 0 -1 10 1 0 0 0 10
-1 4 -1 0 40 0 1 0 0 175
0 -1 4 -1 50 T 0o 0 1 0 20
-1 0 -1 4 20 0 0 0 1 125

a. Here are the solution temperatures for the three problems studied:
(10, 10, 10, 10)
(10, 17.5, 20, 12.5)
(20, 27.5, 30, 22.5)

When the solutions are arranged this way, it is evident that the third solution is the sum of the first
two solutions. What might not be so evident is that list of boundary temperatures of the third
problem is the sum of the lists of boundary temperatures of the first two problems. (The
temperatures are listed clockwise, starting at the left of 77.)

Fig. (a): ( 0,20,20, 0, 0,20,20, 0
Fig. (b): (10, 0, 0,40, 40,10, 10, 10)
Fig. from Section 1.1: (10, 20, 20, 40, 40, 30, 30, 10)

b. When the boundary temperatures in Fig. (a) are multiplied by 3, the new interior temperatures are
also multiplied by 3.

Fig. (a) in Exercise 14 of Section 1.10:
Fig. (b) in Exercise 14 of Section 1.10:

Figure for Exercises 34 in Section 1.1

c. The correspondence from the list of eight boundary temperatures to the list of four interior
temperatures is a linear transformation. A verification of this statement is not expected. However,
it can be shown that the solutions of the steady-state temperature problem here satisfy a
superposition principle. The system of equations that approximate the interior temperatures can
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be written in the form Ax = b, where A is determined by the arrangement of the four interior

points on the plate and b is a vector in R* determined by the boundary temperatures.

Note: The MATLAB box in the Study Guide for Section 1.10 discusses scientific notation and shows
how to generate a matrix whose columns list the vectors X,, X;, Xp, ..., determined by an equation
X = Mx, fork=0,1, ....

Chapter 1 SUPPLEMENTARY EXERCISES

Qoo

False. (The word “reduced” is missing.) Counterexample:

s Jods She

The matrix A is row equivalent to matrices B and C, both in echelon form.

False. Counterexample: Let A be any nxn matrix with fewer than n pivot columns. Then the
equation Ax = 0 has infinitely many solutions. (Theorem 2 in Section 1.2 says that a system has
either zero, one, or infinitely many solutions, but it does not say that a system with infinitely
many solutions exists. Some counterexample is needed.)

True. If a linear system has more than one solution, it is a consistent system and has a free
variable. By the Existence and Uniqueness Theorem in Section 1.2, the system has infinitely
many solutions.

. False. Counterexample: The following system has no free variables and no solution:

x + x, = 1
x, =5
x + x, = 2

. True. See the box after the definition of elementary row operations, in Section 1.1. If [A b] is

transformed into [C d] by elementary row operations, then the two augmented matrices are row
equivalent.
True. Theorem 6 in Section 1.5 essentially says that when Ax = b is consistent, the solution sets

of the nonhomogeneous equation and the homogeneous equation are translates of each other. In
this case, the two equations have the same number of solutions.

. False. For the columns of A to span R”, the equation Ax = b must be consistent for all b in R",

not for just one vector b in R™.

. False. Any matrix can be transformed by elementary row operations into reduced echelon form,

but not every matrix equation AX = b is consistent.

True. If A is row equivalent to B, then A can be transformed by elementary row operations first
into B and then further transformed into the reduced echelon form U of B. Since the reduced
echelon form of A is unique, it must be U.

False. Every equation Ax = 0 has the trivial solution whether or not some variables are free.

. True, by Theorem 4 in Section 1.4. If the equation Ax = b is consistent for every b in R™, then A

must have a pivot position in every one of its m rows. If A has m pivot positions, then A has m
pivot columns, each containing one pivot position.

False. The word “unique” should be deleted. Let A be any matrix with m pivot columns but more
than m columns altogether. Then the equation Ax = b is consistent and has m basic variables and
at least one free variable. Thus the equation does not does not have a unique solution.
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m. True. If A has n pivot positions, it has a pivot in each of its n columns and in each of its n rows.
The reduced echelon form has a 1 in each pivot position, so the reduced echelon form is the nxn
identity matrix.

n. True. Both matrices A and B can be row reduced to the 3x3 identity matrix, as discussed in the
previous question. Since the row operations that transform B into /5 are reversible, A can be
transformed first into /5 and then into B.

0. True. The reason is essentially the same as that given for question f.

p. True. If the columns of A span R", then the reduced echelon form of A is a matrix U with a pivot
in each row, by Theorem 4 in Section 1.4. Since B is row equivalent to A, B can be transformed
by row operations first into A and then further transformed into U. Since U has a pivot in each
row, so does B. By Theorem 4, the columns of B span R".

q. False. See Example 5 in Section 1.7.

r. True. Any set of three vectors in R* would have to be linearly dependent, by Theorem 8 in
Section 1.7.

s. False. If a set {vy, v, v3, v4} were to span R’, then the matrix A = [vi v, v3 v4] would have
a pivot position in each of its five rows, which is impossible since A has only four columns.

t. True. The vector —u is a linear combination of u and v, namely, —u = (=1)u + Ov.
u. False. If u and v are multiples, then Span{u, v} is a line, and w need not be on that line.

v. False. Let u and v be any linearly independent pair of vectors and let w = 2v. Then w = Ou + 2v,
so w is a linear combination of u and v. However, u cannot be a linear combination of v and w
because if it were, u would be a multiple of v. That is not possible since {u, v} is linearly
independent.

w. False. The statement would be true if the condition v; is not zero were present. See Theorem 7 in
Section 1.7. However, if v; = 0, then {v;, v,, v5} is linearly dependent, no matter what else might
be true about v, and v;.

x. True. “Function” is another word used for “transformation” (as mentioned in the definition of
“transformation” in Section 1.8), and a linear transformation is a special type of transformation.

y. True. For the transformation x — Ax to map R’ onto R®, the matrix A would have to have a pivot

in every row and hence have six pivot columns. This is impossible because A has only five
columns.

z. False. For the transformation x — Ax to be one-to-one, A must have a pivot in each column.

Since A has n columns and m pivots, m might be less than n.

2. If a # 0, then x = b/a; the solution is unique. If @ = 0, and b # 0, the solution set is empty, because
Ox=0=#b.If a=0 and b =0, the equation Ox = 0 has infinitely many solutions.

3. a. Any consistent linear system whose echelon form is
O m * *lor|0O O M *|or{O O m *
0 0 0 O 0 0 0 0 0 0 0 O

b. Any consistent linear system whose coefficient matrix has reduced echelon form /3.

c. Any inconsistent linear system of three equations in three variables.

4. Since there are three pivots (one in each row), the augmented matrix must reduce to the form
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m O+ k%

0O m * *| Asolution of Ax = b exists for all b because there is a pivot in each row of A. Each
0 0 m *

solution is unique because there are no free variables.

4 h 8 0 h-12 8-4k
indicates an inconsistent system of the form Ox, = b, with b nonzero. If 4 = 12, and k = 2, there is

1 3 k] [ 3 k ,
5. a. ~ .If h=12 and k = 2, the second row of the augmented matrix

only one nonzero equation, and the system has infinitely many solutions. Finally, if & = 12, the

coefficient matrix has two pivots and the system has a unique solution.

6 k 2 0 k+3h
coefficient matrix has two pivots and the system has a unique solution.

2 h 1] [ r 1 . . .
b. ~ ik If k + 3h =0, the system is inconsistent. Otherwise, the

4 -2 7 -5
6. a. Set v, = , V, = , Vo= ,and b= . “Determine if b is a linear combination of v;,
s =3 Lo 3

vy, v3.” Or, “Determine if b is in Span{v,, v, v3}.” To do this, compute

{4 -2 7 —5“{@ -2 7 -5

8 -3 10 -3] [0 (D —4

4 =2 7 -5
b. SetA = {8 3 10}, b :{ } . “Determine if b is a linear combination of the columns of A.”

} . The system is consistent, so b is in Span{vy, v, v3}.

c. Define T(x) = Ax. “Determine if b is in the range of 7.”

2 —4 -2 b,
7. a. Set v,=|-5|, v,=| 1|, v;=| 1|and b=|b, |. “Determine if v, v, V3 span R®.” To do this,

row reduce [v, Vv, V3]
2 4 2] [2 4 21 [@ 4 =2

-5 1 1{~]0 9 —4|~|0 —4 |. The matrix does not have a pivot in each row,
7 -5 3 0 9 4] 10 0 O

s0 its columns do not span R?, by Theorem 4 in Section 1.4.

2 4 2
b. SetA=|-5 1 1 |. “Determine if the columns of A span R>.”
7 -5 3

c. Define T(x) = Ax. “Determine if T maps R’ onto R*.”

el bl

S o n
S n *
[ ] *
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1 2
9. The first line is the line spanned by {2} . The second line is spanned by L} . So the problem is to

10.

11.

12.

13.

5 1 2
write {6} as the sum of a multiple of {2} and a multiple of L} . That is, find x; and x, such that

2 1 5
X +x = . Reduce the augmented matrix for this equation:
1 7?2 e

2 1 5 1 2 6 1 2 6 1 2 6 1 0 4/3
1 2 6 2 1 5 0 -3 7 0 1 7/3 0 1 7/3
5 2 1 5 8/3 7/3
Thus, _4 +7 or = + )
6| 31| 3|2 6 4/3| |14/3
The line through a, and the origin and the line through a, and the origin determine a “grid” on the
x1x,-plane as shown below. Every point in R” can be described uniquely in terms of this grid. Thus, b

can be reached from the origin by traveling a certain number of units in the a,;-direction and a certain
number of units in the a,-direction.

aj

a

A solution set is a line when the system has one free variable. If the coefficient matrix is 2x3, then

1 2 *
two of the columns should be pivot columns. For instance, take {0 *} . Put anything in column

3. The resulting matrix will be in echelon form. Make one row replacement operation on the second

. . 1 2 1 1 2 1
row to create a matrix not in echelon form, such as 3 ~ L s 2

A solution set is a plane where there are two free variables. If the coefficient matrix is 2x3, then only
one column can be a pivot column. The echelon form will have all zeros in the second row. Use a

) . ) 1 2 3
row replacement to create a matrix not in echelon form. For instance, let A :{ } .

2 3
1 0 *
The reduced echelon form of A looks like E={0 1 *|. Since E is row equivalent to A, the
0 0 O
1 0 *|| 3] |0

equation Ex = 0 has the same solutions as Ax =0. Thus |0 1
0 0 Of 1 0

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



14.

15.

16.

17.

18.

19.
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1 0 -3
By inspection, E=|0 1 2].
0 0 O

1 0
Row reduce the augmented matrix for x,| |+x, ‘= ).
a a+?2 0

1 a 0 1 a 0 |1 a 0

a a+2 0| |0 a+2-4*> 0] |0 @Q-a)l+a) O
The equation (*) has a nontrivial solution only when (2 — a)(1 + a) = 0. So the vectors are linearly
independent for all a except a =2 and a = 1.

a. If the three vectors are linearly independent, then a, c, and f must all be nonzero. (The converse is
true, too.) Let A be the matrix whose columns are the three linearly independent vectors. Then A
must have three pivot columns. (See Exercise 30 in Section 1.7, or realize that the equation
Ax = 0 has only the trivial solution and so there can be no free variables in the system of
equations.) Since A is 3x3, the pivot positions are exactly where a, ¢, and f are located.

b. The numbers g, ..., f can have any values. Here's why. Denote the columns by vy, v,, and vs.
Observe that v, is not the zero vector. Next, v, is not a multiple of v, because the third entry of v,
is nonzero. Finally, v; is not a linear combination of v, and v, because the fourth entry of vj is
nonzero. By Theorem 7 in Section 1.7, {v,, v, v3} is linearly independent.

Denote the columns from right to left by vy, ..., v4. The “first” vector v, is nonzero, v, is not a
multiple of v, (because the third entry of v, is nonzero), and v; is not a linear combination of v, and
v, (because the second entry of v; is nonzero). Finally, by looking at first entries in the vectors, v4
cannot be a linear combination of vy, v,, and v;. By Theorem 7 in Section 1.7, the columns are
linearly independent.

Here are two arguments. The first is a “direct” proof. The second is called a “proof by contradiction.”

i. Since {vy, v, v3} is a linearly independent set, v; # 0. Also, Theorem 7 shows that v, cannot be a
multiple of v, and v; cannot be a linear combination of v, and v,. By hypothesis, v4 is not a linear
combination of vy, v,, and v;. Thus, by Theorem 7, {v,, v,, v3, v4} cannot be a linearly dependent
set and so must be linearly independent.

ii. Suppose that {v;, v, v3, v4} is linearly dependent. Then by Theorem 7, one of the vectors in the
set is a linear combination of the preceding vectors. This vector cannot be v, because v, is not in
Span{vy, v,, v3}. Also, none of the vectors in {vy, v,, v3} is a linear combinations of the preceding
vectors, by Theorem 7. So the linear dependence of {v,, v,, v, v4} is impossible. Thus {v;, v,, v3,
v,} 1s linearly independent.

Suppose that ¢; and ¢, are constants such that
avit+e(vi+vy)=0 *)

Then (c¢; + ¢)v; + ¢V, = 0. Since v; and v, are linearly independent, both ¢; + c; =0 and ¢, =0. It
follows that both ¢, and ¢, in (*) must be zero, which shows that {v;, v| + v} is linearly independent.

Let M be the line through the origin that is parallel to the line through vy, v,, and v;. Then v, — v; and
v3 — v; are both on M. So one of these two vectors is a multiple of the other, say v, — v| = k(v; — v)).
This equation produces a linear dependence relation (k — 1)v, + v, — kv; = 0.
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21.

22.

23.

24.

25.

A second solution: A parametric equation of the line is X = v; + #(v, — v;). Since v; is on the line,
there is some ?, such that v; = v; + #5(v, — v{) = (1 — 1)V + tyV,. S0 V3 is a linear combination of v;
and v,, and {v,, v,, v3} is linearly dependent.

If T(u) = v, then since T is linear,
T(—w) = T((-Dw) = (-DT(u) = —v.
Either compute 7(e,), 7(e,), and T(e;) to make the columns of A, or write the vectors vertically in the
definition of T and fill in the entries of A by inspection:
77 Nl x X 1 0 O
Ax=|?7 A ?||x |=|-x]|, A=|0 -1 O
77 7 x X3 0O 0 1

By Theorem 12 in Section 1.9, the columns of A span R®. By Theorem 4 in Section 1.4, A has a pivot

in each of its three rows. Since A has three columns, each column must be a pivot column. So the
equation Ax = 0 has no free variables, and the columns of A are linearly independent. By Theorem 12

in Section 1.9, the transformation X — AX is one-to-one.

-b|l4 51. . 4a - 3b = 5
= implies that . Solve:
all3 0 3a + 4b 0

4 -3 5 4 3 5 4 -3 5 4 0 16/5 1 0 4/5
3 4 0 0 25/4 -15/4 0 1 -3/5 0 1 -=3/5 0 1 -=3/5

Thus a =4/5 and b = -3/5.

S

The matrix equation displayed gives the information 2a —4b = 2/5 and 4a+2b=0. Solve for a and

b{z 4 2\/5}{2 4 2\/5}{1 2 \/5}{1 0 1/\/5}
' 0 0 0

4 2 0 10 —45 1 —2/5 1 =2/5
So a=1/~/5, b=-2//5.

a. The vector lists the number of three-, two-, and one-bedroom apartments provided when x,; floors
of plan A are constructed.

3 4] 5
b. x|7|+x|4|+x]|3
8 8| 9
3 4 5] [ 66
c. [M] Solve x| 7 |+x,|4|+x;|3|=| 74
| 8 8 9] 136
3 4 5 66 1 0 -1/72 2| x - A7/2)x; = 2
7 4 3 74|~---/0 1 13/8 15 x, + (13/8)x; = 15
&8 8 9 136 0 O 0 0 0 = 0

The general solution is
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X 2+(1/2)x, 2 1/2
X=|x, |=[15-(13/8)x; |=|15 |+ x;| —13/8
X3 X3 0 1

However, the only feasible solutions must have whole numbers of floors for each plan. Thus, x3
must be a multiple of 8, to avoid fractions. One solution, for x; = 0, is to use 2 floors of plan A
and 15 floors of plan B. Another solution, for x; = 8, is to use 6 floors of plan A , 2 floors of plan
B, and 8 floors of plan C. These are the only feasible solutions. A larger positive multiple of 8 for
X3 makes x, negative. A negative value for x3, of course, is not feasible either.
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2.1 SOLUTIONS

Notes: The definition here of a matrix product AB gives the proper view of AB for nearly all matrix
calculations. (The dual fact about the rows of A and the rows of AB is seldom needed, mainly because
vectors here are usually written as columns.) I assign Exercise 13 and most of Exercises 17-22 to
reinforce the definition of AB.

Exercises 23 and 24 are used in the proof of the Invertible Matrix Theorem, in Section 2.3. Exercises
23-25 are mentioned in a footnote in Section 2.2. A class discussion of the solutions of Exercises 23-25
can provide a transition to Section 2.2. Or, these exercises could be assigned after starting Section 2.2.

Exercises 27 and 28 are optional, but they are mentioned in Example 4 of Section 2.4. Outer products
also appear in Exercises 31-34 of Section 4.6 and in the spectral decomposition of a symmetric matrix, in
Section 7.1. Exercises 29-33 provide good training for mathematics majors.

2 0 -1 -4 0 2
1. -2A=(-2) = . Next, use B—2A = B + (-2A):
4 =5 2 -8 10 -4

7 =5 1 -4 0 2 3 -5 3
{ 1 -4 —3} {—8 10 —4} {—7 6 —7}
The product AC is not defined because the number of columns of A does not match the number of

1 2| 3 5 1-3+2(-1) 1-5+2-4 1 13
rows of C. CD = = = . For mental
-2 1]-1 4 -2-3+1(-1) -2-5+1-4 -7 -6

computation, the row-column rule is probably easier to use than the definition.

2 0 -1 7 -5 1 2421  0-15 -1+3 23 15 2
2. A+3B= +3 = =
4 -5 2 1 4 3 4+3 -5-12 2-9 7 =17 -7
The expression 2C — 3E is not defined because 2C has 2 columns and —3F has only 1 column.

DB - 3 5|17 -5 Ly | 37451 3(=5+5(-4) 3-1+5(=3)| |26 -35 -12

-1 4|1 -4 -3 —1-744-1 —1(-5)+4(-4) —1-1+4(=3)| |-3 -11 -13
The product EC is not defined because the number of columns of E does not match the number of
rows of C.
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{3 0} {2 —5} {3—2 0—(—5)} {1 5}
3.3,-A= - = =
0 3| |3 =2| |0-3 3-(=2)| |-3 5

siA=3na =32 =l B o
(2) _(2)_ 3 _2_9 —6’

3 0][2 5] [3-240 3(-5+0] [6 -I5
(31,)A= = =
0 3J/3 -2| [0+33 0+3(-2)] |9 -6
5 -1 350 0] [0 -1 3
4. A-5I,=|-4 3 —6|-|0 5 0|=|-4 -2 -6
3 1 2[00 5 [-3 1 -3
5 -1 3] [25 =5 15

(5I,)A=5(I,A)=5A=5|-4 3 —6|=|-20 15 =30|,or
3 1 2| |-15 5 10

5 0 0f 5 -1 3

(51;)A=|0 5 0}|-4 3 -6

0 0 5|3 1 2
5-5+40+0 5(-1)+0+0 5-3+0+0 25 -5 15
=|0+5(-4)+0 0+5-3+0 0+5(-6)+0|=|-20 15 =30
0+0+5(-3) 0+0+5-1 0+0+5-2 -15 5 10

-1 3 4 [0 -1 3 11
5.a Ab=| 2 4{}: 0|, Ab,=| 2 4{3}: 8
5 -3 26 5 -3 -19
-10 11
AB=[Ab, Ab,]=| 0 8
26 -19
-U3 g [P S +3:3) [-10
b.| 2 4 { 5 3}: 2-4+4(-2) 2(-2)+4-3|=| 0 8
5 -3 5-4-3(-2) 5(-2)-3-3 26 -19
4 -3 -5 4 3], 22
6. a. Ab,=|-3 5 M: 12|, Ab,=|-3 5 { 2}: -22
0 1 3 0 1 -2
-5 22
AB=[Ab, Ab,]=|12 -22
3 -2
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11.

12.

13.

14.

. AB=
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4 3, 4.1-3-3  4.4-3-2)] [-5 22
b. |-3 5 L 2}: —3.145-3 -3-4+5(=2)|=|12 22
0 1 0-141-3  0-4+1(-2) 3 2

Since A has 3 columns, B must match with 3 rows. Otherwise, AB is undefined. Since AB has 7
columns, so does B. Thus, B is 3x7.

The number of rows of B matches the number of rows of BC, so B has 5 rows.
2 3 1 9 =7 18+3k . 1 9| 2 3 -7 12
= , While BA = = .
-1 1]|-3 %k -4  -9+k -3 kijl-1 1 —-6—-k -9+k
Then AB = BA if and only if 18 + 3k = 12 and —4 = -6 — k, which happens if and only if £ = 2.

(3 -6][-1 1 -21 21 3 —6||-3 -5 -21 21
AB: = ,AC: =
N B ] YL I S ]

1 2 5 0 0] [5 6 6
AD=|2 0 3 0[=[10 12 10
3 5 0 0 2] |15 15 12
5 0 O]t 2 3] 1[5 10 15
DA=|0 3 0]l2 5/|=|6 12 15
0 0 2|3 5 6] [6 10 12

Right-multiplication (that is, multiplication on the right) by the diagonal matrix D multiplies each
column of A by the corresponding diagonal entry of D. Left-multiplication by D multiplies each row
of A by the corresponding diagonal entry of D. To make AB = BA, one can take B to be a multiple of
L;. For instance, if B = 415, then AB and BA are both the same as 4A.

Consider B = [b; b,]. To make AB = 0, one needs Ab; = 0 and Ab, = 0. By inspection of A, a
suitable

6

3l

2 2 2
b, is { J, or any multiple of { J. Example: B = { ]
Use the definition of AB written in reverse order: [Ab; - - -
[Qr; --- Or,]=0R,whenR=[r; --- r,].

By definition, UQ = Ulq, - - qu]l =[Uq; - - Uqs]. From Example 6 of Section 1.8, the vectorUq;
lists the total costs (material, labor, and overhead) corresponding to the amounts of products B andC
specified in the vector q;. That is, the first column of UQ lists the total costs for materials, labor, and
overhead used to manufacture products B and C during the first quarter of the year. Columns 2, 3,and
4 of UQ list the total amounts spent to manufacture B and C during the 2m 31 and 40 quarters,
respectively.

Ab,] = A[b, --- b,]. Thus
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15.

16.

17.

a. False. See the definition of AB.

b. False. The roles of A and B should be reversed in the second half of the statement. See the box
after Example 3.

c. True. See Theorem 2(b), read right to left.

d. True. See Theorem 3(b), read right to left.
e. False. The phrase “in the same order” should be “in the reverse order.” See the box after Theorem
3.

a. True. See the box after Example 4.

b. False. AB must be a 3x3 matrix, but the formula given here implies that it is a 3x1 matrix. The
plus signs should just be spaces (between columns). This is a common mistake.

¢. True. Apply Theorem 3(d) to A’=AA
d. False. The left-to-right order of (ABC), is C'B’A”. The order cannot be changed in general.
e. True. This general statement follows from Theorem 3(b).

-3 -11
Since { | 17} =AB=[Ab, Ab,], the first column of B satisfies the equation Ax ={ 6}' Row

1 -3 3 1 0 3 3
reduction:[A  Ab, | ~{ 3 s J ~ L) | 2] Sob, = {2} Similarly,

1 -3 -11 1 0 1 1
[A  Ab,]~ ~ and b, = )
-3 5 17 0 1 4 4

Note: An alternative solution of Exercise 17 is to row reduce [A Ab; Ab,] with one sequence of row
operations. This observation can prepare the way for the inversion algorithm in Section 2.2.

18.
19.

20.

21.

The third column of AB is also all zeros because Ab; = A0 =0

(A solution is in the text). Write B = [b; b, b;]. By definition, the third column of AB is Abs. By
hypothesis, b; =b; + b,. So Ab; = A(b, + b,) = Ab, + Ab,, by a property of matrix-vector
multiplication. Thus, the third column of AB is the sum of the first two columns of AB.

The first two columns of AB are Ab; and Ab,. They are equal since b, and b, are equal.

Let b, be the last column of B. By hypothesis, the last column of AB is zero. Thus, Ab, = 0.
However, b, is not the zero vector, because B has no column of zeros. Thus, the equation Ab, =0 is a
linear dependence relation among the columns of A, and so the columns of A are linearly dependent.

Note: The text answer for Exercise 21 is, “The columns of A are linearly dependent. Why?”” The Study
Guide supplies the argument above, in case a student needs help.

22

23.

If the columns of B are linearly dependent, then there exists a nonzero vector x such that Bx = 0.
From this, A(Bx) = A0 and (AB)x = 0 (by associativity). Since X is nonzero, the columns of AB must
be linearly dependent.

If x satisfies Ax = 0, then CAx = C0 = 0 and so /,x = 0 and x = 0. This shows that the equation Ax =0
has no free variables. So every variable is a basic variable and every column of A is a pivot column.
(A variation of this argument could be made using linear independence and Exercise 30 in Section
1.7.) Since each pivot is in a different row, A must have at least as many rows as columns.
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25.

26.

27.

28.

29.

30.

31.
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Write I; =[e; e, e;]and D=[d; d, d;]. By definition of AD, the equation AD = I3 is equivalent
|to the three equations Ad, = e;, Ad, = e,, and Ad; = e;. Each of these equations has at least one
solution because the columns of A span R’. (See Theorem 4 in Section 1.4.) Select one solution of
each equation and use them for the columns of D. Then AD = I5.

By Exercise 23, the equation CA = I, implies that (number of rows in A) > (number of columns), that
is, m > n. By Exercise 24, the equation AD = [, implies that (number of rows in A) < (number of
columns), that is, m < n. Thus m = n. To prove the second statement, observe that CAD = (CA)D =
I.D = D, and also CAD = C(AD) = CI,, = C. Thus C = D. A shorter calculation is

C=Cl,=C(AD)=(CA)D=1,D=D

Take any b in R™. By hypothesis, ADb = I,,b = b. Rewrite this equation as A(Db) = b. Thus, the
vector X = Db satisfies Ax = b. This proves that the equation Ax = b has a solution for each b in R"™.
By Theorem 4 in Section 1.4, A has a pivot position in each row. Since each pivot is in a different
column, A must have at least as many columns as rows.

The product u’v is a 1x1 matrix, which usually is identified with a real number and is written
without the matrix brackets.

a -3
w'v=[-3 2 -5]|b|=-3a+2b-5c, viu=[a b c] 2|=-3a+2b-5c
c -5
-3 -3a -3b -3¢
w' =| 2|[a b c]=| 2a 2b 2¢
-5 —5a -5b -5c¢
[a —3a 2a -Sa
va' =(b|[-3 2 -5]=|-3b 2b -5b
| c -3¢  2¢c -5¢

Since the inner product u’v is a real number, it equals its transpose. That is,

u'v='v) =v' (u")" = v'u, by Theorem 3(d) regarding the transpose of a product of matrices and
by Theorem 3(a). The outer product uv’ is an nxn matrix. By Theorem 3, (v’ = vHa" = vu’.

The (i, j)-entry of A(B + C) equals the (i, j)-entry of AB + AC, because

n n n
Dby +cy) =D ayby + 2 ayey
k=1 k=1 k=1

The (i, j)-entry of (B + C)A equals the (i, j)-entry of BA + CA, because
i(bik +eg)ay = ibikakj + icik ay
k=1 k=1 k=1

The (i, j))-entries of H(AB), (rA)B, and A(rB) are all equal, because
rki;aikbkj = an;(mik )bkj = galk (rbkj)

Use the definition of the product 1,,A and the fact that I,x = x for x in R".
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32.

33.

34.
35.

36.

37.
38.

39.

40.

ImA = Im[al T an] = [Imal T Iman] = [al T an] =A

Let e; and a; denote the jth columns of 7, and A, respectively. By definition, the jth column of A, is
Ae;, which is simply a; because e; has 1 in the jth position and zeros elsewhere. Thus corresponding
columns of Al, and A are equal. Hence Al, = A.

The (i, j)-entry of (AB)" is the ( J» D)-entry of AB, which is
apb;+--+a,b

jn~ni
The entries in row i of B” are by, ... , b,;, because they come from column i of B. Likewise, the
entries in column j of AT are aji, ..., aj, because they come from row j of A. Thus the (i, j)-entry in
B'A"is apb;+---+ab,, as above.

Jjn“ni»

Use Theorem 3(d), treating X as an nx1 matrix: (ABx)" = x"(AB)" =x"B"A”.

[M] The answer here depends on the choice of matrix program. For MATLAB, use the help
command to read about zeros, ones, eye, and diag. For other programs see the
appendices in the Study Guide. (The TI calculators have fewer single commands that produce
special matrices.)

[M] The answer depends on the choice of matrix program. In MATLAB, the command
rand (5, 6) creates a 5x6 matrix with random entries uniformly distributed between 0 and 1. The
command

round(19* (rand(4,4)-.5))
creates a random 4x4 matrix with integer entries between —9 and 9. The same result is produced by

the command randomint in the Laydata4 Toolbox on text website. For other matrix programs
see the appendices in the Study Guide.

[M] The equality AB = BA is very likely to be false for 4x4 matrices selected at random.

[M] (A + (A —1) — (A* = I) = 0 for all 5x5 matrices. However, (A + B)(A — B) — A* — B is the zero
matrix only in the special cases when AB = BA. In general,

(A+B)A-B)=A(A—-B)+B(A—B)=AA — AB + BA — BB.

[M] The equality (A"+B")=(A+B)" and (AB)"=B"A"should always be true, whereas (AB)" = A’B is
very likely to be false for 4x4 matrices selected at random.

[M] The matrix S “shifts” the entries in a vector (a, b, c, d, e) to yield (b, c, d, e, 0). The entries in s?
result from applying S to the columns of S, and similarly for S°, and so on. This explains the patterns
of entries in the powers of S:
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(0 0 1 0 O] (0 0 0 1 O] 0 0 0 0 1]
000 10 00 0 0 1 00 0 0 0
$’=l0 0 0 0 1,8°=/0 0 0 0 0[,8*=|0 0 0 0 0
000 00 000 00 00 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$° is the 55 zero matrix. S° is also the 5X5 zero matrix.
(3339 3349 3312 333341 333344 333315
41. [M] A°=|.3349 3351 .3300|,A4" =|.333344 .333350 .333306
3312 3300 .3388 333315 333306 .333379

The entries in A®
with .33333333333333 to at least 14 decimal places. The matrices appear to approach the matrix

/3 1/3 1/3
1/3 1/3 1/3|. Further exploration of this behavior appears in Sections 4.9 and 5.2.
/73 1/3 1/3

Note: The MATLAB box in the Study Guide introduces basic matrix notation and operations,

all agree with .3333333333 to 8 or 9 decimal places. The entries in A* all agree

including the commands that create special matrices needed in Exercises 35, 36 and elsewhere. The

Study Guide appendices treat the corresponding information for the other matrix programs.

2.2

SOLUTIONS

Notes: The text includes the matrix inversion algorithm at the end of the section because this topic is
popular. Students like it because it is a simple mechanical procedure. However, I no longer cover it in my
classes because technology is readily available to invert a matrix whenever needed, and class time is

better

spent on more useful topics such as partitioned matrices. The final subsection is independent of the

inversion algorithm and is needed for Exercises 35 and 36.

Key Exercises: 8, 11-24, 35. (Actually, Exercise 8 is only helpful for some exercises in this section.
Section 2.3 has a stronger result.) Exercises 23 and 24 are used in the proof of the Invertible Matrix
Theorem (IMT) in Section 2.3, along with Exercises 23 and 24 in Section 2.1. I recommend letting
students work on two or more of these four exercises before proceeding to Section 2.3. In this way
students participate in the proof of the IMT rather than simply watch an instructor carry out the proof.
Also, this activity will help students understand why the theorem is true.

-1

6 1 [4 6] [ 2 =3
4] 32-30(-5 8| |-5/2 4
-1
27 1[5 2] [5 2
5] 15-16/-8 3| |8 -3
7 3] 1 -3 3] 1[-3 -3 1 1
= =—— or
-6 3| 21-(-18) 6 7] 36 71| [-2 -7/3
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e -1 1 6 4] 1[-6 4 3/2 1
. = =— or
4 —6| —12-(-16)|-4 2| 4|4 2 1 1/2

6
4

2 =3 2 7
X=A_1b={ s/o 4}{ J:[ 9}. Thus x; =7 and x, = -9.

7 3 -9
6. The system is equivalent to AX = b, where A = { 6 3} and b = { 4} , and the solution is x = A”'b.

8 2
S. The system is equivalent to AX = b, where A = { } and b ={ J , and the solution is

To compute this by hand, the arithmetic is simplified by keeping the fraction 1/det(A) in front of the
matrix for A™. (The Study Guide comments on this in its discussion of Exercise 7.) From Exercise 3,

— 31 = 1 —
x=A'p=_1 33 1) 5 > . Thus x; = =5 and x, = 26/3.
3l 6 7] 4 3| -26| |26/3

1 2Tt 1 12 =27 112 =2 6 -1
7. a. = =— or
5 121 112-25/-5 1| 2|5 1 25 5

1 1112 =2 -1] 1[-18 9 o . . .
x=A"b =— =— = . Similar calculations give
2|5 1 3| 2| 8 4

Ab, = i Ab, = 6 Ab, = 13
2l =5y Pl s

12 -1 1 2 3
b.[A b, b, by b=
[1234]{512 3—565}

1 2 -1 ) 3 1 2 -1 1 2 3
0O 2 8 -10 -4 -10] |0 1 4 -5 =2 -5
{1 0 -9 11 6 13}

o 1 4 -5 2 -5

. -9 11 6 13 .
The solutions are Al sl |- and 5| the same as in part (a).

Note: The Study Guide also discusses the number of arithmetic calculations for this Exercise 7, stating
that when A is large, the method used in (b) is much faster than using A
8. Left-multiply each side of A = PBP' by P"":
P'A=pP'PBP', P'A=IBP', P'A=BP'
Then right-multiply each side of the result by P:
P'AP=BP'P, P'AP=BI, P'AP=B
Parentheses are routinely suppressed because of the associative property of matrix multiplication.

9. a. True, by definition of invertible.
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12.

13.

14.

15.
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b. False. See Theorem 6(b).
1 1
c. False. If A= {0 0} ,then ab — cd = 1 — 0 # 0, but Theorem 4 shows that this matrix is not

invertible, because ad — bc = 0.

d. True. This follows from Theorem 5, which also says that the solution of Ax = b is unique, for
each b.

e. True, by the box just before Example 6.
a. False. The last part of Theorem 7 is misstated here.
b. True, by Theorem 6(a).

c. False. The product matrix is invertible, but the product of inverses should be in the reverse order.
See Theorem 6(b).

d. True. See the subsection “Another View of Matrix Inversion™.

e. True, by Theorem 7.

(The proof can be modeled after the proof of Theorem 5.) The nxp matrix B is given (but is
arbitrary). Since A is invertible, the matrix A7'B satisfies AX = B, because A(AA'B)=AA'B=1IB =
B. To show this solution is unique, let X be any solution of AX = B. Then, left-multiplication of each
side by A™' shows that X must be A™'B:

A" (AX)=A"'B, IX=A'B, and X=A"'B.

Left-multiply each side of the equation AD = I by A™' to obtain
A'AD=A"ILID=A",andD=A".
Parentheses are routinely suppressed because of the associative property of matrix multiplication.

Left-multiply each side of the equation AB = AC by A™' to obtain
A'AB=A"AC, IB=IC, and B=C.

This conclusion does not always follow when A is singular. Exercise 10 of Section 2.1 provides a
counterexample.

Right-multiply each side of the equation (B — C)D = 0 by D' to obtain
(B-CODD'=0D", (B-C)I=0, B-C=0, and B=C.
If you assign this exercise, consider giving the following Hint: Use elementary matrices and imitate

the proof of Theorem 7. The solution in the Instructor’s Edition follows this hint. Here is another
solution, based on the idea at the end of Section 2.2.

Write B=1[b, --- b,Jand X =[u; --- u,]. By definition of matrix multiplication,
AX =[Au; --- Au,]. Thus, the equation AX = B is equivalent to the p systems:

Au;=b,, ... Au,=b,
Since A is the coefficient matrix in each system, these systems may be solved simultaneously,
placing the augmented columns of these systems next to A to form[A b, --- b,]=[A B]. Since A
is invertible, the solutions uy, ..., u, are uniquely determined, and [A b, - - - b,] must row reduce to

[/ w --- w]=[/ X].ByExercise 11, X is the unique solution A'Bof AX = B.
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16. Let C = AB. Then CB' = ABB', so CB™' = AI = A. This shows that A is the product of invertible
matrices and hence is invertible, by Theorem 6.

Note: The Study Guide warns against using the formula (AB) "' = B"'A™" here, because this formula can
be used only when both A and B are already known to be invertible.

17. The box following Theorem 6 suggests what the inverse of ABC should be, namely, C"'B'A™". To
verify that this is correct, compute:

(ABC) C'B'A"' = ABCC'B'A" = ABIB'A' =ABB'A' = AIA' = AA " =1
and
C'B'AT(ABC)=C'B'A'ABC=C'B'IBC=C'B'BC=C'IC=C"'C=1

18. Right-multiply each side of AB = BC by B™":
ABB'=BCB', AI =BCB', A=BCB"

19. Unlike Exercise 18, this exercise asks two things, “Does a solution exist and what is it?” First, find
what the solution must be, if it exists. That is, suppose X satisfies the equation C"'(4 + X)B™' = 1.
Left-multiply each side by C, and then right-multiply each side by B:

CC'A+X)B'=Cl, IA+X)B'=C, (A+X)B'B=CB, (A+X)I=CB

Expand the left side and then subtract A from both sides:
Al+XI=CB, A+X=CB, X=CB-A

If a solution exists, it must be CB — A. To show that CB — A really is a solution, substitute it for X:
C'[A+(CB-A)IB'=C'[CBIB'=C'CBB ' =1I=1

Note: The Study Guide suggests that students ask their instructor about how many details to include in
their proofs. After some practice with algebra, an expression such as CC™'(4 + X)B™' could be simplified
directly to (A + X)B~" without first replacing CC™' by I. However, you may wish this detail to be included
in the homework for this section.

20. a. Left-multiply both sides of (A — AX)"' = X 'B by X to see that B is invertible because it is the
product of invertible matrices.

b. Invert both sides of the original equation and use Theorem 6 about the inverse of a product
(which applies because X' and B are invertible):

A-AX=X'B)"'=B'X")"'=B"'X
Then A =AX + B'X = (A + B )X. The product (A + B™HX is invertible because A is invertible.

Since X is known to be invertible, so is the other factor, A + B, by Exercise 16 or by an
argument similar to part (a). Finally,

A+BY'A=A+BY'A+BHX=X

Note: This exercise is difficult. The algebra is not trivial, and at this point in the course, most students
will not recognize the need to verify that a matrix is invertible.

21. Suppose A is invertible. By Theorem 5, the equation Ax = 0 has only one solution, namely, the zero
solution. This means that the columns of A are linearly independent, by a remark in Section 1.7.

22. Suppose A is invertible. By Theorem 5, the equation Ax = b has a solution (in fact, a unique solution)
for each b. By Theorem 4 in Section 1.4, the columns of A span R".
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Suppose A is nxn and the equation Ax = 0 has only the trivial solution. Then there are no free
variables in this equation, and so A has n pivot columns. Since A is square and the n pivot positions
must be in different rows, the pivots in an echelon form of A must be on the main diagonal. Hence A
is row equivalent to the nxn identity matrix.

If the equation Ax = b has a solution for each b in R", then A has a pivot position in each row, by
Theorem 4 in Section 1.4. Since A is square, the pivots must be on the diagonal of A. It follows that A
is row equivalent to /,. By Theorem 7, A is invertible.

a b . 0 0} x 0 .
Suppose A= and ad — bc = 0. If a = b = 0, then examine = This has the
c d c d| x 0

. d . .. .
solution x; = { } This solution is nonzero, except when a = b = ¢ = d. In that case, however, A is

—C

-b
the zero matrix, and Ax = 0 for every vector x. Finally, if @ and b are not both zero, set x, = { } .
a

a bl -b —ab + ba 0 . .. .
Then Ax, = = = , because —cb + da = 0. Thus, X, is a nontrivial solution
c d a —cb+da 0

of Ax = 0. So, in all cases, the equation Ax = 0 has more than one solution. This is impossible when A
is invertible (by Theorem 5), so A is not invertible.

d -b bl [da-b 0
@ oo . Divide both sides by ad — be to get CA = 1.
—c allc d 0 —cb+ad

a bl d -b _|ad —bc 0
c dj-c al 0 —chb+da |
Divide both sides by ad — bc. The right side is 1. The left side is AC, because
1 a bl d -b _|a b 1 d -b _AC
ad-bc|c d|-c a ¢ dlad—-bc|—-c a
a. Interchange A and B in equation (1) after Example 6 in Section 2.1: row; (BA) = row; (B)-A. Then
replace B by the identity matrix: row, (A) = row; (IA) = row; (I)-A.

b. Using part (a), when rows 1 and 2 of A are interchanged, write the result as
row, (A) row,(1)-A row, (1)

row,(A) |=| row,(I)-A |=| row,(I) |A=EA (*)

row,(A) row,(1)-A row, (1)
Here, E is obtained by interchanging rows 1 and 2 of /. The second equality in (*) is a
consequence of the fact that row; (EA) = row; (E)-A.

c. Using part (a), when row 3 of A is multiplied by 5, write the result as
row, (A) row,(/)-A row, (1)
row,(A) |=| row,(I)-A |=| row,(I) |A=EA
5-row;(A) 5-row;(1)-A 5-row;(1)

Here, E is obtained by multiplying row 3 of / by 5.
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28. When row 2 of A is replaced by row,(A) — 3-row;(A), write the result as

row, (A) row,(/)-A
row, (A)—=3-row,(A) |=|row,(I)-A—=3-tow,(I)-A
row,(A) row,([)-A
row,(/)-A row, (1)
=|[row,(I)=3-row,(I)]-A |=|row,([)—=3-row,(I) |A=EA
row,([)-A row, (1)

Here, E is obtained by replacing row,(I) by row,(I) — 3-row,(/).
1 -3 1 0 1 -3 1 0 1 0 =31 1 0
29. [A I]= ~ - ~
4 -9 0 1 0 3 4 1 0 3 -4 1 0 1
A_l — _3 1
—4/3 1/3
36 1 O 1 2 1/3 0 1 2 1/73 0
30. (A I]= ~ ~
4 7 0 1 4 7 0 1 0 -1 -4/3 1

1 2 1/3 0] [1 o -7/3 2 A’l—_7/3 2
0 1 4/3 =1 (0o 1 4/3 -1 473 -1

1 0 =2 1 0 0 1 0 =2 1 0 0
3. [A I1=|-3 1 4 0 1 0(~/0 1 =2 3 1 0
2 -3 4 0 0 1|0 =3 8 =2 0
(1 0 =2 1 0 0 1 0 0 8 3 1
~l0 1 =2 3 1 0(~/0 1 0 10 4 1
o 0 2 7 3 o 0 2 7 3 1
1T 0 0o 8 3 1] 8 3 1
~l0 1 0 10 4 1. A'=]|10 4 1
0 0 1 7/2 3/2 1/2] 7/2 3/2 1/2
1 2 -1 1 0 0 1 2 -1 1 0 0
2.4 INN=|-4 =7 3 0 1 0|~(0 1 -1 4 1 0
-2 -6 0 0 1] |0 =2 2 2 0 1
1 2 -1 1 0 0
~10 1 -1 4 1 0 | . The matrix A is not invertible.
0 0 0 10 2 1
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1 0 O 0
-1 0 0
33. LetB=| 0 -1 1 ,and forj=1, ..., n, let a;, b;, and e; denote the jth columns of A, B,
10 0 - -1 1]
and /, respectively. Note that for j =1, ..., n — 1, a; — a;,, = ¢; (because a; and a;,; have the same

entries except for the jth row), b;=e¢;— e, anda,=b,=e,.
To show that AB = I, it suffices to show that Ab; = e; for eachj. Forj =1, ...,n -1,
Ab; = A(e; - ;1) = Ae;— A€ = 8 — ), = €
and Ab, = Ae, = a, = e,. Next, observe that a; = e; + - - - + e, for each j. Thus,
Ba,=B(e;+---+e,)=bj+---+Db,
=(j—ep) + (€1 —€u)+- -+ (e —€)+e,=¢
This proves that BA = I. Combined with the first part, this proves that B=A"".

Note: Students who do this problem and then do the corresponding exercise in Section 2.4 will appreciate
the Invertible Matrix Theorem, partitioned matrix notation, and the power of a proof by induction.

34. Let
‘1T 0 0 - O] 1 0 0 0 |
2 2 0 0 -1 1/2 0
A=|3 3 3 Of,andB=|0 -1/2 1/3
ln n n - nj | 0 0 —1/(n-1) 1/n]
and forj =1, ..., n, let a;, b;, and e; denote the jth columns of A, B, and I, respectively. Note that for
1
j=1,...,n-1, a;=jej+(j+1)ey, - - -+ne,a,=ne,b;= l_(ej —ejH), and b, =—e,,.
Jj n

To show that AB = I, it suffices to show that Ab; = e; for each j. Forj =1, ..., n—1,

1 1
AijA(?(ej—ej_H)j = 7(aj_aj+1)
e | o
= 7|:<Jej +(‘]+1)ej+1+"'+nen) - ((]+1)CJ+1++nen):|=7]eJ :ej'

Also, Ab, = A(le”) =la =e

n n-*
n n

Moreover,

Ba, = jBe +(j+1)Be, +...+nBe, = jb,+(j+1b

il +...+nb,

j+l
=(e;—e, )t(e, —e,)+...+(e, —e)+e =e,.

which proves that BA = I. Combined with the first part, this proves that B=A"".

Note: If you assign Exercise 34, you may wish to supply a hint using the notation from Exercise 33:
Express each column of A in terms of the columns ey, ..., e, of the identity matrix. Do the same for B.
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35.

36.

37.

38.

39.

40.

Row reduce [A es3]:

-1 -7 -3 o| |1 7 3 o (1 7 3 0] |1 O 3 O |1 O O 3
2 15 6 0|~j0 1 0 0(~0 1 O O|~/0 1 O O|~|0 1 0 O
1 3 2 1,10 4 -1 1, |10 O -1 1| (O O 1 -1} |0 O 1 -1

3
Answer: The third column of A" is | 0.
-1

[M] Write B=[A F], where F consists of the last two columns of /5, and row reduce:
=25 -9 27 0 0 1 0 0 .1126 -.1559

B=|536 18 537 1 0| ~|0 1 0 -=5611 1.0077
154 52 143 0 1 0 0 1 .0828 -.1915

1126 —.1559
The last two columns of A are ~|—.5611 1.0077
.0828 —.1915
e 1 1 -1/, .
There are many possibilities for C, but C = L1 0 is the only one whose entries are 1, —1,

and 0. With only three possibilities for each entry, the construction of C can be done by trial and
error. This is probably faster than setting up a system of 4 equations in 6 unknowns. The fact that A
cannot be invertible follows from Exercise 25 in Section 2.1, because A is not square.

11 10

' 0 1 1 1
Write AD = A[d, d,] =[Ad, Ad,]. The structure of A shows that D = 0 0 and D = Lol

0 O 0 1

two possibilities. There are 9 possible answers. However, there is no 4x2 matrix C such that CA =
I,. If this were true, then CAX would equal x for all x in R*. This cannot happen because the columns
of A are linearly dependent and so Ax = 0 for some nonzero vector X. For such an x,

CAx = C(0) = 0. An alternate justification would be to cite Exercise 23 or 25 in Section 2.1.

.011 .003 .001 || 40 .62

y=Df=|.003 .009 .003|| 50 |=|.66 |.The deflections are .62 in., .66 in., and .52 in. at points
.001 .003 .011{|30 .52

1, 2, and 3, respectively.

[M] The stiffness matrix is D™'. Use an “inverse” command to produce
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-1 0
D‘I:% -1 4 -1
0 -1 3

To find the forces (in pounds) required to produce a deflection of .04 cm at point 3, most students
will use technology to solve Df = (0, 0, .04) and obtain (0, —4/3, 4).

Here is another method, based on the idea suggested in Exercise 42. The first column of D' lists the
forces required to produce a deflection of 1 in. at point 1 (with zero deflection at the other points).

Since the transformation y — D'y is linear, the forces required to produce a deflection of .04 cm at

point 3 is given by .04 times the third column of D, namely (.04)(100/3) times (0, -1, 3), or (0, —
4/3, 4) pounds.

41. To determine the forces that produce deflections of .07, .12, .16, and .12 cm at the four points on the
beam, use technology to solve Df =y, where y = (.07, .12, .16, .12). The forces at the four points are
.95, 6.19, 11.43, and 3.81 newtons, respectively.

42. [M] To determine the forces that produce a deflection of .22 cm at the second point on the beam, use
technology to solve Df =y, where y = (0, .22, 0, 0). The forces at the four points are —10.476,
31.429,

—10.476, and 0 newtons, respectively (to three significant digits). These forces are .22 times the

entries in the second column of D™'. Reason: The transformation y —> D'y is linear, so the forces
required to produce a deflection of .22 cm at the second point are .22 times the forces required to
produce a deflection of 1 cm at the second point. These forces are listed in the second column of D"

Another possible discussion: The solution of Dx = (0, 1, 0, 0) is the second column of D
Multiply both sides of this equation by .22 to obtain D(.22x) = (0, .22, 0, 0). So .22x is the solution
of Df = (0, .22, 0, 0). (The argument uses linearity, but students may not mention this.)

Note: The Study Guide suggests using gauss, swap, bgauss, and scale to reduce [A ]
because I prefer to postpone the use of ref (or rref) until later. If you wish to introduce ref now,
see the Study Guide’s technology notes for Sections 2.8 or 4.3. (Recall that Sections 2.8 and 2.9 are only
covered when an instructor plans to skip Chapter 4 and get quickly to eigenvalues.)

2.3 SOLUTIONS

Notes: This section ties together most of the concepts studied thus far. With strong encouragement from
an instructor, most students can use this opportunity to review and reflect upon what they have learned,
and form a solid foundation for future work. Students who fail to do this now usually struggle throughout
the rest of the course. Section 2.3 can be used in at least three different ways.

(1) Stop after Example 1 and assign exercises only from among the Practice Problems and Exercises
1 to 28. I do this when teaching “Course 3” described in the text's “Notes to the Instructor. ” If you did not
cover Theorem 12 in Section 1.9, omit statements (f) and (i) from the Invertible Matrix Theorem.

(2) Include the subsection “Invertible Linear Transformations” in Section 2.3, if you covered Section
1.9. I do this when teaching “Course 1” because our mathematics and computer science majors take this
class. Exercises 29—40 support this material.

(3) Skip the linear transformation material here, but discusses the condition number and the
Numerical Notes. Assign exercises from among 1-28 and 41-45, and perhaps add a computer project on
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the condition number. (See the projects on our web site.) I do this when teaching “Course 2” for our
engineers.

The abbreviation IMT (here and in the Study Guide) denotes the Invertible Matrix Theorem (Theorem
8).

1. The columns of the matrix { } are not multiples, so they are linearly independent. By (e) in

the IMT, the matrix is invertible. Also, the matrix is invertible by Theorem 4 in Section 2.2 because
the determinant is nonzero.

-4 2
2. The fact that the columns of { 6 } are multiples of each other is one way to show that this matrix

is not invertible. Another is to check the determinant. In this case it is easily seen to be zero. By
Theorem 4 in Section 2.2, the matrix is not invertible.

3. Row reduction to echelon form is trivial because there is really no need for arithmetic calculations:
3 0 0 3 0 0 5 0 0

-3 4 0|~|0 -4 O0|~|0 -4 0| The 3x3 matrix has 3 pivot positions and hence is
8 5 3 0o 5 3 0O 0 3
invertible, by (c) of the IMT. [Another explanation could be given using the transposed matrix. But
see the note below that follows the solution of Exercise 14.]

-5 1 4
4. Thematrix | 0 0 0| cannot row reduce to the identity matrix since it already contains a row of
14 9
zeros. Hence the matrix is not invertible (or singular) by (b) in the IMT.
3 0 -3
S. Thematrix | 2 0 4| obviously has linearly dependent columns (because one column is zero),
-4 0 7

and so the matrix is not invertible (or singular) by (e) in the IMT.

-3 -6 1 -3 -6 1 -3 -6 1 -3 -6
6.1 0 4 3|~|0 4 3|]~10 4 3|~/0 4 3
-3 6 0 0 -3 -18 0 1 6 0 0 -21

The matrix is invertible because it is row equivalent to the identity matrix.

1 3 0 171 =3 0 11 [-1 =3 0 1
3 5 8 3/ |0 4 8 0/ |0 -4 8 0
12 % 3 2o 0o 30710 o 3 0
0 -1 2 1/ ]0o =1t 2 1] ]lo o o0 1

The 4x4 matrix has four pivot positions and so is invertible by (c) of the IMT.
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8. The 4x4 matrix

S O O W

9. [M] Using technology,

The 4x4 matrix is invertible because it has four pivot positions, by (c) of the IMT.

5

10. [M]

[ <BENCREEN BN

1
S O O W

0

The 5x5 matrix is invertible because it has five pivot positions, by (c) of the IMT.

11.

3

wm N W B

c o r W

0

1
.8
0
1

0

4 7 4
1 4 6
0 2 8
0 0 1
4 0 =3 711 0 0 0
%6 9 9 9/ /0 10 0
5 10 19/ [0 o 1 ol
1 2 4 -1/ (0o 0 0 1
7 9] [5 3 1 7 9
8§ 8| |0 4 8 -4 -188
10 9[~l0 8 16 2 236
9 5| |0 6 22 216 -212
11 4] o 2 4 -2 -104
7 9] [5 3 1 7
—4 -188| |0 4 8 -4 -188
1 34[~l0 0 1 -21 7
21 71 lo 0 o 1 34
o -0 o0 o0 -l

23

Solutions

103

is invertible because it has four pivot positions, by (c) of the IMT.

9]

. True, by the IMT. If statement (d) of the IMT is true, then so is statement (b).

False. Statement (g) of the IMT is true only for invertible matrices.

a
b. True. If statement (h) of the IMT is true, then so is statement (e).
c.
d

. True, by the IMT. If the equation Ax = 0 has a nontrivial solution, then statement (d) of the IMT

is false. In this case, all the lettered statements in the IMT are false, including statement (c),

which means that A must have fewer than n pivot positions.

®

statement (a) must also be false.

12.

o B0 T

True, by the IMT. If A" is not invertible, then statement (1) of the IMT is false, and hence

True. If statement (k) of the IMT is true, then so is statement ( j). Use the first box after the IMT.
. False. Notice that (i) if the IMT uses the work onto rather than the word into.
True. If statement (e) of the IMT is true, then so is statement (h).

. False. Since (g) if the IMT is true, so is (f).
. False, by the IMT. The fact that there is a b in R" such that the equation Ax = b is consistent, does

not imply that statement (g) of the IMT is true, and hence there could be more than one solution.

Note: The solutions below for Exercises 13-30 refer mostly to the IMT. In many cases, however, part or

all of an acceptable solution could also be based on various results that were used to establish the IMT.

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



104 CHAPTER2 < Matrix Algebra

13. If a square upper triangular nxn matrix has nonzero diagonal entries, then because it is already in
echelon form, the matrix is row equivalent to /, and hence is invertible, by the IMT. Conversely, if
the matrix is invertible, it has # pivots on the diagonal and hence the diagonal entries are nonzero.

14. If A is lower triangular with nonzero entries on the diagonal, then these n diagonal entries can be
used as pivots to produce zeros below the diagonal. Thus A has n pivots and so is invertible, by the
IMT. If one of the diagonal entries in A is zero, A will have fewer than n pivots and hence be
singular.

Notes: For Exercise 14, another correct analysis of the case when A has nonzero diagonal entries is to
apply the IMT (or Exercise 13) to A”. Then use Theorem 6 in Section 2.2 to conclude that since A" is
invertible so is its transpose, A. You might mention this idea in class, but I recommend that you not spend
much time discussing A" and problems related to it, in order to keep from making this section too lengthy.
(The transpose is treated infrequently in the text until Chapter 6.)

If you do plan to ask a test question that involves A" and the IMT, then you should give the students
some extra homework that develops skill using A”. For instance, in Exercise 14 replace “columns” by
“rows.” Also, you could ask students to explain why an nxn matrix with linearly independent columns
must also have linearly independent rows.

15. Part (h) of the IMT shows that a 4x4 matrix cannot be invertible when its columns do not span R*.

16. If A is invertible, so is A", by (1) of the IMT. By (e) of the IMT applied to A", the columns of A™ are
linearly independent.

17. If A has two identical columns then its columns are linearly dependent. Part (e) of the IMT shows that
A cannot be invertible.

18. If A contains two identical rows, then it cannot be row reduced to the identity because subtracting
one row from the other creates a row of zeros. By (b) of the IMT, such a matrix cannot be invertible.

19. By (e) of the IMT, D is invertible. Thus the equation Dx = b has a solution for each b in R’, by (g) of
the IMT. Even better, the equation Dx = b has a unique solution for each b in R’ by Theorem 5 in
Section 2.2. (See the paragraph following the proof of the IMT.)

20. By (g) of the IMT, A is invertible. Hence, each equation Ax = b has a unique solution, by Theorem 5
in Section 2.2. This fact was pointed out in the paragraph following the proof of the IMT.

21. The matrix C cannot be invertible, by Theorem 5 in Section 2.2 or by the box following the IMT. So
(h) of the IMT is false and the columns of C do not span R".

22. By the box following the IMT, E and F are invertible and are inverses. So FE = [ = EF, and so E and
F commute.

23. Statement (g) of the IMT is false for F, so statement (d) is false, too. That is, the equation Fx = 0 has
a nontrivial solution.

24. Statement (b) of the IMT is false for G, so statements (e) and (h) are also false. That is, the columns
of G are linearly dependent and the columns do not span R".

25. Suppose that A is square and AB = [. Then A is invertible, by the (k) of the IMT. Left-multiplying
each side of the equation AB = I by A™', one has

A'AB=A"", IB=A"', andB=A".

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



2.3 e+ Solutions 105

By Theorem 6 in Section 2.2, the matrix B (which is A7) is invertible, and its inverse is (A7),
which is A.

26. If the columns of A are linearly independent, then since A is square, A is invertible, by the IMT. So
A?, which is the product of invertible matrices, is invertible. By the IMT, the columns of A* span R”.

27. Let W be the inverse of AB. Then ABW =1 and A(BW) = I. Since A is square, A is invertible, by (k) of
the IMT.

Note: The Study Guide for Exercise 27 emphasizes here that the equation A(BW) = I, by itself, does not
show that A is invertible. Students are referred to Exercise 38 in Section 2.2 for a counterexample.
Although there is an overall assumption that matrices in this section are square, I insist that my students
mention this fact when using the IMT. Even so, at the end of the course, I still sometimes find a student
who thinks that an equation AB = [ implies that A is invertible.

28. Let W be the inverse of AB. Then WAB = I and (WA)B = I. By (j) of the IMT applied to B in place of
A, the matrix B is invertible.

29. Since the transformation x — Ax is one-to-one, statement (f) of the IMT is true. Then (i) is also true
and the transformation x — Ax does map R" onto R". Also, A is invertible, which implies that the
transformation x > Ax is invertible, by Theorem 9.

30. Since the transformation x — Ax is not one-to-one, statement (f) of the IMT is false. Then (i) is also
false and the transformation x — Ax does not map R" onto R". Also, A is not invertible, which
implies that the transformation x — Ax is not invertible, by Theorem 9.

31. Since the equation Ax = b has a solution for each b, the matrix A has a pivot in each row (Theorem 4
in Section 1.4). Since A is square, A has a pivot in each column, and so there are no free variables in
the equation Ax = b, which shows that the solution is unique.

Note: The preceding argument shows that the (square) shape of A plays a crucial role. A less revealing
proof is to use the “pivot in each row” and the IMT to conclude that A is invertible. Then Theorem 5 in
Section 2.2 shows that the solution of Ax = b is unique.

32. If Ax = 0 has only the trivial solution, then A must have a pivot in each of its n columns. Since A is
square (and this is the key point), there must be a pivot in each row of A. By Theorem 4 in Section
1.4, the equation Ax = b has a solution for each b in R".
Another argument: Statement (d) of the IMT is true, so A is invertible. By Theorem 5 in Section
2.2, the equation Ax = b has a (unique) solution for each b in R".

-5 9
33. (Solution in Study Guide) The standard matrix of T'is A :{ 4 7}, which is invertible because

det A # 0. By Theorem 9, the transformation T is invertible and the standard matrix of T isA™.

7 9
From the formula for a 2x2 inverse, A~ = L 5}. So

1 7 9| x
T (x,xy)= =(7x,+9x,,4x +5x,)
4 5| x
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34.

35.

36.

37.

38.

39.

40.

2 -8
The standard matrix of T'is A ={ ) 7}, which is invertible because det A = -2 # (. By Theorem

7 8
9, T is invertible, and T_l(x) = Bx, where B=A"' = —%{2 2} . Thus

4 1|7 8| x 7
T (xl,x2)=—5 2 2l = —5x1—4x2,—xl—x2

(Solution in Study Guide) To show that T is one-to-one, suppose that T(u) = 7(v) for some vectors u
and v in R". Then S(7(u)) = S(T(v)), where S is the inverse of 7. By Equation (1), u = S(7(u)) and
S(T(v)) = v, sou =v. Thus T is one-to-one. To show that 7'is onto, suppose y represents an arbitrary
vector in R" and define x = S(y). Then, using Equation (2), 7(x) = T(S(y)) =y, which shows that T
maps R" onto R".

Second proof: By Theorem 9, the standard matrix A of T is invertible. By the IMT, the columns of A

are linearly independent and span R". By Theorem 12 in Section 1.9, T is one-to-one and maps R"
onto R".

Let A be the standard matrix of 7. By hypothesis, T is not a one-to-one mapping. So, by Theorem 12
in Section 1.9, the standard matrix A of 7 has linearly dependent columns. Since A is square, the
columns of A do not span R". By Theorem 12, again, T cannot map R" onto R".

Let A and B be the standard matrices of 7 and U, respectively. Then AB is the standard matrix of the
mapping X+ T(U(X)) , because of the way matrix multiplication is defined (in Section 2.1). By
hypothesis, this mapping is the identity mapping, so AB = I. Since A and B are square, they are
invertible, by the IMT, and B = A™'. Thus, BA = I. This means that the mapping X > U(T'(x)) is the

identity mapping, i.e., U(T(x)) = x for all x in R".

Given any v in R", we may write v = T(x) for some x, because 7 is an onto mapping. Then, the
assumed properties of S and U show that S(v) = S(T(x)) = x and U(v) = U(T(x)) = X. So S(v) and U(v)
are equal for each v. That is, S and U are the same function from R" into R".

If 7 maps R" onto R", then the columns of its standard matrix A span R", by Theorem 12 in Section
1.9. By the IMT, A is invertible. Hence, by Theorem 9 in Section 2.3, T is invertible, and A7'is the
standard matrix of 7. Since A™' is also invertible, by the IMT, its columns are linearly independent
and span R". Applying Theorem 12 in Section 1.9 to the transformation 7', we conclude that 7' is a
one-to-one mapping of R" onto R".

Given u, vin R", let x = S(u) and y = S(v). Then T(x)=7(S(u)) = u and T(y) = T(S(v)) = v, by
equation (2). Hence

Su+v)=STX)+T(y))

=S(T(x+Yy)) Because T is linear
=x+y By equation (1)
=S)+S(v)

So, § preserves sums. For any scalar r,
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S(ru)=S(Tx)=S(T(rx)) BecauseT islinear
=rXx Byequation (1)
=rS(u)

So S preserves scalar multiples. Thus S is a linear transformation.

[M] a. The exact solution of (3) is x; = 3.94 and x, = .49. The exact solution of (4) is x; = 2.90 and
x, = 2.00.

b. When the solution of (4) is used as an approximation for the solution in (3) , the error in using the
value of 2.90 for x; is about 26%, and the error in using 2.0 for x, is about 308%.

c¢. The condition number of the coefficient matrix is 3363. The percentage change in the solution
from (3) to (4) is about 7700 times the percentage change in the right side of the equation. This is
the same order of magnitude as the condition number. The condition number gives a rough
measure of how sensitive the solution of Ax =b can be to changes in b. Further information about
the condition number is given at the end of Chapter 6 and in Chapter 7.

Note: See the Study Guide’s MATLAB box, or a technology appendix, for information on condition
number. Only the TI-83+ and TI-89 lack a command for this.

42

43.

[M] MATLAB gives cond(4) = 10, which is approximately 10'. If you make several trials with
MATLAB, which records 16 digits accurately, you should find that x and x; agree to at least 14 or 15
significant digits. So about 1 significant digit is lost. Here is the result of one experiment. The
vectors were all computed to the maximum 16 decimal places but are here displayed with only four
decimal places:

.9501 -1.4219 19501
2311 6.2149 o 2311
x =rand(4,1) = ,b=Ax= . The MATLAB solution is x; = A\b = .

.6068 20.7973 .6068
4860 1.4535 4860

-.2220

-.2220 s ) )

However, x — x; = 0 x107°. The computed solution X, is accurate to about
—.1665

14 decimal places.

[M] MATLAB gives cond(A) = 69,000. Since this has magnitude between 10* and 10°, the
estimated accuracy of a solution of Ax = b should be to about four or five decimal places /ess than
the 16 decimal places that MATLAB usually computes accurately. That is, one should expect the
solution to be accurate to only about 11 or 12 decimal places. Here is the result of one experiment.
The vectors were all computed to the maximum 16 decimal places but are here displayed with only
four decimal places:

8214 ] [19.8965 | [.8214]
4447 6.8991 4447
x =rand(5,1) = | .6154 |, b=Ax=|26.0354 |. The MATLAB solution is x; = A\b =| .6154 |.
7919 0.7861 7919
.9218 | 22.4242 | 1.9218 |
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[ —1679|
3578

However, x —x; = | —1775 |x107"". The computed solution x; is accurate to about 11 decimal
—-.0084

.0002 |

places.

44. [M] Solve Ax= (0,0, 0, 0, 1). MATLAB shows that cond(A) = 4.8x10°. Since MATLAB

computes numbers accurately to 16 decimal places, the entries in the computed value of x should be
accurate to at least 11 digits. The exact solution is (630, —12600, 56700, —88200, 44100).

45. [M] Some versions of MATLAB issue a warning when asked to invert a Hilbert matrix of order 12
or larger using floating-point arithmetic. The product AA™" should have several off-diagonal entries
that are far from being zero. If not, try a larger matrix.

Note: All matrix programs supported by the Study Guide have data for Exercise 45, but only MATLAB
and Maple have a single command to create a Hilbert matrix.

Notes: The Study Guide for Section 2.3 organizes the statements of the Invertible Matrix Theorem in a
table that imbeds these ideas in a broader discussion of rectangular matrices. The statements are arranged
in three columns: statements that are logically equivalent for any mxn matrix and are related to existence
concepts, those that are equivalent only for any nxn matrix, and those that are equivalent for any nxp
matrix and are related to uniqueness concepts. Four statements are included that are not in the text’s
official list of statements, to give more symmetry to the three columns. You may or may not wish to
comment on them.

I believe that students cannot fully understand the concepts in the IMT if they do not know the correct
wording of each statement. (Of course, this knowledge is not sufficient for understanding.) The Study
Guide’s Section 2.3 has an example of the type of question I often put on an exam at this point in the
course. The section concludes with a discussion of reviewing and reflecting, as important steps to a
mastery of linear algebra.

2.4 SOLUTIONS

Notes: Partitioned matrices arise in theoretical discussions in essentially every field that makes use of
matrices. The Study Guide mentions some examples (with references).

Every student should be exposed to some of the ideas in this section. If time is short, you might omit
Example 4 and Theorem 10, and replace Example 5 by a problem similar to one in Exercises 1-10. (A
sample replacement is given at the end of these solutions.) Then select homework from Exercises 1-13,
15, and 21-24.

The exercises just mentioned provide a good environment for practicing matrix manipulation. Also,
students will be reminded that an equation of the form AB = I does not by itself make A or B invertible.
(The matrices must be square and the IMT is required.)

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



2.4 e+ Solutions 109

1. Apply the row-column rule as if the matrix entries were numbers, but for each product always write
the entry of the left block-matrix on the /eft.

I 0||A B| |IA+0C IB+0OD| | A B
E I||C D| |EA+IC EB+ID| |EA+C EB+D
2. Apply the row-column rule as if the matrix entries were numbers, but for each product always write
the entry of the left block-matrix on the /eft.

E O0||P Q| |EP+OR EQ+0S| |EP EQ
0 FI||[R S| |OP+FR O0Q+FS| |FR FS
3. Apply the row-column rule as if the matrix entries were numbers, but for each product always write
the entry of the left block-matrix on the left.

0 I\|A B| |0A+IC 0B+ID| |C D
I 0]|[C D| |IA+0C IB+0D| |A B
4. Apply the row-column rule as if the matrix entries were numbers, but for each product always write
the entry of the left block-matrix on the left.

1 olf[w X| [W+0y IX+0Z | [ W X
-E I||Y Z]| |-EW+IY -EX+IZ| |-EW+Y -EX+Z

5. Compute the left side of the equation:

A B|[1I 0] [AI+BX AO+BY
|C of|x Y| |[cI+0X CO+0Y

Set this equal to the right side of the equation:
[A+BX BY 0 I A+BX =0 BY=1I
= so that
e 0 } {Z } c=Z7 0=0
Since the (2, 1) blocks are equal, Z = C. Since the (1, 2) blocks are equal, BY = 1. To proceed further,

assume that B and Y are square. Then the equation BY =/ implies that B is invertible, by the IMT, and
Y = B™. (See the boxed remark that follows the IMT.) Finally, from the equality of the (1, 1) blocks,

BX=-A, B'BX=B"'(-A), and X=-B'A.
The order of the factors for X is crucial.

Note: For simplicity, statements (j) and (k) in the Invertible Matrix Theorem involve square matrices
C and D. Actually, if A is nxn and if C is any matrix such that AC is the nxn identity matrix, then C must
be nxn, too. (For AC to be defined, C must have n rows, and the equation AC = [ implies that C has n
columns.) Similarly, DA = I implies that D is nxn. Rather than discuss this in class, I expect that in
Exercises 5-8, when students see an equation such as BY = I, they will decide that both B and Y should be
square in order to use the IMT.

6. Compute the left side of the equation:
X 0fA 0| [XA+0B X0+0C| | XA 0
Y Z||B C| |YA+ZB Y0+ZC| |YA+ZB ZC

Set this equal to the right side of the equation:
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XA 0 I 0 XA=1 0=0
= so that
{YA+ZB ZC} {0 I} YA+ZB=0 ZC=1

To use the equality of the (1, 1) blocks, assume that A and X are square. By the IMT, the equation

XA =I implies that A is invertible and X = A", (See the boxed remark that follows the IMT.)
Similarly, if C and Z are assumed to be square, then the equation ZC = [ implies that C is invertible,
by the IMT, and Z = C"'. Finally, use the (2, 1) blocks and right-multiplication by A™":

YA=-ZB=-C'B, YAA'=(-C'B)A™", and Y=-C"'BA"
The order of the factors for Y is crucial.

7. Compute the left side of the equation:

A Z
X 0 0 0 ol XA+0+0B XZ+0+01I
Y 0 I | YA+O0+IB YZ+O0+1I

Set this equal to the right side of the equation:

XA XZ I 0 XA=1 XZ=0
= so that
YA+B YZ+1 0 I YA+B=0 YZ+I1=1

To use the equality of the (1, 1) blocks, assume that A and X are square. By the IMT, the equation XA
=/ implies that A is invertible and X = A”'. (See the boxed remark that follows the IMT) Also, X is
invertible. Since XZ =0, X 'XZ = X"'0=0, so Z must be 0. Finally, from the equality of the (2, 1)
blocks, YA = —B. Right-multiplication by A" shows that YAA™ = —BA™ and Y = —BA™". The order of
the factors for Y is crucial.

8. Compute the left side of the equation:
A B|[X Y Z| [AX+B0 AY+B0 AZ+BI
10 1[0 0 1| |0X+I0 OY+I0 0Z+1I

Set this equal to the right side of the equation:

[AX AY AZ+B| [I 0 0
0 0 I |0 0 1

To use the equality of the (1, 1) blocks, assume that A and X are square. By the IMT, the equation XA
=] implies that A is invertible and X = A™". (See the boxed remark that follows the IMT. Since AY =
0, from the equality of the (1, 2) blocks, left-multiplication by A gives A"AY = A0 =0, so Y = 0.
Finally, from the (1, 3) blocks, AZ = —B. Left-multiplication by A™' gives A'AZ = A™'(-B), and Z = —
A™'B. The order of the factors for Z is crucial.

Note: The Study Guide tells students, “Problems such as 5-10 make good exam questions. Remember to
mention the IMT when appropriate, and remember that matrix multiplication is generally not
commutative.” When a problem statement includes a condition that a matrix is square, I expect my
students to mention this fact when they apply the IMT.
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9. Compute the left side of the equation:

10.

11.

1 0 O|[B, B,| [IB,+0By,+0B;,  IB,+0B,,+0B;,

Ay I 0| By By |=|AyB), +1B, +0B;y; A, B, +1By, +0B;,
Ay O I By By Ay B, +0B,, + 1By, Ay B, +0By, + 1B,
Set this equal to the right side of the equation:
By, B, G, Gy
Ay B +By,  AyB,+By =] 0 Gy
| Ay By + By, Ay B, + By, 0 Gy
B, =C, B, =C),
so that A, B,, +B,, =0 A, B, +B,, =C,,
Ay B +B; =0 Ay B, + By, =Gy,

¢ Solutions 111

Since the (2,1) blocks are equal, A,,B,, + B,; =0and A,,B,, =—B,,. Since B, is invertible, right

multiplication by B;' gives A,, =—B,,B;,. Likewise since the (3,1) blocks are equal,

A, B, + B;, =0 and A, B,, =—B,,. Since By, is invertible, right multiplication by

Bfll gives Ay, = —B3lel1. Finally, from the (2,2) entries,
. -1 -1
Ay B, + By, =Cy. Since Ay =—B,,B,;,Cy, ==B,, B B, + By,.

Since the two matrices are inverses,

(7 0o olfr o o] [T 0 O
A I O|lP I 0l|=|0 I 0
B D I)|lO0 R I| [0 0 I

Compute the left side of the equation:

Set this equal to the right side of the equation:
1 0 0 I 0 0
A+P I 0
|B+DP+Q D+R I 0
0

1

1=1
A+P=0
B+DP+0Q0=0 D+R=0 I=1

so that

(1 0 o)1 0o 0] [IT+0P+0Q I0+0/+0R I0+00+0I
A I O|P I 0|=|AI+IP+0Q AO+II+0R A0+I10+0/
B D I)||OQ R 1| |BI+DP+IQ BO+DI+IR BO+DO+II

Since the (2,1) blocks are equal, A+ P =0and P=—-A. Likewise since the (3, 2) blocks are equal,
D+ R=0 and R=-D. Finally, from the (3,1) entries, B+ DP+Q=0and Q =—B—DP.

Since P=—A, Q=-B—-D(-A)=-B+DA.

a. True. See the subsection Addition and Scalar Multiplication.

b. False. See the paragraph before Example 3.
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12. a. False. The both AB and BA are defined.
b. False. The R" and Q" also need to be switched.
13. You are asked to establish an if and only if statement. First, supose that A is invertible,

D FE
and let A™! ={ } . Then
F G

B 0||D E _|BD BE| |1 0
0 C||F G| |cF ¢cG| |0 I
Since B is square, the equation BD = [ implies that B is invertible, by the IMT. Similarly, CG =1

implies that C is invertible. Also, the equation BE = 0 imples that E = B'0=0. Similarly F = 0.
Thus

S S AR S

This proves that A is invertible only if B and C are invertible. For the “if ” part of the statement,

suppose that B and C are invertible. Then (*) provides a likely candidate for A" which can be used
to show that A is invertible. Compute:

P A A T

Since A is square, this calculation and the IMT imply that A is invertible. (Don’t forget this final
sentence. Without it, the argument is incomplete.) Instead of that sentence, you could add the
equation:

B' o (B o] |B'B 0 | [I 0
o c'lo ¢]| o c'c|lo1
14. You are asked to establish an if and only if statement. First suppose that A is invertible. Example 5

shows that A;; and A,, are invertible. This proves that A is invertible only if A|| A, are invertible. For
the if part of this statement, suppose that A, and A,, are invertible. Then the formula in Example 5

provides a likely candidate for A™" which can be used to show that A is invertible . Compute:

Ay Ay llAT -ALALAS, ApAT+ALD A (—ATDA L AQ+ AL AL
0 Ayl 0 A3 0A [ +450  O-A[DA,An+AnAs,

_ 1 _(A11A1_11)A12AZ+A12A;
0 I

__I —ApAn+ALAY |10
0 I 0 1

Since A is square, this calculation and the IMT imply that A is invertible.

15. The column-row expansions of G, and G, are:
G, =X X kT

=col, (X, )row, (X[ )+--+col (X, )row, (X])
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and
G = Xk+1X1<T+1
= COl, (X, ) TOW, (X () + -+ 0l (X4 ) 1ow (X)) +coly (X Tow, (X [)
=col, (X, )row, (X ) +-+col, (X, )row, (X, ) +col, (X, )row, (X} )
=Gy + 00l (X ) 10w, (X))
since the first k columns of X}, are identical to the first k columns of X,. Thus to update G, to
produce Gy, the matrix colg,; (Xii1) TOWryg (XkT ) should be added to G;.

Compute the right side of the equation:

(1 0][A, o1 Y| [ A, o|1 Y] | A ALY
x I1)l0 s|lo 1] [xA, S|l0 I] |XA, XAyY+S

Set this equal to the left side of the equation:

_Au AnY _ Ay Ap 5o that A=Ay ApY=A4,,
_XA“ XA“Y+S A21 A22 XA11:A21 XA“Y+S:A22

Since the (1, 2) blocks are equal, A,,Y = A,. Since Ay, is invertible, left multiplication by Afll gives
Y= Al_l1 A,,. Likewise since the (2,1) blocks are equal, X A;; = A,;. Since A, is invertible, right

multiplication by A} gives that X = A,,A". One can check that the matrix § as given in the exercise
satisfies the equation XA ,Y + S = A,, with the calculated values of X and Y given above.

Suppose that A and A, are invertible. First note that

1 o)1 o] [1 0
X I||-x 1] |0 I

1oYl[r -y] [1 0
o 1]Jlo 1] |0 I

. . I 0 I Y
Since the matrices and
X I

and

0 I

are square, they are both invertible by the IMT. Equation (7) may be left multipled by
-1

I o' . . I Y .
! and right multipled by 0 I to find

X
A, 0] [1 o‘lAI yT'
0 S| |x 1] |0 I
Ay Of. . . . . . .
Thus by Theorem 6, the matrix 0 s is invertible as the product of invertible matrices. Finally,

Exercise 13 above may be used to show that S is invertible.
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18. Since WZ[X XO],

, {XT} {XTX XTXO:I
wiw="_[[X x,1=

Xo XX XX
By applying the formula for S from Exercise 15, S may be computed:
S=xpx,-x, X(X"X)"'X"x,
=x, (I, - X(X"X)"X")x,

=x, Mx,
19. The matrix equation (8) in the text is equivalent to

(A-sl,)x+Bu=0 and Cx+u=y
Rewrite the first equation as (A — s/, )x = —Bu. When A - s/, is invertible,
x=(A—sl ) (~Bu)=—(A-sl,)"' Bu
Substitute this formula for x into the second equation above:
C(~(A-sI,)"'Bu)+u=y,sothat I, u—C(A—sl,)" Bu=y
Thus y=(/,, —C(A- sln)_1 Bu.lf W(s)=1, —C(A- sln)_1 B, then y =W(s)u. The matrix W(s) is

the Schur complement of the matrix A — s/, in the system matrix in equation (8)

20. The matrix in question is
A-BC-sI, B
a—
By applying the formula for S from Exercise 16, S may be computed:
S=1,-(-CYA-BC~-sl,)"'B
=1 +C(A-BC—-sl)"'B

2 e o]l O 0] [0 0+0| [1 0
T T2 a2 T 2= osr2| |0 1

N R 0] |A*+0  0+0 | [I 0
' |1 -AllI -A| | A—a 0+(—A)2_0 1

I, 0 0
22. Let C be any nonzero 2x2 matrix. Define M =| 0 I, 0 } . Then

m

c 0 -I,

I, 0 o], 0 0 L 0 o] [, 0 0
M*=l0 I, OO0 I, O1|= 0 I, Of=[0 I, 0
c 0 -L||lc 0o -L| |cC-Cc 0 L]| |0 O I,
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23. The product of two 1x1 “lower triangular” matrices is “lower triangular.” Suppose that for n = k, the
product of two kxk lower triangular matrices is lower triangular, and consider any (k+1)x (k+1)
matrices A; and B,. Partition these matrices as

T T
A1=a 0 . B = b 0
v A w B

where A and B are kxk matrices, v and w are in R, and @ and b are scalars. Since A, and B, are lower
triangular, so are A and B. Then

apo|a O|lp 0| _|ab+0w 0" +0'B) | a0
Uy Allw B vb+Aw  v0' + AB bv+Aw AB
Since A and B are kxk, AB is lower triangular. The form of A,B; shows that it, too, is lower

triangular. Thus the statement about lower triangular matrices is true for n = k +1 if it is true for n =
k. By the principle of induction, the statement is true for all n > 1.

Note: Exercise 23 is good for mathematics and computer science students. The solution of Exercise 23 in
the Study Guide shows students how to use the principle of induction. The Study Guide also has an
appendix on “The Principle of Induction,” at the end of Section 2.4. The text presents more applications
of induction in Section 3.2 and in the Supplementary Exercises for Chapter 3.

10 0 - 0] 1 0 0 - 0]
110 0 -1 1 0 0
24. Let A, =1 1 1 0|, B,=| 0 -1 1 0.
111 1] |0 S

By direct computation A,B, = I,. Assume that for n = k, the matrix A.By is I;, and write

1 0" 1 0
A = and B, =
v A w B,
where v and w are in R*, v/ = [11---1],andw’ =[-1 O --- 0]. Then
1 o |l1t o] |[1+0'w 0" +0'B, 10
AcaBiy = = T = =Ly
v A |lw B | |v+Aw v0O +AB | |0 [,
The (2,1)-entry is 0 because v equals the first column of A,., and A;w is —1 times the first column of
A;. By the principle of induction, A,B, = I, for all n > 2. Since A, and B, are square, the IMT shows

that these matrices are invertible, and B, = A"

Note: An induction proof can also be given using partitions with the form shown below. The details are
slightly more complicated.

A0 B, 0
Ak+l: VT 1 and Bk+l: WT 1
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For [ j=10, j<=19, j++,

ALl 1,7 11 = BI[I[ i-4, j-9 11 1 1; Colon suppresses
output.

A O
c. Tocreate B = {0 T} with MATLAB, build B out of four blocks:

A
B = [A zeros(20,20); zeros(30,30) A’]l;
Another method: first enter B = A ; and then enlarge B with the command
B(21:50, 31:50) = A’;
This places A" in the (2, 2) block of the larger B and fills in the (1, 2) and (2, 1) blocks with zeros.
For Maple:
B := matrix(50,50,0):
copyinto(A, B, 1, 1):
copyinto( transpose(aA), B, 21, 31):
For Mathematica:

B = BlockMatrix[ {{A, ZeroMatrix[20,20]}, ZeroMatrix[30,301],
Transpose[A]}} 1]

27. a. [M] Construct A from four blocks, say Cyi, Ci,, Cy1, and Cs,, for example with Cy; a 30x30
matrix and C,, a 20x20 matrix.

MATLAB: Cll = A(1:30, 1:30) + B(1:30, 1:30)
Cl2 = A(1:30, 31:50) + B(1:30, 31:50)
C21 = A(31:50, 1:30)+ B(31:50, 1:30)
C22 = A(31:50, 31:50) + B(31:50, 31:50)

C = [Cl1l Cl1l2; C21 C22]
The commands in Maple and Mathematica are analogous, but with different syntax. The first
commands are:

Maple: Cll := submatrix(a, 1..30, 1..30) + submatrix(B, 1..30,
1..30)

Mathematica: c¢11 := Takel A, {1,30), {1,30} 1 + Take[B, {1,30), {1,30}
1
b. The algebra needed comes from block matrix multiplication:
AB = {Au A12:||:Bll By, } _ |:AIIBII +AuBy  ABy, +ApBy }
Ay Ap By By Ay By +ApBy Ay By + ApBy,
Partition both A and B, for example with 30x30 (1, 1) blocks and 20x20 (2, 2) blocks. The four
necessary submatrix computations use syntax analogous to that shown for (a).

A 0 b
c. The algebra needed comes from the block matrix equation | "' X , where x;
a An X b,
and b, are in R” and X, and b, are in R*. Then Aj Xy = by, which can be solved to produce Xx;.
Once x; is found, rewrite the equation A, X; + A»X, = b, as ApX, = ¢, where ¢ = b, — A X, and
solve A»)X, = ¢ for x,.

Notes: The following may be used in place of Example 5:
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Example 5: Use equation (*) to find formulas for X, Y, and Z in terms of A, B, and C. Mention any
assumptions you make in order to produce the formulas.

B
Y Z||A B c I
Solution:
This matrix equation provides four equations that can be used to find X, Y, and Z:
X+0=1, 0=0
YI+7A = C, YO+ZB =1 (Note the order of the factors.)

The first equation says that X = I. To solve the fourth equation, ZB = I, assume that B and Z are
square. In this case, the equation ZB = I implies that B and Z are invertible, by the IMT. (Actually, it
suffices to assume either that B is square or that Z is square.) Then, right-multiply each side of ZB =1
to get ZBB' = IB™" and Z = B'. Finally, the third equationis Y + ZA = C.So, Y+ B'A=C,and Y =
C-BA.

The following counterexample shows that Z need not be square for the equation (*) above to be true.

1 0| 0 O
1 0|0 O O

0O 1] 0 O
0 0 0 O

1 1] 2 5|=
1 271 3 1

1 1|-1 -3
3 4|1 0 -1

1 -1 2 4

Note that Z is not determined by A, B, and C, when B is not square. For instance, another Z that

3 5 0
works in this counterexample is Z ={ I O} .

SOLUTIONS

Notes: Modern algorithms in numerical linear algebra are often described using matrix factorizations.
For practical work, this section is more important than Sections 4.7 and 5.4, even though matrix
factorizations are explained nicely in terms of change of bases. Computational exercises in this section
emphasize the use of the LU factorization to solve linear systems. The LU factorization is performed
using the algorithm explained in the paragraphs before Example 2, and performed in Example 2. The text
discusses how to build L when no interchanges are needed to reduce the given matrix to U. An appendix
in the Study Guide discusses how to build L in permuted unit lower triangular form when row
interchanges are needed. Other factorizations are introduced in Exercises 22-26.

1 0 O 3 -7 2 =7
. L=|-1 1 0[,U=|0 -2 -1|,b=| 5| First,solve Ly =b.
2 =5 1 0 0 -1 2

1 0 0 -7 1 0 0 -7
[L b]=|-1 1 0 5(~10 1 0 =2|. The only arithmetic is in column 4
2 =5 1 2 0O -5 1 16
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1 0 0 -7 -7
~0 1 0 21|, soy=|-2]|.
0 0 1 6 6

Next, solve Ux =y, using back-substitution (with matrix notation).
3 -7 =2 -7 3 -7 =2 -7 3 -7 0 -19
w yl=j0 -2 -1 -2(~10 -2 -1 2|~0 -2 0 -8
0O 0 -1 6 0 0 1 -6 0O 0 1 -6

3 -7 0 -19] [3 0 0 9 1 0
~l10 1 0 4/~l0 1 0 4/~l0 1 0 4|,Sox=| 4
0 0 1 -6/ |0 0 1 —-6] [0 O

—
|
o)
|
o)

To confirm this result, row reduce the matrix [A b]:
3 -7 =2 7] 1[3 -7 =2 -7][3 -1 =2 -7
[A b]=|-3 5 1 5(~|0 -2 -1 =2|~0 -2 -1 =2
6 -4 0 2| |0 10 4 16 0O 0 -1 6

From this point the row reduction follows that of [U y] above, yielding the same result.

1 0 0 2 -6 4 2
L=|-2 1 0,U=|0 -4 8 |,b=|—4|. First, solve Ly = b:
0 1 1 0 0 =2 6
1 0 0 2 1 0 0 2 2
[L b]=|-2 1 0 —4|~/0 1 0 O0f,soy=|0]|.
0 1 1 6 0 0 1 6 6

Next solve Ux =y, using back-substitution (with matrix notation):
2 -6 4 2 2 -6 0 14

[U y]l=|0 -4 8 0|~|0 -4 0 24
0O 0 2 6 0O 0 1 -3

2 0 0 -22 1 0 0 -11 -11
~l0 1 O —-6|~{0 1 0 -61,s0ox=| —6|.
0 0 1 -3 0O 0 1 =3 -3

To confirm this result, row reduce the matrix [A b]:
2 -6 4 2 2 -6 4 2

[A b]=|-4 8 0 —-4|~|0 -4 8 0
0 4 6 6 0O 0 -2 6

From this point the row reduction follows that of [U y] above, yielding the same result.

1 0 O 2 -4 2 6
L=|-2 1 0|,U={0 -3 6/|,b=|0].First,solve Ly =b:
3 -1 1 0 0 1 6
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1 0 0 6 1 00 6 1 00 6 6
[L b]=|-2 1 0 O0(~{0 1 0 12|~{0 1 O 12|, soy=|12].
3 -1 16 0 -1 1 -12 001 O 0

Next solve Ux =y, using back-substitution (with matrix notation):
2 4 2 6|12 -4 0 6| |2 0 0 -10] |1 0 O

-5
—4
0

U yl=|0 -3 6 12|~|0 -3 0 12|~|0 1 O —4|~0 1 0
0 0 1 0 0O 0 1 0 0 0 1 0 0 0 1
-5
sox= |—4/|.
0
1 0 0 1 -1 2 0
4. L=|1 1 0,U=|0 -2 -1|,b=|-5].First, solve Ly = b:
3 =5 1 0O 0 -6 7
1 0 0 O 1 0 0 O 1 0 0 0 0
[L b]=|1 1 0 -5|~|0 1 0 -5(~|0 1 0 -5|,soy=| -5].
3 -5 1 7 0o -5 1 7 0 0 1 -18 -18

Next solve Ux =y, using back-substitution (with matrix notation):
1 -1 2 0 1 -1 2 0 1 -1 0 -6
w yl=0 -2 -1 -5{~|0 -2 -1 -5|~|0 -2 0 =2
0 0 -6 -I8 o o0 1 3 o o0 1 3

1 -1 0 6] 1 0 0 -5 =5
~10 1 0 1110 1 0 1], sox=| 1
0 0 1 3 0 0 1 3 3
1 O 0 O 1 -2 -2 -3 1
3 1 0 O 0 -3 6 0 6 )
5. L= U = , b= . First solve Ly = b:
-1 0 1 0 0 0 2 4 0
-3 4 -2 1 0 0 0 1 3
1 O 0 0 1 1 0 0 0 1
3 1 0 0 6 0 1 0O 0 3
[L b]= ~
-1 0 1 0 O 0 0 1 0 1
-3 4 2 1 3 0 4 21 6
1 0 0 0 1 1 0 0 O 1
0 1 0 0 3 0O 1 0 O 3 3
~ ~ , S0y=
0 0 0 0O 0 1 O 1
0O 0 -2 1 -6 0O 0 01 4 —4

Next solve Ux =y, using back-substitution (with matrix notation):
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2.5

1

17/2

-11
], SO X

1 2 2 0
310 -3 6 0
17/ lo o 1 0
4l 1o 0o o 1

I

-2 0
6 0
2 0

1

38
16
17/2
—4

|

1 0 0 O 38
0 1 0 O 16
0 0 1 0 17/2
0 0 0 1 —4

6
16

17/2
—4

0
0
1

-2 0 0
1 0
0 1
0 0

i

6
4

-2 0 0

-3 0 0 48
0 1 0 17/2
0 0 1 -

1
0
“lo
0

=b:

]. First, solve Ly

y, using back-substitution (with

Next solve Ux

0
1
0
0 0 O

matrix notation):

l

N O AN ™
| o

|
o o o
o o — O
n on oo
— o O O
I — |
l
1
— O < o
on
|
o o o
2040
N on oo
- o O O
N — |
l
1

2 0 1
~ 0 12 0
1o 0 2 0 —4

0 1 3

{

(U vyl

33
-12

33

-12
, SO X

2

3

0 0 O
0 0
0
1

1
0
0 0 O
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2 5
7. Place the first pivot column of { } into L, after dividing the column by 2 (the pivot), then add

3/2 times row 1 to row 2, yielding U.

REETHER

9
-3 @]
2 +7/2

.o

1 10
, L=
{—3/2 J {—3/2 1}

8. Row reduce A to echelon form using only row replacement operations. Then follow the algorithm in
Example 2 to find L.

B g

i ﬁ
e
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1 1 0 0
-3 1 ,L=|-3 1 0
3 2 1 3 2 1
[ o0 4] [-5 0 4] [-5 0 4
10. A=|10 2 5|~ 0 (2) 3|~| 0 2 3|=U
|10 10 16 0 10 24 0 009
10
110 [10] [9)
+-5=+2+9
1 1 0 0
-2 1 ,L=[=2 1 0
2 5 1 -2 5 1
[® 7 2] [3 7 2] [3 7 2
11. A=| 6 19 4|-|0 (O 0|~|0 5 0|=U
-3 =2 3] |0 5 5/ [0 003
Sl
¢
-3 5 [@]
3 5 45
1 1 0 0
2 1 ,L={ 2 1 0
-1 1 1 -1 11

12. Row reduce A to echelon form using only row replacement operations. Then follow the algorithm in
Example 2 to find L. Use the last column of /5 to make L unit lower triangular.
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13.

14. A=

@ 3 212 3
A=| 4 13 9l-l0 (7

6 5 4] |0 14

©) |

110

6] |14

2] L=| 2

3 2 1 -3
3 -5 -3 3 -5
-5 8 4|0 @ 3
2 -5 -7/ |0 -10 15
4 7 5|10 2 -3

&

-10

S O O =

2

5/~10

2
5|=U
0
-3
1 .
0 =U No more pivots!
0

2| Use the last two columns of /, to make L unit lower triangular.

+-2

}

1 000

1 1 100
s 1 YT s s 1o
10 1 2 -1 0 1
@ 3 1 511 31
520 6 31 |0 (51
2 1 -1 -4| o 5 1
1 7 1 7| |0 10 2

S O B W

O O =

S O O W
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|
o] .
| [
-2 5
-1 10 | Use the last two columns of /, to make L unit lower triangular.
+1 =5
Lo
1 1 0 0 O
51 5100
2o e o
-1 2 0 1 -1 2 0 1

@0 5 27205 21205
15. A=|-6 3 -13 =3[~|0 ® 2 3|~|0 3 2
4 9 16 17| |0 9 6 13| [0 0 ©

| |

@ -
6 !
4191 @
+2 =3 =4
1 1 0 O
-3 1 , L=|-3 1 O
2 3 1 2 3
@ -3 4] [2 -3 4] [2 -3 4]
4 8 7/ 10 (2 1] |0 2 1
16. A=| 6 -5 14(~10 4 2|~10 0 0|=U
-6 9 -12 0 0O 0 0 0 0
L -6 19] |0 6 3| |0 0 0
@ -
—4
6 4
-6 0
L 8_ 6 Use the last three columns of /5 to make L unit lower triangular.
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+2 =2
! i ! 0 0 0 0]
-2 1 =2 1 0 0 0
3 2 , L= 3 2 1 0 0
-3 0 0 1 -3 0 0 1 0
| 4 3 0 0 1] | 4 3 0 0 1]
1 0 O 2 -6 4
17. L=|-2 1 0|, U=({0 -4 8| To find L™, use the method of Section 2.2; that is, row
0 1 1 0 0 -2
reduce [L 1]:
0O 0 1 0 O 1 0 O 1 0 O
[L I]1=|1-2 1 0 0 1 Of~/0 1 O 2 1 o|=[1 L',
0 1 1 0 0 1 0O 0 1 -2 -1 1
1 0 0
so L'=| 2 1 0]. Likewise to find U ', row reduce [U I]:
-2 -1 1
2 -6 4 1 0 O 2 -6 0O 1 0 2
[U 11=|10 -4 8 01 0|~|0 -4 0O 0 1 4
0 0 -2 0 0 1 0 0O -2 0 0 1
2 0 0 1 -=-3/2 —4 1 0 0 1/2 -=-3/4 -2
~l0 1 0 0 -1/4 -1|~{0 1 0 0 -1/4 ~1|=[1 U™,
0 0 1 0 0 -1/2 0 0 1 0 0 -1/2
1/2 -3/4 -2
soU'=| 0 -1/4 —1|.Thus
0 0 -1/2
1/2 -3/4 -2 1 0 O 3 5/4 -2
Al'=UuT'L'=| 0 -1/4 ~1{| 2 1 0|=|3/2 3/4 -1
0 0 -1/2|-2 -1 1 1 1/2 -1/2
1 0 O 2 -4 2
18. L=|-2 1 0,U=|0 -3 6| TofindL", rowreduce[L I]:
3 -1 1 0 0 1
1 0 0 1 0 O 1 0 0 1 0 O
[L I]: -2 1 0 0 1 0[~|0 1 0 2 1 0
3 -1 1 0 0 1 0O -1 1 -3 0 1
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1 00 1 0 0 1 0 0
~l0 1.0 2 1 0 :[1 L*‘],so c'=| 2 1 ol
0 0 1 -1 1 1 -1 1 1
Likewisetofind U™, rowreduce [U 1 ]
2 4 2 1 -4 0 1 0 2] [2 -4 0 1 0 -2
[U I1]=|0 -3 6 0 1 0 3 0 0 1 —6(~/0 1 0 0 -1/3 2
0O 0 1 0 0 1 0O 1 00 1/1]0 0 1 0 0 1
2 0 0 1 -4/3 6 1 0 0 1/2 =2/3 3
~10 1 0 0 —=1/3 2|~|0 1 0 0 -1/3 2|=[ U™,
0 0 1 0 0 1| |0 0 1 0 0 1
1/2 =2/3 3
soU'=] 0 -=1/3 2/|.Thus
0 0 1
1/2 =2/3 0 0] [-23/6 7/3 3
Al'=uT'C’'=| 0 -1/3 2| 2 1 O|=| -8/3 5/3 2
0 0 1f-1 1 1 -1 1 1

Let A be a lower-triangular » X n matrix with nonzero entries on the diagonal, and consider the

augmented matrix [A [].

a. The (1, 1)-entry can be scaled to 1 and the entries below it can be changed to 0 by adding
multiples of row 1 to the rows below. This affects only the first column of A and the first column
of . So the (2, 2)-entry in the new matrix is still nonzero and now is the only nonzero entry of
row 2 in the first n columns (because A was lower triangular). The (2, 2)-entry can be scaled to
1, the entries below it can be changed to 0 by adding multiples of row 2 to the rows below. This
affects only columns 2 and n + 2 of the augmented matrix. Now the (3, 3) entry in A is the only
nonzero entry of the third row in the first n columns, so it can be scaled to 1 and then used as a
pivot to zero out entries below it. Continuing in this way, A is eventually reduced to /, by scaling
each row with a pivot and then using only row operations that add multiples of the pivot row to
rows below.

b. The row operations just described only add rows to rows below, so the / on the right in [A []
changes into a lower triangular matrix. By Theorem 7 in Section 2.2, that matrix is A™".

Let A= LU be an LU factorization for A. Since L is unit lower triangular, it is invertible by Exercise
19. Thus by the Invertible Matrix Theroem, L may be row reduced to /. But L is unit lower triangular,
so it can be row reduced to / by adding suitable multiples of a row to the rows below it, beginning
with the top row. Note that all of the described row operations done to L are row-replacement
operations. If elementary matrices E;, E,, ... E, implement these row-replacement operations, then

E,..EEA=(E,..E,E)LU =IU =U

This shows that A may be row reduced to U using only row-replacement operations.
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21. (Solution in Study Guide.) Suppose A = BC, with B invertible. Then there exist elementary matrices
E, ..., E,corresponding to row operations that reduce B to /, in the sense that E, ... E\B=1.
Applying the same sequence of row operations to A amounts to left-multiplying A by the product E,
... E|. By associativity of matrix multiplication.

E,.EA=E,. . EBC=IC=C
so the same sequence of row operations reduces A to C.

22. First find an LU factorization for A. Row reduce A to echelon form using only row replacement

operations:
@ 4 2 3] [2 4 =2 3] [2 -4 =2 3]
6 -9 -5 o ® 1 -1/ (0 3 1 -1
A=| 2 -7 -3 ~l0 -3 -1 6/~j0 0 0 &
4 2 -2 -1 0o 6 2 0O 0 0 -5
-6 3 3 4, ([0 -9 -3 13] |0 O O 10]
2 -4 -2 3]
0 3 1 -1
~10 0 0 5|=U
0O 0 0 O
00 0 0]
then follow the algorithm in Example 2 to find L. Use the last two columns of /5 to make L unit lower
triangular.
Q)
6|[Q
211315
4 6||-5
6] -9/ |10
+2  +3 +5
bl
1 i 1 0 0 0 O]
3 1 3 1 0 0 O
1 -1 1 , L= 1 -1 0 0
2 2 -1 1 2 2 -1 10
-3 -3 2 0 1] -3 3 2 0 1]

Now notice that the bottom two rows of U contain only zeros. If one uses the row-column method to
find LU, the entries in the final two columns of L will not be used, since these entries will be
multiplied by zeros from the bottom two rows of U. So let B be the first three columns of L and let C
be the top three rows of U. That is,
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10 0
31 0 2 4 2 3
B=| 1 -1 1,c=0 3 1 -1
2 2 -l 0 0 0 5
3 3 2

Then B and C have the desired sizes and BC = LU = A. We can generalize this process to the case
where A is m X n, A= LU, and U has only three non-zero rows: let B be the first three columns of L
and let C be the top three rows of U.

a. Express each row of D as the transpose of a column vector. Then use the multiplication rule for
partitioned matrices to write

A=CD=[¢, ¢, ¢ ¢,] =cd! +c,d; +cd! +c,d]

which is the sum of four outer products.

b. Since A has 400 x 100 = 40000 entries, C has 400 x 4 = 1600 entries and D has 4 x 100 = 400
entries, to store C and D together requires only 2000 entries, which is 5% of the amount of entries
needed to store A directly.

Since Q is square and 0'0 =1, Q is invertible by the Invertible Matrix Theorem and 0" = Q" Thus

A is the product of invertible matrices and hence is invertible. Thus by Theorem 5, the equation

Ax = b has a unique solution for all b. From Ax = b, we have QRx = b, Q"ORx = Q0'b, Rx = Q'b, and

finally x = R'Q"b. A good algorithm for finding x is to compute Q’b and then row reduce the matrix

[R Q" ]. See Exercise 11 in Section 2.2 for details on why this process works. The reduction is fast

in this case because R is a triangular matrix.

A=UDV". Since Uand V" are square, the equations U’ U =1and V'V =1Iimply that U and V"
are invertible, by the IMT, and hence U™' = U" and (V')"' = V. Since the diagonal entries o;....,0,
in D are nonzero, D is invertible, with the inverse of D being the diagonal matrix with o} L, 0':1 on
the diagonal. Thus A is a product of invertible matrices. By Theorem 6, A is invertible and A™' =
wpvhH ' =Y'D'u'=vD'U".
If A= PDP', where P is an invertible 3 x 3 matrix and D is the diagonal matrix
2 0 0
D=0 3 0
0 0 1
then
A? =(PDP"YPDP"=PD(P'P)DP™' = PDIDP™' = PD* P!

and since
2 0 02 0 0] [4 0 O 4 0 0
D*=l0 3 0/l0 3 0|=|0 9 0|, A*=P|0 9 oO|P"
0 0 1fo o 1] |0 O 1 0 0 1
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27.

Likewise, A’ =PD’P -1 so

2> 0 0 8 0 0
AP=pl 0 3 olp'=prPl0 27 o|P"!
o o0 1P 0 0 1

In general, Af = PDkP’l, SO

20 0
A=pl 0 3* o|P!
0 0 1

First consider using a series circuit with resistance R, followed by a shunt circuit with resistance R,
for the network. The transfer matrix for this network is

1 olft -R] [ 1 R,
—~1/R, 1]|0 1 | |-1/R, (R +R,)/R,

For an input of 12 volts and 6 amps to produce an output of 9 volts and 4 amps, the transfer matrix
must satisfy

1 -R, 127] 12-6R, 9
~1/R, (R +R)/R,|| 6| |(-12+6R +6R,)/R,| |4

Equate the top entries and obtain R, = %ohm. Substitute this value in the bottom entry and solve to

obtain R, =Zohms. The ladder network is

Next consider using a shunt circuit with resistance R, followed by a series circuit with resistance R,
for the network. The transfer matrix for this network is

1 -R, 1 0] |(R+R)/R, -R,

0 1 ||[-1/R 1| | -1/R 1
For an input of 12 volts and 6 amps to produce an output of 9 volts and 4 amps, the transfer matrix
must satisfy

(R +Ry)/R,  —R,|[12] [(12R +12R,))/R —6R, | [9
~1/R, 1 |6] ~12/R, +6 4

Equate the bottom entries and obtain R, = 6 ohms. Substitute this value in the top entry and solve to
obtain R, = %ohms. The ladder network is
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b i pTTTTTT I iy PTTT S
o ! i L
28. The three shunt circuits have transfer maigiz:gs- ------
! o] 1 0] 1 0
, , and
|-1/R, 1] |-1/R, 1] -1/R, 1
respectively. To find the transfer matrix for the series of circuits, multiply these matrices
1 0 1 0 1 0] 1 0
|-1/Ry 1]|-1/R, 1]|-1/R 1 B —(1/R, +1/R, +1/R;) 1
. .. C . RR,R,
Thus the resulting network is itself a shunt circuit with resistance
RR, +RR,+R,R,
29. a. The first circuit is a series circuit with resistance R; ohms, so its transfer matrix is )
The second circuit is a shunt circuit with resistance R, ohms, so its transfer matrix is
1 0
{ R }.The third circuit is a series circuit with resistance R; ohms so its transfer matrix is
- 2

0

order:

1 =R 1 ot -R] _[1+R/R, -R-Ry—RRy/R,
0 1 ||[-1/R, 1J|0 1| | -1/R, 1+R, /R,

1 -R
{ | 3} .The transfer matrix of the network is the product of these matrices, in right-to-left

b. To find a ladder network with a structure like that in part (a) and with the given transfer matrix A,

we must find resistances R, R,, and R; such that

[ 3 -12] [1+R;/R, -R -R,—RR,/R,
| -1/3 5/3] | -1/R, 1+R, /R,

From the (2, 1) entries, R, = 3 ohms. The (1, 1) entries now give 1+ R, /R, =3, which may be

solved to obtain R; = 6 ohms. Likewise the (2, 2) entries gives 1+ R, /R, =5/3, which also may

be solved to obtain R = 2 ohms. Thus the matrix A may be factored as

o e e T
P

[um—

A

(=)

0 1¢(-1/6 1

3 121 1 -6 1 ol 1 o)1 -2
30. Answers may vary. For example, =

—-1/3 5/3

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



132 CHAPTER 2 < Matrix Algebra

The network corresponding to this factorization consists of a series circuit, followed by two shunts,
followed by another series circuit. The resistances would be R;=2, R,=6, R;=6, R,=6.

Note: The Study Guide’s MATLAB box for Section 2.5 suggests that for most LU factorizations in this
section, students can use the gauss command repeatedly to produce U, and use paper and mental
arithmetic to write down the columns of L as the row reduction to U proceeds. This is because for
Exercises 7-16 the pivots are integers and other entries are simple fractions. However, for Exercises 31
and 32 this is not reasonable, and students are expected to solve an elementary programming problem.
(The Study Guide provides no hints.)

31. [M] Store the matrix A in a temporary matrix B and create L initially as the 8x8 identity matrix. The
following sequence of MATLAB commands fills in the entries of L below the diagonal, one column
at a time, until the first seven columns are filled. (The eighth column is the final column of the
identity matrix.)

L(2:8, 1) = B(2:8, 1)/B(1, 1)
B = gauss(B, 1)
L(3:8, 2) = B(3:8, 2)/B(2, 2)
B = gauss (B, 2)

L(8:8,7) = B(8:8, 7)/B(7,7)

U = gauss(B,7)
Of course, some students may realize that a loop will speed up the process. The for..end syntax
is illustrated in the MATLAB box for Section 5.6. Here is a MATLAB program that includes the
initial setup of B and L:

B =A
L = eye(8)
for j=1:7

L(j+1=81 j) = B(j+1=81 j)/B(jl j)
B = gauss (B, j)

end
U=8B
a. To four decimal places, the results of the LU decomposition are
1 0 0 0 0 0 0 0]
=25 1 0 0 0 0 0 0
-25 —-.0667 1 0 0 0 0 0
[ 0 —-2667 -.2857 1 0 0 0 0
0 0 -2679 —.0833 1 0 0 0
0 0 0 -2917 -2921 1 0 0
0 0 0 0 -2697 -.0861 1 0
| O 0 0 0 0 —-.2948 -2931 1|
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b. The result of solving Ly = b and then Ux =Yy is

4 -1
0 3.75
0 O
0 0
0 O
0 0
0 O
0 0

-1 0
=25 -1
3.7333  -1.0667
0 3.4286

0 0
0 0
0 0
0 0

0

0

-1
—-.2857
3.7083

0

0

0

0
0
-1
—-1.0833
3.3919
0
0

-1

oS O O O

2.5

oS O ©o o O

-2921 -1
3.7052 -1.0861

0

3.3868 |

¢ Solutions

X =(27.1292, 19.2344, 29.2823, 19.8086, 30.1914, 20.7177, 30.7656, 22.8708)

c. Al=

3

32. [M]A=

produce

.2953
.0866
.0945
.0509
.0318
0227
.0010
.0082

-1

-1

.0866
2953
.0509
.0945
.0227
.0318
.0082
.0100

.0945
.0509
3271
.1093
.1045
.0591
.0318
.0227

.0509
.0945
.1093
3271
.0591
.1045
.0227
.0318

.0318
.0227
.1045
0591
3271
.1093
.0945
.0509

.0227
.0318
.0591
.1045
.1093
3271
.0509
.0945

.0010
.0082
.0318
0227
.0945
.0509
2953
.0866

0082
0100
0227
0318
0509
0945
0866
2953 |

133

. The commands shown for Exercise 31, but modified for 4x4 matrices,
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b. Let s, be the solution of Ls;,; =t, for k=0, 1, 2, .... Then t;,, is the solution of Ut = Si,;
fork=0, 1, 2, .... The results are

[10.00007 [ 7.0000 7.0000 5.0000
18.3333 11.0000 13.3333 8.0000
=1 218750 " =] 11,0000 "2 | 16.0000 "> =] 8.0000 |
183333 | 7.0000 13.0952 5.0000
[5.0000]  [3.6000 3.6000 2.6000
9.6667 5.8000 7.0000 4.2000
Sy = 2t = ,S4 = A= .
11.6250 5.8000 8.4250 4.2000
| 9.4286] | 3.6000 6.8095 2.6000

2.6 SOLUTIONS

Notes: This section is independent of Section 1.10. The material here makes a good backdrop for the
series expansion of (J-C)"' because this formula is actually used in some practical economic work.
Exercise 8 gives an interpretation to entries of an inverse matrix that could be stated without the economic
context.

1. The answer to this exercise will depend upon the order in which the student chooses to list the
sectors. The important fact to remember is that each column is the unit consumption vector for the
appropriate sector. If we order the sectors manufacturing, agriculture, and services, then the
consumption matrix is

10 .60 .60
C={30 20 O
30 .10 .10

The intermediate demands created by the production vector x are given by Cx. Thus in this case the
intermediate demand is
.10 .60 .60 0 60
Cx=[.30 .20 .00 100|=]|20

30 .10 .10 0 10

2. Solve the equation x = Cx + d for d:

X 0 .60 .60 || x, 9x, —.6x, —.6x; 0
d=x-Cx=|x, [-[.30 20 .00 x, |=|-3x, +.8x, =20
X, 30 .10 10| x, =3x, =1x, +9x 0
This system of equations has the augmented matrix
90 -60 -60 O 1 0 0 37.03 37.03
-30 .80 .00 20|~|0 1 O 38.89|,sox=]38.89]|.
-30 -10 90 O 0 0 1 16.67 16.67

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



2.6 * Solutions

3. Solving as in Exercise 2:

X, .10 .60 .60 || x, 9x, —-.6x, -.6x, 20
d=x-Cx =|x, |-[.30 .20 .00( x, |=|-3x +.8x, =0
X3 30 .10 10| x4 =3x -lx, +.9x; 0
This system of equations has the augmented matrix
90 -60 -.60 20 1 0 0 4444 44.44
-30 80 .00 O0|~|0 1 O 16.67|,s0x=|16.67 |.
-30 -10 90 O 0 0 1 16.67 16.67

4. Solving as in Exercise 2:

X, 10 .60 .60 || x, 9x, —.6x, —.6x 20
d=x-Cx=|x, |—-|.30 20 .00 x, |=|-3x, +.8x, =120
X3 30 .10 10| x4 =3x, —1x, +9x 0
This system of equations has the augmented matrix
90 -60 -60 20 1 0 0 8148 81.48
-30 80 .00 20|~|0 1 0 5556|,s0x=|55.56].
-30 -10 90 O 0 0 1 3333 33.33

Note: Exercises 2-4 may be used by students to discover the linearity of the Leontief model.

L. [ 1 =5T'[50] [1.6 17[50] [110
5. x=(I-C)'d= = -
-6 8] [30] |12 2]30] |120

L. [ 8 =51"16] 1 9 5|[16] [48.57
6. x=(I-C)'d= -_— _
-6 9| |12] (72-30)[.6 .8][12] |45.71

7. a. From Exercise 5,

docy[te
12 2

o 1.6 1][1] [16
=U-07d= o o017 12

which is the first column of (/ —C )_1.

., 1.6 1][51] [111.6
b. N=U=07d = o o l50]7 1212

SO

Note that d, =d +d,. Thus
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10.

11.

CHAPTER 2 e« Matrix Algebra

x,=(I-C)"'d,
=(I-C)'(d+d,))
=(I-C)'d+(-C)'d,
=Xx+Xx

a. Given (/ -C)x=d and (I - C)Ax=Ad,
I-O)(x+Ax)=(I-C)x+(I -C)Ax=d+Ad
Thus x+AX is the production level corresponding to a demand of d +Ad.
b. Since Ax =(I —C)"'Ad and Ad is the first column of 7, AX will be the first column of
1-o.

In this case
L =2 0
I-c=|-3 9 -3
-1 0 8

Row reduce [/ —C d] to find
8 -2 .0 40.0 1 0 0 828
-3 9 -3 600|~/0 1 0 131.0
-1 .0 .8 80.0 0O 0 1 1103

Sox=(82.8,131.0, 110.3).

From Exercise 8, the (i, j) entry in (I — C)™' corresponds to the effect on production of sector i when
the final demand for the output of sector j increases by one unit. Since these entries are all positive,
an increase in the final demand for any sector will cause the production of all sectors to increase.

Thus an increase in the demand for any sector will lead to an increase in the demand for all sectors.

(Solution in study Guide) Following the hint in the text, compute p’x in two ways. First, take the
transpose of both sides of the price equation, p = C'p + v, to obtain

p' =(C"p+v) =(C"p) +v' =p’C+V"
and right-multiply by x to get

p’x =(p"C+v)x=p'Cx+v'x
Another way to compute p'x starts with the production equation x = Cx + d. Left multiply by p’ to
get

p'x=p’ (Cx+d)=p'Cx+p’d
The two expression for p'x show that
p Cx+v x=p'Cx+p’d
so v'x = p'd. The Study Guide also provides a slightly different solution.
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12. Since

D, =1+C+C*+.+C"™ =1+C(I+C+..+C")=1+CD,,

D,,., may be found iteratively by D, ., =I1+CD,,.

13. [M] The matrix I — C is

[ 0.8412
—0.0057
-0.0264
—-0.3299
-0.0089
—0.1190
| —0.0063

—0.0064

0.7355
-0.1506
—0.0565
—-0.0081
-0.0901
-0.0126

—0.0025
—-0.0436

0.6443
—0.0495
-0.0333
—0.0996
—0.0196

—0.0304
-0.0099
-0.0139

0.6364
-0.0295
—0.1260
—-0.0098

-0.0014
—-0.0083
-0.0142
-0.0204

0.6588
-0.1722
—0.0064

—-0.0083
-0.0201
-0.0070
—-0.0483
-0.0237

0.7632
-0.0132

so the augmented matrix [/ —C d] may be row reduced to find

[ 0.8412
-0.0057
—0.0264
-0.3299
—0.0089
—-0.1190
| —0.0063

so x = (99576, 97703, 51231, 131570, 49488, 329554, 13835). Since the entries in d seem to be
accurate to the nearest thousand, a more realistic answer would be x = (100000, 98000, 51000,

—0.0064

0.7355
-0.1506
—0.0565
—-0.0081
—-0.0901
-0.0126

l
S O O O O =

—0.0025
—-0.0436

0.6443
—0.0495
-0.0333
—0.0996
—0.0196

0

S O O O =

0 0

132000, 49000, 330000, 14000).

—0.0304
-0.0099
-0.0139

0.6364
-0.0295
—0.1260
—-0.0098

0

S O O = O O
S O = O O
S = O O O O

0 0 O

-0.0014
—-0.0083
-0.0142
-0.0204

0.6588
-0.1722
—0.0064

0

- O O O O O
- O O O O O

0

—-0.0083
-0.0201
-0.0070
—-0.0483
-0.0237

0.7632
-0.0132

99576 |
97703
51231
131570
49488
329554
13835 |

2.6 * Solutions

—0.1594 |
—0.3413
-0.0236
-0.0649
—0.0020
—-0.3369

0.9988

—0.1594
—-0.3413
-0.0236
—0.0649
-0.0020
—0.3369

0.9988

14. [M] The augmented matrix [/ —C d] in this case may be row reduced to find

[ 0.8412
-0.0057
-0.0264
-0.3299
—-0.0089
—0.1190
| —0.0063

—-0.0064

0.7355
—0.1506
—-0.0565
—0.0081
-0.0901
-0.0126

-0.0025
—0.0436

0.6443
—0.0495
—0.0333
-0.0996
-0.0196

-0.0304
—0.0099
—0.0139

0.6364
—0.0295
-0.1260
—-0.0098

-0.0014
—-0.0083
—-0.0142
-0.0204

0.6588
-0.1722
-0.0064

-0.0083
—-0.0201
-0.0070
—-0.0483
-0.0237

0.7632
-0.0132

-0.1594
—0.3413
—0.0236
-0.0649
—0.0020
-0.3369

0.9988
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74000 |

56000
10500
25000
17500
196000
5000

99640 |

75548
14444
33501
23527
263985
6526
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134034 |
131687
69472
176912
66596
443773
18431 |

l
S O O O O O =
S O O O = O
S O O O = O O
S O = O O O
S O = O O O O
- O O O O O
- O O O o O O

0 0 0

so x = (134034, 131687, 69472, 176912, 66596, 443773, 18431). To the nearest thousand, x =

(134000, 132000, 69000, 177000, 67000, 444000, 18000).

15. [M] Here are the iterations rounded to the nearest tenth:

x? =(74000.0, 56000.0, 10500.0, 25000.0, 17500.0, 196000.0, 5000.0)

xV =(89344.2, 77730.5, 26708.1, 72334.7, 30325.6, 265158.2, 9327.8)

x? =(94681.2, 87714.5, 37577.3, 100520.5, 38598.0, 296563.8, 11480.0)
x¥ =(97091.9, 92573.1, 43867.8, 115457.0, 43491.0, 312319.0, 12598.8)
x =(98291.6, 95033.2, 47314.5,123202.5, 46247.0, 320502.4, 13185.5)
x® =(98907.2, 96305.3, 49160.6, 127213.7, 47756.4, 324796.1, 13493.8)
x® =(99226.6, 96969.6, 50139.6, 129296.7, 48569.3, 327053.8, 13655.9)
x" =(99393.1, 97317.8, 50656.4, 130381.6, 49002.8, 328240.9, 13741.1)
x® =(99480.0, 97500.7, 50928.7, 130948.0, 49232.5, 328864.7, 13785.9)
x? =(99525.5,97596.8, 51071.9, 131244.1, 49353.8, 329192.3, 13809.4)
x"? =(99549.4, 97647.2, 51147.2,131399.2, 49417.7, 329364.4, 13821.7)
x'V =(99561.9, 97673.7, 51186.8, 131480.4, 49451.3, 329454.7, 13828.2)
x"? =(99568.4, 97687.6, 51207.5, 131523.0, 49469.0, 329502.1, 13831.6)

so x'?i

18 the first vector whose entries are accurate to the nearest thousand. The calculation of x

takes about 1260 flops, while the row reduction above takes about 550 flops. If C is larger than
20x 20, then fewer flops are required to compute x''* by iteration than by row reduction. The

advantage of the iterative method increases with the size of C. The matrix C also becomes more

sparse for larger models, so fewer iterations are needed for good accuracy.

2.7 SOLUTIONS

Notes: The content of this section seems to have universal appeal with students. It also provides practice
with composition of linear transformations. The case study for Chapter 2 concerns computer graphics —
see this case study (available as a project on the website) for more examples of computer graphics in
action. The Study Guide encourages the student to examine the book by Foley referenced in the text. This
section could form the beginning of an independent study on computer graphics with an interested

student.
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1. Refer to Example 5. The representation in homogenous coordinates can be written as a partitioned

0
matrix of the form L)T a where A is the matrix of the linear transformation. Since in this case

I .
A= {O J, the representation of the transformation with respect to homogenous coordinates is
I 25 0
0 1
0 0 1

A 0

Note: The Study Guide shows the student why the action of { J on the vector ﬁ} corresponds to

o’
the action of A on x.

. .. 0 ..
2. The matrix of the transformation is A = { J , so the transformed data matrix is

-1 0|4 2 5 -4 -2 =5
AD = =
0 1/{0 2 3 0O 2 3
. Following Examples 4-6,
0 -1 of[t o 2] [0 -1 -1

1 0 00 1 1
60 0 1jj0 0 1 [0 O

w

-1] [1/2 0 -1/2
41=| 0 3/2 6

[1/2 0 o]1
4. 0 3/2 0|0
0 0 1|0

—_ O

=]
o
o
P

V212 272 olrr o o [N272 N2/2 0

0
5.1v2/2 V272 ollo -1 o|=|v2/2 —2/2 0
0 0 10 0 1 0 0 1

10 J212 =272 o [ V272 272 0

=)

6. 10 -1 0f||~2/2 272 ol=|v2/2 272 0
0 0 1 0 0 1 0 0 1
7. A 60° rotation about the origin is given in homogeneous coordinates by the matrix
172 =J3/2 0
NEYY) 1/2 0. To rotate about the point (6, 8), first translate by (-6, —8), then rotate about
0 0 1
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10.

the origin, then translate back by (6, 8) (see the Practice Problem in this section). A 60° rotation
about (6, 8) is thus is given in homogeneous coordinates by the matrix

0 61l 172 —=3/2 01 o -6 172 —3/2 3+43

1
0 1 8[V3/2 172 0llo 1 -8|=|3/2 172 4-33
0 0 1 0 0 110 0 1 0 0 1

. A 45° rotation about the origin is given in homogeneous coordinates by the matrix

V212 272 0
\/5 /2 \/5 /2 0. Torotate about the point (3, 7), first translate by (-3, —7), then rotate about
0 0 1

the origin, then translate back by (3, 7) (see the Practice Problem in this section). A 45° rotation
about (3, 7) is thus is given in homogeneous coordinates by the matrix

1o 31v2/2 272 olfp o 371 [NV2/2 =272 3+242
0 1 7v2/2 272 ollo 1 —7|=|V2/2 272 7-52
0

0 1 0 0 1y0 0 1 0 0 1

. To produce each entry in BD two multiplications are necessary. Since BD is a 2x100 matrix, it will

take 2x2x100 =400 multiplications to compute BD. By the same reasoning it will take 2x2x100 =
400 multiplications to compute A(BD). Thus to compute A(BD) from the beginning will take
400 + 400 = 800 multiplications.

To compute the 2x 2 matrix AB it will take 2 x 2 x 2 =8 multiplications, and to compute
(AB)D it will take 2x2x100 =400 multiplications. Thus to compute (AB)D from the beginning will
take 8 + 400 = 408 multiplications.

For computer graphics calculations that require applying multiple transformations to data
matrices, it is thus more efficient to compute the product of the transformation matrices before
applying the result to the data matrix.

Let the transformation matrices in homogeneous coordinates for the dilation, rotation, and translation
be called respectively D, and R, and T. Then for some value of s, ¢, h, and £,

s 0 O cosp —sing 0 1 0 h
D=|0 s O|,R=|singp cos¢p O0|,T=|0 1 &k
0 0 1 0 0 1 0 0 1
Compute the products of these matrices:
[scosgp —ssing 0 scosgp —ssing 0
DR=| ssingp scos¢p O|,RD=|ssing scosp 0
| 0 0 1 0 0 1
(s 0 sh s 0 h
DT=|0 s sk|,TD=|0 s &k
10 0 1 0 0 1
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cos¢p —sing hcos@—ksing cosp —sing h
RT =|sing cos¢p hsing+kcosg |, TR=|singp cosp k
0 0 1 0 0 1

Since DR = RD, DT # TD and RT # TR, D and R commute, D and T do not commute and R and 7 do
not commute.

11. To simplify A,A; completely, the following trigonometric identities will be needed:

1. —tan@cos@ =—2Lcos @ =—sin
cosg

. _— sin? )
2. secp—tan@singp=—— —gingp =0 2 _ X9

=CosQ
cosQ  cos@ cos@ cos @

Using these identities,

[secp —tanp O] 1 0 0
AA=| O 1 O sing cosp O
0 0 1 0 0 1

[secp—tangsing —tangcosp 0
= sin ¢ cos @ 0
0 0 1
[cosp —sing 0
=|singp cosp O
0 0 1

which is the transformation matrix in homogeneous coordinates for a rotation in R,

12. To simplify this product completely, the following trigonometric identity will be needed:

I-cosp  sing

tanp/2 =—
sin ¢ 1+cos@

This identity has two important consequences:

1-(tang/2)(singp)=1— l_cosq)sinqp:cow)
sing

(cosp)(—tan@/2)—tan@/2 =—(cos@+1)tan /2 =—(cosp + 1)& =—sing
1+cos@
The product may be computed and simplified using these results:

1 —tane/2 0O} 1 0 0|1 —tang@/2 O
0 1 Of|singp 1 0]/0 1 0
0 0 L 0O 0 140 0 1

1-(tang/2)(sinp) —tane/2 0|1 —tane/2 0

= sin @ 1 010 1 0

0 0 10 0 1
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13.

14.
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[cosp —tang/2 01 —tang/2 0

=| sing 1 00 1 0

| 0 0 1[0 0 1
[cosp  (cosp)(—tang/2)—tan@/2 0
=| sing —(sin@)(tan@p/2) +1 0
0 0 1

[cosp —sing 0
=|singp cosp O
0 0 1

which is the transformation matrix in homogeneous coordinates for a rotation in R,

Consider first applying the linear transformation on R* whose matrix is A, then applying a translation
by the vector p to the result. The matrix representation in homogeneous coordinates of the linear

A 0

transformation is L)T }, while the matrix representation in homogeneous coordinates of the

I p
translation is L)T J. Applying these transformations in order leads to a transformation whose

matrix representation in homogeneous coordinates is

I pllA 0 A p
o 10" 1| |07 1
which is the desired matrix.

The matrix for the transformation in Exercise 7 was found to be
172 —3/2 3+43

J3/2 172 4-33

0 0 1

OT

P ~3/2]  [3+443
B2 2|t a-33

By Exercise 13, this matrix may be written as

B

that is, the composition of a linear transformation on R? and a translation. The matrix A is the matrix
of a rotation of 60" about the origin in R*. Thus the transformation in Exercise 7 is the composition of

3+4\/§}

This matrix is of the form { Ij, where

4-33

a rotation about the origin and a translation by p ={
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Since (X, Y, Z, H)=($,—%,—1,3), the corresponding point in R’ has coordinates
XY Z\ (3 -5 %
(x,y,2) =(—,—,—j = [%,T“,T’*J =(12,-6,-3)
H HH % 2% 4
The homogeneous coordinates (1, —2, —3, 4) represent the point

(1/4,-2/4,-3/4)=(1/4,-1/2,-3/4)

while the homogeneous coordinates (10, —20,— 30, 40) represent the point
(10/40,-20/40,-30/40)=(1/4,-1/2,-3/4)

so the two sets of homogeneous coordinates represent the same point in R”.

Follow Example 7a by first constructing that 3 x 3 matrix for this rotation. The vector e, is not
changed by this rotation. The vector e, is rotated 60° toward the positive z-axis, ending up at the

point (0, cos 60°, sin 60°) = (0, 1/2, \/g /2). The vector e; is rotated 60° toward the negative y-axis,
stopping at the point
(0, cos 150°, sin 150°) = (0, —\/5 /2,1/2). The matrix A for this rotation is thus
1 0 0
A=|0 12 —\B/2
0 32 12
so in homogeneous coordinates the transformation is represented by the matrix
1 0 0 0
{A 0} 0 12 —/3/2

0
0" 1] |o 3/2 /2 0
!

0 0 0

First construct the 3 x 3 matrix for the rotation. The vector e is rotated 30° toward the negative y-
axis, ending up at the point (cos(-30)°, sin (-=30)°, 0) = (\/§ /2,-1/2,0). The vector e, is rotated 30°

toward the positive x-axis, ending up at the point (cos 60°, sin 60°, 0) =(1/2, \/5 /2, 0). The vector e;
is not changed by the rotation. The matrix A for the rotation is thus

Y312 12 0
A=|-1/2 3/2 0
0 0 1

so in homogeneous coordinates the rotation is represented by the matrix

32 12 0 0

{A 0}2 ~1/2 372 0 0
0" 1 0 0 10
0 0 0 1

Following Example 7b, in homogeneous coordinates the translation by the vector (5, -2, 1) is
represented by the matrix
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(1 0 0 5]
010 -2
00 1 1
0o 0 0 1]

Thus the complete transformation is represented in homogeneous coordinates by the matrix

1 0 o 5]3/2 12 o o] [V3/2 12 0 5

0 1 0 2 1/2 V312 0 0f_|-1/2 312 0 =2
0 0 1 1 0 0 1 0 0 0 1 1
00 0 1 0 0 0 1 0 00 1

Referring to the material preceding Example 8 in the text, we find that the matrix P that performs a
perspective projection with center of projection (0, 0, 10) is

1 0 0 0
0 1 0 0
0 O 0 0
0 0 -1 1

The homogeneous coordinates of the vertices of the triangle may be written as (4.2, 1.2, 4, 1), (6, 4,
2, 1), and (2, 2, 6, 1), so the data matrix for § is

(42 6 2

12 4 2

4 2 6

1 1 1

and the data matrix for the transformed triangle is

(1 0 0 0]42 6 2 42 6 2
0 1 0 012 4 2 |12 4 2
00 00 426/ |00 0
0 0 -1 1 1 1 1 6 8 4

Finally, the columns of this matrix may be converted from homogeneous coordinates by dividing by
the final coordinate:

42,12,0,.6) >(4.2/.6,1.2/.6,0/.6)=(7,2,0)
6,4,0,.8) —(6/.8,4/.8,0/.8)=(7.5,5,0)
2,2,0,4) —5(2/.4,2/4,0/.4)=(5,5,0)
So the coordinates of the vertices of the transformed triangle are (7, 2, 0), (7.5, 5, 0), and (5, 5, 0).

As in the previous exercise, the matrix P that performs the perspective projection is

1 0 0 0
0 1 0 0
0 O 0 0
0 0 -1 1
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The homogeneous coordinates of the vertices of the triangle may be written as (7, 3, -5, 1), (12, 8, 2,
1),and (1, 2, 1, 1), so the data matrix for S is

7 12 1

3 8 2

=5 2 1
L1 1 1

and the data matrix for the transformed triangle is

1 0 0 Of 7 12 1 7 12 1
0 1 0 03 8 2|3 8 2
00 005 2 1]]0 0 0
0 0 -1 1) 1 1 1 1.5 8 9

Finally, the columns of this matrix may be converted from homogeneous coordinates by dividing by
the final coordinate:

(7,3,0,1.5) > (7/1.5,3/1.5,0/1.5) =(4.67,2,0)
12,8,0,.8) —>(12/.8,8/.8,0/.8)=(15,10,0)
1,2,0,.9—->01/9,2/9,0/.9=(1.11,2.22,0)
So the coordinates of the vertices of the transformed triangle are (4.67, 2, 0), (15, 10, 0),
and (1.11, 2.22, 0).

21. [M] Solve the given equation for the vector (R, G, B), giving
'R [61 29 15]'[x 2.2586 —1.0395 -3473|| X
G|=/.35 .59 .063 Y |=|-1.3495 23441 0696 || Y

B| [.04 .12 .787 Z 0910  -3046 1.2777|| Z

22. [M] Solve the given equation for the vector (R, G, B), giving
'R [299 587 .114]'[y 1.0031 9548 6179 Y
G|=|.596 -275 -321 I |=| 9968 —-2707 -.6448]| I

B| |.212 -528 311 0 1.0085 —1.1105 1.6996 || O

2.8 SOLUTIONS

Notes: Cover this section only if you plan to skip most or all of Chapter 4. This section and the next
cover everything you need from Sections 4.1-4.6 to discuss the topics in Section 4.9 and Chapters 5-7
(except for the general inner product spaces in Sections 6.7 and 6.8). Students may use Section 4.2 for
review, particularly the Table near the end of the section. (The final subsection on linear transformations
should be omitted.) Example 6 and the associated exercises are critical for work with eigenspaces in
Chapters 5 and 7. Exercises 31-36 review the Invertible Matrix Theorem. New statements will be added
to this theorem in Section 2.9.

Key Exercises: 5-20 and 23-26.
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1. The set is closed under sums but not under multiplication
by a negative scalar. A counterexample to the subspace u
condition is shown at the right.

(-Du

Note: Most students prefer to give a geometric counterexample, but some may choose an algebraic calcu-
lation. The four exercises here should help students develop an understanding of subspaces, but they may
be insufficient if you want students to be able to analyze an unfamiliar set on an exam. Developing that
skill seems more appropriate for classes covering Sections 4.1-4.6.

2.The set is closed under scalar multiples but not sums.

For example, the sum of the vectors in H shown
here is not in H.

3. No. The set is not closed under sums or scalar multiples. See the diagram.

4. No. The set is closed under sums, but not under multiplication by a
negative scalar.
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5. The vector w is in the subspace generated by v, and v, if and only if the vector equation x,v, + x,v,
= w is consistent. The row operations below show that w is in the subspace generated by v, and v,.

1 2 =31 [1 =2 -3 -2 -3
[v, v, wil~| 3 -3 -3|~|0 3 6|~/0 B 6
-4 7 10| |0 -1 2] |0 0 0

6. The vector u is in the subspace generated by {vy, v,, v3} if and only if the vector equation x;v; + X,V
+ x3v3 = u is consistent. The row operations below show that u is not in the subspace generated by

{Vi, V2, v3}.

1 4 5 -1 1 1 4 5 -1
-3 4 3 - 0 0 1 2 -1
[v, v, v; u]~ ~ ~
2 5 6 -1 0 0 8 12 -10
3 7 5 2 0 0O -3 4 1
1 4 5 -1 1 4 5 -1
0 1 2 -1 0 1 2 1
o0 4 =200 1 -1|
0 O 2 =2 0O 0 4 =2

Note: For a quiz, you could use w = (9, -7, 11, 12), which is in Span{vy, v,, v3}.

7. a. There are three vectors: vy, v,, and v in the set {v|, v, v3}.
b. There are infinitely many vectors in Span{v, v,, v3} = Col A.
c. Deciding whether p is in Col A requires calculation:
2 -3 4 6] [2 3 4 6] -3 -4 6
[A pl~|-8 8 6 -10|~|0 -4 -10 14|~|0 -10 14
6 -7 -7 11 0o 2 5 -7 0 O 0 0

The equation Ax = p has a solution, so p is in Col A.

2 2 0 6] [2 2 0 -6] [©D 2 0 -6
8.[Apl=| 0 3 =5 I|~[ 0 3 =5 1|~/ 0 3 -5 1
6 3 5 17,0 =3 5 -1/ |0 0 0 o0

Yes, the augmented matrix [A p] corresponds to a consistent system, so p is in Col A.
9. To determine whether p is in Nul A, simply compute Ap. Using A and p as in Exercise 7,
2 -3 4 6 -2
Ap=|-8 8 6| -10|=|-62|. Since Ap # 0, p is not in Nul A.
6 -7 7| 11 29
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10. To determine whether u is in Nul A, simply compute Au. Using A as in Exercise 7 and u = (-5, 5, 3),
-2 -2 0]|-5 0
Au=| 0 3 5| 5(=|0/. Yes, uisin Nul A.
6 3 5| 3 0

11. p =4 and ¢ = 3. Nul A is a subspace of R* because solutions of Ax = 0 must have 4 entries, to match
the columns of A. Col A is a subspace of R® because each column vector has 3 entries.

12. p=3and g =>5.Nul Ais a subspace of R’ because solutions of Ax = 0 must have 3 entries, to match
the columns of A. Col A is a subspace of R’ because each column vector has 5 entries.

13. To produce a vector in Col A, select any column of A. For Nul A, solve the equation Ax = 0. (Include

an augmented column of zeros, to avoid errors.)

3 2 1 -5 0] [3 2 1 -5 0]1f3 2 1 -5 0
-9 4 1 7 0|~/0 2 4 -8 0|~|0 2 4 -8 0
9 2 -5 1 0| |0 -4 -8 16 0| |0 0O 0 0 O
32 1 -5 0] Mo -1 1 0 @ - m+ xn=0
~l0 1 2 -4 0/~0 O 2 -4 0, @)+ 2x —4x, =0

o o0 o0 o o, |0 O O O O 0=0

The general solution is x| = x3 — x4, and x, = —2x3 + 4x,, with x; and x4 free. The general solution in

parametric vector form is not needed. All that is required here is one nonzero vector. So choose any
values for x; and x, (not both zero). For instance, set x; = 1 and x; = O to obtain the vector (1, -2, 1,
0) in Nul A.

Note: Section 2.8 of Study Guide introduces the ref command (or rref, depending on the technol-
ogy), which produces the reduced echelon form of a matrix. This will greatly speed up homework for

students who have a matrix program available.

14. To produce a vector in Col A, select any column of A. For Nul A, solve the equation Ax = 0:

15.

16.

"1 2 3 0] [1 2 3 o]t 2 3 0@ o0 -1/3 0
4 5 7 o0l ]o =3 =5 o|l |0 1 5/3 0o |0 D 5/3 o0
5 -1 0 0|~l0 9 15 0|~/0 0 0 O|<l0 0 0 0
2 7 11 ol ]o 3 5 o/lo o 0o ofllo 0o o0 o
'3 3 4 0|0 3 5 0o/ |0 0 0 000 0 o0

The general solution is x; = (1/3)x; and x, = (-5/3) x3, with x; free. The general solution in parametric
vector form is not needed. All that is required here is one nonzero vector. So choose any nonzero
value of x3. For instance, set x; = 3 to obtain the vector (1, -5, 3) in Nul A.

Yes. Let A be the matrix whose columns are the vectors given. Then A is invertible because its
determinant is nonzero, and so its columns form a basis for R?, by the Invertible Matrix Theorem (or
by Example 5). (Other reasons for the invertibility of A could be given.)

No. One vector is a multiple of the other, so they are linearly dependent and hence cannot be a basis
for any subspace.
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Yes. Place the three vectors into a 3x3 matrix A and determine whether A is invertible:
0 5 6| [€) 4 2
A= 0 0 3|~ 00 6
2 4 2 0 0 (3

The matrix A has three pivots, so A is invertible by the IMT and its columns form a basis for R® (as
pointed out in Example 5).

No. Place the three vectors into a 3x3 matrix A and determine whether A is invertible:
1 3 5] [t 3 5[ 3 5
A=l 1 -1 1|~|0 -4 —-4|~]0 @ —4
-3 2 -4 0 11 11 0O 0 O

The matrix A has two pivots, so A is not invertible by the IMT and its columns do not form a basis
for R’ (as pointed out in Example 5).

No. The vectors cannot be a basis for R’ because they only span a plan in R, Or, point out that the

3 6
columns of the matrix | -8 2| cannot possibly span R’ because the matrix cannot have a pivot in
1 =5

every row. So the columns are not a basis for R’.
Note: The Study Guide warns students not to say that the two vectors here are a basis for R?,

No. The vectors are linearly dependent because there are more vectors in the set than entries in each
vector. (Theorem 8 in Section 1.7.) So the vectors cannot be a basis for any subspace.

a. False. See the definition at the beginning of the section. The critical phrases “for each” are
missing.

. True. See the paragraph before Example 4.
False. See Theorem 12. The null space is a subspace of R", not R".

. True. See Example 5.

o 6 T

True. See the first part of the solution of Example 8.

®

False. See the definition at the beginning of the section. The condition about the zero vector is
only one of the conditions for a subspace.

b. False. See the warning that follows Theorem 13.

e

True. See Example 3.

d. False. Since y need not be in H, it is not gauranteed by the definition of a subspace that x+y will
be in H.

e. False. See the paragraph after Example 4.
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4 5 9 =2 1 2 6 -5
23. (Solution in Study Guide) A=|6 5 1 12|~ @ 1 5 —6/|. The echelon form identifies
3 4 8 -3 0 @ 0 0

4115
columns 1 and 2 as the pivot columns. A basis for Col A uses columns 1 and 2 of A: | 6 |,| 5 |. This
3114

is not the only choice, but it is the “standard” choice. A wrong choice is to select columns 1 and 2 of
the echelon form. These columns have zero in the third entry and could not possibly generate the
columns displayed in A.

For Nul A, obtain the reduced (and augmented) echelon form for Ax = 0:

@ o -4 7 0 () —4x+Tx =0

0 (D 5 -6 0. This corresponds to: @ + 5x3 — 6x, = 0.
00 0 0 0 0=0

Solve for the basic variables and write the solution of Ax = 0 in parametric vector form:

[ x, 4x, —Tx, 4 =7 4| -7

X, —5x; +6x, -5 6 . -5

= =X +x, . Basis for Nul A: ,
X3 X 1 0
X, Xy 0 1 0 1

Notes: (1) A basis is a set of vectors. For simplicity, the answers here and in the text list the vectors
without enclosing the list inside set brackets. This style is also easier for students. I am careful,
however, to distinguish between a matrix and the set or list whose elements are the columns of the
matrix.

(2) Recall from Chapter 1 that students are encouraged to use the augmented matrix when solving Ax
= 0, to avoid the common error of misinterpreting the reduced echelon form of A as itself the augmented
matrix for a nonhomogeneous system.

(3) Because the concept of a basis is just being introduced, I insist that my students write the
parametric vector form of the solution of Ax = (. They see how the basis vectors span the solution space
and are obviously linearly independent. A shortcut, which some instructors might introduce later in the
course, is only to solve for the basic variables and to produce each basis vector one at a time. Namely, set
all free variables equal to zero except for one free variable, and set that variable equal to a suitable
nonzero number.

3 6 9 0] [ =2 5 4 3119
24. A=|2 -4 7 21~10 0 @ 6 |. Basis for Col A: |2,| 7
36 6 -6/ (0 0 0 0 3|16

For Nul A, obtain the reduced (and augmented) echelon form for Ax = 0:

® -2 0 -6 0 ®~ 2% —6x, =0
0 0 (D 2 0. This corresponds to: @+ 2x, = 0.
0 0 0 0 O 0=0

Solve for the basic variables and write the solution of Ax = 0 in parametric vector form:
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X 2x, —6x, 2 -6 20 |-6
X, X, 1 0 ) 1 0
= =x| |tx4 . Basis for Nul A: ,
X, —2x, 0 -2 0|2
X4 X, 0 1 0 1
1 4 8 3 -7 4 8 0 5 1| 4]]|-3
-1 2 7 4110 @ 5 0 -1 . -1]1]2 3
25. A= ~ . Basis for Col A: , , .
-2 2 9 5 0 0 0 (O 4 2112 5
36 9 -5 2110 0 0 O O 311615
For Nul A, obtain the reduced (and augmented) echelon form for Ax = 0:
o 2 0 7 0 ® - 2% +7Tx=0
4 0- 0 25 0 -5 0 | @)+ 2.5x - .Sx = 0
00 0@ 4 0 + 4xs =0
0 0 0 O 0 O 0=0
[ ] [ 2x-7x | 2 ] [—7]
X, =2.5x; +.5x;5 -2.5 5
Thesolution of Ax = 0in parametric vectorform: | x; |= X =x;1 1 |+x5| O]
X4 —4x 0 -4
BN Xs ] | 0 | | 1]
-

Basis for Nul A: {u, v}.

Note: The solution above illustrates how students could write a solution on an exam, when time is
precious, namely, describe the basis by giving names to appropriate vectors found in the calculations.

3 -1 -3 -1 8 -1 -3 0 6 3] [=1][-1
31 3 0 200 ® 6 0 —4 , 31| 1] 0
26. A= ~ . Basis for Col A: , , .
3 9 -1 4[]0 0 0 €&) 2 0 -1
6 3 9 2 6/ /0 0 0 0 O 6 -2
For Nul A,
Do 0 0 4/3 0] (¥ +4/3x5 =0
o@D3 0 20 XD +3x5 - 2x=0
[A 0]~ .
0000 20 (- 2x=0
0000 00 0=0

The solution of Ax = 0 in parametric vector form:
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27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

x| [ —4/3x ] 0 [—4/3]

X, =3x; +2x;5 -3 2

X = X3 =x;0 1 |+x5 0

Xy 2xs 0 2 |. Basis for Nul A: {u, v}.
x| | X | 1 0 i 1]

:—b L
<>

Construct a nonzero 3x3 matrix A and construct b to be almost any convenient linear combination of
the columns of A.

The easiest construction is to write a 3x3 matrix in echelon form that has only 2 pivots, and let b be
any vector in R’ whose third entry is nonzero.

(Solution in Study Guide) A simple construction is to write any nonzero 3x3 matrix whose columns
are obviously linearly dependent, and then make b a vector of weights from a linear dependence
relation among the columns. For instance, if the first two columns of A are equal, then b could be (1,
-1, 0).

Since Col A is the set of all linear combinations of ay, ... , a,, the set {a, ... , a,} spans Col A.
Because {a,, ..., a,} is also linearly independent, it is a basis for Col A. (There is no need to discuss
pivot columns and Theorem 13, though a proof could be given using this information.)

If Col F # R, then the columns of F do not span R’. Since F'is square, the IMT shows that F is not
invertible and the equation Fx = 0 has a nontrivial solution. That is, Nul F contains a nonzero vector.
Another way to describe this is to write Nul /' # {0}.

If Col B = R’, then the columns of B span R’. Since B is square, the IMT shows that B is invertible
and the equation Bx = b has a solution for each b in R’. Also, each solution is unique, by Theorem 5
in Section 2.2.

If Nul C = {0}, then the equation Cx = 0 has only the trivial solution. Since C is square, the IMT
shows that C is invertible and the equation Cx = b has a solution for each b in R®. Also, each solution
is unique, by Theorem 5 in Section 2.2.

If the columns of A form a basis, they are linearly independent. This means that A cannot have more
columns than rows. Since the columns also span R", A must have a pivot in each row, which means
that A cannot have more rows than columns. As a result, A must be a square matrix.

If Nul B contains nonzero vectors, then the equation Bx = 0 has nontrivial solutions. Since B is
square, the IMT shows that B is not invertible and the columns of B do not span R>. So Col Bis a
subspace of R’, but Col B#R°.

If the columns of C are linearly independent, then the equation Cx = 0 has only the trivial (zero)
solution. That is, Nul C = {0}.

[M] Use the command that produces the reduced echelon form in one step (ref or rref depending
on the program). See the Section 2.8 in the Study Guide for details. By Theorem 13, the pivot
columns of A form a basis for Col A.
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3 5 0 -1 3] [Do0 25 —45 35 31 [-5
-7 9 -4 9 —11] |0 D 15 25 15 . ~7
A= ~ Basis for Col A: ,
-5 7 =2 5 -7/ 10 0 0 0 0 -5
3 -7 -3 4 0|0 0 0 0 0 3| -7

For Nul A, obtain the solution of Ax = 0 in parametric vector form:
@ + 25.X3 - 4.5.X4 + 3.5.X5 = 0
@ + 1.5x3 - 2.5)(4 + 15X5 = O

X = —25x3 + 45x4 — 3.5x5
Solution: §x, = —=1.5x;3 + 2.5x, — 1.5x;

X3, X, and x5 are free

x| [=2.5x; +4.5x, —3.5x; | [—2.5] [4.5] [-3.5]
Xy —1.5x; +2.5x, —1.5x4 -1.5 2.5 -1.5
X=|x; |= X3 =x;0 1 |+x] 0 [+x5| O | =x3u+ x4V +x5W
X, X, 0 1 0
X% | Xs ] . 0 | | 0 ] L1 ]

By the argument in Example 6, a basis for Nul A is {u, v, w}.

5. 3 2 -6 -8 0 1 0 O
4 1 3 -8 7110 O -1 0 0
38. [M] A= ~ .
5 1 4 5 19/ /0 0 oo
7 5 2 8 5/ 0 0 o0 o0Q
5 31| —6([-8
) . | =8| |-7
The pivot columns of A form a basis for Col A: sl 1l ' 19

7|15 8|15

For Nul A, solve Ax = 0:
@ =0
=0
X3 is free

Solution: x, =0

XS=
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X -1
X, 1
X=X |=x|1|=x3u
Xy 0
L %5 ] 0]

By the method of Example 6, a basis for Nul A is {u}.

Note: The Study Guide for Section 2.8 gives directions for students to construct a review sheet for the
concept of a subspace and the two main types of subspaces, Col A and Nul A, and a review sheet for the
concept of a basis. I encourage you to consider making this an assignment for your class.

2.9 SOLUTIONS

Notes: This section contains the ideas from Sections 4.4-4.6 that are needed for later work in Chapters
5-7. If you have time, you can enrich the geometric content of “coordinate systems” by discussing crystal
lattices (Example 3 and Exercises 35 and 36 in Section 4.4.) Some students might profit from reading
Examples 1-3 from Section 4.4 and Examples 2, 4, and 5 from Section 4.6. Section 4.5 is probably not a
good reference for students who have not considered general vector spaces.

Coordinate vectors are important mainly to give an intuitive and geometric feeling for the
isomorphism between a k-dimensional subspace and R, If you plan to omit Sections 5.4, 5.6, 5.7 and 7.2,
you can safely omit Exercises 1-8 here.

Exercises 1-16 may be assigned after students have read as far as Example 2. Exercises 19 and 20 use
the Rank Theorem, but they can also be assigned before the Rank Theorem is discussed.

The Rank Theorem in this section omits the nontrivial fact about Row A which is included in the
Rank Theorem of Section 4.6, but that is used only in Section 7.4. The row space itself can be introduced
in Section 6.2, for use in Chapter 6 and Section 7.4.

Exercises 9-16 include important review of techniques taught in Section 2.8 (and in Sections 1.2 and
2.5). They make good test questions because they require little arithmetic. My students need the practice
here. Nearly every time I teach the course and start Chapter 5, I find that at least one or two students
cannot find a basis for a two-dimensional eigenspace!

3
1. If [x]g= {2} , then x is formed from b, and b, using

weights 3 and 2:

ceanane o oo ]

-1
2. If [xX]g= { 2} , then x is formed from b, and b, using weights —1 and 2:

x = (~1)b; +2b, = (—Dﬁ} zm - m
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3. To find ¢; and ¢, that satisfy x = ¢1b; + ¢;b,, row reduce the augmented matrix:

2 -1 0 1 -1/2 0 1 0 1 . ) )
[b, b, x]= ~ ~ . Or, one can write a matrix equation as
-3 57 0 7/2 7 01 2

suggested by Exercise 1 and solve using the matrix inverse. In either case,
G 1
[x]g= = .
c, 2
1 -2 1 1 2 1 1 0 -3
4. Asin Exercise 3, [b, b, x] ={ } ~ { } ~ { } ,

-5 3 9 0 -7 14 0O 1 -2
-3
and[x]Bz{Cl}z{ }
c, -2

<
50, b, xI=| 4 =7 9|~[0 1 1|~|0 1 1|.[xle=| '|=| |

-3 7 5 1 1 5 1 0 3
q 3
6. b, b, x]=| 2 -3 0[~|0 1 21~(0 1 2, [X]B=|: }2{2}'
c
-4 5 2| |0 13/3 26/3] |0 0 O ?

7. Fig. 1 suggests that w = 2b; — b, and x = 1.5b, + .5b,, in which case,

2 1.5
[Wlg= { J and [X]g = { 5} . To confirm [X] 5, compute

3 -1] [4
1.5b,+.5b, =1.5| _[+.5 = |=x
0 2| |1

ANARRN P
A\ er\ |
UL b

Figure 1 Figure 2

>

Note: Figures 1 and 2 display what Section 4.4 calls B-graph paper.

8. Fig. 2 suggests that x =b; + by, y = 1/3b, - b,, and z = —4/3 b, +2b,. If so, then

1

[x]g= F}, yls= F / ﬂ ,and [z]g = {_4 / 32} . To confirm [y]p and [z] 5, compute
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1/3)b b—1/30 2 e d (-4/3)b 2b—4/3022—4—
( )1_2—( )3_2 —l_yan(_ )1+ 2= 3+ Z—O—Z-

1 3 2 -6 [W3 3 2
_ _ 39 1 50100 G-,
9. The information A = ~ is enough to see that columns 1, 3, and 4
2 6 -1 9 00 O
515 0 14 [0 0 0 O
1] 2][-6
) 3 5
of A form a basis for Col A: s s .
211-1 9
5 0|14

10.

Columns 1, 2 and 4, of the echelon form certainly cannot span Col A since those vectors all have zero
in their fourth entries. For Nul A, use the reduced echelon form, augmented with a zero column to
insure that the equation Ax = 0 is kept in mind:

@3 0 0 0] (+3x =0 x| [-3x, -3 -3

o0 @ o o ® =0 5| | % 1 s
. , X= = =x, . So is

o0 o @ o =0 %, 0 0 0

0O 0 0 o0 O X, 1s the free variable Xy 0 0 0

a basis for Nul A. From this information, dim Col A = 3 (because A has three pivot columns) and dim
Nul A =1 (because the equation Ax = 0 has only one free variable).

1 =2 -1 5 4] [O-=2 -1 2 0
, , 2 -1 1 5 6|0 © 1 0 3
The information A = ~ shows that columns 1, 2,4
2 0 =2 1 -6/]/0 0o 0o @o
3 1 4 1 510 0 0 O
1 [-2]1[5]] 4
. 21 1=1(15]| 6
and 5 of A form a basis for Col A: > ol 1l For Nul A,
3 L [1]]5
+ =0
01 000 @ X &
X =
0o@D1 0 0 0 @+ 5
[A 0]~ ® =0
0 0 O @ 0 0 @ 3
000 0( O . -
X3 1s a free variable
—xl_ _—x3_ [—1] [—1]
X, —X; -1 -1
X=|x; |=| x; |=x3| 1|. BasisforNulA:| 1].
Xy 0 0 0
x| [ 0 ] | 0] | 0]
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From this, dim Col A =4 and dim Nul A = 1.

2 4 -5 2 3l [O2 -5 1 -4
, , 6 8 3 510 0 ® 0 5
11. The information A= ~
0o 9 O 9 0 0 0 0 O
-3 -6 -7 -3 -10 0 0 0 0 O
2||-5
) 318
3 of A form a basis for Col A: ol’l ol
=3 [-7
2 0 1 1 0
FNIA[AO]OO@OIO ) + 0
or , ~ . =
! 0 00 00 0 B
X5, x4 and xs are free variables
0 0 0 0 0 O
[x ] [—2x, —x, — x4 | [—2] 1] 1]
X, Xy 1 0 0
X=|x |= —Xs =x,| O[+x,| O|+x5|—1|. Basis for Nul A:
x4 x4 O 1 O
x| | X5 | | 0] | 0] 1]
From this, dim Col A =2 and dim Nul A = 3.
1 2 4 4 6] [ 2 8 4 -6
. _ 51 -9 2 10| |0 @3 4 -1
12. The information A = ~
46 -9 12 15| |0 0 G)o -5
3 4 -5 8 910 0 0 0 O
1| |2]]|-4
. 51|19
and 3 of A form a basis for Col A: allell ol For Nul A
31145
@ooo 00 ® =0
0o o2 10 (x) +2x+x5 =0
[A 0]~ @ .
0 0wWo -10 ) - x5 =0
0 000 0 O] x4 and x5 are free variables
(x1[ 0 ] 0] [ 0] [ o][ O]
X, —2x, — X5 -2 -1 =21 -1
X=|x |= Xs =x,| O|+x5| 1| BasisforNulA:| Of,| 1]
Xy Xy 0 1 0
x| | x5 ] | 0] L1 | O 1]

2.9

¢ Solutions
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shows that columns 1and

S —~ O O
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From this, dim Col A = 3 and dim Nul A = 2.

13. The four vectors span the column space H of a matrix that can be reduced to echelon form:
1 -3 2 4] [1 -3 2 4] [1 -3 2 4] @O -3 2 -4
3 9 -1 5,10 0 5 -7/]10 0 5 <71 |0 0 (® -7

0

2 -6 4 3 0 0 5/1]/0 o o 5/]/0 0 0o (®
-4 12 2 7, /0 0 10 -9 |0 0 O 5] (0 O O O

Columns 1, 3, and 4 of the original matrix form a basis for H, so dim H = 3.

Note: Either Exercise 13 or 14 should be assigned because there are always one or two students who
confuse Col A with Nul A. Or, they wrongly connect “set of linear combinations” with “parametric vector
form” (of the general solution of Ax = 0).

14. The five vectors span the column space H of a matrix that can be reduced to echelon form:
1 2 0 -1 3 1 2 0 -1 3 2 0 -1 3
-1 3 -1 4 7| |0 -1 -1 3 4| |0 -1 3 -4
2 -1 3 7 6/ o 3 3 9 121700 o o @ -10
3 4 2 7 9 0O -2 -2 10 -18 0 0 0 0 0

Columns 1,2 and 4 of the original matrix form a basis for H, so dim H = 3.

15. Col A = R*, because A has a pivot in each row and so the columns of A span R*. Nul A cannot equal
Rz, because Nul A is a subspace of RC It is true, however, that Nul A is two-dimensional. Reason: the
equation Ax = 0 has two free variables, because A has six columns and only four of them are pivot
columns.

16. Col A cannot be R® because the columns of A have four entries. (In fact, Col A is a 3-dimensional
subspace of R*, because the 3 pivot columns of A form a basis for Col A.) Since A has 7 columns and
3 pivot columns, the equation Ax = 0 has 4 free variables. So, dim Nul A =4.

17. a. True. This is the definition of a B-coordinate vector.

b. False. Dimension is defined only for a subspace. A line must be through the origin in R" to be a
subspace of R".

c. True. The sentence before Example 3 concludes that the number of pivot columns of A is the rank
of A, which is the dimension of Col A by definition.

d. True. This is equivalent to the Rank Theorem because rank A is the dimension of Col A.

e. True, by the Basis Theorem. In this case, the spanning set is automatically a linearly independent
set.

18. a. True. This fact is justified in the second paragraph of this section.

b. False. The dimension of Nul A is the number of free variables in the equation Ax = 0.
See Example 2.

c. True, by the definition of rank.
d. True. See the second paragraph after Fig. 1.

e. True, by the Basis Theorem. In this case, the linearly independent set is automatically a spanning
set.
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The fact that the solution space of Ax = 0 has a basis of three vectors means that dim Nul A = 3.
Since a 5x7 matrix A has 7 columns, the Rank Theorem shows that rank A =7 —dim Nul A = 4.

Note: One can solve Exercises 19-22 without explicit reference to the Rank Theorem. For instance, in
Exercise 19, if the null space of a matrix A is three-dimensional, then the equation Ax = 0 has three free
variables, and three of the columns of A are nonpivot columns. Since a 5x7 matrix has seven columns, A
must have four pivot columns (which form a basis of Col A). So rank A = dim Col A = 4.

20.

21.

22

23.

24.

A 6x8 matrix A has 8 columns. By the Rank Theorem, rank A = 8 — dim Nul A. Since the null space
is three-dimensional, rank A = 5.

A 9%8 matrix has 8 columns. By the Rank Theorem, dim Nul A = 8 — rank A. Since the rank is seven,
dim Nul A = 1. That is, the dimension of the solution space of Ax = 0 is one.

Suppose that the subspace H = Span{vy, ..., vs} is four-dimensional. If {v, ..., vs} were linearly
independent, it would be a basis for H. This is impossible, by the statement just before the definition
of dimension in Section 2.9, which essentially says that every basis of a p-dimensional subspace
consists of p vectors. Thus, {vj, ..., vs} must be linearly dependent.

A 3x5 matrix A with a two-dimensional column space has two pivot columns. The remaining three
columns will correspond to free variables in the equation Ax = 0. So the desired construction is

possible. There are ten possible locations for the two pivot columns, one of which is
W Ok k% k%

0 m * * x| Asimple construction is to take two vectors in R’ that are obviously not
0 0 0 0 O

linearly dependent, and put three copies of these two vectors in any order. The resulting matrix will
obviously have a two-dimensional column space. There is no need to worry about whether Nul A has
the correct dimension, since this is guaranteed by the Rank Theorem: dim Nul A =5 — rank A.

A rank 1 matrix has a one-dimensional column space. Every column is a multiple of some fixed
vector. To construct a 3x4 matrix, choose any nonzero vector in R?, and use it for one column.
Choose any multiples of the vector for the other tthree columns.

25. The p columns of A span Col A by definition. If dim Col A = p, then the spanning set of p columns is

26.

27.

automatically a basis for Col A, by the Basis Theorem. In particular, the columns are linearly
independent.

If columns a,, as, a,4 as, and a; of A are linearly independent and if dim Col A =5, then {a,, a;, a,,as,
a,} is a linearly independent set in a 5-dimensional column space. By the Basis Theorem, this set of
five vectors is a basis for the column space.

a. Start withB=1[b, --- b,JandA=[a, --- a,], where g >p.Forj=1, ..., g, the vector a; is
in W. Since the columns of B span W, the vector a; is in the column space of B. That is, a; = Bc;
for some vector ¢; of weights. Note that ¢; is in R” because B has p columns.

b. LetC=[c; --- c¢,]. Then Cis a pxg matrix because each of the g columns is in R”.
By hypothesis, g is larger than p, so C has more columns than rows. By a theorem, the columns of
C are linearly dependent and there exists a nonzero vector u in R? such that Cu = 0.

c. From part (a) and the definition of matrix multiplication
A=[a; --- ajJ=[Be; - - Bey=BC
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28.

29.

30.

From part (b), Au = (BC)u = B(Cu) = B0 = 0. Since u is nonzero, the columns of A are linearly
dependent.

If A contained more vectors than B, then A would be linearly dependent, by Exercise 27, because B
spans W. Repeat the argument with B and A interchanged to conclude that B cannot contain more
vectors than A.

[M] Apply the matrix command ref or rref to the matrix [v; v, X]:
15 14 16] (O 0o 2
-5 -10 0| [0 (D -1
2 13 11/ |0 0 o0
7 17 -3 0O 0 o

The equation c|v, + ¢,v, = X is consistent, so X is in the subspace H. Then ¢; =2 and ¢, = -1. Thus,
the f-coordinate of x is (2, -1).

[M] Apply the matrix command ref or rref to the matrix [v, v, v; X]:
-6 8 -9 11][Do o =2
30 4 =2010@Do 1
9 7 -8 17/ o 0 @O 1
4 -3 3 -8 0O 0 0 O
The first three columns of [v; v, v; X] are pivot columns, so vy, v, and v; are linearly independent.
Thus v, v, and v; form a basis B for the subspace H which they span. View [v; v, v; X]asan
augmented matrix for ¢;v; + c,v; + ¢3v3 = X. The reduced echelon form shows that x is in H and
-2
[xlg=| 1|.
1

Notes: The Study Guide for Section 2.9 contains a complete list of the statements in the Invertible Matrix
Theorem that have been given so far. The format is the same as that used in Section 2.3, with three
columns statements that are logically equivalent for any mxn matrix and are related to existence concepts,
those that are equivalent only for any nxn matrix, and those that are equivalent for any nxp matrix and
are related to uniqueness concepts. Four statements are included that are not in the text’s official list of
statements, to give more symmetry to the three columns.

The Study Guide section also contains directions for making a review sheet for “dimension” and

“rank
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a. True. If A and B are mxn matrices, then B has as many rows as A has columns, so AB"is
defined. Also, AB is defined because A” has m columns and B has m rows.

b. False. B must have 2 columns. A has as many columns as B has rows.

c. True. The ith row of A has the form (0, ..., d,, ..., 0). So the ithrow of ABis (0, ..., d;, ..., 0)B,
which is d; times the ith row of B.

d. False. Take the zero matrix for B. Or, construct a matrix B such that the equation Bx = 0 has
nontrivial solutions, and construct C and D so that C # D and the columns of C — D satisfy the
equation Bx = 0. Then B(C — D) =0 and BC = BD.

1 0 0 O
e. False. Counterexample: A = and C = .
0 0 0 1

f. False. (A + B)(A — B) = A>— AB + BA — B*. This equals A> — B’ if and only if A commutes with B.

g. True. An nxn replacement matrix has n + 1 nonzero entries. The nxn scale and interchange
matrices have n nonzero entries.

h. True. The transpose of an elementary matrix is an elementary matrix of the same type.
i. True. An nxn elementary matrix is obtained by a row operation on /,,.

False. Elementary matrices are invertible, so a product of such matrices is invertible. But not
every square matrix is invertible.

Qoo

True. If A is 3x3 with three pivot positions, then A is row equivalent to /5.
False. A must be square in order to conclude from the equation AB = I that A is invertible.
.False. AB is invertible, but (AB) ™' = B'A™", and this product is not always equal to A”"'B™".

True. Given AB = BA, left-multiply by A™' to get B = A™'BA, and then right-multiply by A™' to
obtain BA™ = A™'B.

False. The correct equation is (rA)" =r'A™", because
FAF'AY =(rrHYAA Y = 1 1=1.
1
p. True. If the equation Ax = | O | has a unique solution, then there are no free variables in this

0

equation, which means that A must have three pivot positions (since A is 3x3). By the Invertible
Matrix Theorem, A is invertible.

BB TF

e

2.c:(C‘1)‘1:L{7 —5}{—7/2 5/2}

2|-6 4 3 =2

0 0 0 0 0 0o 0 o] [O 0 O

A=|1 0 0|, A’=|1 0 0|1 0 0f=/0 0 0

01 0 0 1 0[O0 1 o] |1 0 O
0 0 o]fo o o]l [o 0 0
A=A-A*=|1 0 0/|l0 0 0(=|0 0 O
0 1 oflt o ol [0 0 o
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Next, I —A)I+A+A)=T+A+A? — AU +A+A>)=T1+A+A>—A-A*>-A>=1-A>.
Since A*=0, I -A)I+A+A>)=1.

4. From Exercise 3, the inverse of / — A is probably I + A + A>+ - - - + A™". To verify this, compute
U=AT+A++ A" =T+ A+ + A" AU+ A+ + A" =T - AA" =] - A"
If A" =0, then the matrix B=1+ A + A*>+ --- + A" satisfies I — A)B =1. Since I — A and B are
square, they are invertible by the Invertible Matrix Theorem, and B is the inverse of / — A.
5. A>=2A —I. Multiply by A: A’ = 24% — A. Substitute A =24 —: A*=2Q2A - 1) —A=3A-2I.
Multiply by A again: A* = A(3A — 2I) = 34° — 2A. Substitute the identity A* = 24 — I again:
Finally, A* = 3(24 — 1) — 24 = 4A - 3I.

1 0 0 1 . o > 0 1
6. Let A= 0 | and B= { O.Bydlrectcomputatlon,A =[,B°=1 and AB = Lo =—

BA.

7. (Partial answer in Study Guide) Since A7'B is the solution of AX = B, row reduction of [A B] to
[/ X] will produce X = A”'B. See Exercise 15 in Section 2.2.

1 3 8|3 5]t 3 8 -3 5[t 3 8 -3 5
[A B]=|2 4 11| 1 5|~|0 2 -5 7 -5|~|0 1 3 -6 1
12 5| 3 4 -1 -3 6 -1] [0 22 -5 7 -5

0
0
0 37 29| (1 0 O 10 -1
0
1

1 3 8 3 5 1 3
~l0 1 3 -6 1|~|0 1 9 10|~/0 1 0 9 10
0 01 -5 =3/ |0 0 -5 310 0 1 -5 =3
10 -1
Thus,A"B=| 9 10].
-5 -3

8. By definition of matrix multiplication, the matrix A satisfies
1 2] [1 3]
A =
3 7 1 1]
. . . . 1 2 _
Right-multiply both sides by the inverse of L 7} . The left side becomes A. Thus,
1 3| 7 =2 -2 1
A — —
I B
: 5 4 7 3 ) L )
9. Given AB= 5 3 and B = L notice that ABB~ = A. Sincedet B=7-6=1,

B { 1 —3} ., {5 4}{ 1 —3} {—3 13}
B = and A=(AB)B™ = =
-2 7 -2 3= 7| |-8 27
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Note: Variants of this question make simple exam questions.

10.

11.

12.

13.

14.

Since A is invertible, so is A, by the Invertible Matrix Theorem. Then ATA is the product of
invertible matrices and so is invertible. Thus, the formula (A’A)"'A” makes sense. By Theorem 6 in
Section 2.2,

(ATA)—lAT — A—l(AT)—lAT — A—l] — A—l

An alternative calculation: (A’A)'AT-A = (ATA)'(ATA) = I Since A is invertible, this equation shows
that its inverse is (A7A)'A”.

Co
a. Fori=1,...,n,px)=co+cx;+---+ cn_lxl"*l =row;(V):| : |=row;(V)e.

C

n—-1

By a property of matrix multiplication, shown after Example 6 in Section 2.1, and the fact that ¢
was chosen to satisfy Ve=y,

rowi(V)C = rowi(Vc) = I'OWi(Y) =i

Thus, p(x;) = y;. To summarize, the entries in Vc are the values of the polynomial p(x) at xi, ..., x,.
b. Suppose xi, ..., x, are distinct, and suppose Ve = 0 for some vector c. Then the entries in ¢ are the
coefficients of a polynomial whose value is zero at the distinct points xj, ..., x,. However, a

nonzero polynomial of degree n — 1 cannot have n zeros, so the polynomial must be identically
zero. That is, the entries in ¢ must all be zero. This shows that the columns of V are linearly
independent.

¢. (Solution in Study Guide) When x, ..., x, are distinct, the columns of V are linearly independent,
by (b). By the Invertible Matrix Theorem, V is invertible and its columns span R". So, for every
y =1, ..., y,) in R, there is a vector ¢ such that Ve =y. Let p be the polynomial whose
coefficients are listed in c. Then, by (a), p is an interpolating polynomial for (xj, yy), ..., (X, Yu)-

If A= LU, then col,(A) = L-col;(U). Since col,(U) has a zero in every entry except possibly the first,

L-col;(U) is a linear combination of the columns of L in which all weights except possibly the first
are zero. So col,(A) is a multiple of col;(L).
Similarly, col,(A) = L-col,(U), which is a linear combination of the columns of L using the first

two entries in col,(U) as weights, because the other entries in coly(U) are zero. Thus coly(A) is a
linear combination of the first two columns of L.

a. P* = (uu’)(uu”) = u(u’u)u’ = u()u’ = P, because u satisfies u’u = 1.
b. Pr=(uu’) =u"u"=uw’ =P
c. O*=(I-2P)I-2P)=1-I2P)-2PI +2P(2P)

=1-4P + 4P* = I, because of part (a).

0
Given u=| 0 |, define P and Q as in Exercise 13 by
1
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0 0 0 0 1 0 0 0 0 o] [ 0 0
P=wa"=(0|[0 0 1]=|0 0 0|, Q=7-2P=0 1 0|-2(0 0 O|=[0 1 O
1 0 0 1] 0 0 1 0 0 1] |0 0 -1
1 0 0 oft] [o 1 0 ot
If x=|5|,thenPx={0 0 O0|5|=|0| and QX=|:0 1 05:{5.
3 0 0 1)3] |3 0 0 -1/[3] [-3

15. Left-multiplication by an elementary matrix produces an elementary row operation:
B~EB~E,EB~EEEB=C

so B is row equivalent to C. Since row operations are reversible, C is row equivalent to B.
(Alternatively, show C being changed into B by row operations using the inverse of the E; .)

16. Since A is not invertible, there is a nonzero vector v in R” such that Av = 0. Place n copies of v into
an nxn matrix B. Then AB=A[v --- v]=[Av --- Av]=0.

17. Let A be a 6x4 matrix and B a 4x6 matrix. Since B has more columns than rows, its six columns are
linearly dependent and there is a nonzero x such that Bx = 0. Thus ABx = A0 = 0. This shows that the
matrix AB is not invertible, by the IMT. (Basically the same argument was used to solve Exercise 22
in Section 2.1.)

Note: (In the Study Guide) It is possible that BA is invertible. For example, let C be an invertible 4x4

C
matrix and construct A = { O} and B=[C™" 0]. Then BA = I,, which is invertible.

18. By hypothesis, A is 5x3, C is 3x5, and CA = I5. Suppose X satisfies Ax = b. Then CAx = Cb. Since
CA = I, x must be Ch. This shows that Cb is the only solution of Ax =b.

4 2 3 31 .26 .30
19. [M] Let A=|.3 .6 .3|.Then A>=|.39 .48 .39|.Instead of computing A’ next, speed up
3 2 4 30 .26 .31
the calculations by computing
2875 2834 2874 2857 2857 .2857
A*=A’A’=| 4251 4332 4251|, A®=A"A%=|.4285 4286 .4285
2874 2834 2875 2857 2857 2857
To four decimal places, as k increases,
2857 2857 2857 217 217 2117
A¥ | .4286 4286 .4286 |, or, in rational format, A¥ —|3/7 3/7 3/7].
2857 2857 2857 217 217 2117
0o 2 3 29 .18 .18
If B=|.1 .6 3| then B*=|.33 .44 33|,
9 2 4 38 .38 49
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2119 1998 .1998 2024 2022 2022
B*=].3663 3784 .3663|, B®=|.3707 .3709 .3707
4218 4218 4339 4269 4269 4271
To four decimal places, as k increases,
2022 2022 2022 18/89 18/89 18/89
B¥ —|.3708 3708 .3708 |, or, in rational format, B —|33/89 33/89 33/89|.
4270 4270 4270 38/89 38/89 38/89

20. [M] The 4x4 matrix A4 is the 4x4 matrix of ones, minus the 4x4 identity matrix. The MATLAB

command is A4 = ones(4) - eye(4).For the inverse, use inv(A4).
0 1 1 1 —2/3  1/3  1/3 1/3
1 0 1 1 o /3 =2/3 1/3 1/3
A, = . Al =
1 1 0 1 /3 1/3 -2/3 1/3
11 1 10 /3 1/3  1/3 -2/3
0 1 1 1 1] [=3/4 174  1/4 1/4 1/4]
1 0 1 1 1 /4 -3/4 14 1/4 1/4
As=|1 1 0 1 1|, A''=| 1/4 1/4 -3/4 1/4 1/4
1 1 1 0 1 /4 1/4 1/4 -3/4 1/4
11 1 1 0 | /4 /4 14 14 =314
0 1 1 1 1 1] [—4/5 1/5 1/5 1/5 1/5 1/5]
1 0 1 1 1 1 1/5 -4/5 1/5 1/5 1/5 1/5
1 10 1 1 1 » /5 1/5 —4/5 1/5 1/5 1/5
A= 0 1 1l M s s us o—ais us s
1 1 1 1 0 1 /5 1/5 1/5 1/5 -4/5 1/5
11 1 1 1 0] s s 15 1S 15 —4/5]

The construction of A¢ and the appearance of its inverse suggest that the inverse is related to /5. In
fact, Ag' + I is 1/5 times the 6x6 matrix of ones. Let J denotes the nxn matrix of ones. The
conjecture is:
1
A,=J-1, and A'=—--J—1I,
n —_—
Proof: (Not required) Observe that J ‘=pJand A, J=(J-1J=J*-J=(n-1)J. Now compute
A=y J-D=@m-1)"AJ -A,=J-(J-D=1

Since A, is square, A, is invertible and its inverse is (n — 1)71J - L
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Determinants

3.1 SOLUTIONS

Notes: Some exercises in this section provide practice in computing determinants, while others allow the
student to discover the properties of determinants which will be studied in the next section. Determinants
are developed through the cofactor expansion, which is given in Theorem 1. Exercises 33-36 in this
section provide the first step in the inductive proof of Theorem 3 in the next section.

1. Expanding along the first row:

3 0 4
3 2 2 2 2 3
2 3 2|=3 -0 +4 =3(-13)+4(10) =1
5 -1 0 -1 0 5
0 5 -1
Expanding along the second column:
504 2 2 3 4 3 4
2 3 2[=(=D"-0 +(=1)*?*.3 +(=1)*"*-5 =3(-3)-5(-2) =1
<)‘0_1(> o g FEDTES[=3-3)-52)
0 5 -1
2. Expanding along the first row:
0 5 1
-3 0 4 0 4 3
4 -3 0[=0 -5 +1 =-54)+1(22)=2
4 1 2 1 2 4
2 4 1
Expanding along the second column:
0 5 4 0 0 1 0 1
4 -3 0|=(=D"*-5 +(=1)*"? (-3 +(=1)’"? -4 =—5(4)=3(-2) —4(—4) =2
241()‘21‘()()21() 4O()()()

3. Expanding along the first row:

2 4 3
301 2]=o! 2 (—4) 32 ,P ! =2(-9)+4(-5)+3)(11)=-5
Ly 1_ 4 -1 1 - 1 4] N
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Expanding along the second column:

2 4 3 .
31 2/=(-=D"? -(—4)‘1 X
1 4 -1

2 3
+(-D** 1
=D ‘1 »

2
+(=D¥. 4‘

3
L ‘ =4(=5) +1(=5) ~ 4(-5) =5

4. Expanding along the first row:

1 3 5
> 1 q]=rt ! 3 21 +5 2 1 =1(=2) = 3(1) +5(5) =20
s 4 4 2 3 2 3 4| B

Expanding along the second column:
b3 2 1 1 5 5
2 1 1|=(=D"*3 +(=1)*" 1 +(=1)"* -4 =-3(1) +1(=13)—4(-9) =20
2 4 s 3 2 3 2 1

1
2

5. Expanding along the first row:

2 3 -4
40 sl=2Y 218 et Ooacs) o3 —a@y=—23
< "l o6l s 6 5 1| B

6. Expanding along the first row:

5 2 4
0 3 s/=5 > (2)0 1440 3—5(1)+2(10)+4( 6)=1
. 7_ 4 7 2 7 2 4| B

7. Expanding along the first row:

4 3 0
5 2 6 2 6 5

6 5 2|=4 -3 +0 =41)-3(0)=4
7 3 9 3 9 7

9 7 3

8. Expanding along the first row:

8 1 6

0 3/ |4 3] |4 o
4 0 3|=8 -1 +6 =8(6)—1(11) + 6(=8)=—11
I e

9. First expand along the third row, then expand along the first row of the remaining matrix:
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6 0 0 5
1 7 2 -5 005 7 2
== 2|17 2 —5|=2-(=D'3.5 =10(1)=10
5 0 0 (1) (-1) - 1)
3 1 8
8§ 3 1 8

10. First expand along the second row, then expand along either the third row or the second column of
the remaining matrix.

1 =2 5 2
0 0 3 0 b= 2
==1*"-3]12 -6 5

2 -6 -7 5
5 0 4

5 0 4 4

= (—3)((—1?“ ~5‘ ~ i +(=D* -4‘ :

)
‘ j =(=3)(5(2) +4(-2))=-6

-6 2 -6
or
1 2 5 2
0 0 3 0 b= 2
=(-)***.3]12 -6 5
2 -6 -7 5
5 0 4
5 0 4 4

= (—3)((—1)“2 -(—2)‘ 200 (-1 -(—6)‘

5 4

b2 = (=3)(2(=17) - 6(=6)) = -6
5 4() ( )=

11. There are many ways to do this determinant efficiently. One strategy is to always expand along the
first column of each matrix:

35 -8 4
2 3 -7
0 = 3 -D"*.3l 0 1 5 3(1)‘“(2)1 > 3(-2)(2) =12
0 0 0 2
00 2
0 0 0

12. There are many ways to do this determinant efficiently. One strategy is to always expand along the
first row of each matrix:

4 0 0 O
-1 0 0
[ ==D".4| 6 3 0—4~(—1)1+1~(—1)3 0 =4(-1)(-9) =36
2 6 3 4 -3
-8 4 -3
5 -8 4 -3
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-5
-3
2

4

3
+ (_1)2+l . 5‘

1

-5
2D = (-6)(4()=5(1)) =6

‘; ‘ j =3)3(-11)+2(18))=9

13. First expand along either the second row or the second column. Using the second row,
4 0 -7 3 -5
4 0 3 5
00 2 0 O
s A7 3 4 =8
7 3 -6 4 8|=-D""-2
50 2 3
5 0 5 2 3
0 0 -1 2
00 9 -1 2
Now expand along the second column to find:
4 0 3 =5
7 3 4 -8 o
—1)*? .2 =2l (=¥ 35 2
(=D 5 0 2 -3 =D
0 -1
0 0 -1 2
Now expand along either the first column or third row. The first column is used below.
4 3 -5
242 141 2 3
2| D7 3|5 2 3| |=-6/(-1)" -4 | 2
0o -1 2
14. First expand along either the fourth row or the fifth column. Using the fifth column,
6 3 2 4 0
6 3 2 4
9 0 4 1 0 o 0 -4 1
8 -5 6 7 1|=(-D":1
30 0 O
30 0 0 O
4 2 3 2
4 2 3 2 0
Now expand along the third row to find:
6 3 2 4
9 0 4 1 o2
—1)* .1 - =1 (-1*"-30 -4 1
=D 30 0 0 (=D
2 3 2
4 2 3 2
Now expand along either the first column or second row. The first column is used below.
3 2 4 4 5
1| D*.3l0 -4 1 =3£(—1)”‘-3‘ ; 2‘+(_1)3+1.2‘
2 3 2
3 4
15.12 3 2|= 33D +(0)(2)(0) + ((2)(5) - (0)B)(#) - (5)(2)(3) — (=1)(2)(0)

-1

=9+0+40-0-30-0=1
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0 5 1
4 =3 0]= (O3 + G)O0)2) + (DA = (D(=3)() = (H(0)(O0) — (1H(A)(5)
2 4 1

=04+0+16-(-6)-0-20=2

2 4 3
2|= @QMED + M) + BB - (HH(3) = H2)(2) = (DB
1 4 -1

98]
—

= 2+ (-8)+36-3-16-12=-5

W N =

35
1 1= (MM)2) + BG)DA3) + )@ = B)()(5) = (D)D) = (2)(2)(3)
4 2

=2+9+40-15-4-12=20

a b

d
=ad —bc, =cb—da=—(ad —bc)
d b

c a

The row operation swaps rows 1 and 2 of the matrix, and the sign of the determinant is reversed.

a b

=ad —bc,
c d

=a(kd) — (kc)b = kad — kbc = k(ad — bc)

kd
The row operation scales row 2 by k, and the determinant is multiplied by k.

3

4
=18-20=-2,
6 5+3k 6+4k

‘:3(6+4k)—(5+3k)4:—2
The row operation replaces row 2 with k times row 1 plus row 2, and the determinant is unchanged.

a b

=ad —bc,
c d

=(a+kc)d—cb+kd)=ad+kcd —bc—ked =ad —bc
c

a+ke b+kd‘

The row operation replaces row 1 with k times row 2 plus row 1, and the determinant is unchanged.

11 1 kK k k
3 8 —A4|=1@)-1Q)+1(=T)=-5, |-3 8 —4|=k(4)—k(2)+k(-7)=-5k
2 3 2 2 3 2

The row operation scales row 1 by k, and the determinant is multiplied by k.

AN W

b ¢
2 2(=a)-b6)+c(3)=2a-6b+3c,
5 6
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25.

26.

27.

28.

29.

30.

31.
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3 2 2
a b c¢|=3(6b-5¢)-2(6a—-6¢)+2(5a—6b)=—-2a+6b-3c
6 5 6

The row operation swaps rows 1 and 2 of the matrix, and the sign of the determinant is reversed.

Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:
1 0 O
0 1 o=0MA)=1
0 k£ 1

Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:
1 0 O

0 1 0O|l=OMMDH=1

kK 0 1

Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:
kK 0 0

0 1 0|=(kh)DD)=k

0 0 1

Since the matrix is triangular, by Theorem 2 the determinant is the product of the diagonal entries:
1 0 O

0 k& Ol=k)MD=k
0 0 1
A cofactor expansion along row 1 gives
0 1 0
1 0
1 0 0|=-1 =-1
0 1
0 0 1
A cofactor expansion along row 1 gives
0 0 1
0 1
0 1 0f=1 =—
1 0
1 0 O

A 3 x 3 elementary row replacement matrix looks like one of the six matrices
1 0 Off1 O Off1 O Off1 O O}|1 O k||l Kk O
k 1 0,0 1 0,0 1 0,0 I k[|O 1 O[O0 1 O
0 0 1|k O 1|0 k£ 1|0 O 1}{0O O 1|({0 0 1

In each of these cases, the matrix is triangular and its determinant is the product of its diagonal
entries, which is 1. Thus the determinant of a 3 X 3 elementary row replacement matrix is 1.
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35.

36.

37.

38.

39.
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A 3 x 3 elementary scaling matrix with k on the diagonal looks like one of the three matrices
kK 0 Ol 0O Off1l 0 O
01 OLO0O £ OO0 1 O
0 0 1|0 O 1]|0 O %

In each of these cases, the matrix is triangular and its determinant is the product of its diagonal

entries, which is k. Thus the determinant of a 3 X 3 elementary scaling matrix with k on the diagonal
is k.

0 1 a b c d
E= ’A= ’EA:
oAl db el

det E=-1,det A =ad - bc,
det EA = cb —da = —-1(ad — bc) = (det E)(det A)

1 0 a b a b
E: . A: s EA:
{0 k} L d} {kc kd}

det E=k,det A =ad - bc,
det EA = a(kd) — (kc)b = k(ad — bc) = (det E)(det A)

1 % a b a+kc b+kd
E= , A= , EA=
0 1 c d c d

det E=1,detA =ad- bc,
det EA = (a + kc)d — c¢(b + kd) = ad + ked — bec — ked = 1(ad — be) = (det E)(det A)

1 O a b a b
E: . A: s EA:
{k 1} L d} {ka+c kb+d}

det E=1,detA =ad - bc,
det EA = a(kb + d) — (ka + ¢)b = kab + ad — kab — bc = 1(ad — bc) = (det E)(det A)

A

4 2 20

a b ka kb
, kA= , det A =ad - bc,
c d kc kd

det kA = (ka)(kd) — (kb)(kc) = k*(ad — bc) = k*det A

3 1 15 5
, SA= ol det A =2, det 5A = 50 # 5det A

A

a. True. See the paragraph preceding the definition of the determinant.
b. False. See the definition of cofactor, which precedes Theorem 1.

a. False. See Theorem 1.
b. False. See Theorem 2.
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3 1
41. The area of the parallelogram determined by u = {O} , V= {2}, u + v, and 0 is 6, since the base of

42

the parallelogram has length 3 and the height of the parallelogram is 2. By the same reasoning, the

3
area of the parallelogram determined by u = {0}, X= B}, u + X, and 0 is also 6.

X2

2t » X2
X
| / zt
1
X X1

3
Also note that detfu  v]=det {0

1 3
2} =6, and det[u x]=det {0 ﬂ = 6. The determinant of the

matrix whose columns are those vectors which define the sides of the parallelogram adjacent to 0 is
equal to the area of the parallelogram

The area of the parallelogram determined by u = B} , V= Lj ,u+v,and 0 is cb, since the base of
the parallelogram has length ¢ and the height of the parallelogram is b.
X5
U
b @
ral X,
a C

Also note that det[u v]=det B (C)} =—cb,and det[v u]=det LC) Z} = cb. The determinant of

the matrix whose columns are those vectors which define the sides of the parallelogram adjacent to 0
either is equal to the area of the parallelogram or is equal to the negative of the area of the
parallelogram.

43. [M] Answers will vary. The conclusion should be that det (A + B) # det A + det B.

44. [M] Answers will vary. The conclusion should be that det (AB) = (det A)(det B).
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45. [M] Answers will vary. For 4 X 4 matrices, the conclusions should be that det AT =det A,
det(—A) =det A, det(2A) = 16det A, and det(10A) = 10*det A . For 5 x 5 matrices, the conclusions
should be that det A” =det A, det(—A) = —det A, det(2A) = 32det A, and det(104) = 10°det A. For 6
X 6 matrices, the conclusions should be that det A” =det A, det(-A) = det A, det(2A) = 64det A, and

det (10A) =10°det A.

46. [M] Answers will vary. The conclusion should be that det A =1/det A.

3.2 SOLUTIONS

Notes: This section presents the main properties of the determinant, including the effects of row
operations on the determinant of a matrix. These properties are first studied by examples in Exercises 1—-
20. The properties are treated in a more theoretical manner in later exercises. An efficient method for
computing the determinant using row reduction and selective cofactor expansion is presented in this
section and used in Exercises 11-14. Theorems 4 and 6 are used extensively in Chapter 5. The linearity
property of the determinant studied in the text is optional, but is used in more advanced courses.

1. Rows 1 and 2 are interchanged, so the determinant changes sign (Theorem 3b.).

2. The constant 2 may be factored out of the Row 1 (Theorem 3c.).

3. The row replacement operation does not change the determinant (Theorem 3a.).

4. The row replacement operation does not change the determinant (Theorem 3a.).

1 5 -6/ |1 5 -6
5.0-1 -4 4l|=l0 1 -2|=
2 -7 9/ |0 3 -3
1 5 3|1t 5 -3
6.3 -3 3|=l0 -18 12
2 13 -7 [0 3 -1
1 30 2/ |1 3
S |2 5 7 4o
35 2 1/ o -4
1 -1 2 -3/ |0 -4
1 3 3 4| |1 3
0 1 2 -5/ |0 1
8. 2 5 4 -3/ |0 -1
3 -7 =5 2| |0 2

NSRS TN B )

1 5
0 1
0 0

-6
—2(=3

3

5 -3
-3 2]=6/0
3 -1
1 3 0
o1 7
1o 0 30
0 0 30
4] |1 3
=50 |0 1
51 o o
-10| |0 0

S O N W

5

-3

-3
2|=(6)(-3)=-18
1
13 0 2
01 7 8
=0
0 0 30 27
00 0 0
=0
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-1 -3 0 1 -1 -3 0 1 -1 -3 0 1 -1 -3 0
0 0o 1 5 4 _ 0 1 5 4 _ 0O 1 5 4 __ o 1 5 —(3)=3
-1 2 51 {0 1 510 0 O 1 0 0 -3 -5
3 -1 -2 310 2 7 3 |0 0 -3 -5 0O 0 O 1
3 -1 0 =2 1 3 -1 0 -2 1 3 -1 0 -2
0 -4 -1 -6/ |10 2 -4 -1 -6/ (0 2 4 -1 -6
0. -2 -6 2 3 9|=0 0 O 3 5|=(0 0 0 3 5=
3 -3 -7 10 -2 0 8 -1 |0 O -4 7 -7
35 5 2 7,10 -4 8 2 131 |10 0 0 O 1
1 3 -1 0 2
0 2 4 -1 -6
-0 0 4 7 T|=—=(24)=24
0o 0 o0 3 5
0O 0 0 O

11. First use a row replacement to create zeros in the second column, and then expand down the second
column:

2 5 3 -1 2 5 3 -1
3 1 -3
30 1 -3 30 1 -3
= =-5|-6 -4 9
-6 0 -4 9| |[-6 0 4
0 2 1

4 10 4 -1 |0 O 2 1

Now use a row replacement to create zeros in the first column, and then expand down the first

column:
3 1 -3 3 1 -3

-5|-6 -4 9|=-5|0 -2 3 =(—5)(3)‘_§ 31‘=(—5)(3)(—8)=120
0o 2 1 0 2 1

12. First use a row replacement to create zeros in the fourth column, and then expand down the fourth

column:
-1 2 3 0| (-1 2 0
-1 2 3
3 4 3 0 3 4 0
= =31 3 4 3
5 4 6 6] [-3 0 -2 0
-3 0 =2
4 2 4 3 4 2 4 3

Now use a row replacement to create zeros in the first column, and then expand down the first
-1 2 3 -1 2 3

column: 3] 3 4 3|=3] 0 10 12|=3(-1)

10 12
‘ ‘ =3(=1)(-38) =114
-3 0 =2 0 -6 -I1

-6 -11

13. First use a row replacement to create zeros in the fourth column, and then expand down the fourth
column:
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15.

16.

17.

18.

19.

2 5 4 1 2 5 4
4 7 6 2/ |0 -3 =2
6 2 -4 0 |6 2 —4
-6 7 7 0 -6 7 7
Now use a row replacement to create
0o -3 =2 0
column: -1| 6 -2 —-4|=-1|6
-6 7 7 0

First use a row replacement to create
column:

-2

3.2 ¢ Solutions 177

1
0o -3 -2

0
=1 6 2 4

0
-6 7 7

0

zeros in the first column, and then expand down the first
-3 =2

-3 =2
—4|=(=1)(-6) s 3|7 (=D(=6)(D)=6

5 3

zeros in the third column, and then expand down the third

-3 2 1 -4 (-3 -2 1 4
1 3 -3
1 3 0 -3 1 3 0 -3
-3 4 2 & (-9 0 0
3 4 4
3 4 0 4 3 40
Now expand along the second row:
1 3 -3
3 3
19 0 0=1(—(9) i 4 =1)(9)0)=0
3 4 4
a b c a b c
d e f|=5|d e [f|=5(7)=35
5¢ 5Sh 5i g h i
a b ¢ a b c
3d 3e 3f|=3|d e f|=3(7)=21
g h i g h i
a b c a b c
g h il|=—d e f|=-7
d e f h i
g h i a b c a b ¢
a b c|l=—|g h i|=—|—-d e f||=—(-T)=7
d e f d e f g h i
a b c a b c a b c
2d+a 2e+b 2f+c|=|2d 2 2f|=2|d e [f|=2(7)=14
g h i g h i g h i
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20.

21.

22

23.

24.

25.

26.

27.

28.

29.
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a+d b+e cH+f

d
8

Since

Since

Since

Since

Since

Since

BT

B o T

=)

S W =N

a b c
e f |=ld e [f|=7
g h i

h i
3 0
3 4|=-1#0, the matrix is invertible.
2

0 -1
-3 =2|=0, the matrix is not invertible.

5 3

0O O 8
-7 -5 0 .. . .

=0, the matrix is not invertible.
8 6 0
5 4
-7 =3
0 —5|=11#0, the columns of the matrix form a linearly independent set.

-8 7
5 0|=-1#0, the columns of the matrix form a linearly independent set.
-5
2 -2 0
-6 -1 . i
0 3 =0, the columns of the matrix form a linearly dependent set.
7 0 -3

True. See Theorem 3.

True. See the paragraph following Example 2.
. True. See the paragraph following Theorem 4.
. False. See the warning following Example 5.

True. See Theorem 3.
False. See the paragraphs following Example 2.
. False. See Example 3.
False. See Theorem 5.

By Theorem 6, det B® = (det B)® =(-2)° =-32.
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Suppose the two rows of a square matrix A are equal. By swapping these two rows, the matrix A is
not changed so its determinant should not change. But since swapping rows changes the sign of the
determinant, det A = — det A. This is only possible if det A = 0. The same may be proven true for

columns by applying the above result to A" and using Theorem 5.

By Theorem 6, (det A)(det A™')=detl =1, so det A" =1/det A.

By factoring an r out of each of the n rows, det(rA) = r"det A.
By Theorem 6, det AB = (det A)(det B) = (det B)(det A) = det BA.
By Theorem 6 and Exercise 31,
det (PAP™") = (det P)(det A)(det P™') = (det P)(det P")(det A)
1
=(det P)] —— [(det A)=1det A
( )( - Pj( )

=det A

By Theorem 6 and Theorem 5, detU”U = (detU” )(detU) = (detU)*. Since U'U =1,
detUU =detl =1, so (detU)* =1. Thus det U = £1.

By Theorem 6 det A* =(det A)*. Since det A* =0, then (det A)* =0. Thus det A = 0, and A is not
invertible by Theorem 4.

6 0
One may compute using Theorem 2 that det A =3 and det B = §, while AB = {17 4} . Thus

det AB =24 =3 x 8 =(det A)(det B).

6 0
One may compute that det A = 0 and det B = -2, while AB :{ O} . Thus

det AB=0=0x-2=(det A)(det B).

a. By Theorem 6, det AB = (det A)(det B) =4 X -3 =—-12.
b. By Exercise 32, det5A = 5°det A=125x4=500.

¢. By Theorem 5, det B' =det B=-3.

d. By Exercise 31, det A =1/detA=1/4.

e. By Theorem 6, det A®> = (det A)’ =4° =64 .

a. By Theorem 6, det AB = (det A)(det B) = -1 x2 =-2.

b. By Theorem 6, det B> = (det B)’ =2° =32.

c. By Exercise 32, det2A=2"det A=16x-1=-16.

d. By Theorems 5 and 6, det AT A=(det A" )(det A) = (det A)(det A) =—1x—1=1.
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41.

42

43.

44.

45.

46.
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e. By Theorem 6 and Exercise 31,
det B"'AB = (det B™")(det A)(det B) = (1/det B)(det A)(det B) =det A=—1.

detA=(a+e)d—cb+f)=ad+ ed—bc—cf=(ad— bc)+ (ed — cf) = det B + det C.
1+a b
det(A+B)= 1 d‘:(1+a)(1+d)—cb:1+a+d+ad—cb:detA+a+d+detB,so
+

det(A+ B)=detA +det Bif and only if a + d = 0.

Compute det A by using a cofactor expansion down the third column:
det A = (u, +v,)det Aj; — (u, +v,)det A,; + (u, +v;)det A;;
=u,det Aj; —u,det A,; +usdet Ay; +videt Ay —v,det A,; + videt Ayy
=detB+detC

By Theorem 5, det AE =det(AE)". Since (AE)" =E" A", det AE=det(E" A"). Now E’ is itself
an elementary matrix, so by the proof of Theorem 3, det (E"AT)=(det E" )(det AT). Thus it is true
that det AE = (det E” )(det A"), and by applying Theorem 5, det AE = (det E)(det A).

[M] Answers will vary, but will show that det ATA always equals O while det AA" should seldom
be zero. To see why A" A - should not be invertible (and thus det A" A=0), let A be a matrix with
more columns than rows. Then the columns of A must be linearly dependent, so the equation Ax = 0
must have a non-trivial solution x. Thus (A” A)x = A" (Ax) = A7 0=0, and the equation (A" A)x=0
has a

non-trivial solution. Since A" A is a square matrix, the Invertible Matrix Theorem now says that

AT A is not invertible. Notice that the same argument will not work in general for AA”, since A"
has more rows than columns, so its columns are not automatically linearly dependent.

[M] One may compute for this matrix that det A = -4008 and cond A = 16.3. Note that this is the /,
condition number, which is used in Section 2.3. Since det A # 0, it is invertible and
-837 181 207 297
o 1 |-750 =574 30 654

4008 171 195 87 —1095
21 -187 81 639

The determinant is very sensitive to scaling, as det10A = 10*det A =—40,080,000 and

det0.14 = (0.1)*det A = —0.4008. The condition number is not changed at all by scaling:
cond(10A) = cond(0.1A) =cond A = 16.3. When A=1,, det A=1 and cond A = 1. As before the

determinant is sensitive to scaling: det10A = 10*det A =10,000 and det0.1A = (0. 1)4detA =0.0001.
Yet the condition number is not changed by scaling: cond(10A4) = cond(0.1A) =cond A = 1.
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3.3 SOLUTIONS

Notes: This section features several independent topics from which to choose. The geometric
interpretation of the determinant (Theorem 10) provides the key to changes of variables in multiple
integrals. Students of economics and engineering are likely to need Cramer’s Rule in later courses.
Exercises 1-10 concern Cramer’s Rule, exercises 11-18 deal with the adjugate, and exercises 19-32
cover the geometric interpretation of the determinant. In particular, Exercise 25 examines students’
understanding of linear independence and requires a careful explanation, which is discussed in the Study
Guide. The Study Guide also contains a heuristic proof of Theorem 9 for 2 X 2 matrices.

5 7 3
1. The system is equivalent to Ax = b, where A = {2 4} and b= L} . We compute

307 5 3
Al(b):L 4},A2(b):{2 J,detA:@detAl(b):5,detA2(b):—1,
detA(b) 5 detA,(b) 1
Y= =y E =
detA 6 det A 6

4 1 6
2. The system is equivalent to AXx = b, where A= L 2} and b= {7} . We compute

6 1 4 6
A(b)= ,Ay(b)= ,det A=3,det A (b) =5, det A,(b) =-2,
7 2 5 7
detA/(b) 5 detA,(b) 2
xl :—:—’_x2 = = —
det A 3 det A 3
. . 3 2 7
3. The system is equivalent to Ax = b, where A :{ 5 6} and b= { 5} . We compute

7 =2 37
A (b)= {_5 6}, A, (b) = {_5 _5}, det A =8, det A, (b) = 32, det A, (b) = 20,

_detA(b) 32, _detAd)_20_5

PTodetA 8 P detA 8 2

-5 3 9
4. The system is equivalent to AX = b, where A :{ 3 J and b= { 5} . We compute

9 3 -5 9
Al(b):{_s _J,Az(b){ X _5},detA:—4,detAl(b):6,detA2(b):—2,

_detA®) _ 6 _ 3 _detAy(b) _

detA -4 2777 detA

2.1
—4 2

X
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2 1 0 7
5. The system is equivalent to Ax =b, where A=|-3 0 1| and b=|-8|. We compute
0 1 2 -3
7 1 0 2 2 1 7
AMb)=|-8 0 1|,AMb)=-3 -8 1 ,Ag(b): -3 0 =8|,
-3 1 2 0 -3 2 0 1 -3
det A=4,det A (b) =6,det A, (b) =16,det A;(b) =—
. _detA() 6 _3 B _detA,(b) 16 _ _detAy(b) 14 7
' odetA 4 277 detA 4 77 detA 4 2
2 1 4
6. The system is equivalent to Ax=b, where A=|-1 0 2|and b=| 2|. We compute
3 3 -2
4 1 1 2 4 1 2 1 4
Ab)=| 2 0 2[AMd=- 2 2, AM=-1 0 2]
-2 1 3 3 2 3 31 =2
det A=4,det A (b)=-16,det A, (b) =52, det A;(b) =—4
. _detA(b) _-16 _detAy(b) 52 _ _detA3(b)_—_4__1
' odetAa 4 P detA 4 77 deta 4

4

6
7. The system is equivalent to Ax = b, where A= { ® 5
s

4 A, (b) = 6s
2s |2 |9

A(b)—{ >
T

Since det A=12s*—36=12(s>—3)#0 for s # +3 , the system will have a unique solution when

NES +\/§ For such a system, the solution will be
_det A (b) 10s+8 S5s+4 _det A, (b)

=125 -

5
} and b :{ 2} . We compute

5
2}, det A;(b) =10s+8, det A, (b) =—12s5—45.

45 —4s-15

1=

= X, =
det A 12(s -3) 6(s -3) det A

=5

3
8. The system is equivalent to Ax = b, where A :{ *
N

=5 A(b)—3s
5s7727 | 9

3
Al(b):|:2

Since det A =155 +45=15(s* +3)#0 for all values of s, the system will have a unique solution for

all values of s. For such a system, the solution will be
det A (b) 155 +10 35+2 detA (b)

12(s?

6s—-27

_3) A(s2-3)

3
} and b= {2} . We compute

3
2}, det A, (b) =155 +10, det A, (b) = 65 —27.

25s—9

X =

detA  15(°+3) 3°+3) > detA  15(s
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-2s

9. The system is equivalent to Ax = b, where A = E 6
s

-1
} and b :{ 4} . We compute

1 -2 -1
Al(b):{4 6j,A2(b)=E 4},detAl(b)=2s,detA2(b)=4s+3.

Since det A =6s>+6s= 6s(s+1)=0 for s =0, —1, the system will have a unique solution when s # 0,
—1. For such a system, the solution will be
:detAl(b): 2s _ 1 . :detA2(b): 4s+3

detA  6s(s+1) 3(s+1) 7  detA  6s(s+1)

X

2 1
10. The system is equivalent to Ax = b, where A= { g

1
and b= . We compute
3s  6s 2

1 1 2 1
Ab)= ,Ay(b)= s ,det A (b)=65—2,detA,(b) =s.
2 6s 35 2

Since det A=12s” —3s =3s(4s—1)=0 for s = 0,1/4, the system will have a unique solution when
s # 0,1/4. For such a system, the solution will be
=detA1(b)= 6s5s—2 . =detA2(b)= s _ 1

detA  3s(4s—1)"°  detA  3s@s—1) 3(4s—1)

1

11. Since det A = 3 and the cofactors of the given matrix are
0 0 3 0
1 1 -1 1

-2 -1 0 -1 0 2
Cy =- =1, C,= =—1, Cy=- =2

’ 13

G, = =0, Cp=-

1 1 -1 1

-2 -1 0 -1 0 -2
C, = =0, Cy,=- =3, Cy= =6,

0 0 30 30
0 1 0 | 0 1/3 0
adjA=|-3 -1 -3|and A'= Aade: -1 -1/3 -1]|.
t
3 2 6 ¢ 1 23 2

12. Since det A =5 and the cofactors of the given matrix are

21 2 1 )
L AT I i P It P
L L R T
21 — 1 O D 22 — O O - 23 — O 1 - ’
13 13 11
Ci=o TP ST T ST LT
13 7 /5 3/5 /5
adjA=| 0 0 5|and A'= adjA=| 0 0 1.
detA
2 -1 4 2/5 -1/5 -4/5
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13. Since det A = 6 and the cofactors of the given matrix are

co_ 0 1| co— L1 |0
11— 1 1 - ’ 12 2 1 B 13— 2 1 -5
co_ 5 4] co 3 4 s oo 35 5
21 1 1 - ’ 22 7 2 1 - ’ 23 ™ 2 1 -
co- 5 4| |3 4] 3 5] 5
31— 0 1 - 32 1 1 - 33 ™ 1 0 - ’
-1 -1 5 | -1/6 -1/6 5/6
adjA=| 1 -5 1|and A'= adjA=| 1/6 -5/6 1/6]|.
det A
1 7 =5 /6 7/6 -=5/6
14. Since det A = -1 and the cofactors of the given matrix are
co_ 2 1 _s co - 0 1 co - 0 2| A
HRERE P2 o4 7 B2 o3 7
co- 6 7| co 3.7 5 c. - 3 6 3
o < T A A1
co- 6 7| g co - 3.7 |3 6 6
31— 2 1 - ’ 32 7 0 1 - ’ 33 ™ 0 2 ™
5 3 8 -5 3 8
adjA=| 2 -2 —3|and A™'= adjA=-2 2 3|
det A
-4 3 6 4 -3 -6
15. Since det A = 6 and the cofactors of the given matrix are
C_10_2 |1 0_2 C_—l l_1
1= 3 2 it 12 — - 2 - 13 — ) 3 - ’
co_ 0 0f 130 ¢ 130
21 — 3 2 - 22 — - o) - 23 — ) 3 - 2
co- 0 0 ~0 130 ~0 co_ 3 0 _3
ool 7 S S T 1] R ES I
2 0 0 1/3 0 0
adjA=| 2 6 O|and A™'= adjA=| 1/3 1 0.
det A
-1 -9 3 -1/6 -3/2 1/2
16. Since det A = -9 and the cofactors of the given matrix are
-3 1) 101 ~0 C.— 0 -3
11— 0 3 - ’ 12— 0 3 - 13— 0 0 -
|2 4 |1 4 _3 o2
o3 7 P03 7 2700 o 7
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20.

21.

22.

23.
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2 4 1 4 1 2
C31__3 1:14’ 32__0 1:_’ C33:O 3 =-3,
-9 -6 14 | 1 2/3 -14/9
adjA=| 0 3 ~—l|and A™'= Aadez 0 -1/3 1/9|.
et
0 0 -3 0 0 1/3
a b
Let A :{ d} . Then the cofactors of A are C, = |d| =d, C, = —|c| =—c, Cy = —|b| =-b, and
c
: d - . :
Cy, = |a| =a.Thus adjA :{ } . Since det A = ad — bc, Theorem 8 gives that
—-c a
-1 1 . 1 d —b . [ . . .
AT = adjA = . This result is identical to that of Theorem 4 in Section 2.2.
det A ad—bc|—c a

Each cofactor of A is an integer since it is a sum of products of entries in A. Hence all entries in adj A

will be integers. Since det A = 1, the inverse formula in Theorem 8 shows that all the entries in A™"
will be integers.

5 6
The parallelogram is determined by the columns of A = 5 4} , so the area of the parallelogram is
|det A| = [8] = 8.
_ , -1 4
The parallelogram is determined by the columns of A = — so the area of the parallelogram

is |det A| = |-7| = 7.

First translate one vertex to the origin. For example, subtract (-1, 0) from each vertex to get a new
parallelogram with vertices (0, 0),(1, 5),(2, —4), and (3, 1). This parallelogram has the same area as

1 2
the original, and is determined by the columns of A = {5 } , so the area of the parallelogram is

ldet A| = |-14] = 14.

First translate one vertex to the origin. For example, subtract (0, —2) from each vertex to get a new
parallelogram with vertices (0, 0),(6, 1),(=3, 3), and (3, 4). This parallelogram has the same area as

6
the original, and is determined by the columns of A = { ) 3} , so the area of the parallelogram is

|det A| = [21] = 21.
1 1 7
The parallelepiped is determined by the columns of A=| 0 2 1], so the volume of the
-2 4 0

parallelepiped is |[det A| = [22| = 22.
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24.

25.

26.

27.

28.

29.

30.

CHAPTER 3 ¢ Determinants

I -2 -1
The parallelepiped is determined by the columns of A={4 -5 2|, so the volume of the
0o 2 -l

parallelepiped is |[det A| = |-15| = 15.

The Invertible Matrix Theorem says that a 3 X 3 matrix A is not invertible if and only if its columns
are linearly dependent. This will happen if and only if one of the columns is a linear combination of
the others; that is, if one of the vectors is in the plane spanned by the other two vectors. This is
equivalent to the condition that the parallelepiped determined by the three vectors has zero volume,
which is in turn equivalent to the condition that det A = 0.

By definition, p + S is the set of all vectors of the form p + v, where v is in S. Applying 7 to a typical
vector in p + S, we have T(p + v) = T(p) + T(v). This vector is in the set denoted by T(p) + 7(S). This
proves that 7'maps the set p + S into the set T(p) + 7(S). Conversely, any vector in 7(p) + 7(S) has
the form 7(p) + 7(v) for some v in S. This vector may be written as 7(p + v). This shows that every
vector in T(p) + 7(S) is the image under 7 of some point p + vin p + S.

Since the parallelogram S is determined by the columns of {_

-2 2
det

is |det A|{area of S} = 6 - 4 = 24. Alternatively, one may compute the vectors that determine the
image, namely, the columns of

w2 0

The determinant of this matrix is —24, so the area of the image is 24.

5} , the area of S'is

-2
=|—4|=4. The matrix A has det A = 5= 6 . By Theorem 10, the area of 7(S)

Since the parallelogram S is determined by the columns of {

4 0
det

|det A|{area of S} =5 - 4 = 20. Alternatively, one may compute the vectors that determine the image,
namely, the columns of

i

The determinant of this matrix is 20, so the area of the image is 20.

0
J , the area of S'is

7 2
=|4|=4. The matrix A has det A :‘ : 1‘:5 . By Theorem 10, the area of 7(S) is

The area of the triangle will be one half of the area of the parallelogram determined by v, and v,.
By Theorem 9, the area of the triangle will be (1/2)|det A|, where A= [V1 Vz].

Translate R to a new triangle of equal area by subtracting (x;,y;) from each vertex. The new triangle
has vertices (0, 0), (x, —x3,y, — y3), and (x, — x;,y, — y;). By Exercise 29, the area of the triangle
will be
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1 X —X X, —X
—de{ 1743 2 3}
2 N=Ys Y23

Now consider using row operations and a cofactor expansion to compute the determinant in the

formula:
ETE Y=x y-y; 0 X —x, y—y
det| x, y, 1l|=detjx,—x; y,—y; O =de'{ b ! 3}
Xp=X3 Y= )3
15 oy 1 X3 V3 1
By Theorem 5,
X, —X — X, —X X, — X
det| 171 1 )@}zde{l 3 2 3}
| X2 =X3  Yo— )3 M—=Ys Ya— )3

So the above observation allows us to state that the area of the triangle will be

1 X, —X X, — X 1 " i !
—de{l P 3} =—|det|x, y, 1
2 N=Ys 2=V 2
ooy 1
X XX “
31. a. To show that 7(S) is bounded by the ellipsoid with equation —-+—=3+=3-=1,let u=|u, | and
c
Uz

X
let x=|x, |=Au.Then u, =x,/a, u, =x,/b,and u, = x;/c, and u lies inside S (or

X3
X X2 X
u +u; +u; <1) if and only if x lies inside 7(S) (or 01—12+—§+—32 <1).

b. By the generalization of Theorem 10,
{volume of ellipsoid} = {volume of 7'(S)}

=|det A| - {volume of S} :abc%[: 4”;””

32. a. A linear transformation 7 that maps S onto S”will map e, to v,, e, to v,, and e, to vs; that s,
T(e)=v,, T(e,)=v,,and T(e;)=v,. The standard matrix for this transformation will be
A=[T(e,) T(e,) T(e)]=[v, v, vs].
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b. The area of the base of S is (1/2)(1)(1) = 1/2, so the volume of S is (1/3)(1/2)(1) = 1/6. By part a.

T(S) = S’ so the generalization of Theorem 10 gives that the volume of S’ is |det A|{volume of
S} = (1/6)|det A|.

33. [M] Answers will vary. In MATLAB, entries in B — inv(A) are approximately 10™" or smaller.

34. [M] Answers will vary, as will the commands which produce the second entry of x. For example, the
MATLAB command is x2 = det ([A(:,1) b A(:,3:4)])/det (A7) while the Mathematica
command is x2 = Det[{Transpose[A][[1]],b,Transposel[A]l[[3]1],
Transpose[A][[4]1]1}]/Det[A].

35. [M] MATLAB Student Version 4.0 uses 57,771 flops for inv A and 14,269,045 flops for the inverse
formula. The inv (A) command requires only about 0.4% of the operations for the inverse formula.

Chapter 3 SUPPLEMENTARY EXERCISES

1. a. True. The columns of A are linearly dependent.
b. True. See Exercise 30 in Section 3.2.
c. False. See Theorem 3(c); in this case det 5A=5det A .

. 2 0 1 0 30
d. False. Consider A = , B= ,and A+ B= .
0 1 0 3 0 4

. False. By Theorem 6, det A> =27
False. See Theorem 3(b).

True. See Theorem 3(c).

. True. See Theorem 3(a).

=0 - o

False. See Theorem 5.

o e

j- False. See Theorem 3(c); this statement is false for n X n invertible matrices with n an even
integer.

True. See Theorems 6 and 5; det A” A = (det A)2 .
False. The coefficient matrix must be invertible.
False. The area of the triangle is 5.

True. See Theorem 6; det A® = (det A)B.

False. See Exercise 31 in Section 3.2.

T o5 B ~F

True. See Theorem 6.

12 13 14| |12 13 14
2. /15 16 17|=| 3 3 3|=0
18 19 20 6 6 6

1 a b+c 1 a b+c 1 a b+c
3./]1 b a+c|=|0 b—a a-b|l=(b-a)c—a)|0 1 -1 (=0
1 ¢ a+b 0 c—a a-c 0 1 -1
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a b c a b c a b c

4. la+x b+x c+x|=|x x x|=xy|1 1 1[{=0

a+y b+y c+y|l |y y vy 1 1 1

91 9 9 9

9 9 9 2

9 0 9 9 2 4 0 5
540050—(1)4050—(1)(2)939
' 9 3 9 0]

9 0 3 9 0 6 0 7

6 0 7 0
6 0 0 7 0
4 5
=(=D=2)(3) 6 7 =(=D(=2)3)(-2)=-12
4 8 8 8 5
4 8 8 5

01 0 0 O 4 8 5
6.6 8 8 8 7 —(1)6 8 8 7 =D2)6 8 T|=ME2)X 3)4 : =(D2)(=3)(-2)=12
' o 8 3 0 - 6 7| -

0 8 8 3 0 0 3 0

0 2 0 O
0 8 2 0 O

7. Expand along the first row to obtain

1 x
. XN 1y 1 x
I x y|=1 -X +y =0.
X M Y 1 x
1 x ¥

This is an equation of the form ax + by + ¢ = 0, and since the points (x,,y,) and (x,,y,) are distinct,
at least one of a and b is not zero. Thus the equation is the equation of a line. The points (x;,y,) and
(x,,y,) are on the line, because when the coordinates of one of the points are substituted for x and y,
two rows of the matrix are equal and so the determinant is zero.

8. Expand along the first row to obtain

1 x vy
4N Ly I x _ _ . .
1 x y|=1 -X +y =1(mx, — y,;) —x(m)+ y(1) =0. This equation may
0 1 1 m 0 m 0 1
m

be rewritten as mx, —y, —mx+y =0, or y—y, =m(x—Xx,).

2 2
1 a a| |1 a a 1 a a?

9. detT=[1 b b*|=|0 b—a b -d*|=|0 b-a (b-a)b+a)

1 ¢ ¢ 0 c—a c*-d° 0 c—a (c—a)c+a)

1 a a’ 1 a a’
=b-a)c—a)l0 1 b+a|l=b-a)c—-a)|]0 1 b+a|=0b-a)c—a)c—>b)
0 1 c+a 0 0 c-b

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



190 CHAPTER 3 ¢ Determinants

10. Expanding along the first row will show that f(t) =det V =¢, + ¢t + c,t* +¢;t”. By Exercise 9,

11.

12.

13.

14.

1 Xx xlz
2

=—|1 x, x5|[=0—x)0;—x)(x—x,)#0
1 x5 x

since x,, x,, and x; are distinct. Thus f(f) is a cubic polynomial. The points (x,,0), (x,,0), and
(x5,0) are on the graph of f, since when any of x,, x, or x; are substituted for 7, the matrix has two
equal rows and thus its determinant (which is f'()) is zero. Thus f(x,)=0 fori=1, 2, 3.

To tell if a quadrilateral determined by four points is a parallelogram, first translate one of the
vertices to the origin. If we label the vertices of this new quadrilateral as 0, v,, v,, and v, , then

they will be the vertices of a parallelogram if one of v,, v,, or v, is the sum of the other two. In
this example, subtract (1, 4) from each vertex to get a new parallelogram with vertices 0 = (0, 0),
v, =(-2,1),v,=(2,5), and v, =(4,4). Since v, = v, +v,, the quadrilateral is a parallelogram as
stated. The translated parallelogram has the same area as the original, and is determined by the

2 4
columns of A=[v, v,] :{ | 4} , so the area of the parallelogram is |det A| = [-12| = 12.

A 2 x 2 matrix A is invertible if and only if the parallelogram determined by the columns of A has
nonzero area.

By Theorem 8, (adj A) -ﬁA = A"'A=1 . By the Invertible Matrix Theorem, adj A is invertible
et

1
and (adjA)'=——A
(adj 4) det A

A
a. Consider the matrix A, = {0 }, where 1 <k <nand O is an appropriately sized zero matrix.

k
We will show that det A, =det A for all 1 <k <n by mathematical induction.

First let k = 1. Expand along the last row to obtain

A O
det Al = det|:0 | i| = (_1)(n+1)+(n+1) .1-det A =det A.

Now let 1 < k < n and assume that det A,_, = det A. Expand along the last row of A, to obtain

A O
det A, =det { 0 } = (=)0 1. det A, =det A,_, =det A. Thus we have proven the
k

result, and the determinant of the matrix in question is det A.

I, O
b. Consider the matrix A, = {Ck D} ,where 1 <k<n, C, is an n X k matrix and O is an
k

appropriately sized zero matrix. We will show that det A, =detD forall 1 <k <n by
mathematical induction.
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First let k = 1. Expand along the first row to obtain

1o 1+
det A, =det =(-=1)" -1-detD =det D.
¢, D
Now let 1 < k < n and assume that det A,_, =det D. Expand along the first row of A, to obtain
I, O
det A, = det Ck D} =(=1)""-1-det A,_, =det A,_, =det D. Thus we have proven the result, and
k

the determinant of the matrix in question is det D.

c. By combining parts a. and b., we have shown that

o ( {A OD( . OD
det =| det det = (det A)(det D).
|C D] o 1 |C D

From this result and Theorem 5, we have

[A B A B AT 0 , ,
det = det = det = (det AT )(det D" ) = (det A)(det D).
1O D] O D BT DT

15. a. Compute the right side of the equation:

1 o][A B] [ A B
X 1]l0 Y| |XA XB+Yy

Set this equal to the left side of the equation:

A B A B
= sothat XA=C XB+Y=D
C D XA XB+Y

Since XA = C and A is invertible, X = CA™. Since XB+Y=D, Y=D—-XB=D—-CA"'B. Thus
by Exercise 14(c),

A B 1 o0 A B
det =det . det .
C D CA™ 1 O D-CA B

= (det A)(det (D — CA™'B))
b. From part a.,

de{? lﬂ = (det A)(det (D — CA™'B)) =det[A(D — CA™'B)]

=det[AD — ACA™'B]=det[AD — CAA™'B]
=det[AD — CB]

16. a. Doing the given operations does not change the determinant of A since the given operations are
all row replacement operations. The resulting matrix is

fla—b —-a+b 0 ... 0
0 a-b —-a+b ... 0
0 0 a-b ... 0
| b b b —
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17.

18.

b. Since column replacement operations are equivalent to row operations on A” and det A” =det A,
the given operations do not change the determinant of the matrix. The resulting matrix is

¢ Determinants

fa-b 0 0 0
0 a-b O 0
0 0 a-b 0
b 2b 3b a+(n-1b

c. Since the preceding matrix is a triangular matrix with the same determinant as A,

detA=(a—b)""(a+(n-1b).

First consider the case n = 2. In this case
- b

=ab-b*,
a

b b
detB = =a(a—b),detC= 5

a

so detA=detB+detC=a(a—b)+ab—b>=a*-b*=(a-b)a+b)=(a—b)*"'(a+(2-1)b), and
the formula holds for n = 2.

Now assume that the formula holds for all (kK — 1) X (k— 1) matrices, and let A, B, and C be k X k
matrices. By a cofactor expansion along the first column,

a b ... b

b a b k-2 k-1
detB=(a—b): . :=(a—b)(a—b) (a+(k-=2)b)=(a-b)" (a+(k—2)b)

b b ... a

since the matrix in the above formula is a (k— 1) X (k — 1) matrix. We can perform a series of row
operations on C to “zero out” below the first pivot, and produce the following matrix whose
determinant is det C:

b b b
0 a-b .. 0
0 0 a—>b

Since this is a triangular matrix, we have found that detC =b(a — b)Y Thus
det A=detB+detC =(a—b) " (a+(k-2)b)+b(a—b)" =(a-b)"(a+(k-1)b),

which is what was to be shown. Thus the formula has been proven by mathematical induction.

[M] Since the first matrix has a = 3, b = 8, and n = 4, its determinant is
GB-8)*""1(3+(4—-1)8) =(-5)*(3+24) = (—125)(27) = -3375. Since the second matrix has a = 8, b =
3, and n = 3, its determinant is (8 —3)"" (8 + (5—1)3) = (5)* (8 +12) = (625)(20) =12,500.
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[M] We find that
1 1 1 1 1
1 1 1 1
1 1 1 1 2 2 2 2
1 2 2 2
1 2 2= =L/l 2 3 3 3|=1
1 2 3 3
1 2 3 1 2 3 4 4
1 2 3 4
1 2 3 4 5
Our conjecture then is that
1 1 1 ... 1
1 2 2 ... 2
1 2 3 ... 3=
1 2 3 ... n

To show this, consider using row replacement operations to “zero out” below the first pivot. The
resulting matrix is

1t 1 1 ... 1
0o 1 1 ..

o1 2 .. 2
0 1 2 ... n-1

Now use row replacement operations to “zero out” below the second pivot, and so on. The final
matrix which results from this process is

11 1 ... 1]
0o 1 1 ... 1
0 0 1 ... 1},
0 0 0 .. 1]

which is an upper triangular matrix with determinant 1.

[M] We find that
1 1 1 1 1
1 1 1 1
1 1 1 1 3 3 3 3
1 3 3 3
1 3 3|=6, =18,|]1 3 6 6 6|=54.
1 3 6 6
1 3 6 1 3 6 9 9
1 3 6 9
1 3 6 9 12

Our conjecture then is that
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11

1 3 3 .. 3

1 3 6 .. 6 |=2-3""2
1 3 6 ... 3n-1

To show this, consider using row replacement operations to “zero out” below the first pivot. The
resulting matrix is

't 1 1 ... 1
0o 2 2 .. 2
0 2 5 .. 5
10 2 5 ... 3n-D-1]

Now use row replacement operations to “zero out” below the second pivot. The matrix which results
from this process is

TS U T T T SRR
02222 2 .. 2
00333 3 .. 3
00366 6 .. 6
00369 9 .. 9
0 0 3 6 9 12 ... 3n-2)

This matrix has the same determinant as the original matrix, and is recognizable as a block matrix of
the form

o b

where
(3 3 3 3 3 1 1 |
L 6 6 1 2
A={ 2}mdD= 6 9 9 9 =3|1
3 6 9 12 ... 3m-2)] [l 2 3 4 .. n-2]

A B
As in Exercise 14(c), the determinant of the matrix {0 D} is (det A)(det D) = 2 det D.

Since D is an (n — 2) X (n — 2) matrix,
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11 1 1
1 2 2 ... 2

detD=3"2|1 2 3 3 .. 3 [=3721)=3""
1 2 3 4 ... n=2

A B
by Exercise 19. Thus the determinant of the matrix {0 D} is 2detD =2-3""2
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4.1

Vector
Spaces

SOLUTIONS

Notes: This section is designed to avoid the standard exercises in which a student is asked to check ten
axioms on an array of sets. Theorem 1 provides the main homework tool in this section for showing that a
set is a subspace. Students should be taught how to check the closure axioms. The exercises in this section
(and the next few sections) emphasize R”, to give students time to absorb the abstract concepts. Other
vectors do appear later in the chapter: the space S of signals is used in Section 4.8, and the spaces [P, of
polynomials are used in many sections of Chapters 4 and 6.

1.

.a Ifu :{x} is in W, then the vector cu= {x} :{
y c

b. Example: If u :{

a. If u and v are in V, then their entries are nonnegative. Since a sum of nonnegative numbers is

nonnegative, the vector u + v has nonnegative entries. Thusu + visin V.

2
b. Example: If u = {2} and ¢ =-1, then uis in Vbut cu is not in V.

cxX | . . 2
is in Wbecause (cx)(cy)=c"(xy)=0

Yy y
since xy = 0.

2
} and v :{3} , then u and v are in Wbut u + v is not in W.

.5
3. Example: If u :{ } and ¢ =4, then u is in H but cu is not in H. Since H is not closed under scalar

multiplication, H is not a subspace of R”.

4. Note that u and v are on the line L, but u + v is not.

| u @ utv
)
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5. Yes. Since the set is Span{r”}, the set is a subspace by Theorem 1.
6. No. The zero vector is not in the set.
7. No. The set is not closed under multiplication by scalars which are not integers.

8. Yes. The zero vector is in the set H. If p and q are in H, then (p + q)(0) =p(0) + q(0)=0+0=0,
so p + qis in H. For any scalar ¢, (cp)(0) =c - p(0)=c - 0=0, so cp is in H. Thus H is a subspace by

Theorem 1.
ey
9. The set H = Span{v}, where v=| 5. Thus H is a subspace of R’ by Theorem 1.
s
10. The set H = Span{v}, where v=| 0 |. Thus H is a subspace of R* by Theorem 1.
__7_
") 3]
11. The set W = Span{u, v}, where u=|—1| and v=|0 |. Thus W is a subspace of R’ by Theorem 1.
) A7
2 . .
12. The set W = Span {u, v}, where u= 5 and v= 3| Thus W is a subspace of R* by Theorem 1.

13. a. The vector w is not in the set {v,,v,,v5}. There are 3 vectors in the set {v,v,,v;}.
b. The set Span{v,,v,,v,} contains infinitely many vectors.

c¢. The vector w is in the subspace spanned by {v,,v,,v,} if and only if the equation
XV, +X,V, +x;¥; =w has a solution. Row reducing the augmented matrix for this system of
linear equations gives

1 2 4 3 1 0 0 1
0O 1 2 1|-/]0 1 2 1Y,
-1 3 6 2 0 0 0 O

so the equation has a solution and w is in the subspace spanned by {v,,v,,v;}.
14. The augmented matrix is found as in Exercise 13c. Since
1 2 4 1 1 0 0 -5

o 1 2 3|-0 1 2 3]
-1 3 6 14| |0 0 0 O
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the equation x,v, +x,v, + x;v; =w has a solution, the vector w is in the subspace spanned by

{V1 B V2 k] V3 } .
15. Since the zero vector is not in W, W is not a vector space.
16. Since the zero vector is not in W, W is not a vector space.

17. Since a vector w in W may be written as

2 -1 0
0 3 -1
Ww=a +b +c
-1 0 3
- 0_ 3 —
[ 27 [-1 0]
0 3 -1
S = 9 9
-1 0
- 0_ 3 -

is a set that spans W.

18. Since a vector w in W may be written as

(4] 3 0
0 0 0
wW=a +b +c
1 3 1
10| 3 -2
(4] [3 0
0|10 0
S = 9 9
1113 1
10] [3] |2

is a set that spans W.

19. Let H be the set of all functions described by y(f) = ¢,cos @t + ¢,sin @t. Then H is a subset of the

vector space V of all real-valued functions, and may be written as H = Span {cos a, sin a¢}. By
Theorem 1, H is a subspace of V and is hence a vector space.

20. a. The following facts about continuous functions must be shown.
1. The constant function f(#) = 0 is continuous.
2. The sum of two continuous functions is continuous.
3. A constant multiple of a continuous function is continuous.
b. Let H = {fin Cla, b]: f(a) =f(b)}.
1. Let g(¥) =0 for all ¢ in [a, b]. Then g(a) = g(b) =0, so gisin H.

2. Let g and h be in H. Then g(a) = g(b) and h(a) = h(b), and (g + h)(a) = g(a) + h(a) =
g(b)+h(b)=(g+h)b),sog+hisin H.

3. Let g be in H. Then g(a) = g(b), and (cg)(a) = cg(a) = cg(b) = (cg)(h), so cg is in H.
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21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

CHAPTER 4 + Vector Spaces

Thus H is a subspace of Cla, b].

The set H is a subspace of M, ,. The zero matrix is in H, the sum of two upper triangular matrices is
upper triangular, and a scalar multiple of an upper triangular matrix is upper triangular.

The set H is a subspace of M,,,. The 2 x 4 zero matrix 0 is in H because FO = 0. If A and B are

matrices in H, then FA+B)=FA+ FB=0+0=0,s0A + Bisin H.If Aisin H and c is a scalar,
then F(cA) = c(FA)=c0=0,so cAisin H.

a. False. The zero vector in V is the function f whose values f(¢) are zero for all t in R.

b. False. An arrow in three-dimensional space is an example of a vector, but not every arrow is a
vector.

c. False. See Exercises 1, 2, and 3 for examples of subsets which contain the zero vector but are not
subspaces.

d. True. See the paragraph before Example 6.

o

False. Digital signals are used. See Example 3.

a. True. See the definition of a vector space.

b. True. See statement (3) in the box before Example 1.

c. True. See the paragraph before Example 6.

d. False. See Example 8.

e. False. The second and third parts of the conditions are stated incorrectly. For example, part (ii)

does not state that u and v represent all possible elements of H.

2,4

a. 3

b. 5

c. 4

a. 8

b. 3

c.5

d 4

a. 4

b. 7

c.3

d. 5

e. 4
Consider u + (-1)u. By Axiom 10, u + (-1)u = lu + (-1)u. By Axiom 8§, lu + (-Du=(1 + (-1))u =

Ou. By Exercise 27, Ou = 0. Thus u + (-1)u = 0, and by Exercise 26 (-1)u = —u.

By Axiom 10 u = lu. Since c is nonzero, c'c=1,and u= (c_lc)u . By Axiom 9,

(c'eyu=c""(cu)=c"'0 since cu = 0. Thus u=c"'0=0 by Property (2), proven in Exercise 28.
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31. Any subspace H that contains u and v must also contain all scalar multiples of u and v, and hence
must also contain all sums of scalar multiples of u and v. Thus H must contain all linear
combinations of u and v, or Span {u, v}.

Note: Exercises 32-34 provide good practice for mathematics majors because these arguments involve
simple symbol manipulation typical of mathematical proofs. Most students outside mathematics might
profit more from other types of exercises.

32. Both H and K contain the zero vector of V because they are subspaces of V. Thus the zero vector of V
isin HN K. Letu and v be in H N K. Then u and v are in H. Since H is a subspace u + v is in H.
Likewise u and v are in K. Since K is a subspace u+ visin K. Thusu+visin H N K. Letu be in H
N K. Then uis in H. Since H is a subspace cu is in H. Likewise u is in K. Since K is a subspace cu is
in K. Thus cu is in H N K for any scalar ¢, and H N K is a subspace of V.

The union of two subspaces is not in general a subspace. For an example in R? let H be the x-axis and
let K be the y-axis. Then both H and K are subspaces of R?, but H U K is not closed under vector
addition. The subset H U K is thus not a subspace of R*.

33. a. Given subspaces H and K of a vector space V, the zero vector of V belongs to H + K, because 0 is
in both H and K (since they are subspaces) and 0 = 0 + 0. Next, take two vectors in H + K, say
w,=u,+v, and w, =u, +v, where u, and u, arein A, and v, and v, are in K. Then

W, +W,=u,+Vv,+u, +v, =, +u,)+(v,+v,)
because vector addition in V is commutative and associative. Now u, +u, isin H and v, +v, is
in K because H and K are subspaces. This shows that w, + w, isin H + K. Thus H + K is closed
under addition of vectors. Finally, for any scalar c,

cw, =c(u, +v,)=cu, +cv,
The vector cu, belongs to H and cv, belongs to K, because H and K are subspaces. Thus, cw,

belongs to H + K, so H + K is closed under multiplication by scalars. These arguments show that
H + K satisfies all three conditions necessary to be a subspace of V.

b. Certainly H is a subset of H + K because every vector u in H may be written as u + 0, where the
zero vector 0 is in K (and also in H, of course). Since H contains the zero vector of H + K, and H
is closed under vector addition and multiplication by scalars (because H is a subspace of V'), H is
a subspace of H + K. The same argument applies when H is replaced by K, so K is also a
subspace of H + K.

34. A proof that H + K =Span{u,,.. U Ve, Vq} has two parts. First, one must show that H + K is a
subset of Span{u,,...,u

subset of H + K.
(1) A typical vector in H has the form cju, +...+¢

p,vl,...,vq}. Second, one must show that Span{ul,...,up,vl,...,Vq} 1sa

,u, and a typical vector in K has the form

d,v, +...+dqvq. The sum of these two vectors is a linear combination of U, W,V Y,
and so belongs to Span{ul,...,up,vl,...,vq}. Thus H + K is a subset of
Span{ul,...,up,vl,...,vq}.

(2) Each of the vectors u,,.. SULL VLV, belongs to H + K, by Exercise 33(b), and so any linear

combination of these vectors belongs to H + K, since H + K is a subspace, by Exercise 33(a).
Thus, Span{ul,...,up,vl,...,vq} is a subset of H + K.
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35. [M] Since
8 4 -7 9 1 0 0 1
-4 3 6 —4 0 1 0 2
3 2 -5 4|10 0 1 1f
9 -8 18 7 0O 0 0 O
W is in the subspace spanned by {v,,v,,v,}.
36. [M] Since
3 5 -9 4 1 0 0 -1/5
8 7 -6 -8 0 1 0 -2/5
[A y]= - ’
-5 -8 3 6 0O 0 1 3/5
2 -2 -9 -5 0 0 O 0

y is in the subspace spanned by the columns of A.

37. [M] The graph of f(¢) is given below. A conjecture is that f(f) = cos 4t.

1
\] \/ | \7 5\/6
The graph of g(¢) is given below. A conjecture is that g(f) = cos 6¢.

LUAAN
VUV

-1
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38. [M] The graph of f(r) is given below. A conjecture is that f(r) = sin 3z.

1

0.5

AWAWA

The graph of g(¢) is given below. A

1

lv 3\] | v
conjecture is that g(¢) = cos 4.

A

0.5

-1

VYV

The graph of h(?) is given below. A conjecture is that h(#) = sin 5z.

1

0.5

AL

0.5

4.2 SOLUTIONS

VUV

4.2

Solutions

203

Notes: This section provides a review of Chapter 1 using the new terminology. Linear tranformations are
introduced quickly since students are already comfortable with the idea from R". The key exercises are
17-26, which are straightforward but help to solidify the notions of null spaces and column spaces.
Exercises 30-36 deal with the kernel and range of a linear transformation and are progressively more
advanced theoretically. The idea in Exercises 7-14 is for the student to use Theorems 1, 2, or 3 to
determine whether a given set is a subspace.

1. One calculates that

3 -5 31
Aw=| 6 -2 0| 3|=
8 4 1|-4

so wis in Nul A.

2. One calculates that
2
Aw=|-3

NN
()}
|
—_ =
Il
o O

-5 4 1] 1 0
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so w is in Nul A.

3. First find the general solution of Ax = 0 in terms of the free variables. Since
1 0 -2 4 0

0 1 3 -2 0
the general solution is x; =2x; —4x,, x, =-3x; +2x,, with x; and x, free. So

X 2 -4
X, -3 2
X= =X, + x4 ,
X 1 0
X4 0 1
and a spanning set for Nul A is

2| |4

-3 2
1’| o
0 1

4. First find the general solution of Ax = 0 in terms of the free variables. Since

A 0]{1 -3 0 0 o}

0 0 1 0 O
the general solution is x; =3x,, x; =0, with x, and x, free. So

X 3 0
X, 1 0
X= =X%| |+x] |
X, 0 0
X4 0 1

and a spanning set for Nul A is
31[0]

S O =
- o O

5. First find the general solution of Ax = 0 in terms of the free variables. Since
1 -4 0 2 0 0

[A 0]-l0 0 1 -5 0 0],

o 0 0 0 10

the general solution is x; =4x, —2x,, x; =5x,, x; =0, with x, and x, free. So
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X 4 -2
Xy 1 0
X=X |[=x,|0|+x,] 5,
X, 0 1
| X5 | 10| | 0]
and a spanning set for Nul A is
47T
1 0
0l 5
0 1
_0_ L O_

. First find the general solution of Ax = 0 in terms of the free variables. Since
1 0 5 -6 1 0

[A 0]~]0 1 -3 1 0 Of,
0O 0o 0 0 0 O

the general solution is x; =—5x; +6x, — x5, x, =3x; —x, , with x;, x,, and x; free. So

X =5 6 -1
Xy 3 -1 0
X=|x; |=x;5] 1|+x, Of+x5] O},
X, 0 1 0
| X5 | | 0] | 0] | 1]
and a spanning set for Nul A is
[—51[ 6][-1]
31|-1{| O
I,| 0,] O
0 0
L 0] O] 1]

. The set Wis a subset of R’. If W were a vector space (under the standard operations in R?), then it
would be a subspace of R’. But W is not a subspace of R’ since the zero vector is not in W. Thus W is
not a vector space.

. The set W is a subset of R’. If W were a vector space (under the standard operations in R?), then it
would be a subspace of R’. But W is not a subspace of R? since the zero vector is not in W. Thus W is
not a vector space.

. The set W is the set of all solutions to the homogeneous system of equations p —3g —4s =0,
-3 4

1
2p —s —5r=0.Thus W= Nul A, where A:{2 0 )

0
5} . Thus W is a subspace of R* by

Theorem 2, and is a vector space.
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10.

11.

12.

13.

14.

15.

16.

CHAPTER 4 + Vector Spaces

The set W is the set of all solutions to the homogeneous system of equations 3a + b — c =0,
31 -1 0
a+b+2c—-2d=0.Thus W=Nul A, where A= L e 2} . Thus W is a subspace of R by

Theorem 2, and is a vector space.

The set W is a subset of R*. If W were a vector space (under the standard operations in R*), then it
would be a subspace of R*. But W is not a subspace of R* since the zero vector is not in W. Thus W is
not a vector space.

The set W is a subset of R*. If W were a vector space (under the standard operations in R*), then it
would be a subspace of R*. But W is not a subspace of R* since the zero vector is not in W. Thus W is
not a vector space.

An element w on W may be written as
1 -6 1 -6
w=c|0|+d| 1|=|0 1{2}
1 0 1 0
1 -6
where ¢ and d are any real numbers. So W= Col A where A=|0 1|. Thus Wis a subspace of R’
1 0
by Theorem 3, and is a vector space.
An element w on W may be written as
-1 3 -1 3
w=s| 1|+e|2|=| 1 -2 ﬂ
5 -1 5 -1 !
-1 3
where a and b are any real numbers. So W= Col A where A=| 1 —2|.Thus Wis a subspace of
5 -1
R? by Theorem 3, and is a vector space.
An element in this set may be written as
0 2 1 0o 2 1
1= 2 o= 2]
T3 1" o] 1 o
2 -1 -1 2 -1 -1
0o 2 1
where 7, s and ¢ are any real numbers. So the set is Col A where A= ; _i é .
2 -1 -1

An element in this set may be written as
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18.

19.

20.

21.

22.

1 -1 0 1 -1

2 0 3] |2 0
bl |+c +d =

1 3 -3 1 3

0 1] [0

where b, ¢ and d are any real numbers. So the set is Col A where A=

The matrix A is a 4 X 2 matrix. Thus
(a) Nul A is a subspace of R?, and
(b) Col A is a subspace of R*.

The matrix A is a 4 X 3 matrix. Thus
(a) Nul A is a subspace of R?, and
(b) Col A is a subspace of R

The matrix A is a 2 X 5 matrix. Thus
(a) Nul A is a subspace of R’, and
(b) Col A is a subspace of R

The matrix A is a 1 X 5 matrix. Thus
(a) Nul A is a subspace of R’, and
(b) Col A is a subspace of R'=R.

S = N =

4.2

Solutions

207

Either column of A is a nonzero vector in Col A. To find a nonzero vector in Nul A, find the general

solution of Ax = 0 in terms of the free variables. Since
1 -2/3 0
0 0
A 0f ~
0 0 0

nonzero value (say x, =3) gives the nonzero vector

which is in Nul A.

Any column of A is a nonzero vector in Col A. To find a nonzero vector in Nul A, find the general

solution of Ax = 0 in terms of the free variables. Since
1 0 1 O
1 1 0
[A 0] -~ 9
0O 0 0 O
0O 0 0 O
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the general solution is x; =—x;, x, =—x;, with x; free. Letting x; be a nonzero value (say x; =-1)
gives the nonzero vector

X 1
x=|x, =| 1
X, -1
which is in Nul A.

23. Consider the system with augmented matrix [A w] . Since

(4 wl-|

the system is consistent and w is in Col A. Also, since

e M HEH

w is in Nul A.

1 =2 —1]
0 0 0]

’

24. Consider the system with augmented matrix [A  w]. Since

1 0 0 -1 1
01 0 -1 1
[A W]~ ’
0 01 0O
0 0 0 0O

the system is consistent and w is in Col A. Also, since
10 8 2 -2]|2 0

0 2 2 =212 0
Aw = =

1 -1 6 01]/0 0

1 1 0 2|2 0

w is in Nul A.

25. True. See the definition before Example 1.

False. See Theorem 2.

True. See the remark just before Example 4.

False. The equation Ax = b must be consistent for every b. See #7 in the table on page 204.

True. See Figure 2.

-0 6 TP

True. See the remark after Theorem 3.

26. True. See Theorem 2.

True. See Theorem 3.

False. See the box after Theorem 3.

True. See the paragraph after the definition of a linear transformation.

True. See Figure 2.

-0 &6 T

True. See the paragraph before Example 8.
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27. Let A be the coefficient matrix of the given homogeneous system of equations. Since Ax = 0 for

3
x=| 2|, xisin NulA. Since NulA is a subspace of R?, it is closed under scalar multiplication. Thus
-1
30
10x=| 20| is alsoin NulA, and x, =30, x, =20, x; =—10 is also a solution to the system of
-10
equations.

28. Let A be the coefficient matrix of the given systems of equations. Since the first system has a

0
solution, the constant vector b=| 1 | is in ColA. Since Col A is a subspace of R3, it is closed under
9
0
scalar multiplication. Thus Sb=| 5| is also in Col A, and the second system of equations must thus
45

have a solution.

29. a. Since A0=0, the zero vector is in Col A.
b. Since Ax+ Aw = A(x+w),Ax+ Aw isin Col A.
c. Since ¢(Ax) = A(cx),cAx is in Col A.

30. Since 7'(0,) =0y, , the zero vector 0,, of Wis in the range of T. Let 7(x) and 7(w) be typical
elements in the range of 7. Then since T (x)+7T(w)=T(x+w),T(x)+7T(w) is in the range of 7" and
the range of T is closed under vector addition. Let ¢ be any scalar. Then since ¢7T'(x)=T(cX), cT(x)

is in the range of T and the range of T'is closed under scalar multiplication. Hence the range of T'is a
subspace of W.

31. a. Let p and q be arbitary polynomials in IP,, and let ¢ be any scalar. Then

@+0©] [pO+a®] [pO] [q0)
T = = = =T T
®ra Lp ¥ q)(l)} { p(D)+q(D) } L,QJ ’ L(l)} )+ 1@

and

(cp)(0) p(0)
T = = =cT
(P) {(CP)(I)} {p(l)} e

so T'is a linear transformation.
b. Any quadratic polynomial q for which q(0) =0 and q(1) =0 will be in the kernel of 7. The

polynomial q must then be a multiple of p(¢) =#(# —1). Given any vector {xl } in R?, the
X

polynomial p = x, + (x, —x,)¢t has p(0) = x, and p(1) = x,. Thus the range of T is all of R
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32.

33.

34.

3s.
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Any quadratic polynomial q for which q(0) =0 will be in the kernel of T. The polynomial q must
then be q = at +bt*. Thus the polynomials p,(t)=t and p,(t)= t* span the kernel of 7. If a vector

is in the range of 7, it must be of the form {a}. If a vector is of this form, it is the image of the
a
a
polynomial p(¢#) =a in P,. Thus the range of T'is { { } ta real}.
a

a. Forany A and Bin M, , and for any scalar c,
T(A+B)=(A+B)+(A+B) =A+B+A" +B" =(A+ A")+(B+B")=T(A)+T(B)
and
T(cA)=(cA) =c(A")=cT(A)
so T is a linear transformation.
b. Let B be an element of M,,, with B" =B, andlet A=1B. Then

T(A):A+AT=lB+(lB)T=lB+lBT:lB+lB=B
2 2 2 2 2 2

c. Part b. showed that the range of T contains the set of all Bin M,,, with B" = B. It must also be
shown that any B in the range of 7 has this property. Let B be in the range of 7. Then B = T(A) for
some A in M,,,. Then B=A+ A", and

B =(A+A") =A"+(A") =A" +A=A+A" =B
50 B has the property that B” = B.

a
d. Let A:{
c

T a b a c¢ 2a c+b 0 0
c d b d b+c 2d 0 0

0 b
Solving it is found that a =d =0 and ¢ =—-b. Thus the kernel of T is { { b 0}:19 real}.

b
d} be in the kernel of 7. Then T(A)=A+ AT =0, so

Let f and g be any elements in C[0, 1] and let ¢ be any scalar. Then 7(f) is the antiderivative F of f
with F(0) = 0 and 7(g) is the antiderivative G of g with G(0) = 0. By the rules for antidifferentiation
F + G will be an antiderivative of f +g, and (F+G)(0)=F(0)+G(0)=0+0=0.Thus

T(E+g)=T)+T(g). Likewise cF will be an antiderivative of cf, and (cF)(0)=cF(0)=c0=0.
Thus T'(cf)=cT(f), and T is a linear transformation. To find the kernel of 7, we must find all

functions fin C[0,1] with antiderivative equal to the zero function. The only function with this
property is the zero function 0, so the kernel of 7T'is {0}.

Since U is a subspace of V, 0,, isin U. Since T is linear, 7(0, ) =0,,. So 0, is in T(U). Let T(x) and
T(y) be typical elements in 7(U). Then x and y are in U, and since U is a subspace of V, x+y is also
in U. Since T'is linear, T(x)+T(y)=T(x+Yy). So T(x)+T(y) is in T(U), and T(U) is closed under

vector addition. Let ¢ be any scalar. Then since x is in U and U is a subspace of V, cxis in U. Since T
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is linear, T'(cx) =cT(x) and c7T(x) is in T(U ). Thus T(U) is closed under scalar multiplication, and

T(U) is a subspace of W.

Since Z is a subspace of W, 0,, is in Z. Since T'is linear, 7(0,)=0,,. So 0, isin U. Letx and y be

typical elements in U. Then 7(x) and 7(y) are in Z, and since Z is a subspace of W, T(x)+ T (y) is
also in Z. Since T'is linear, T(x)+7T(y)=T(x+Yy). So T(x+y) isin Z, and x+y isin U. Thus U is

closed under vector addition. Let ¢ be any scalar. Then since x is in U, T(x) is in Z. Since Z is a

subspace of W, cT(x) is also in Z. Since T is linear, cT'(x) =T (cx) and T(cx) is in T(U). Thus cx is in

U and U is closed under scalar multiplication. Hence U is a subspace of V.

[M] Consider the system with augmented matrix [A w]. Since

1 0 O -1/95 1/95
0O 1 0 39/19 -20/19
[A w]~ ,
0 0 1 267/95 -172/95
0O 0 O 0 0

the system is consistent and w is in ColA. Also, since
7 6 —4 1| 1 14
-5 -1 0 2| 1 0
Aw = =
9 -11 7 =3|-1 0
19 - 7 1|[-3 0

o]

w is not in NulA.

[M] Consider the system with augmented matrix [A w] . Since

1 0 -1 0 -2

0 1 -2 0 -3
[A W] -~ ’

0 0 0 1 1

0 0 0 0 o0
the system is consistent and w is in ColA. Also, since
-8 5 2 0|1
-5 2 1 =212

0
0
Aw = =
10 -8 6 3|1 0
0

w is in NulA.

[M]
a. To show that a, and a, are in the column space of B, we can row reduce the matrices [B

and [B  a,]:
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10 0 1/3
(5 33]"0 10 1/3
70 01 0
000 0
10 0 10/3
0 1 0 —26/3
[Ba5]~001 4
00 0 0

Since both these systems are consistent, a, and a5 are in the column space of B. Notice that the
same conclusions can be drawn by observing the reduced row echelon form for A:

1 0 1/3 0 10/3

0 1 1/3 0 -26/3
oo o1 4

0 0 0 O 0

A

b. We find the general solution of Ax = 0 in terms of the free variables by using the reduced row
echelon form of A given above: x, = (—1/3)x; —(10/3)x;, x, =(=1/3)x; +(26/3)x5, x, =4x;4
with x; and x; free. So

X [—1/3]  [-10/3]
X, -1/3 26/3
X=| X |= x5 1|+ x5 01,
X, 0 4
| X5 | | 0] | 1]
and a spanning set for Nul A is
[-1/3][-10/3]
-1/3 26/3
1], 0
0 4
L 0_ L 1_

¢. The reduced row echelon form of A shows that the columns of A are linearly dependent and do
not span R*. Thus by Theorem 12 in Section 1.9, T is neither one-to-one nor onto.
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40. [M] Since the line lies both in H =Span{v,,v,} andin K =Span{v,,v,}, w can be written both as
¢V, +c,v, and c;v4 +c¢,v,. To find w we must find the ¢;’s which solve
€V, +6,V, —c3v5 —c,v, =0. Row reduction of [v, v, -v; =-v, 0] yields
51 -2 0 0] |1 0 0 -10/3 0O
3 3 1 12 0(~(0 1 0 26/3 0},
8 4 -5 28 0| |0 O 1 -4 0

so the vector of ¢;’s must be a multiple of (10/3, -26/3, 4, 1). One simple choice is (10, -26, 12, 3),
which gives w=10v, —26v, =12v, +3v, =(24,-48,-24) . Another choice for w is (1, -2, —1).

4.3 SOLUTIONS

Notes: The definition for basis is given initially for subspaces because this emphasizes that the basis
elements must be in the subspace. Students often overlook this point when the definition is given for a
vector space (see Exercise 25). The subsection on bases for Nul A and Col A is essential for Sections 4.5
and 4.6. The subsection on “Two Views of a Basis” is also fundamental to understanding the interplay
between linearly independent sets, spanning sets, and bases. Key exercises in this section are Exercises
21-25, which help to deepen students’ understanding of these different subsets of a vector space.

1. Consider the matrix whose columns are the given set of vectors. This 3 X 3 matrix is in echelon form,
and has 3 pivot positions. Thus by the Invertible Matrix Theorem, its columns are linearly
independent and span R®. So the given set of vectors is a basis for R’.

2. Since the zero vector is a member of the given set of vectors, the set cannot be linearly independent
and thus cannot be a basis for R’. Now consider the matrix whose columns are the given set of
vectors. This 3 x 3 matrix has only 2 pivot positions. Thus by the Invertible Matrix Theorem, its
columns do not span R’.

3. Consider the matrix whose columns are the given set of vectors. The reduced echelon form of this
matrix is

1 3 =2 1 0 1
0O 1 -1|~|0 1 -1
-3 4 1 00 O

so the matrix has only two pivot positions. Thus its columns do not form a basis for R’; the set of
vectors is linearly independent and does not span R”.

4. Consider the matrix whose columns are the given set of vectors. The reduced echelon form of this
matrix is

2 2 =8 1 0 0
-1 -3 5|-j0 1 O
1 2 4] (0 0 1

so the matrix has three pivot positions. Thus its columns form a basis for R’.
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5. Since the zero vector is a member of the given set of vectors, the set cannot be linearly independent
and thus cannot be a basis for R*. Now consider the matrix whose columns are the given set of
vectors. The reduced echelon form of this matrix is

3 3 0 O 1 0 0 O
-3 7 0 =-3|-|0 1 0 O
0 0 0 5 0 0 0 1

so the matrix has a pivot in each row. Thus the given set of vectors spans R’.
6. Consider the matrix whose columns are the given set of vectors. Since the matrix cannot have a pivot

in each row, its columns cannot span R?; thus the given set of vectors is not a basis for R>. The
reduced echelon form of the matrix is

1 4 1 0
2 3(~|0 1
-4 6 0 0

so the matrix has a pivot in each column. Thus the given set of vectors is linearly independent.

7. Consider the matrix whose columns are the given set of vectors. Since the matrix cannot have a pivot
in each row, its columns cannot span R?; thus the given set of vectors is not a basis for R>. The
reduced echelon form of the matrix is

-2 6 1 0
3 -1|~|0 1
0 5 0 0

so the matrix has a pivot in each column. Thus the given set of vectors is linearly independent.

8. Consider the matrix whose columns are the given set of vectors. Since the matrix cannot have a pivot
in each column, the set cannot be linearly independent and thus cannot be a basis for R’. The reduced
echelon form of this matrix is

1 0 2 O 1 0 2 0
-2 3 -1 0(~-0 1 1 O
3 -1 5 -1 0 0 0 1

so the matrix has a pivot in each row. Thus the given set of vectors spans R’.

9. We find the general solution of Ax = 0 in terms of the free variables by using the reduced echelon
form of A:

1 0 2 =2 1 0 -2 0
0 1 1 4|~0 1 1 0]
3 -1 -7 3 0 0 0 1

So x, =2x;, x, =—x;, x, =0, with x; free. So
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X 2
. Xy . -1 ’

X 1

Xy 0

10. We find the general solution of Ax = 0 in terms of the free variables by using the reduced echelon
form of A:

1 1 -2 1 5 1 00 2 -9
01 6 -1 -2|~-10 1 0 -1 10}
0 0 -8 0 16 0O 01 0 =2

So x, =—2x, +9x5, x, =x, —10x5, x; =2x;, with x, and x5 free. So

X -2 9
X, 1 -10
X=|x|=x| O0|+x| 2],
X4 1
| X5 | | 0] L1
and a basis for Nul A is
51T o]
1] |-10
of,| 2
1 0
L 0_ L .

11. Let A=[1 -3 2]. Then we wish to find a basis for Nul A. We find the general solution of Ax =0

in terms of the free variables: x = 3y — 2z with y and 7 free. So

by 3 -2
x=|y|=y|l1|+z] 0],
Z 0 1
and a basis for Nul A is
3112
1, O
0 1
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12. We want to find a basis for the set of vectors in R” in the line 3x + y=0. Let A= [3 1] . Then we

wish to find a basis for Nul A. We find the general solution of Ax = 0 in terms of the free variables: y
= —3x with x free. So

)

and a basis for Nul A is

L)

13. Since B is a row echelon form of A, we see that the first and second columns of A are its pivot
columns. Thus a basis for Col A is

2| 4
21,1 -6
3] | 8

To find a basis for Nul A, we find the general solution of Ax = 0 in terms of the free variables:
X, =—6x;-5x,, x,=(-5/2)x;—(3/2)x,, with x; and x, free. So

X -6 =5
Xy -5/2 -3/2
X = =X + Xy ,

X3 1 0

Xy 0 1
and a basis for Nul A is
-6 -5
=5/2| |-3/2
1| 0
0 1

14. Since B is a row echelon form of A, we see that the first, third, and fifth columns of A are its pivot
columns. Thus a basis for Col A is

1 31 [8
1] 0|8
21'1-31"19
311 0]19

To find a basis for Nul A, we find the general solution of Ax = 0 in terms of the free variables,
mentally completing the row reduction of B to get: x; =—2x, —2x,, x; =2x,, x;=0, with x, and

x, free. So
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and a basis for Nul A is

272
1o
0l 2
0[] 1

L 0_ L 0_

This problem is equivalent to finding a basis for Col A, where A=[v, v, v; v, vs].Since

the reduced echelon form of A is

10 2 2 3/[to 200
01 =2 -1 -1/ 10 1 =2 0 0
2 2 -8 10 =6/ [0 0 0 1 of
33 0 3 9//o0 00 1

we see that the first, second, fourth and fifth columns of A are its pivot columns. Thus a basis for the
space spanned by the given vectors is

1[1]0 2 3

O [ 1] |=1|]|~-1
—2'12/[10|"| -6
313 3 9
This problem is equivalent to finding a basis for Col A, where A=[v, v, v; v, vs].Since
the reduced echelon form of A is
1 -2 3 5 2 I 0 0 -5/2 0
0o 0 -1 -3 -1| (0 1 0 3/4 1/2
o 0 1 3 1/]oo 1 3 1]
I 2 -1 -4 0] [0 O O 0 0

we see that the first, second, and third columns of A are its pivot columns. Thus a basis for the space
spanned by the given vectors is

1] [-21 3
0| | o] |-1
o’ of’'] 1
1 2] -1

[M] This problem is equivalent to finding a basis for Col A, where A=[v, v, v; v, vs].
Since the reduced echelon form of A is

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



218

18.

19.

20.

21.

CHAPTER 4 + Vector Spaces

2 4 2 8 8] [1 0 0 -1 0
0 0 —4 40 10 1.0 2 0
4 2 0 8 O0l~[0 0 1 -1 0],
6 —4 3 0/ |0 00 0 1
0 4 =7 15 1/ |0 0 0 0 O]

we see that the first, second, third, and fifth columns of A are its pivot columns. Thus a basis for the
space spanned by the given vectors is

21 [ 4] [-2] [-8
ol o |—4|]| 4
—4(,| 21, ol.|] o
6| | -4 0

Lo | 4] 7] [ 1

[M] This problem is equivalent to finding a basis for Col A, where A = [V1 v,

Since the reduced echelon form of A is

3 3 0 6 6] [1 00 00
2 0 2 =2 3/|010 20
6 9 —4 -14 0|~[0 0 1 -1 0|,
0 0 0 0 -1/ |00 0 0 1
-7 6 -1 13 0]/ [0 0 0 0 0

we see that the first, second, third, and fifth columns of A are its pivot columns. Thus a basis for the
space spanned by the given vectors is

(=31 3] [ o] [-6]
211 0| 2] 3
6/,-9|.| 4]
0| | O] Of|-1

=711 6] |-1]] 0]

Since 4v, +5v, —3v,; =0, we see that each of the vectors is a linear combination of the others. Thus
the sets {v,,v,}, {v,,v;}, and {v,,v;} all span H. Since we may confirm that none of the three
vectors is a multiple of any of the others, the sets {v,,v,}, {v,,v;}, and {v,,v;} are linearly
independent and thus each forms a basis for H.

Since 2v, — v, — v, =0, we see that each of the vectors is a linear combination of the others. Thus
the sets {v,,v,}, {v,,v;}, and {v,,v,} all span H. Since we may confirm that none of the three
vectors is a multiple of any of the others, the sets {v,,v,}, {v,,v;}, and {v,,v,} are linearly
independent and thus each forms a basis for H.

a. False. The zero vector by itself is linearly dependent. See the paragraph preceding Theorem 4.

b. False. The set {b,,...,b,} must also be linearly independent. See the definition of a basis.

c¢. True. See Example 3.
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d. False. See the subsection “Two Views of a Basis.”

e. False. See the box before Example 9.

a. False. The subspace spanned by the set must also coincide with H. See the definition of a basis.

b. True. Apply the Spanning Set Theorem to V instead of H. The space V is nonzero because the
spanning set uses nonzero vectors.

c¢. True. See the subsection “Two Views of a Basis.”
d. False. See the two paragraphs before Example 8.
e. False. See the warning after Theorem 6.

Let A=[v, v, v; v,]. ThenA issquare and its columns span R” since R*
=Span{v,,v,,v;,v,}. Soits columns are linearly independent by the Invertible Matrix Theorem,
and {v,,v,,V;,v,} is a basis for R*.

Let A= [V1 Vn]. Then A is square and its columns are linearly independent, so its columns

span R" by the Invertible Matrix Theorem. Thus {v,,...,v,} is a basis for R".

In order for the set to be a basis for H, {v,,v,,v;} must be a spanning set for H; that is,

H =Span{v,,v,,v;}. The exercise shows that H is a subset of Span{v,,v,,v;}. but there are vectors
in Span{v,,v,,v;} which are notin H (v, and v, for example). So H # Span{v,,v,,v;}, and
{v,,v,,v;} is not a basis for H.

Since sin ¢ cos ¢ = (1/2) sin 2¢, the set {sin #, sin 2¢} spans the subspace. By inspection we note that
this set is linearly independent, so {sin ¢, sin 2¢} is a basis for the subspace.

The set {cos @, sin ax} spans the subspace. By inspection we note that this set is linearly
independent, so {cos @, sin a¥} is a basis for the subspace.

The set {¢™”, te™""} spans the subspace. By inspection we note that this set is linearly independent,

so {e™”, te”""} is a basis for the subspace.

Let A be the n X k matrix [v, ... v.]. Since A has fewer columns than rows, there cannot be a

pivot position in each row of A. By Theorem 4 in Section 1.4, the columns of A do not span R" and
thus are not a basis for R”.

Let A be the n X k matrix [v, ... v.]. Since A has fewer rows than columns, there cannot be a

pivot position in each column of A. By Theorem 8 in Section 1.7, the columns of A are not linearly
independent and thus are not a basis for R".

Suppose that {v,,...,v p} is linearly dependent. Then there exist scalars c,...,c , not all zero with
avy+...+c,v,=0.
Since T'is linear,

T(evy+...+c,v,)=cT(v)+...+¢,T(v,)

and
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32.

33.

34.

3s.

36.

T(evi+...+¢,v,)=T(0)=0.
Thus
ol (v)+...+¢,T(v,)=0

and since not all of the ¢; are zero, {T(v,),...,T(v p)} is linearly dependent.

Suppose that {T(v,),...,T(v p)} is linearly dependent. Then there exist scalars ¢,,.. .,C, not all zero
with
ol (v)+...+¢,T(v,)=0.
Since T'is linear,
T(vi+...+c,v,)=cT(v)+...+¢,T(v,)=0=T(0)
Since T is one-to-one
T(e\Vi+...4+¢,v,)= T(0)
implies that

avy+...+c,v,=0.
Since not all of the ¢; are zero, {v,,...,v p} is linearly dependent.

Neither polynomial is a multiple of the other polynomial. So {p,,p,} is a linearly independent set in

P;. Note: {p,,p,} is also a linearly independent set in P, since p, and p, both happen to be in P,.

By inspection, p; =p, +Pp,, or p, +p, —p; =0. By the Spanning Set Theorem,
Span{p,,p,.P;}=Span{p,,p,} . Since neither p, nor p, is a multiple of the other, they are linearly
independent and hence {p,,p,} is a basis for Span{p,,p,.p;}.

Let {v,,v;} be any linearly independent set in a vector space V, and let v, and v, each be linear
combinations of v, and v,. For instance, let v, =5v, and v, = v, +v,. Then {v,,v,} is a basis for
Span{v,,v,,v;,v,}.

[M] Row reduce the following matrices to identify their pivot columns:

1 0 3 I 0 3
2 2 41|01 - . :
[u1 u, u3]— 0 -1 U lo o ol so {u,,u,} is a basis for H.
-1 1 -4, (0 0 O
2 2 -1] [1 0 0
-2 3 0 1 0 _ )
[v, v, vs]= 1 9 “lo 0 1 , SO {v,,V,,v,} is a basis for K.
| 3 6 2] [0 0 O
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0o 3 -2 -1
2 2 4 =2 3 4
[w, w, wy vV, vi= 0 -1 1 -1 6
-1 1 -4 3 -6 -2
1 0 3 -2 00
0 1 -1 1 0 0 . :
~ , 80 {u;,u,,v,,v,} is a basis for H + K.
0 0 0 0 10
0 0 0 0 0 1

[M] For example, writing
¢ -t+c, -sint+cyco8 2t +c,sint cost =0

with#=0, .1, .2, .3 gives the following coefficent matrix A for the homogeneous system Ac = 0 (to
four decimal places):

0 0 1 0

-1 .0998 9801 .0993

2 sin.2 cos4 sin2cos.2| [2 .1987 9211 .1947

3 2955 8253 .2823

0 sin0O cosO sin 0 cos 0

.1 sin.1 cos.2 sin.lcos.l

3 sin.3 cos.6 sin.3cos.3
This matrix is invertible, so the system Ac = 0 has only the trivial solution and {7, sin #, cos 2,
sin ¢ cos t} is a linearly independent set of functions.
[M] For example, writing
¢, -1+¢,-cost+cy - cos’t+c, -cos’t +cg - cos’t +cg - cos’t + ¢, -cos’t =0

with =0, .1, .2, .3, .4, .5, .6 gives the following coefficent matrix A for the homogeneous system Ac
= 0 (to four decimal places):

_1 cos0  cos’0  cos’0  cos*0  cos’0 cos60_
1 cos.l cos’.1 cos®.1 cos*.1 cos’.1 cos®.1
1 cos2 cos’2 cos°2 cos*.2 cos’.2 cos®.2
A=|1 co0s.3 cos>.3 cos’.3 cos*.3 cos’.3 cos®.3
1 cosd cos’4 cos’4 cos*4 cos’4 cos®4
1 cos.5 cos’.5 cos’.5 cos*.5 cos’.5 cos®.5
_1 c0s.6 cos’.6 cos’.6 cost.6 cos’.6 0036.6_
11 1 1 1 1 1
1 .9950 9900 .9851 .9802 .9753 .9704
1 9801 .9605 .9414 9226 .9042 .8862
=|1 .9553 .9127 .8719 .8330 .7958 .7602
1 9211 .8484 .7814 .7197 .6629 .6106
1 .8776 7702 .6759 .5931 .5205 .4568
|1 .8253 .6812 .5622 .4640 .3830 .3161 |
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This matrix is invertible, so the system Ac = 0 has only the trivial solution and {1, cos ¢, cos’t, cos’t,
cos't, cos’r, cosét} is a linearly independent set of functions.

4.4  SOLUTIONS

Notes: Section 4.7 depends heavily on this section, as does Section 5.4. It is possible to cover the R" parts
of the two later sections, however, if the first half of Section 4.4 (and perhaps Example 7) is covered. The
linearity of the coordinate mapping is used in Section 5.4 to find the matrix of a transformation relative to
two bases. The change-of-coordinates matrix appears in Section 5.4, Theorem 8 and Exercise 27. The
concept of an isomorphism is needed in the proof of Theorem 17 in Section 4.8. Exercise 25 is used in
Section 4.7 to show that the change-of-coordinates matrix is invertible.

1. We calculate that

S HERN

2. We calculate that

ol

3. We calculate that

1 5 41 [-7
x=1|=2[+0| 0|+(=2)|-3|=| 4]
3 -2 0 3

4. We calculate that

-2 3 4 8
x=(=3)| 2|+2[0 |+ -1]=|-5].
0 2 3 1
, 10 2] [ 2]
5. The matrix [b, b, x| row reduces to Lo b=
: 10 3] [ 3]
6. The matrix [b, b, x| row reduces to Ll 80 [x]; = 5|
1 0 0 -1 -1
7. The matrix [b, b, b; x]rowreducesto |0 1 0 -1}, so[x]z=|-1
0 0 1 3 3
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1 0 0 1 1
The matrix [b, b, b; x| rowreducesto |0 1 0 ~—1|,so[x],=|-1]|.
0 0 1 1 1

The change-of-coordinates matrix from B to the standard basis in R? is

Py =|b, bz]{1 2}.

-3 =5

The change-of-coordinates matrix from B to the standard basis in R’ is
3 2 1

P,=[b, b, bi]=|0 2 -2|
6 -4 3

Since P371 converts X into its B-coordinate vector, we find that

[x]B:PB‘lx{_Z1 _ﬂ_[_ﬂ{j iﬂLﬁHﬂ

Since PB_l converts X into its B-coordinate vector, we find that

e T LH

We must find ¢, c,, and c; such that

I+ +c,(t+12) +cy(1+ 2t +17) =p(t) =1+ 4 + 1%

Equating the coefficients of the two polynomials produces the system of equations

aq + o =1
¢, + 2¢; = 4
g + ¢ + ¢ =17

We row reduce the augmented matrix for the system of equations to find

1 0 1 1 1 0 0 2 2
01 2 4|~j10 1 0 6|,solplz=| 6|
1 1 1 7 0 0 1 -1 -1

One may also solve this problem using the coordinate vectors of the given polynomials relative to the
standard basis {1, 7, 2 }; the same system of linear equations results.

We must find ¢, ¢,, and c; such that
a(=1)+c,(t—t*)+e;(1—t+17)=p(t) =2+3t — 61"

Equating the coefficients of the two polynomials produces the system of equations

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



224 CHAPTER 4 -+ Vector Spaces

15.

16.

17.

18.

19.

20.

o + o =
¢ — ¢ = 3
- — ¢ t+ ¢ = -6

We row reduce the augmented matrix for the system of equations to find

1 0 1 2 1 0 0 3 3
0 1 -1 3|-10 1 0 2|solplz=| 2]
-1 -1 1 -6 0 0 1 -1 -1

One may also solve this problem using the coordinate vectors of the given polynomials relative to the
standard basis {1, z, 2 }; the same system of linear equations results.

a. True. See the definition of the B-coordinate vector.
b. False. See Equation (4).
c. False. P is isomorphic to R*. See Example 5.

a. True. See Example 2.
b. False. By definition, the coordinate mapping goes in the opposite direction.

c. True. If the plane passes through the origin, as in Example 7, the plane is isomorphic to R,

1 2 =3 |1
We must solve the vector equation x, { 3} +x, { 8} + X, { 7} = L} . We row reduce the augmented

matrix for the system of equations to find
1 2 =31 1 0 -5 5
-3 -8 7 10 1 1 =2f
Thus we can let x;, =5+5x; and x, =-2—x;, where x; can be any real number. Letting x; =0 and
x; =1 produces two different ways to express L} as a linear combination of the other vectors:
5v, —2v, and 10v, —3v, + v, . There are infintely many correct answers to this problem.
Foreachk, b, =0-b,+---+1-b, +---+0-b,,so [b,]; =(0,...,1,...,0) =e,.

The set S spans V because every x in V has a representation as a (unique) linear combination of
elements in S. To show linear independence, suppose that S ={v,,...,v,} and that

v, +---+c,v, =0 for some scalars ¢, ..., c,. The case when ¢, =---=c, =0 is one possibility.

By hypothesis, this is the unique (and thus the only) possible representation of the zero vector as a
linear combination of the elements in S. So § is linearly independent and is thus a basis for V.

For w in V there exist scalars k,, k,, k;, and k, such that
w=kv, +k,v, +kvy+k,v, ey

because {v,,v,,v;,v,} spans V. Because the set is linearly dependent, there exist scalars ¢, c,, c;,
and ¢, not all zero, such that

0=c,v,+c,v, +c3V5+c, v, 2)

Adding (1) and (2) gives
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wW=w+0=(k +c)v,+(k, +c,)v, + (ks +c3)V;+ (ks +c,)v, (3)

At least one of the weights in (3) differs from the corresponding weight in (1) because at least one of
the ¢; is nonzero. So w is expressed in more than one way as a linear combination of v,, v,, v;,

and v,.

-1
. . . -1 1 2 9 2
The matrix of the transformation will be Py, = 4 = .

9 4 1
The matrix of the transformation will be PB_1 =[b, -+ b, ]71
Suppose that
G
[ll]B = [W]B =
c

n
By definition of coordinate vectors,
u=w=c¢b,+---+¢,b,.
Since u and w were arbitrary elements of V, the coordinate mapping is one-to-one.

Given y =(y,,...,y,) inR", let u=yb, +---+ y b, . Then, by definition, [u], =y . Since y was
arbitrary, the coordinate mapping is onto R".

Since the coordinate mapping is one-to-one, the following equations have the same solutions

CpsensCpt
cu, +--+c,u, =0 (the zero vector in V') “)
[eu, +-+c,u, L =[0], (the zero vector in R") &)

Since the coordinate mapping is linear, (5) is equivalent to
0
alwlp+-+c,lu,lz=|: 6)
0

Thus (4) has only the trivial solution if and only if (6) has only the trivial solution. It follows that
{u;,....u p} is linearly independent if and only if {[u,],...,[u » 1} is linearly independent. This

result also follows directly from Exercises 31 and 32 in Section 4.3.

By definition, w is a linear combination of u,,...,u » if and only if there exist scalars c,.. »Cp such
that

w=qu +--+cu, @)
Since the coordinate mapping is linear,

(Wl =clulg +-+c,lu,lp (8)

Conversely, (8) implies (7) because the coordinate mapping is one-to-one. Thus w is a linear
combination of u,,...,u, if and only if [w], is a linear combination of [u,]g,...,[u,]5.
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Note: Students need to be urged to wrife not just to compute in Exercises 27-34. The language in the
Study Guide solution of Exercise 31 provides a model for the students. In Exercise 32, students may have
difficulty distinguishing between the two isomorphic vector spaces, sometimes giving a vector in R’ as an
answer for part (b).

217.

28.

29.

30.

The coordinate mapping produces the coordinate vectors (1, 0, 0, 2), (2, 1, -3, 0), and (0, -1, 2, -1)
respectively. We test for linear independence of these vectors by writing them as columns of a matrix
and row reducing:

1 2 0]t o0 o0
0 1 -1/ [0 1 0
0 -3 2/ 1o 0 1]
2 0 -1] |0 0 0

Since the matrix has a pivot in each column, its columns (and thus the given polynomials) are
linearly independent.

The coordinate mapping produces the coordinate vectors (1, 0, -2, -1), (0, 1, 0, 2), and (1, 1, -2, 0)
respectively. We test for linear independence of these vectors by writing them as columns of a matrix
and row reducing:

1 0 1] [1 0 0
0 1 1] 10 1 0
-2 0 =210 0 1/

-1 2 0] |0 O O

Since the matrix has a pivot in each column, its columns (and thus the given polynomials) are
linearly independent.

The coordinate mapping produces the coordinate vectors (1, -2, 1, 0), (0, 1, -2, 1), and (1, -3, 3,-1)
respectively. We test for linear independence of these vectors by writing them as columns of a matrix
and row reducing:

10 171 0 1
2 1 3]0 1 -
1 =2 3/ lo o0 of
0 1 -1/ /0 0 o0

Since the matrix does not have a pivot in each column, its columns (and thus the given polynomials)
are linearly dependent.

The coordinate mapping produces the coordinate vectors (8, —12, 6, -1), (9, -6, 1, 0), and (1, 6, -5,1)
respectively. We test for linear independence of these vectors by writing them as columns of a matrix
and row reducing:

8§ 9 111 0 -1
12 6 6| |0 1 1

6 1 -5/ o o of
1 0 1] ]o o0 o

Since the matrix does not have a pivot in each column, its columns (and thus the given polynomials)
are linearly dependent.
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In each part, place the coordinate vectors of the polynomials into the columns of a matrix and reduce
the matrix to echelon form.

1 3 -4 1 1 -3 4 1
a -3 5 5 0|~/0 4 -7 3
5 -7 -6 -1 0O 0 00
Since there is not a pivot in each row, the original four column vectors do not span R>. By the
isomorphism between R* and P,, the given set of polynomials does not span P,.
0o 1 -3 2 1 -2 2 0
b.|5 8 4 3/~|0 2 -6 3
1 -2 2 0 0O 0 0 7/2

Since there is a pivot in each row, the original four column vectors span R’. By the isomorphism
between R’ and P, the given set of polynomials spans P,.

a. Place the coordinate vectors of the polynomials into the columns of a matrix and reduce the
1 0 1 1 0 1

matrix to echelon form: |0 1 1|~/0 1 1
1 -3 3 0 0 -1
The resulting matrix is invertible since it row equivalent to /,. The original three column vectors

form a basis for R? by the Invertible Matrix Theorem. By the isomorphism between R® and P, the
corresponding polynomials form a basis for P,.

b. Since [q]; =(-1, 1, 2), q=—p, +Pp, +2p;. One might do the algebra in P, or choose to compute
I 0 1f-1 1
0O 1 1 1|=| 3|. Thiscombination of the columns of the matrix corresponds to the

1 -3 3| 2 -10

same combination of p,, p,, and p;. So q(¢) =1+3¢ —107%.

The coordinate mapping produces the coordinate vectors (3, 7, 0, 0), (5, 1, 0, -2), (0, 1, -2, 0) and
(1, 16, -6, 2) respectively. To determine whether the set of polynomials is a basis for P5, we
investigate whether the coordinate vectors form a basis for R*. Writing the vectors as the columns of
a matrix and row reducing

35 0 17100 2
7 1 1.16] |0 1 0 -1
0 0 =2 -6/ |00 1 3/
02 0 2/]000 o0

we find that the matrix is not row equivalent to /,. Thus the coordinate vectors do not form a basis

for R*. By the isomorphism between R* and P;, the given set of polynomials does not form a basis for
Ps.

The coordinate mapping produces the coordinate vectors (5, -3, 4, 2), (9, 1, 8, -6), (6, -2, 5, 0), and
(0,0, 0, 1) respectively. To determine whether the set of polynomials is a basis for P5;, we investigate
whether the coordinate vectors form a basis for R*. Writing the vectors as the columns of a matrix,
and row reducing
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5 9 6 0] [1 0 3/4 0
3 1 =2 0| o1 1/4 0
4 8 5 0lloo0o o0 1
2 6 0 1] ]o 0o o0 o0

we find that the matrix is not row equivalent to /,. Thus the coordinate vectors do not form a basis for
R*. By the isomorphism between R* and P, the given set of polynomials does not form a basis for Ps.

35. To show that xisin H =Span{v,,v,}, we must show that the vector equation x,v, +x,v, =x hasa

solution. The augmented matrix [v, v, x] may be row reduced to show

1 14 1971 0 -5/3
5 -8 -13| |0 1 8/3
100 13 18] |0 0 0l
7 10 15| |0 0 0

Since this system has a solution, x is in H. The solution allows us to find the B-coordinate vector for

-5/3
x:since X =x,V, + x,V, =(=5/3)v, + (8/3)v,, [x], :{ 8/3} .
36. To show that xis in H =Span{v,,v,,v;}, we must show that the vector equation
XV, + X,V, + x;v; =x has a solution. The augmented matrix [v, v, v; x| may be row

reduced to show

6 8 -9 471 0 0 3
4 3 5 7010 1 0 5
9 7 -8 -8/ (0o 0o 1 2|
4 3 3 3/]0o0 0 0

The first three columns show that B is a basis for H. Moreover, since this system has a solution, x is
in H. The solution allows us to find the B-coordinate vector for x: since

3
X=XV, + XV, + x5V, =3v, +5v, +2v,, [X]; =|5|.
2
1/2 26|10 0
37. We are given that [X]; =|1/4 |, where B=4 | -1.5(,|3|,| O] ;. To find the coordinates of x
1/6 0| |0 |48

relative to the standard basis in R?, we must find x. We compute that
26 0 0f1/2 1.3
x=Fx],=(-15 3 0|1/4|=] 0
0 0 48| 1/6 0.8
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1/2 26|10 0
38. We are given that [X]; =|1/2 |, where B=4 | -1.5(,|3|,| O] ;. To find the coordinates of x
1/3 0| |0 |48

relative to the standard basis in R’, we must find x. We compute that
26 0 01/2 1.3
x=F[x];,=(-15 3 0(1/2|=|0.75|.
0 0 48| 1/3 1.6

4.5 SOLUTIONS

Notes: Theorem 9 is true because a vector space isomorphic to R” has the same algebraic properties as
R"; a proof of this result may not be needed to convince the class. The proof of Theorem 9 relies upon the
fact that the coordinate mapping is a linear transformation (which is Theorem 8 in Section 4.4). If you
have skipped this result, you can prove Theorem 9 as is done in Introduction to Linear Algebra by Serge
Lang (Springer-Verlag, New York, 1986). There are two separate groups of true-false questions in this
section; the second batch is more theoretical in nature. Example 4 is useful to get students to visualize
subspaces of different dimensions, and to see the relationships between subspaces of different
dimensions. Exercises 31 and 32 investigate the relationship between the dimensions of the domain and
the range of a linear transformation; Exercise 32 is mentioned in the proof of Theorem 17 in Section 4.8.

1 -2
1. This subspace is H =Span{v,,v,}, where v, =| 1| and v, =| 1|. Since v, and v, are not
0 3

multiples of each other, {v,,v,} is linearly independent and is thus a basis for H. Hence the
dimension of H is 2.

2 0
2. This subspace is H =Span{v,,v,}, where v,=| 0| and v, =| -4 |. Since v, and v, are not
-2 0

multiples of each other, {v,,v,} is linearly independent and is thus a basis for H. Hence the
dimension of H is 2.

0 0 2
. . 1 -1 .
3. This subspace is H =Span{v,,v,,v;}, where v, = ol v, = L and v; = 3l Theorem 4 in
1 2 0

Section 4.3 can be used to show that this set is linearly independent: v, #0, v, is not a multiple of
v,, and (since its first entry is not zero) v, is not a linear combination of v, and v,. Thus
{v,,v,,v;} is linearly independent and is thus a basis for H. Alternatively, one can show that this set
is linearly independent by row reducing the matrix [v, v, v, 0]. Hence the dimension of the
subspace is 3.
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1 2
4. This subspace is H =Span{v,,v,}, where v, = _3 and v, = 1 Since v, and v, are not
1 1

multiples of each other, {v,,v,} is linearly independent and is thus a basis for H. Hence the
dimension of H is 2.

1 -2 0
. . 2 0 5 .
S. This subspace is H =Span{v,,v,,v,}, where v, = ol v, = 3t and v, = 5| The matrix A
-3 0 6
1 2 0 1 0 0
. . 0 5 0 1 0 . L
with these vectors as its columns row reduces to 5 217lo o 1l There is a pivot in

-3 0 6 0 0 0

each column, so {v,,v,,v,} is linearly independent and is thus a basis for H. Hence the dimension
of His 3.

3 0 -1
. . -1 -3 :
6. This subspace is H =Span{v,,v,,v;}, where v, = L v, = 6l and v, = 5| The matrix A
-3 0
30 -1 1 0 O
. . 0 -1 -3 0 1 0 . L

with these vectors as its columns row reduces to ~ . There is a pivot in
-7 6 5 0 0 1
-3 0 1 0 0 O

each column, so {v,,v,,v,} is linearly independent and is thus a basis for H. Hence the dimension
of H1is 3.

1 -3 1 1 0 0 O
7. This subspace is H = Nul A, where A=|0 1 -2]|. Since [A 0] ~{0 1 0 0]}, the
0 2 -1 0O 01 O

homogeneous system has only the trivial solution. Thus H = Nul A = {0}, and the dimension of H is
0.

8. From the equation a — 3b + ¢ = 0, it is seen that (a, b, ¢, d) = b3, 1,0, 0) + c¢(-1, 0, 1, 0) + d(0, 0, O,
1). Thus the subspace is H =Span{v,,v,,v;}, where v, =(3,1,0,0), v, =(-10,1,0), and
v, =(0,0,0,1). It is easily checked that this set of vectors is linearly independent, either by appealing
to Theorem 4 in Section 4.3, or by row reducing [v, v, v, 0]. Hence the dimension of the

subspace is 3.
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a 1 0
This subspaceisH =4 | b |:a,bin R =Span{v,v,}, where v, =| 0| and v, =| 1 |. Since v,
a 1 0

and v, are not multiples of each other, {v,,v,} is linearly independent and is thus a basis for H.
Hence the dimension of H is 2.

The matrix A with these vectors as its columns row reduces to
1 2 -3 1 -2 3
{—5 10 15} - {0 0 o}'
There is one pivot column, so the dimension of Col A (which is the dimension of H) is 1.

The matrix A with these vectors as its columns row reduces to
1 3 -2 5 1 0 1 0
0O 1 -1 2|~-/0 1 -1 O]
2 1 1 2 0 0 0 1

There are three pivot columns, so the dimension of Col A (which is the dimension of the subspace
spanned by the vectors) is 3.

The matrix A with these vectors as its columns row reduces to
1 -3 -2 3 1 0 0 -1
-2 -6 3 5|~|0 1 0 O]
0O 6 5 5 0 0 1 1

There are three pivot columns, so the dimension of Col A (which is the dimension of the subspace
spanned by the vectors) is 3.

The matrix A is in echelon form. There are three pivot columns, so the dimension of Col A is 3.
There are two columns without pivots, so the equation Ax = 0 has two free variables. Thus the
dimension of Nul A is 2.

The matrix A is in echelon form. There are four pivot columns, so the dimension of Col A is 4. There
are three columns without pivots, so the equation Ax = 0 has three free variables. Thus the dimension
of Nul A is 3.

The matrix A is in echelon form. There are three pivot columns, so the dimension of Col A is 3.
There are two columns without pivots, so the equation Ax = 0 has two free variables. Thus the
dimension of Nul A is 2.

The matrix A row reduces to

o o 1

There are two pivot columns, so the dimension of Col A is 2. There are no columns without pivots,
so the equation Ax = 0 has only the trivial solution 0. Thus Nul A = {0}, and the dimension of Nul A
is 0.
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The matrix A is in echelon form. There are three pivot columns, so the dimension of Col A is 3.
There are no columns without pivots, so the equation Ax = 0 has only the trivial solution 0. Thus Nul
A = {0}, and the dimension of Nul A is 0.

The matrix A is in echelon form. There are two pivot columns, so the dimension of Col A is 2. There
is one column without a pivot, so the equation Ax = 0 has one free variable. Thus the dimension of
Nul A is 1.

. True. See the box before Example 5.

. False. The plane must pass through the origin; see Example 4.
. False. The dimension of P, is n + 1; see Example 1.

. False. The set S must also have n elements; see Theorem 12.

o & 6 T o

True. See Theorem 9.

False. The set R? is not even a subset of R°.

&

b. False. The number of free variables is equal to the dimension of Nul A; see the box before
Example 5.

c. False. A basis could still have only finitely many elements, which would make the vector space
finite-dimensional.

d. False. The set S must also have n elements; see Theorem 12.

e. True. See Example 4.

The matrix whose columns are the coordinate vectors of the Hermite polynomials relative to the

standard basis {l,t,tz,t3} of P5is

22

1 0 -2 0
0 2 0 -12
A= .
0 0 4 0
0 0 O 8

This matrix has 4 pivots, so its columns are linearly independent. Since their coordinate vectors form
a linearly independent set, the Hermite polynomials themselves are linearly independent in P5. Since
there are four Hermite polynomials and dim P5; = 4, the Basis Theorem states that the Hermite
polynomials form a basis for Ps.

The matrix whose columns are the coordinate vectors of the Laguerre polynomials relative to the
standard basis {l,t,tz,t3} of P5 is

1 1 2 6

0 -1 4 -18

A= .

0 0 1 9

o o0 o0 -1
This matrix has 4 pivots, so its columns are linearly independent. Since their coordinate vectors form
a linearly independent set, the Laguerre polynomials themselves are linearly independent in P;. Since
there are four Laguerre polynomials and dim P; = 4, the Basis Theorem states that the Laguerre
polynomials form a basis for Ps.
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The coordinates of p(r)=—1+8¢ +8¢° with respect to B satisfy

() +c,(20) + 5 (-2 +4t7) + ¢, (12t +8¢7) =—1+ 8% + 8¢

Equating coefficients of like powers of ¢ produces the system of equations

Q - 2 = -1
2c, - 12¢, = 0

4cy = 8

8, = 8

3
o : 6
Solving this system gives ¢, =3, ¢, =6, ¢;=2, ¢, =1, and [pl; = 5|
1
The coordinates of p(r) =5+ 5t —2¢* with respect to B satisfy

a(+c,(I—t)+cy(2—dt+1*)=5+5t =21

Equating coefficients of like powers of ¢ produces the system of equations

q + ¢ + 2 = 5
-, = 4c¢; = 5
g = =2
6
Solving this system gives ¢, =6, ¢, =3, ¢;=-2, and [pl; =| 3|
-2

Note first that n > 1 since S cannot have fewer than 1 vector. Since n > 1, V # 0. Suppose that S spans
V and that S contains fewer than n vectors. By the Spanning Set Theorem, some subset S of S is a
basis for V. Since S contains fewer than n vectors, and S’ is a subset of S, S” also contains fewer
than n vectors. Thus there is a basis S” for V with fewer than n vectors, but this is impossible by
Theorem 10 since dimV = n. Thus S cannot span V.

If dimV=dim H =0, then V= {0} and H = {0}, so H = V. Suppose that dim V = dim H > 0. Then H
contains a basis S consisting of n vectors. But applying the Basis Theorem to V, § is also a basis for
V. Thus H = V = SpanS.

Suppose that dim P = k < oo. Now P, is a subspace of P for all n, and dim P,_; = k, so dim P;_; = dim
P. This would imply that P,_; =P, which is clearly untrue: for example, p(¢) = * is in P but not in
Pi_1. Thus the dimension of P cannot be finite.

The space C(R) contains P as a subspace. If C(R) were finite-dimensional, then P would also be
finite-dimensional by Theorem 11. But PP is infinite-dimensional by Exercise 27, so C(R) must also
be infinite-dimensional.

a. True. Apply the Spanning Set Theorem to the set {v,,...,v,} and produce a basis for V. This

basis will not have more than p elements in it, so dimV < p.
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b. True. By Theorem 11, {v,,...,v p} can be expanded to find a basis for V. This basis will have at

least p elements in it, so dimV = p.

c¢. True. Take any basis (which will contain p vectors) for V and adjoin the zero vector to it.

a. False. For a counterexample, let v be a non-zero vector in R?, and consider the set {v,2v}. This is
a linearly dependent set in R®, but dim R*=3>2.

b. True. If dimV < p, there is a basis for V with p or fewer vectors. This basis would be a spanning
set for V with p or fewer vectors. If necessary, vectors in V could be added to this spanning set to
give a spanning set for V with exactly p vectors, which contradicts the assumption.

c. False. For a counterexample, let v be a non-zero vector in R?, and consider the set {v,2v}. This is
a linearly dependent set in R® with 3 — 1 = 2 vectors, and dim R*=3.

Since H is a nonzero subspace of a finite-dimensional vector space V, H is finite-dimensional and has
a basis. Let {u,,...,u,} be a basis for H. We show that the set {T'(u,),...,7(u,)} spans T(H). Lety

be in 7(H). Then there is a vector x in H with 7(x) =y. Since x is in H and {u,,. ..,up} is a basis for
H, x may be written as x=cu, +...+ c,u, for some scalars ¢,.. Cpe Since the transformation 7 is
linear,

y=Tx)=T(cu, +...+cpup):clT(u1)+...+cpT(up)

Thus y is a linear combination of T'(w,),...,T'(u,), and {T'(w,),...,T(u,)} spans T(H). By the
Spanning Set Theorem, this set contains a basis for 7(H). This basis then has not more than p vectors,
and dim7(H) < p = dim H.

Since H is a nonzero subspace of a finite-dimensional vector space V, H is finite-dimensional and has
a basis. Let {u,,.. .up} be a basis for H. In Exercise 31 above it was shown that {T'(u,),.. .,T(up)}
spans T(H). In Exercise 32 in Section 4.3, it was shown that {T'(u,),...,T(u p)} is linearly
independent. Thus {T'(u,),...,T(u p)} is a basis for T(H), and dim7T(H) = p = dim H.

M]
a. To find a basis for R’ which contains the given vectors, we row reduce
9 9 6 1 0 0 0 O] 1 0 O —-1/3 0 0 1 3/7]
-7 4 7 0 1 0 0 O 0 1 0 0 0 0 1 57117
8 1 8 0 0 1 0 O|~|O O 1 =-1/3 0 O O =3/7|
-5 6 5 0 0 0 1 0 0 0 O 0O 1 0 3 22/7
7 -7 -7 0 0 0 0 1} |0 O O 0 0 I -9 -53/7]

The first, second, third, fifth, and sixth columns are pivot columns, so these columns of the
original matrix ({v,,v,,v,,e,,e,}) form a basis for R’:
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b. The original vectors are the first k columns of A. Since the set of original vectors is assumed
to be linearly independent, these columns of A will be pivot columns and the original set of
vectors will be included in the basis. Since the columns of A include all the columns of the
identity matrix, Col A = R".

34. [M]

a. The B-coordinate vectors of the vectors in C are the columns of the matrix
(1 0 -1 0 1 0 -]

01 0 -3 0 5 0
0 0 2 0 -8 0 18
P=0 0 0 4 0 =20 0|
00 0 0 8 0 -48
O 0o 0 0 0 16 0

00 O 0 O 0 32

The matrix P is invertible because it is triangular with nonzero entries along its main
diagonal. Thus its columns are linearly independent. Since the coordinate mapping is an
isomorphism, this shows that the vectors in C are linearly independent.

b. We know that dim H =7 because B is a basis for H. Now C is a linearly independent set, and
the vectors in C lie in H by the trigonometric identities. Thus by the Basis Theorem, C is a
basis for H.

4.6 SOLUTIONS

Notes: This section puts together most of the ideas from Chapter 4. The Rank Theorem is the main result
in this section. Many students have difficulty with the difference in finding bases for the row space and
the column space of a matrix. The first process uses the nonzero rows of an echelon form of the matrix.
The second process uses the pivots columns of the original matrix, which are usually found through row
reduction. Students may also have problems with the varied effects of row operations on the linear
dependence relations among the rows and columns of a matrix. Problems of the type found in Exercises
19-26 make excellent test questions. Figure 1 and Example 4 prepare the way for Theorem 3 in Section
6.1; Exercises 27-29 anticipate Example 6 in Section 7.4.

1. The matrix B is in echelon form. There are two pivot columns, so the dimension of Col A is 2. There
are two pivot rows, so the dimension of Row A is 2. There are two columns without pivots, so the
equation Ax = 0 has two free variables. Thus the dimension of Nul A is 2. A basis for Col A is the
pivot columns of A:

1] |4
-1, 2
5| 1-6

A basis for Row A is the pivot rows of B: {(1, 0,-1,5),(0, —2,5,—6)}. To find a basis for Nul A row

reduce to reduced echelon form:
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1 0 -1 5
A~ .
0 1 -5/2 3
The solution to Ax =0 in terms of free variables is x, = x; —5x,, x, =(5/2)x; —3x, with x; and x,
free. Thus a basis for Nul A is

1] [-5
5/2| -3
1’| o
0 1

2. The matrix B is in echelon form. There are three pivot columns, so the dimension of Col A is 3.
There are three pivot rows, so the dimension of Row A is 3. There are two columns without pivots,
so the equation Ax =0 has two free variables. Thus the dimension of Nul A is 2. A basis for Col A is
the pivot columns

of A:
117417 2
21 16]|-3
31713173
31 (o] 0

A basis for Row A is the pivot rows of B: {(1,3,4,—1, 2),(0,0,1,-1,1),(0,0,0,0, —5)}. To find a basis
for Nul A row reduce to reduced echelon form:
1 30 3 0
0 01 -1 0
1o 0o 0 o0 1]
0O 0 0 0 O

The solution to Ax =0 in terms of free variables is x, =-3x, —=3x,, x; =x,, x; =0, with x, and x,
free. Thus a basis for Nul A is

=31 -3

S OO =
S = = O

3. The matrix B is in echelon form. There are three pivot columns, so the dimension of Col A is 3.
There are three pivot rows, so the dimension of Row A is 3. There are three columns without pivots,
so the equation Ax =0 has three free variables. Thus the dimension of Nul A is 3. A basis for Col A
is the pivot columns of A:

21 6] 3
2| |-3]10
411 91’13
2|1 3|13
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A basis for Row A is the pivot rows of B: {(2,6,—6, 6,3,6),(0,3,0,3,3,0),(0,0,0,0,3, O)}. To find a
basis for Nul A row reduce to reduced echelon form:
1 0 -3 0 0 3
0O 1 0 1 0 O
oo 00 1 0f
0O 0 0 0 0 O

The solution to Ax =0 in terms of free variables is x; =3x; —3x,, x, =—x,, x; =0, with x;, x,,
and x, free. Thus a basis for Nul A is

3711 0] [-3
0| |-1|] 0
1/l o]] 0
o'l 1] 0
o/ | of] o

ol | o[ 1

. The matrix B is in echelon form. There are five pivot columns, so the dimension of Col A is 5. There
are five pivot rows, so the dimension of Row A is 5. There is one column without a pivot, so the
equation Ax =0 has one free variable. Thus the dimension of Nul A is 1. A basis for Col A is the
pivot columns of A:

1

1

| |2 2| (-3 0
_1_
A basis for Row A is the pivot rows of B:

{(1’ 17 - 2’ 0’ 1’ - 2)’ (0’ 1’ _17 07 - 37 - 1)’ (O’ O’ 17 17 - 13’ - 1)’ (0307070717_1)9 (03030307071)} .

To find a basis for Nul A row reduce to reduced echelon form:

100 1 00
0 1.0 10 0

A<[0 0 1 1 0 0]
0000 10
0 0 0 0 0 1

The solution to Ax =0 in terms of free variables is x, =—x,, x, =—x,, x; =—x,, x,=0, x, =0,
with x, free. Thus a basis for Nul A is
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15.

16.

17.
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0

. By the Rank Theorem, dimNul A=7 —rank A=7-3=4. Since

dimRow A =rank A,dimRow A =3. Since rank A” =dimCol A” =dimRow A, rankA” =3.

. By the Rank Theorem, dimNul A=5—-rank A=5-2=3. Since

dimRow A =rank A, dimRow A =2. Since rank A’ =dimCol A7 =dimRow A, rank AT =2.

. Yes, Col A =R*. Since A has four pivot columns, dimCol A =4.Thus Col A is a four-dimensional

subspace of R*, and Col A = R,
No, Nul A# R3. Tt is true that dimNul A =3 , but Nul A is a subspace of R’

. Since A has four pivot columns, rank A =4, and dimNul A=8—-rank A=8-4=4.

No. Col A #R* It is true that dimCol A =rank A =4, but Col A is a subspace of R°.

. Since dimNul A=3, rank A=6—-dimNul A=6—-3=3. So dimCol A =rank A =3.

No. Col A #R>. Tt is true that dimCol A =rank A =3, but Col A is a subspace of R

Since dimNul A=5,rank A=7—-dimNul A=7-5=2. So dimCol A=rank A=2.

Since dimNul A=3,rank A=5—-dimNul A=5-3=2. So dimRow A =dimCol A =rank A =2.
Since dimNul A=2,rank A=4—dimNul A=4-2=2. So dimRow A =dimCol A =rank A =2.

The rank of a matrix A equals the number of pivot positions which the matrix has. If A is either a
7 x5 matrix or a 5X7 matrix, the largest number of pivot positions that A could have is 5. Thus the
largest possible value for rank A is 5.

The dimension of the row space of a matrix A is equal to rank A, which equals the number of pivot
positions which the matrix has. If A is either a 5x4 matrix or a 4x5 matrix, the largest number of
pivot positions that A could have is 4. Thus the largest possible value for dimRow A is 4.

Since the rank of A equals the number of pivot positions which the matrix has, and A could have at
most 3 pivot positions, rank A <3. Thus dimNul A=7 —-rank A>7-3=4.

Since the rank of A equals the number of pivot positions which the matrix has, and A could have at
most 5 pivot positions, rank A <5. Thus dimNul A=5—-rank A=25-5=0.

a. True. The rows of A are identified with the columns of A”. See the paragraph before Example 1.
b. False. See the warning after Example 2.

¢. True. See the Rank Theorem.

d. False. See the Rank Theorem.
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e. True. See the Numerical Note before the Practice Problem.

. False. Review the warning after Theorem 6 in Section 4.3.
. False. See the warning after Example 2.
. True. See the remark in the proof of the Rank Theorem.

e o T W

. True. This fact was noted in the paragraph before Example 4. It also follows from the fact that the

rows of A" are the columns of (A”)" = A.

e. True. See Theorem 13.

Yes. Consider the system as Ax =0, where A is a 5x6 matrix. The problem states that

dimNulA =1. By the Rank Theorem, rank A=6—-dimNul A=5. Thus dimCol A=rank A =35, and
since Col A is a subspace of R, Col A =R So every vector b in R’ is also in Col A, and Ax =b, has
a solution for all b.

No. Consider the system as Ax=b, where A is a 6 x8 matrix. The problem states that

dimNul A =2. By the Rank Theorem, rank A =8 —dimNul A =6. Thus dimCol A=rank A=6, and
since Col A is a subspace of RS, Col A =R°So every vector b in R%is also in Col A, and Ax=b has
a solution for all b. Thus it is impossible to change the entries in b to make Ax=b into an
inconsistent system.

No. Consider the system as Ax=b, where A is a 9x10 matrix. Since the system has a solution for
all bin Rg, A must have a pivot in each row, and so rankA =9. By the Rank Theorem,
dimNulA =10-9 =1. Thus it is impossible to find two linearly independent vectors in Nul A.

No. Consider the system as Ax =0, where A is a 10x12 matrix. Since A has at most 10 pivot
positions, rankA <10. By the Rank Theorem, dimNulA =12 —rankA > 2. Thus it is impossible to
find a single vector in Nul A which spans Nul A.

Yes, six equations are sufficient. Consider the system as Ax =0, where A is a 12x8 matrix. The
problem states that dimNul A =2. By the Rank Theorem, rank A =8 —dimNul A =6. Thus
dimCol A =rank A=6. So the system Ax =0 is equivalent to the system Bx =0, where B is an

echelon form of A with 6 nonzero rows. So the six equations in this system are sufficient to describe
the solution set of Ax=0.

Yes, No. Consider the system as Ax=b, where A is a 7x6 matrix. Since A has at most 6 pivot
positions, rank A <6. By the Rank Theorem, dim Nul A=6—rank A>0. If dimNul A=0, then the
system Ax=b will have no free variables. The solution to Ax =b, if it exists, would thus have to be
unique. Since rank A <6, Col A will be a proper subspace of R’. Thus there exists a b in R for

which the system Ax =b is inconsistent, and the system Ax=Db cannot have a unique solution for
all b.

No. Consider the system as Ax=b, where A is a 10x12 matrix. The problem states that
dim NulA =3. By the Rank Theorem, dimCol A =rank A=12—-dimNul A=9. Thus Col A will be a

proper subspace of R'* Thus there exists a b in R'° for which the system Ax=b is inconsistent, and
the system Ax=b cannot have a solution for all b.
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28.
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30.

31.
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33.

CHAPTER 4 + Vector Spaces

. Consider the system Ax =0, where A is a mXn matrix with m > n. Since the rank of A is the
number of pivot positions that A has and A is assumed to have full rank, rank A = n. By the Rank
Theorem, dimNulA =#n—-rankA=0. So NulA ={0}, and the system Ax =0 has only the trivial
solution. This happens if and only if the columns of A are linearly independent.

Since A is an m X n matrix, Row A is a subspace of R”, Col A is a subspace of R, and Nul A is a
subspace of R". Likewise since AT is an n x m matrix, Row A” is a subspace of R", Col AT isa

subspace of R", and NulAT isa subspace of R". Since Row A =Col AT and ColA=Row AT, there
are four dinstict subspaces in the list: Row A, Col A, Nul A, and Nul AT,

a. Since A is an m X n matrix and dimRow A =rank A,
dimRow A + dimNul A =rank A + dimNul A = n.

b. Since AT is an n x m matrix and dimCol A =dimRow A = dimCol AT = rank AT,

dimCol A + dimNul A” =rank AT +dimNul A" =m.

Let A be an m X n matrix. The system Ax = b will have a solution for all b in R™ if and only if A has a
pivot position in each row, which happens if and only if dimCol A = m. By Exercise 28 b., dimCol A

=m if and only if dimNulA” =m—m =0, or Nul A" ={0}. Finally, Nul A” ={0} if and only if the

equation A”x =0 has only the trivial solution.

The equation Ax = b is consistent if and only if rank [A b]=rank A because the two ranks will be

equal if and only if b is not a pivot column of [A  b]. The result then follows from Theorem 2 in
Section 1.2.

2 2a 20 2
Compute that uv’ =| -3 {[a b c¢|=|-3a -3b -3c|. Each column of uv” is a multiple of u,
5 5a  5b 5c

so dimColuv’ =1, unless a = b = ¢ = 0, in which case uv’ is the 3 X 3 zero matrix and

dimColuv” =0. In any case, rank uv’ =dimColuv’ <1

Note that the second row of the matrix is twice the first row. Thus if v = (1, -3, 4), which is the first
row of the matrix,

uvT:M[l -3 4]:{21 :Z ﬂ

Let A=[u; w, u,], and assume that rank A = 1. Suppose that u, # 0. Then {u,} is basis for Col
A, since Col A is assumed to be one-dimensional. Thus there are scalars x and y with u, = xu, and

1
u,=yu,,and A=u,v', where v=| x|.

y
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If w, =0 but u, #0, then similarly {u,} is basis for Col A, since Col A is assumed to be one-

0

dimensional. Thus there is a scalar x with u, = xu,, and A=u,v’, where v=|1|.

If u, =u, =0 but u, #0, then A=u,v’, where v=|0|.

0

1

X

34. Let A be an m X n matrix with of rank r > 0, and let U be an echelon form of A. Since A can be
reduced to U by row operations, there exist invertible elementary matrices E,,..., E » with

(E,--E)A=U. Thus A=(E, - E, )"'U, since the product of invertible matrices is invertible. Let

E=(E, ---E;)™"; then A = EU. Let the columns of E be denoted by ¢;, ...

,¢,,. Since the rank of A is

r, U has r nonzero rows, which can be denoted le . .,df. By the column-row expansion of A
(Theorem 10 in Section 2.4):

A=EU =[¢,

which is the sum of r rank 1 matrices.

c,]

dy

0

5
1/2

-11/2

0
0

rl=cd| +...+¢

0
0
0
1
0

dT

rero

-3

A basis for Col A is the pivot columns of A, so matrix C contains these columns:

35. [M]
a. Begin by reducing A to reduced echelon form:
[1 0 13/2 0
0 1 11/2 O
A~l0 O 0 1
0 0 0 0
10 0 0 0
7 9 5 -3
-4 6 -2 -5
c=|5 -7 5
-3 5 -1 4
6 -8 4 9

A basis for Row A is the pivot rows of the reduced echelon form of A, so matrix R contains

these rows:
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1 0 13/2 0 5 0 -3
o 112 0 12 0 2
=10 o 0 1 -11/2 0

0 0 0 0 0 1 1

To find a basis for Nul A row reduce to reduced echelon form, note that the solution to Ax = 0
in terms of free variables is x; =—(13/2)x; —5x5 +3x;, x, =—(11/2)x; —(1/2)x5 —2x;,
x, =(11/2)x3 —=7x;, x, =—x,;, with x;, x5, and x, free. Thus matrix N is

[—13/2 -5 3]
-11/2 -1/2 =2
1 0 0

N = 0 11/2 7|
0 1 0
0 0 -1

i 0 0 1]

b. The reduced echelon form of A" is
1 0 0 0 —2/11]
0 -41/11
0 0
1 28/11},
0 0

0 0
0 0

2>
3
l
SO O O O O O -

S O O O O =
S O O O = O

so the solution to A"x =0 in terms of free variables is x, =(2/11)x;, x, =(41/11)x5, x; =0,
x, =—(28/11)x5, with x free. Thus matrix M is

2/11]
41/11
M= 0l
-28/11

1

The matrix S = [RT N } is 7 x 7 because the columns of RT and N are in R” and dimRow A
+dimNul A = 7. The matrix T=[C M is 5 X 5 because the columns of C and M are in R’

and dimCol A +dimNul A" =5. Both S and T are invertible because their columns are linearly
independent. This fact will be proven in general in Theorem 3 of Section 6.1.

36. [M] Answers will vary, but in most cases C will be 6 X 4, and will be constructed from the first 4
columns of A. In most cases R will be 4 x 7, N will be 7 X 3, and M will be 6 X 2.

37. [M] The C and R from Exercise 35 work here, and A = CR.
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38. [M] If A is nonzero, then A = CR. Note that CR = [Crl Cr, ... Crn], where r,, ..., r, are the

columns of R. The columns of R are either pivot columns of R or are not pivot columns of R.

h

Consider first the pivot columns of R. The i™ pivot column of R is e;, the i" column in the

identity matrix, so Ce; is the i™ pivot column of A. Since A and R have pivot columns in the same

locations, when C multiplies a pivot column of R, the result is the corresponding pivot column of A
in its proper location.

Now suppose r; is a nonpivot column of R. Then r; contains the weights needed to construct
the j™ column of A from the pivot columns of A, as is discussed in Example 9 of Section 4.3 and in
. . . .th

the paragraph preceding that example. Thus r; contains the weights needed to construct the j

column of A from the columns of C, and Cr ;=a;.

4.7 SOLUTIONS

Notes: This section depends heavily on the coordinate systems introduced in Section 4.4. The row

reduction algorithm that produces PB can also be deduced from Exercise 15 in Section 2.2, by row
cé—

reducing [PC |PB]. to [1 | PC_IPB] The change-of-coordinates matrix here is interpreted in Section 5.4

as the matrix of the identity transformation relative to two bases.

6 9 6 9
1. a. Since b, =6¢, —2¢, and b, =9¢, —4c,, [bl]C:|: 2}, [bQ]C:{ 4}, and P :{ }

cB | -2 -4
}and
2

6 91| -3 0
[X]C=C<I—JB[X]B: -2 4| 2 - -2

-2 3 -2 3
2. a. Since b, =-2¢, +4¢, and b, =3¢, —6¢,, [b,]. :{ 4}, [b, - :{ 6}’ and P :{ }

b. Since x=-3b, +2b,, [x], :{

2
b. Since x=2b, +3b,, [x], :{3} and

2 3)2] [ s
Xle= L=y )37 10

3. Equation (ii) is satisfied by P for all x in V.

4. Equation (i) is satisfied by P for all x in V.
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4 -1
a. Since a, =4b, -b,, a, =-b, +b, +b;, and a, =b, -2b,, [a/l;=|-1|, [a,];=| 1|,
0 1
0 4 -1 0
[a;];=| 1|, and B£A= -1 1 1|
-2 0o 1 =2
3
b. Since x=3a, +4a, +a,, [x], =|4| and
1
4 -1 03 8
[xXlg= P =|-1 1 1|4|=(2
B<A
0 1 2|1 2
2 0
a. Since f, =2d, —-d, +d,, f, =3d, +d;,and £, =-3d, +2d,, [f;]1, =|-1|, [f,1,=|3,
1 1
-3 2 0 3
(f;],=| O, and P =|-1 3 O]
D<F
2 1 1 2
1
b. Since x=f, - 2f, +2f,, [x], =| -2 | and
2
2 0 3| 1| |4
[X]D=D£F[X]F= -1 3 0|=2(=|-7
11 2 2 3
To find P Tow reduce the matrix [¢;, ¢, b, b,]:
B

1 0 -3 1
[cl ¢, b b2]~{ }

0 1 -5 2

-3 1 4 |2 1
Thus P = ,and P = P = .
ceB |=5 2 B&<C C<B -5 3

. Tofind P ,row reduce the matrix [¢, ¢, b, b,]:
C<B

1 0 9 -8
[ ¢ b bz]“{o }

1 -10 9
9 -8 4 9 8
Thus P = ,and P = P = .
cB |-10 9 B<C C<B 10 9
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To find P ,row reduce the matrix [¢, ¢, b, b,]:
C<B

[, ¢ b, b2]{

2 3 1/2 3/2
Thus P :{ },and P =P _1:{ }
0 -1 CB

1 0 2 3
0 1 0 -1

C<B B<C 0 -1

Tofind P , row reduce the matrix [¢, ¢, b, b,]:
C<B

1 0 3 1
[cl ¢, b bz]"{ }

0 1 -2 0
3 1 4 |0 =1/2
Thus P = ,and P = P~ = .
c<B |=2 0 B<C C<B 1 3/2

False. See Theorem 15.
b. True. See the first paragraph in the subsection “Change of Basis in R".”

®

a. True. The columns of P are coordinate vectors of the linearly independent set B. See the
C<B

second paragraph after Theorem 15.

b. False. The row reduction is discussed after Example 2. The matrix P obtained there satisfies
[X]C = P[x] B

Let B={b,,b,,b,}={1-2t+1*3—5¢+4¢* 2t +3t*} and let C={c,,¢c,,¢c;}={L,7,7*}. The
C-coordinate vectors of b,, b,, and b, are
1 3 0
(bl =| -2, [by]lc =| =5 [, [b3]- =| 2
1 4 3
So
I 3 0
P=-2 -5 2
Cc<B
I 4 3

Let x = -1 + 2¢. Then the coordinate vector [x], satisfies

-1
L Ixlp =[x]e=| 2
0
This system may be solved by row reducing its augmented matrix:
1 3 0 -1 1 0 0 5 5
-2 =5 2 2|~-|/0 1 0 =2|s0[x]z=|-2
1 4 3 0 0 0 0 1 1
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14. Let B={b,,b,,b,} ={1-3¢%, 2+t—5t2,1+2t} and let C ={¢;,¢c,,¢;}={1,1, t2}. The C-coordinate
vectors of b, b, , and b, are

1 2 1
[b1]c= 0 ,[bz]c= 1 ’[b3]c= 2
-3 -5 0
So
1 2 1
P =0 1 2
C<B
-3 -5 0

Let x =¢>. Then the coordinate vector [X] 5 satisfies

0
L Xl =[x =10
1_
This system may be solved by row reducing its augmented matrix:
1 2 10 1 0 0 3 3
0 1 2 0(~0 1 0 -2{so[x]z=|-2
-3 -5 0 1 0 0 O 1 1

and 2 =3(1=-3t>) =22 +1=5t>) + (1+20).

15. (a) Bis abasis for V
(b) the coordinate mapping is a linear transformation
(c) of the product of a matrix and a vector
(d) the coordinate vector of v relative to B
1

0
16. (a) [b;]o=0[b]; =0 . =(Qe,

(b) [b,1e
(C) [bk ]c = Q[bk ]B = Qek
17. [M]

a. Since we found P in Exercise 34 of Section 4.5, we can calculate that
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32 0 16 0 12 0 10]

0 32 0 24 0 20 0

0O 016 0 16 0 15
Pi=Ll0 0 0o 8 0 10 o
20 0 0 0 4 0 6

0 0 0 0 0 2 0

0 0 0 0 0 0 1

b. Since P is the change-of-coordinates matrix from C to B, P~ will be the change-of-

coordinates matrix from B to C. By Theorem 15, the columns of P~' will be the C-coordinate
vectors of the basis vectors in B. Thus

cos’t = %(1 +cos 2¢)
50 1
cos’t = Z(3cos t+cos 3t)
cos’t = %(3 +4cos 2t + cos 41)
cos’t = %(10005 t+5cos 3t +cos 5¢)

cos’t :3%(10 +15cos 2t + 6¢cos 4t + cos 6¢)

18. [M] The C-coordinate vector of the integrand is (0, 0, 0, 5, -6, 5, —12). Using P! from the previous
exercise, the B- coordinate vector of the integrand will be

P7(0,0,0,5,-6,5,—12)=(-6,55/8,-69/8,45/16,—3,5/16, —3/8)

Thus the integral may be rewritten as
J.—6 + Ecos t —Qcos 2t +4—Scos 3t —3cos 4t +icos St —ECOS 6t dt,
8 8 16 16 8
which equals
—6t +§sin t —Qsin 2t +§sin 3t —ésin 4t +isin 5t —isin 6t+C.
8 16 16 4 16 16
19. [M]

a. If Cis the basis {v,,v,,v;}, then the columns of P are [u,]., [u,]., and [u,].. So
u, :[v1 Vv, v3][u1]C, and [u1 u, u3] =[V1 v, V3]P. In the current exercise,
-2 -8 -7 1 2 -1 -6 -6 -5
[, w, w]= 2 5 2{-3 -5 0|=[-5 -9
3 2 61| 4 6 1 21 32 3
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b. Analogously toparta., [v, v, vy]=[w, w, w;]P,so[w, w, w;]=
[vi v, v3]P_1. In the current exercise,
2 8 71 2 -]
[w, w, wy]=| 2 5 2|3 -5 0
3 2 6| 4 6 1

-2 -8 7| 5 8 5 28 38 21
=2 5 2|3 -5 3|=|-9 -13 -7|.
3 2 6|2 -2 -1 -3 2 3
200a. P =P P

D<B D<CC<B

Let x be any vector in the two-dimensional vector space. Since P is the change-of-coordinates
C<B

matrix from Bto Cand P is the change-of-coordinates matrix from C to D,
D<C

[x]c = CEB[X]B and [x],, = DEC[X]C = DIZC CgB[X]B

Butsince P is the change-of-coordinates matrix from B to D,
D<B

[X]D = DEB[X]B
Thus
P [x]z= P P I[x]g

D<B D<CC<B

for any vector [X]; in R and P = P P
D<B D<CC<B

11 [ i P B

can calculate the change-of-coordinates matrices:

1 =2 7 3] [1 0 =3 1] -3 1
~ = P =
-5 2 5 -1 [0 1 =5 2| ceB |5 2

-1 1 1 =2 1 0 0 —8/3] » 0 -8/3
~ = =
8 -5 -5 2] |0 1 1 -14/3] "pec |1 -14/3

-1 1 7 =3 1 0 40/3 -16/3] [40/3 -16/3
8 -5 5 -1 1 61/3 -25/3] »p<s |61/3 -25/3

One confirms easily that

40/3 -16/3] [0 -8/3|[-3 1
P = = =P P
pes | 61/3 —25/3| |1 -14/3)| -5 2| pecces
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4.8 SOLUTIONS

Notes: This is an important section for engineering students and worth extra class time. To spend only
one lecture on this section, you could cover through Example 5, but assign the somewhat lengthy
Example 3 for reading. Finding a spanning set for the solution space of a difference equation uses the
Basis Theorem (Section 4.5) and Theorem 17 in this section, and demonstrates the power of the theory of
Chapter 4 in helping to solve agplied problems. This section anticipates Section 5.7 on differential
equations. The reduction of an n" order difference equation to a linear system of first order difference
equations was introduced in Section 1.10, and is revisited in Sections 4.9 and 5.6. Example 3 is the
background for Exercise 26 in Section 6.5.

1. Let y, =2 Then
Yera 2V — 8y, =272 42021 -8(2%)
=222 +2%*-8)
=2"(0) = 0for all k
Since the difference equation holds for all k, 2* is a solution.
Let y, =(—4)". Then
Ve +2Vin1 =8y = (=4 +2(—4) " —8(-4)"
= (9 (-4’ +2(-4)-8)
= (—-4)*(0)=0for all k

Since the difference equation holds for all &, (=4)* is a solution.

2. Let y, =5, Then
Vesny — 25y, =57 —25(5%)
=5%(5* -25)
=5(0)=0forall k
Since the difference equation holds for all k, 5* is a solution.
Let y, =(=5)°. Then
Yera =25y, = (=5)""? =25(=5)"
=(-5)"((-5)* -25)
=(-5)"(0)=0for all k

Since the difference equation holds for all &, (—5)" is a solution.
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3. The signals 2 and (—4)" are linearly independent because neither is a multiple of the other; that is,

there is no scalar ¢ such that 2* = c(—4)k for all k. By Theorem 17, the solution set H of the
difference equation y,,, +2y,,, —8y, =0 is two-dimensional. By the Basis Theorem, the two

linearly independent signals 2 and (—4)* form a basis for H.

4. The signals 5* and (=5)* are linearly independent because neither is a multiple of the other; that s,

there is no scalar ¢ such that 5" = c(—S)k for all k. By Theorem 17, the solution set H of the
difference equation y,,, —25y, =0 is two-dimensional. By the Basis Theorem, the two linearly

independent signals 5* and (—5)* form a basis for H.
5. Let y, =(=2)". Then
Yera F 4V H4y = (27 +4(=2) +4(-2)"
= (2" (-2’ +4(-2)+4)
=(-2)"(0)=0forall k
Since the difference equation holds for all &, (=2)* is in the solution set H.
Let y, =k(=2)". Then
Vers + 4V +4y, = (k+2)(=2)"" +4(k +1)(=2)*" + 4k (-2)"
= (=2)F ((k +2)(=2)* + 4(k + 1)(=2) + 4k)
= (=2)" (4k +8 -8k —8 +4k)
=(=2)*(0)=0for all k
Since the difference equation holds for all &, k(=2)* is in the solution set H.

The signals (—2)* and k(-2)* are linearly independent because neither is a multiple of the other;
that is, there is no scalar ¢ such that (—2)1‘ = ck(—Z)k for all k and there is no scalar ¢ such that
c(—Z)k = k(—2)k for all k. By Theorem 17, dim H = 2, so the two linearly independent signals (—Z)k
and k(—Z)k form a basis for H by the Basis Theorem.

6. Let y, =4“cosZ. Then

Viso +16y, = 4k+zcosM+l6(4k cos XZ
2 2
=4k (42 cos—(k +22)7[ +16 cos%)

=16-4F cos(k—”+7r}+cosk—”
2 2

=16-4°(0)=0for all k

since cos(t + 7) = —cos ¢ for all ¢. Since the difference equation holds for all £, 4k cos"T” is in the

solution set H.
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Let y, =4"sin“Z. Then

Visn 16y, =472 sin@+ 16(4'“ sin%)

— 4 (42 sin@Hmm%”]

~16-4F sin(k—”+7zj+sink—”
2 2

=16-4*(0)=0 for all k
since sin(t + 7)) = —sin ¢ for all ¢. Since the difference equation holds for all £, 4* sinkT” is in the
solution set H.
The signals 4 cosZ and 4* sin*Z are linearly independent because neither is a multiple of the

other. By Theorem 17, dim H = 2, so the two linearly independent signals 4 coskT” and 4* sinkT”

form a basis for H by the Basis Theorem.

. Compute and row reduce the Casorati matrix for the signals 1, 2%, and (-2), setting k = 0 for

convenience:
122 2" 1 0 o
2 ' ~lo 1 0
? 22 (2*] |0 0 1

This Casorati matrix is row equivalent to the identity matrix, thus is invertible by the IMT. Hence the
set of signals {1°,2,(=2)"} is linearly independent in S. The exercise states that these signals are in
the solution set H of a third-order difference equation. By Theorem 17, dim H = 3, so the three
linearly independent signals 1°, 2%, (=2)* form a basis for H by the Basis Theorem.

. Compute and row reduce the Casorati matrix for the signals (—1)*, 2%, and 3*, setting k = 0 for

convenience:
D® 2° 3| 11 0 o
-n' 2" 3 <lo 1 0
(-np* 2* 3*| [0 0 1

This Casorati matrix is row equivalent to the identity matrix, thus is invertible by the IMT. Hence the
set of signals {(~1),2%,3"} is linearly independent in S. The exercise states that these signals are in
the solution set H of a third-order difference equation. By Theorem 17, dim H = 3, so the three
linearly independent signals (—1)*, 2, and 3* form a basis for H by the Basis Theorem.
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Compute and row reduce the Casorati matrix for the signals 2%, 5 cos%, and 5 sin% setting k=0

for convenience:
2 5%o0s0 5%in0
2" S'cosZ  S'sinZ |~

22 5%cosm  Ssinm

S O =
o = O
- O O

This Casorati matrix is row equivalent to the identity matrix, thus is invertible by the IMT. Hence the
set of signals {2°,5" cos%”,Sk sin*Z} is linearly independent in S. The exercise states that these

signals are in the solution set H of a third-order difference equation. By Theorem 17, dim H = 3, so
the three linearly independent signals 2*, 5* cos£E, and 5 sin &% form a basis for H by the Basis
Theorem.

Compute and row reduce the Casorati matrix for the signals (=2)%, k(=2)*, and 3 setting k = 0 for
convenience:

2" 02" 3
2" 1= 3|~
(=2)* 2(=2)* 3

[

0
1
0

- O O

This Casorati matrix is row equivalent to the identity matrix, thus is invertible by the IMT. Hence the
set of signals {(=2)*, k(=2)", 3"} is linearly independent in S. The exercise states that these signals
are in the solution set H of a third-order difference equation. By Theorem 17, dim H = 3, so the three
linearly independent signals (—2)*, k(-2)*, and 3* form a basis for H by the Basis Theorem.

The solution set H of this third-order difference equation has dim H =3 by Theorem 17. The two
signals (—1)* and 2* cannot possibly span a three-dimensional space, and so cannot be a basis for
H.

The solution set H of this fourth-order difference equation has dim H =4 by Theorem 17. The two
signals 3° and (—2)* cannot possibly span a four-dimensional space, and so cannot be a basis for H.

The auxiliary equation for this difference equation is 7> —r+2/9 =0. By the quadratic formula
(or factoring), r = 2/3 or r = 1/3, so two solutions of the difference equation are (2/ 3)k and (1/ 3)" .
The signals (2/3)* and (1/3)" are linearly independent because neither is a multiple of the other.
By Theorem 17, the solution space is two-dimensional, so the two linearly independent signals

2/ 3)k and (1/ 3)" form a basis for the solution space by the Basis Theorem.

The auxiliary equation for this difference equation is 7> —5r +6 = 0. By the quadratic formula (or
factoring), r = 2 or r = 3, so two solutions of the difference equation are 2* and 3*. The signals 2"
and 3" are linearly independent because neither is a multiple of the other. By Theorem 17, the

solution space is two-dimensional, so the two linearly independent signals 2* and 3* form a basis for
the solution space by the Basis Theorem.
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The auxiliary equation for this difference equation is 6 +r—2=0. By the quadratic formula (or
factoring), r = 1/2 or r =-2/3, so two solutions of the difference equation are (1/ 2)F and (=2/3)F.
The signals (1/2)* and (=2/3)* are linearly independent because neither is a multiple of the other.
By Theorem 17, the solution space is two-dimensional, so the two linearly independent signals

1/ 2)1‘ and (-2/ 3)k form a basis for the solution space by the Basis Theorem.

The auxiliary equation for this difference equation is r* — 25 =0. By the quadratic formula (or

factoring), r = 5 or r = -5, so two solutions of the difference equation are 5° and (—5). The signals
5 and (=5)" are linearly independent because neither is a multiple of the other. By Theorem 17, the

solution space is two-dimensional, so the two linearly independent signals 5* and (—5)* form a basis
for the solution space by the Basis Theorem.

Letting a = .9 and b = 4/9 gives the difference equation Y, , —1.3Y, , +.4Y, =1. First we find a
particular solution ¥, =T of this equation, where T is a constant. The solution of the equation 7'—
1.3T+ 4T =11s T=10, so 10 is a particular solution to Y, ., —1.3Y,, +.4Y, =1. Next we solve the

homogeneous difference equation Y, —1.3Y,,, +.4Y, =0. The auxiliary equation for this difference

equation is r* —1.3r +.4=0. By the quadratic formula (or factoring), = .8 or r = .5, so two
solutions of the homogeneous difference equation are .8" and .5*. The signals (.8)" and (.5)F are
linearly independent because neither is a multiple of the other. By Theorem 17, the solution space is
two-dimensional, so the two linearly independent signals (.8)F and (.5)* form a basis for the
solution space of the homogeneous difference equation by the Basis Theorem. Translating the
solution space of the homogeneous difference equation by the particular solution 10 of the
nonhomogeneous difference equation gives us the general solution of Y, ,, —1.3Y,,, +.4Y, =1:

Y, = cl(.8)k + cz(.S)k +10. As k increases the first two terms in the solution approach 0, so Y,
approaches 10.

Letting a = .9 and b = .5 gives the difference equation Y, , —1.35Y,,, +.45Y, =1. First we find a
particular solution Y, =T of this equation, where T is a constant. The solution of the equation
T—-1.35T+ .45T=1is T=10, so 10 is a particular solution to Y, , —1.35Y,,, +.45Y, =1. Next we
solve the homogeneous difference equation Y, ., —1.35Y,,, +.45Y, =0. The auxiliary equation for

this difference equation is 7> —1.35r +.45=0. By the quadratic formula (or factoring), r = .6 or
r=75, so two solutions of the homogeneous difference equation are .6 and .75*. The signals (.6)"
and (.75)" are linearly independent because neither is a multiple of the other. By Theorem 17, the

solution space is two-dimensional, so the two linearly independent signals (.6)* and (.75)" form a

basis for the solution space of the homogeneous difference equation by the Basis Theorem.
Translating the solution space of the homogeneous difference equation by the particular solution 10
of the nonhomogeneous difference equation gives us the general solution of

Y,,, —1.35Y,,, +.45Y, =1: Y, =¢,(:6)" +¢,(.75)" +10.

The auxiliary equation for this difference equation is 7> +4r +1= 0. By the quadratic formula,
r=-=2++3 or r=-2-+/3 , so two solutions of the difference equation are (—2+ \/g )k and
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(—2- \/3 )1‘. The signals (-2 + \/§ )" and (—2- \/g )" are linearly independent because neither is a
multiple of the other. By Theorem 17, the solution space is two-dimensional, so the two linearly
independent signals (-2 + V3 ) and (—2— J3 ) form a basis for the solution space by the Basis

Theorem. Thus a general solution to this difference equation is y, =c¢;(=2+ NE cy(—2— NE

20. Let a=—2++/3 and b=-2-+/3. Using the solution from the previous exercise, we find that
y, =¢a+c,b=5000 and y, =c,a” +c,b" =0. This is a system of linear equations with variables

¢, and ¢, whose augmented matrix may be row reduced:

Lo 50000"
a b 5000 bNa—aNb
LN "0 } 0 1 ~5000a"
b a-a"b
SO
. 50006" . ~5000a"
bNa-a"b’ > b a-dab

(Alternatively, Cramer’s Rule may be applied to get the same solution). Thus
v, =ca* +c,b

~5000(a"b™ —a™b*)

bNa—-a b

21. The smoothed signal z, has the following values: z;, =(9+5+7)/3=7, z,=(5+7+3)/3=5,
23=(T+3+2)/3=4, z,=3+2+4)/3=3, z,=(2+4+6)/3=4, z,=(4+6+5)/3=5,
2; =(6+5+7)/3=6, z,=(5+7+6)/3=6, z,=(7T+6+8)/3=7, z,,=(6+8+10)/3=8,
2, =08+10+9)/3=9, z,,=(010+9+5)/3=8, z3=09+5+7)/3=T7.

-m- original data
10

-+ smoothed data

N R O

> 4 6 8 0 1
22. a. The smoothed signal z, has the following values:
Zo =.35y, +.5y, +.35y, =.35(0) +.5(.7) +.35(3) =14,
z,=.35y, +.5y, +.35y, =.35(=.7) +.5(0) +.35(.7) =0,
7, =35y, +.5y; +.35y, =.35(=.3) +.5(-=.7) +.35(0) = -1 4,
23 =.35ys +.5y, +.35y; =.35(=.7) +.5(=.3) +.35(=.7) = -2,
24 =.35y¢ +.5y5 +.35y, =.35(0) +.5(=.7) +.35(=.3) =104,
25 =.35y, +.5y¢ +.35y5 =.35(.7) +.5(0) +.35(-=.7) =0,
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26 =.35y5 +.5y; +.35y, =.35(3) +.5(.7) +.35(0) = 1.4,
27 =.35yy +.5y5 +.35y, =.35(7)+.5(3) +.35(.7) =2,
24 =.35y,0 +.5y9 +.35y, =.35(0) +.5(.7) +.35(3) =14,...

Solutions

b. This signal is two times the signal output by the filter when the input (in Example 3) was
y = cos(/m/4). This is expected because the filter is linear. The output from the input

23. a.

24. a.

2cos(m/4) + cos(3m/4) should be two times the output from cos(7#/4) plus the output from

cos(3m/4) (which is zero).

Yeu —1.01y, =—450, y, =10,000.

. [M] MATLAB code to create the table:

pay =450, y=10000, m=0, table=1[0;vy]
while y>450

yv=1.01*y-pay

m=m+1

table= [table [m;Vy]]
end

m,y
Mathematica code to create the table:

pay = 450; y = 10000; m = O0; balancetable = {{0, v}};

Whilel[y > 450, {y = 1.0l*y - pay; m = m + 1,
AppendTo[balancetable, {m, vyv}1}1;

m

Y

[M] At the start of month 26, the balance due is $114.88. At the end of this month the unpaid

255

balance will be (1.01)($114.88)=$116.03. The final payment will thus be $116.03. The total paid

by the borrower is (25)($450.00)+$116.03=$11,366.03.

Yesy —1.005y, =200, y, =1,000.
[M] MATLAB code to create the table:
pay =200, y=1000, m=0, table=[0;vy]
for m=1: 60
v=1.005*y+pay
table= [table [m;Vy]]
end
interest =y-60*pay-1000
Mathematica code to create the table:
pay = 200; y = 1000; amounttable = {{0, v1}};
Do[{y = 1.005*y + pay;
AppendTo [amounttable, {m, y}1},{m,1,60}]1;
interest =y-60*pay-1000
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c. [M] The total is $6213.55 at k =24, $12,090.06 at k = 48, and $15,302.86 at k = 60. When k = 60,
the interest earned is $2302.86.

25. To show that y, =k” is a solution of y,,, +3y,,, —4y, =10k +7, substitute y, =k>,
Ve =(k+1)?, and y,,, =(k+2)*:
Viwa + 30 — 4y, = (k+2)* +3(k +1)* — 4k*
= (k* + 4k +4) +3(k* + 2k +1) — 4k*

=k>+4k+4+3k> + 6k +3—4k>
=10k +7 for all k

The auxiliary equation for the homogeneous difference equation y,,, +3y,,, —4y, =0 is

r* +3r —4=0. By the quadratic formula (or factoring), r =—4 or r = 1, so two solutions of the
difference equation are (—4)* and 1*. The signals (—4)* and 1* are linearly independent because
neither is a multiple of the other. By Theorem 17, the solution space is two-dimensional, so the two
linearly independent signals (—4)" and 1* form a basis for the solution space of the homogeneous
difference equation by the Basis Theorem. The general solution to the homogeneous difference
equation is thus ¢,(—4)* +¢, -1* =¢,(=4)" +¢,. Adding the particular solution k* of the
nonhomogeneous difference equation, we find that the general solution of the difference equation
Verr ¥3Vi =4y, =10k +7 is y, =k* +¢,(-)" +¢,.

26. To show that y, =1+k is a solution of y,,, —6y,,, +5y, =—4, substitute y, =1+k,
Veq =1+ (k+1)=2+k, and y,,, =1+ (k+2)=3+k:
Yirr =0V 5y, =B+ k)= 6(2+ k) +5(1+k)
=3+k—-12-6k+5+5k
=—4forall k

The auxiliary equation for the homogeneous difference equation y,, ., —6y,,, +5y, =0 is

r* —6r+5=0. By the quadratic formula (or factoring), r = 1 or = 5, so two solutions of the

difference equation are 1 and 5*. The signals 1* and 5° are linearly independent because neither
is a multiple of the other. By Theorem 17, the solution space is two-dimensional, so the two linearly

independent signals 1° and 5* form a basis for the solution space of the homogeneous difference
equation by the Basis Theorem. The general solution to the homogeneous difference equation is thus

¢ 1+ C, -5, Adding the particular solution 1+ k of the nonhomogeneous difference equation, we
find that the general solution of the difference equation y,,, —6y,,, +5y, =—4 is

v, =l+k+c¢ 1" +¢, -5

27. To show that y, =k —2 is a solution of y, , —4y, =8-3k , substitute y, =k —2 and
Vigr =(k+2)=2=k:
Yisa =4y, =k —4(k—2) =k — 4k +8=8—3k for all k
The auxiliary equation for the homogeneous difference equation y,,, —4y, =0 is r* =4 =0. By the

quadratic formula (or factoring), r =2 or r = — 2, so two solutions of the difference equation are 2*
and (—2)*. The signals 2% and (=2)* are linearly independent because neither is a multiple of the
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other. By Theorem 17, the solution space is two-dimensional, so the two linearly independent signals
2¥ and (-2)" form a basis for the solution space of the homogeneous difference equation by the
Basis Theorem. The general solution to the homogeneous difference equation is thus

- 2f + Cy - (=2)*. Adding the particular solution k —2 of the nonhomogeneous difference equation,
we find that the general solution of the difference equation y,,, —4y, =83k is

Vi =k=2+¢-2" +¢,-(-2)".

To show that y, =1+ 2k is a solution of y, , +25y, =30+52k, substitute y, =1+ 2k and
Viso =1+2(k+2)=5+2k:

Viso T25y, =542k +25(1+2k)=5+2k +25+50k =30+ 52k for all k

The auxiliary equation for the homogeneous difference equation y, , +25y, =0 is r* +25=0. By

the quadratic formula (or factoring), r = 5i or r = —5i, so two solutions of the difference equation are
k

7
a multiple of the other. By Theorem 17, the solution space is two-dimensional, so the two linearly

5"cosE and 5* sin“Z . The signals 5" cos4Z and 5* sinXZ are linearly independent because neither is

independent signals 5* cos’“—z’I and 5* sink—z’I form a basis for the solution space of the homogeneous

difference equation by the Basis Theorem. The general solution to the homogeneous difference
k
71'[
nonhomogeneous difference equation, we find that the general solution of the difference equation
Yira +25y, =30+52k is y, =142k +¢; -5 cos&E+c, -5  sinkE .

equation is thus ¢, -5 cos k4 c, .5 sin’“—z’I . Adding the particular solution 1+ 2k of the

Yk Vet 0 0 0 %
0 0 1 O
Let x, = Y1 | Then X = Yir2 | Vit = Ax,.
Y2 Vi3 0 0 0 I||yn

L Vi+3 | [ Visal L2 =6 8 3| Vs

| Ve | [ O 1 0]y
Let X =| Yy |- Then X, =| 33 [=| 0 0 1|1y |=AX,.

| Yi+2 | | Va3 | __8 0 5| Y2
The difference equation is of order 2. Since the equation y, .5 +5y,,, +6y,,, =0 holds for all &,

it holds if k is replaced by k — 1. Performing this replacement transforms the equation into
Visa T5Vi + 6y, =0, which is also true for all k. The transformed equation has order 2.

The order of the difference equation depends on the values of a;, a,, and a;. If a; #0, then the
orderis 3.If a; =0 and a, #0, then the order is 2. If a; =a, =0 and g, #0, then the order is 1.
If a; =a, =a, =0, then the order is 0, and the equation has only the zero signal for a solution.

The Casorati matrix C(k) is

Y zk}_{ k> 2% | k|

C(k){
(k+1)* 2k+1D)|k+1|

Yivr gl

In particular,
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C(0) = 00 C(-1)= b= dC(=2)= 4 -8
1 o2f “lo o™ 11 =2

none of which are invertible. In fact, C(k) is not invertible for all k, since
det C(k):2k2(k+1)|k+1|—2(k+1)2k|k|:2k(k+1)(k|k+1|—(k+1)|k|)

Ifk=0ork=-1,det C(k)=0.1fk>0,thenk+1>0and k| k+ 1 |- (k+ D|k|=k(k+1)—(k+ 1)k
=0,s0det C(k)=0.Ifk<—1,thenk+1<Oand k| k+1|—(k+ 1) k|=—k(k+ 1)+ (k+ 1)k =0, so
det C(k) = 0. Thus detC(k)=0 for all k, and C(k) is not invertible for all k. Since C(k) is not invertible
for all k, it provides no information about whether the signals {y,} and {z,} are linearly dependent

or linearly independent. In fact, neither signal is a multiple of the other, so the signals {y,} and {z,}
are linearly independent.

No, the signals could be linearly dependent, since the vector space V of functions considered on the
entire real line is not the vector space S of signals. For example, consider the functions f (f) = sinm,
g(t) = sin 2mt, and A(f) = sin 37z, The functions f, g, and 4 are linearly independent in V since they
have different periods and thus no function could be a linear combination of the other two. However,
sampling the functions at any integer n gives f (n) = g(n) = h(n) = 0, so the signals are linearly
dependent in S.
Let {y,} and {z,} bein S, and let r be any scalar. The k™ term of {y.}+{z} is y, +z,, while the
k™ term of r{y,} is ry,. Thus
T({yk }+ {Zk D= T{yk + Zk}

= (Vw2 + Zpsn) Ay + Zi) 00y +20)

= (Vpan ¥ Wy T0y) + (2440 + Az +07;)

=T{y.}+T{z},and

T(r{y ) =T{ry.}

=T Yo Ta(ry ) +0(ry;)

=1 (Vpso + @iy 0y

=rT{y;}

so T has the two properties that define a linear transformation.

Let z be in V, and suppose that x » in V satisfies 7'(x ,)=12. Letu be in the kernel of T; then T(u) =
0. Since T is a linear transformation, 7(u+ x,)=T)+T(x,)= 0+z =1z, so the vector x=u+ X,

satisfies the nonhomogeneous equation 7(x) = z.

We ComPUte that (TD)()’(),)H,)’Q,---) :T(D(Y(),yl,yz,---)):T(O, y()’y19y2’~") :(y()’yl’yz"“)
Whlle (DT)()’(), yl’y29~") :D(T(y()’ yp)’z’---)) :D(yl’yZ’ y3’---): (O’ yl’ yz’ y3"“)
Thus TD = I (the identity transformation on Sy), while DT # I.
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4.9 SOLUTIONS

Notes: This section builds on the population movement example in Section 1.10. The migration matrix is
examined again in Section 5.2, where an eigenvector decomposition shows explicitly why the sequence of
state vectors x, tends to a steady state vector. The discussion in Section 5.2 does not depend on prior
knowledge of this section.

1. a. Let N stand for “News” and M stand for “Music.” Then the listeners’ behavior is given by the

table
From:
N M ‘ To:
7 6 ‘ N
3 4 | M

7 .6
so the stochastic matrix is P :{ 3 4}.

1
b. Since 100% of the listeners are listening to news at 8: 15, the initial state vector is x, = {0} .

c¢. There are two breaks between 8: 15 and 9: 25, so we calculate x,:

T 6|1 7

Xl = PX() = =
3 410 3
6.7 .67

X, = PXl = =

M HE
Thus 33% of the listeners are listening to music at 9:25.

2. a. Let the foods be labelled “1,” “2,” and “3.” Then the animals’ behavior is given by the table

From:
1 2 3 | To:
.6 2 2 1
2 .6 2|2
2 2 6 |3
6 2 2
so the stochastic matrixis P={.2 .6 .2].
2 2 6
1
b. There are two trials after the initial trial, so we calculate x,. The initial state vectoris | O |.
0
6 2 2|1 .6
x,=Px,=[2 6 2]0|=].2
2 2 6|0 |2
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Thus the probability that the animal will choose food #2 is .28.

3. a. Let H stand for “Healthy” and / stand for “Ill.” Then the students’ conditions are given by the

table
From:
H 1 ‘ To:
95 45 H
.05 .55 I
. L 95 45
so the stochastic matrix is P = .
05 .55

.8
b. Since 20% of the students are ill on Monday, the initial state vector is x,, :{ 2} . For Tuesday’s

percentages, we calculate x,; for Wednesday’s percentages, we calculate x,:
95 45 .8 .85
X, = PXO = =
05 55].2 15
95 45| .85 875
X, = le = =
05 .55]|.15 125
Thus 15% of the students are ill on Tuesday, and 12.5% are ill on Wednesday.

1
c. Since the student is well today, the initial state vector is x, = {0} We calculate x,:

95 451 .95

X, = PXO = =
.05 .55]|0 .05
95 45|.95 925

X2 = le = =
05 .55]|.05 075

Thus the probability that the student is well two days from now is .925.

4. a. Let G stand for good weather, / for indifferent weather, and B for bad weather. Then the change
in the weather is given by the table

From:

G 1 B To:
4 .5 31| G
3 2 4 |1
3 3 3 | B

4 5 3

so the stochastic matrixis P=[.3 2 4|
3 3 3
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S
b. The initial state vector is .5}. We calculate x;,:
0

4 5 35 45
x,=Px,=|3 2 4|.5|=.25
3 .3 3]0 .30
Thus the chance of bad weather tomorrow is 30%.
07
c. The initial state vector is X, =|.6 |. We calculate x,:
_'4_
(4 5 3][0] [.42
x,=Px,=|3 2 4|.6|=.28
1.3 3 3] 4] [.30
(4 5 3[.42] [.398
X,=Px;=|.3 2 4|.28/=|.302
1.3 .3 .3]1.30 .300

Thus the chance of good weather on Wednesday is 39.8%, or approximately 40%.

-9 5
. We solve Px = x by rewriting the equation as (P — I)x =0, where P—1/ :{ } Row reducing

9 -5
the augmented matrix for the homogeneous system (P —I)x = 0 gives

-9 5 0 1 -5/9 0
9 -5 0 0 0 0

5/9 5 5
Thus x = {xl } =x, { J , and one solution is {9} Since the entries in {9} sum to 14, multiply by
X

5/14
1/14 to obtain the steady-state vector q = {9 ) 14}.

. 8
. We solve Px = x by rewriting the equation as (P —I)x = 0, where P —1 :{ 6 8}' Row reducing

the augmented matrix for the homogeneous system (P — I)x = 0 gives
-6 8 0 1 -4/3 0
6 -8 0] |0 0 0

X 4/3 L 4] .. |4 ,
Thus x = =x, Nk and one solution is 3| Since the entries in 3 sum to 7, multiply by
X

. 477 571
1/7 to obtain the steady-state vector q = = .
3/7 429
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-3 1 .
We solve Px = x by rewriting the equation as (P —[)x=0, where P-I=| 2 -2 2| Row
d 1 =3

reducing the augmented matrix for the homogeneous system (P — I )x = 0 gives
-3 1 10 1 0 -1 0
2 =2 2 0~-|10 1T =2 0
d 1 =3 0{ [0 0O O O

X 1 1 1
Thus X=| x, |=x;| 2 |, and one solution is | 2 |. Since the entries in | 2 | sum to 4, multiply by 1/4
X, 1 1 1
1/4 25
to obtain the steady-state vector q=|1/2 |=| .5]|.
1/4 25

-6 5 8

. We solve Px = x by rewriting the equation as (P — I)x =0, where P—[=| 0 -5 .1|. Row

.6 0 -9
reducing the augmented matrix for the homogeneous system (P — I )x = 0 gives
-6 5 8 0 1 0 -3/2 0
0O -5 1 0(~0 1 -1/5 0

.6 0 -9 0 0 0 0 0
X 3/2 15 15
Thus x=| x, |=x;| 1/5 |, and one solution is | 2 |. Since the entries in | 2 | sum to 27, multiply
X, 1 10 10
15/27 .556
by 1/27 to obtain the steady-state vector q=| 2/27 |=|.074|.
10/27 .370
. , [84 2 o . . . .
Since P = 16 8 has all positive entries, P is a regular stochastic matrix.
TR E RN A . . .
Since P" = . will have a zero as its (2,1) entry for all k, P is not a regular stochastic
0o 7
matrix.
) g .6 -3 .6 , .
a. From Exercise 1, P= 3 4l so P-1I= 3 6l Solving (P — I)x = 0 by row reducing the

augmented matrix gives
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-3 6 0 1 -2 0
3 -6 0 0 0 0
X 2 2] |2 .
Thus x = =X, Ll and one solution is | . Since the entries in | sum to 3, multiply by 1/3
X

) 2/3 .667
to obtain the steady-state vector q = = .
1/3 333

/
b. Since q = L / 3} , 2/3 of the listeners will be listening to the news at some time late in the day.

6 2 2 -4 2 2
12. From Exercise 2, P=|.2 6 2|, so P-I=| 2 -4 2| Solving (P-1)x=0Dbyrow
2 2 6 2 2 -4

reducing the augmented matrix gives
-4 2 20 1 0 -1 0
2 -4 2 0|~0 1 -1 O
2 2 -4 0 0 0 0 O

X 1 1 1
Thus x=| x, |=x;|1|, and one solution is | 1 |. Since the entries in | 1 | sum to 3, multiply by 1/3 to
X, 1 1 1
1/3 333
obtain the steady-state vector q=|1/3 |=|.333 |. Thus in the long run each food will be preferred
1/3 333

equally.

.05 .55 .05

reducing the augmented matrix gives
-05 45 O 1 9 0
05 -45 0 0 0 0

9 9 9
Thus x = {xl } =x, L}, and one solution is L} Since the entries in L} sum to 10, multiply by
X

. 95 45 -05 45 .
13. a. From Exercise 3, P = , 80 P—I= 45| Solving (P — I)x = 0 by row

9/10 9
1/10 to obtain the steady-state vector q = L/IO} :{ J.

b. After many days, a specific student is ill with probability .1, and it does not matter whether that
student is ill today or not.
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4 5 3 -6 5 3
From Exercise 4, P=|{.3 2 4|,so P-I=| 3 -8 .4]. Solving (P-1)x=0byrow
3 3 3 3 3 =7

reducing the augmented matrix gives
-6 5 30 1 0 4/3 0

3 -8 4 0(~|0 1 -1 0
3 3 =7 0] |0 O 0 0
X 4/3 4 4
Thus x=| x, |=x, 1|, and one solution is | 3 |. Since the entries in | 3 | sum to 10, multiply by
X, 1 3 3
4/10| |4
1/10 to obtain the steady-state vector q =| 3/10 |=| .3 |. Thus in the long run the chance that a day
3/10 3
has good weather is 40%.
[M]Let P= {9821 0029 ,s0 P—1= {_'0179 '0029}. Solving (P —I)x = 0 by row reducing
0179 9971 .0179  —-.0029

the augmented matrix gives

-0179  .0029 0] [1 -.162011 0
0179 -.0029 0] |0 0 0

X .162011 .. |.162011 . .. |.162011
Thus x= =x, ) , and one solution is ) . Since the entries in ) sum to

X
.139423

1.162011, multiply by 1/1.162011 to obtain the steady-state vector q =
.860577

}. Thus about

13.9% of the total U.S. population would eventually live in California.

90 .01 .09] -10 .01 .09
[M]Let P=|.01 90 .01|,soP-I= .01 —-10 .01|. Solving (P -1)x =0 by row
09 .09 .90 09 09 -1

reducing the augmented matrix gives
-10 .01 .09 0] [1 0 -919192 0
01 -10 .01 0|~0 1 -191919 O
09 09 -1 0] [0 O 0 O
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X 919192 919192 919192
Thus x=| x, |=x;|.191919 |, and one solution is | .191919 |. Since the entries in |.191919 | sum
X, 1 1 1
435407
to 2.111111, multiply by 1/2.111111 to obtain the steady-state vector q =|.090909 |. Thus on a
473684

typical day, about (.090909)(2000) = 182 cars will be rented or available from the downtown
location.

a. The entries in each column of P sum to 1. Each column in the matrix P — I has the same entries as
in P except one of the entries is decreased by 1. Thus the entries in each column of P — [ sum to 0,
and adding all of the other rows of P — I to its bottom row produces a row of zeros.

b. By part a., the bottom row of P — I is the negative of the sum of the other rows, so the rows of
P — I are linearly dependent.

c¢. By part b. and the Spanning Set Theorem, the bottom row of P — I can be removed and the
remaining (n — 1) rows will still span the row space of P — I. Thus the dimension of the row space
of P — 1 is less than n. Alternatively, let A be the matrix obtained from P — I by adding to the
bottom row all the other rows. These row operations did not change the row space, so the row
space of P — [ is spanned by the nonzero rows of A. By part a., the bottom row of A is a zero row,
so the row space of P — I is spanned by the first (n — 1) rows of A.

d. By part c., the rank of P — [ is less than n, so the Rank Theorem may be used to show that

dimNul(P —I') = n —rank(P — I) > 0. Alternatively the Invertible Martix Theorem may be used
since P — [ is a square matrix.

1 0 1 0
If o= f=0then P= {0 J. Notice that Px = x for any vector x in R?, and that {0} and L} are

two linearly independent steady-state vectors in this case.

—a B

If 0 or f+0, we solve (P —I)x = 0 where P—I:{
a —

}. Row reducing the augmented

matrix gives
- f O a -p 0
PRI

X
So ax, = fx,, and one possible solution is to let x, = 4, x, = . Thus x :{ 1}:{
X2

B

}. Since the
o

entries in {'B} sum to a+ 3, multiply by 1/(e+ ) to obtain the steady-state vector q = ! B {'H}
" a+ o

a. The product Sx equals the sum of the entries in x. Thus X is a probability vector if and only if its
entries are nonnegative and Sx = 1.

b. Let P=[p1 p, ... p"], where p,, p,, ..., p, are probability vectors. By part a.,
SP=[Sp, Sp, ... Sp,]=[1 1 ... 1]=S§
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c. By part b, S(Px) = (SP)x = Sx = 1. The entries in Px are nonnegative since P and x have only
nonnegative entries. By part a., the condition S(Px) = 1 shows that Px is a probability vector.

20. Let P=[p, p, ... P,] so P*=PP= [Pp, Pp, ... Pp,]. ByExercise 19c., the columns
of P? are probability vectors, so P? is a stochastic matrix.
Alternatively, SP = S by Exercise 19b., since P is a stochastic matrix. Right multiplication by P gives
SP? = SP, so SP = S implies that SP? = S. Since the entries in P are nonnegative, so are the entries

in P?, and P? is stochastic matrix.

21. [M]
a. To four decimal places,
2779 2780 .2803 2941 2817 2817 2817 .2814
P2 3368 3355 3357 .3335 P 3356 3356 3355 .3352
1847 1861 .1833 .1697 | A817 1817 .1819 .1825|
2005 .2004 .2007 2027 2010 .2010 .2010 .2009

2816 2816 .2816 .2816
3355 3355 3355 3355
1819 1819 .1819 .1819
2009 .2009 .2009 .2009

Pt=p =

The columns of P* are converging to a common vector as k increases. The steady state vector q

(2816
3355
for Pis q= 1819 | which is the vector to which the columns of P* are converging.
.2009
b. To four decimal places,
(8222 4044 5385 7674 6000 .6690
0" =1.0324 3966 .1666 |, 0% =|.0637 2036 .1326|,
1453 11990 2949 1688 .1964 .1984
7477 .6815 .7105] 7401 7140 .7257
0°=].0783 .1329 .1074|,0% =|.0843 .1057 .0960 |,
|.1740 .1856 .1821| |.1756 .1802 .1783
(7372 7269 7315 ] 7360 .7320 .7338]
0°=[.0867 .0951 .0913|,0%° =].0876 .0909 .0894 |,
1761 1780 .1772] |.1763 1771 .1767 |
[.7356 7340 .7347] 7354 7348 .7351]
0 =|.0880 .0893 .0887|,0% =|.0881 .0887 .0884 |,
|.1764 1767 .1766 1764 1766 .1765 |
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7353 7353 7353
0"°=0""=1.0882 .0882 .0882
1765 1765 .1765

7353
The steady state vector q for Q is q =|.0882 | Conjecture: the columns of P*, where P is a
1765

regular stochastic matrix, converge to the steady state vector for P as k increases.
c. Let P be an n X n regular stochastic matrix, q the steady state vector of P, and e ; the jth column

of the n X n identity matrix. Consider the Markov chain {x, } where x,,, = Px, and x, =¢;. By
Theorem 18, x, = P*x, converges to q as k — co. But P*x, = Pkej , which is the j™ column of

P*. Thus the j® column of P* converges to q as k — o; thatis, P* =>[q q ... q].

22. [M] Answers will vary.
MATLAB Student Version 4.0 code for Method (1):

A=randstoc (32); flops(0);
tic, x=nulbasis (A-eye(32));

g=x/sum(x); toc, flops
MATLAB Student Version 4.0 code for Method (2):

A=randstoc (32); flops(0);
tic, B=A"100; g=B(: ,1); toc, flops

Chapter 4 SUPPLEMENTARY EXERCISES

1. a. True. This setis Span{v,,...v,}, and every subspace is itself a vector space.

b. True. Any linear combination of v, ..., v ool is also a linear combination of v, ..., v A

p=1> Tp
using the zero weighton v .

c. False. Counterexample: Take v, =2v,. Then {v,,...v,} is linearly dependent.

d. False. Counterexample: Let {e,,e,,e;} be the standard basis for R?. Then {e,,e,} is a linearly
independent set but is not a basis for R’.
e. True. See the Spanning Set Theorem (Section 4.3).

True. By the Basis Theorem, S is a basis for V because S spans V and has exactly p elements. So
S must be linearly independent.

g. False. The plane must pass through the origin to be a subspace.

25 20
h. False. Counterexample: [0 0 7 3.
0 0 00
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i. True. This statement appears before Theorem 13 in Section 4.6.

J- False. Row operations on A do not change the solutions of Ax = 0.

2
k. False. Counterexample: A = L 6} ; A has two nonzero rows but the rank of A is 1.

False. If U has k nonzero rows, then rank A =k and dimNul A = n — k by the Rank Theorem.
True. Row equivalent matrices have the same number of pivot columns.

False. The nonzero rows of A span Row A but they may not be linearly independent.

o = B —~

True. The nonzero rows of the reduced echelon form E form a basis for the row space of each
matrix that is row equivalent to E.

T

True. If H is the zero subspace, let A be the 3 x 3 zero matrix. If dim H =1, let {v} be a basis
for Handset A=[v v v].Ifdim H=2,let {u,v} be abasis for Handset A=[u v V],

for example. If dim H = 3, then H = R?, s0 A can be any 3 X 3 invertible matrix. Or, let {u, v,
w} be a basis for Hand set A=[u v w].

1 0 O
q. False. Counterexample: A= {O ) O} . If rank A = n (the number of columns in A), then the

transformation X — AX is one-to-one.

r. True. If x — Ax is onto, then Col A = R” and rank A = m. See Theorem 12(a) in Section 1.9.

s. True. See the second paragraph after Theorem 15 in Section 4.7.

t. False. The j™ columnof P is [bJC.

C«B
1| |2 5
. 2 5/ 1-8 -
2. The set is SpanS, where § = bl 71 Note that S is a linearly dependent set, but each
3 1 1
1 -2
. . . . 2 5
pair of vectors in S forms a linearly independent set. Thus any two of the three vectors Ll
3 1

will be a basis for SpansS.

3. The vector b will be in W =Span{u,,u,} if and only if there exist constants ¢, and ¢, with
cu, +c,u, =b. Row reducing the augmented matrix gives
-2 1 b -2 1 b,
4 2 b |~ 0 4 2b, +b,
-6 -5 b 0 O b+2b,+by
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so W =Span{u,,u,} is the set of all (b, b,,b;) satisfying b, +2b, +b; =0.

The vector g is not a scalar multiple of the vector f, and f is not a scalar multiple of g, so the set
{f, g} is linearly independent. Even though the number g(¢) is a scalar multiple of f(¢) for each ¢, the
scalar depends on .

The vector p, is not zero, and p, is not a multiple of p,. However, p; is 2p, +2p,, so p; is
discarded. The vector p, cannot be a linear combination of p, and p, since p, involves > but p,

and p, do not involve #>. The vector ps is (3/2)p, —(1/2)p, +p, (which may not be so easy to see
at first.) Thus ps is a linear combination of p,, p,, and p,, so ps is discarded. So the resulting

basis is {p,,P,,P,}-

Find two polynomials from the set {p,,...,p,} that are not multiples of one another. This is easy,

because one compares only two polynomials at a time. Since these two polynomials form a linearly
independent set in a two-dimensional space, they form a basis for H by the Basis Theorem.

You would have to know that the solution set of the homogeneous system is spanned by two
solutions. In this case, the null space of the 18 x 20 coefficient matrix A is at most two-dimensional.
By the Rank Theorem, dimCol A =20 —dimNul A >20 -2 = 18. Since Col A is a subspace of R'®,
Col A =R'®. Thus Ax = b has a solution for every b in R'®.

If n =0, then H and V are both the zero subspace, and H = V. If n > 0, then a basis for H consists of n
linearly independent vectors u,,...,u,. These vectors are also linearly independent as elements of V.
But since dimV = n, any set of n linearly independent vectors in V must be a basis for V by the Basis
Theorem. So u,,...,u, span V, and H =Span{u,,...,u, }=V.

Let T: R"—— R" be a linear transformation, and let A be the m X n standard matrix of 7.

a. If T is one-to-one, then the columns of A are linearly independent by Theorem 12 in Section 1.9,
so dimNul A = 0. By the Rank Theorem, dimCol A = n — 0 = n, which is the number of columns
of A. As noted in Section 4.2, the range of 7 is Col A, so the dimension of the range of 7 is n.

b. If 7 maps R”" onto R”, then the columns of A span R” by Theoerm 12 in Section 1.9, so dimCol A
= m. By the Rank Theorem, dimNul A =#n —m. As noted in Section 4.2, the kernel of 7'is Nul A,
so the dimension of the kernel of 7 is n — m. Note that n — m must be nonnegative in this case:
since A must have a pivot in each row, n = m.

Let S ={v,,...,v,}. If S were linearly independent and not a basis for V, then § would not span V.

In this case, there would be a vector v, in V thatis not in Span{v,,..., v, }. Let

1)+

S'={V1,...,V v _..}. Then S’ is linearly independent since none of the vectors in S’ is a linear

p° " p+l
combination of vectors that precede it. Since S” has more elements than S, this would contradict the
maximality of S. Hence S must be a basis for V.

If S is a finite spanning set for V, then a subset of S is a basis for V. Denote this subset of S by §’.
Since S’ is a basis for V, S” must span V. Since S is a minimal spanning set, S” cannot be a proper
subset of S. Thus S”= S, and S is a basis for V.
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a. Lety be in Col AB. Then y = ABx for some x. But ABx = A(BXx), so y = A(Bx), and y is in Col A.
Thus Col AB is a subspace of Col A, so rank AB = dimCol AB < dimCol A =rank A by Theorem
11 in Section 4.5.

b. By the Rank Theorem and part a.:
rank AB =rank(AB)" =rank B" A" <rank B =rank B

By Exercise 12, rank PA <rank A, and rank A= rank(P~'P)A =rank P~' (PA) <rank PA, so
rank PA =rank A.

Note that (AQ)" = Q" A”. Since Q" is invertible, we can use Exercise 13 to conclude that

rank(AQ)" =rank Q" A" =rank A”. Since the ranks of a matrix and its transpose are equal (by the
Rank Theorem), rank AQ =rank A.

The equation AB = O shows that each column of B is in Nul A. Since Nul A is a subspace of R”, all
linear combinations of the columns of B are in Nul A. That is, Col B is a subspace of Nul A. By
Theorem 11 in Section 4.5, rank B = dimCol B < dimNul A. By this inequality and the Rank
Theorem applied to A,

n=rank A + dimNul A >rank A + rank B

Suppose that rank A=7 and rank B =r, . Then there are rank factorizations A=C,R, and B=C,R,
of A and B, where C, is mxr, withrank r, C, is mxr, withrank r,, R, is , xn withrank 7, and
R, is r, xn withrank r,. Create an mx(r; +r,) matrix C=[C, C,] andan (5 +r,)Xn matrix R

by stacking R, over R,. Then

R
A+B=CR +C,R, =[C, CZ]{Rl}zc/’R
2

Since the matrix CR is a product, its rank cannot exceed the rank of either of its factors by Exercise
12. Since C has 1, +r, columns, the rank of C cannot exceed 1, +r,. Likewise R has r, +r, rows, so

the rank of R cannot exceed 7, +r,. Thus the rank of A + B cannot exceed 1 +r, =rank A+rank B,
or rank (A + B) <rank A + rank B.

Let A be an m X n matrix with rank r.

(a) Let A, consist of the r pivot columns of A. The columns of A, are linearly independent, so A,
is an m X r matrix with rank r.

(b) By the Rank Theorem applied to A,, the dimension of RowA, is r, so A, has r linearly
independent rows. Let A, consist of the r linearly independent rows of A;. Then A, isanrXr
matrix with linearly independent rows. By the Invertible Matrix Theorem, A, is invertible.

Let A be a 4 X 4 matrix and B be a 4 X 2 matrix, and let u,, ... ,u, be a sequence of input vectors in
Rz
a. Use the equation x,,, = Ax, +Bu, for k=0,...,4, with x, =0.

X, = Ax, + Bu, = Bu,

X, = AX, + Bu; = ABu,, + Bu,
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X, = AX, + Bu, = A(ABu, + Bu,) + Bu, = A*Bu,, + ABu, + Bu,
X, = AX; + Bu; = A(A>Bu,, + ABu, + Bu, ) + Bu,
= A’Bu, + A>Bu, + ABu, + Bu,
u;
2 35,7 W2
=[B AB A’B A B} =Mu
u,
U,
Note that M has 4 rows because B does, and that M has 8 columns because B and each of the
matrices A*B have 2 columns. The vector u in the final equation is in R®, because each u , 1sin
R2
. If (A, B) is controllable, then the controllability matrix has rank 4, with a pivot in each row, and

the columns of M span R”. Therefore, for any vector v in R*, there is a vector u in R® such that
v = Mu. However, from part a. we know that x, = M u when u is partitioned into a control

sequence u,,...,u5. This particular control sequence makes x, = v.

19. To determine if the matrix pair (A, B) is controllable, we compute the rank of the matrix
[B AB AzB]. To find the rank, we row reduce:

0o 1 0][1 0 0
[B AB A2B]:1 ~9 81|~|0 1 0}
1 5 25010 0 1

The rank of the matrix is 3, and the pair (A, B) is controllable.

20. To determine if the matrix pair (A, B) is controllable, we compute the rank of the matrix
[B AB AZB]. To find the rank, we note that :

1 5 .19
[B AB A23]=1 745,
0 0 0

The rank of the matrix must be less than 3, and the pair (A, B) is not controllable.

21. [M] To determine if the matrix pair (A, B) is controllable, we compute the rank of the matrix
[B AB A’B A3B]. To find the rank, we row reduce:

1 0 0 171 0 0 -1
, s 0 -1 16|/ 10 1 0 -16
[B AB A’B AB]: ~ .
0 -1 16 -9/ |0 0 1 -16
1 16 -96 —024| [0 0 © 0

The rank of the matrix is 3, and the pair (A, B) is not controllable.

22. [M] To determine if the matrix pair (A, B) is controllable, we compute the rank of the matrix
[B AB A’B A3B]. To find the rank, we row reduce:
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1 0 0 171 0 0 0
, X 0 0 -1 5101 0 0

[B AB A’B A‘B]= ~
0 -1 5 11450 |0 0 1 0
-1 5 1145 -10275] |0 0 0 1

The rank of the matrix is 4, and the pair (A, B) is controllable.
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Eigenvalues and
Eigenvectors

5.1 SOLUTIONS

Notes: Exercises 1-6 reinforce the definitions of eigenvalues and eigenvectors. The subsection on
eigenvectors and difference equations, along with Exercises 33 and 34, refers to the chapter introductory
example and anticipates discussions of dynamical systems in Sections 5.2 and 5.6.

1. The number 2 is an eigenvalue of A if and only if the equation Ax=2x has a nontrivial solution.
This equation is equivalent to (A—27/)x=0. Compute

3 2 2 0 1 2
A-2]= - =
3 8 0 2 3 6
The columns of A are obviously linearly dependent, so (A—27)x=0 has a nontrivial solution, and

so 2 is an eigenvalue of A.

2. The number -3 is an eigenvalue of A if and only if the equation Ax =—-3x has a nontrivial solution.
This equation is equivalent to (A+37)x =0. Compute

-1 4| |3 0| |2 4
A+31= + =
{ 6 9} {0 3} {6 12}

The columns of A are obviously linearly dependent, so (A+37/)x=0 has a nontrivial solution, and
so —3 is an eigenvalue of A.

1 -1][1] [-2 1 1
3. Is Ax a multiple of x? Compute }{ = } = —2[ } So L’} is an eigenvector of A with

eigenvalue —2.

5 2-1] [-3 -1 -1
4. Is Ax a multiple of x? Compute 3 }{ = }:3{ } So { J is an eigenvector of A with

eigenvalue 3.
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-4 3 3] 3] [-15 3 3
5. Is Ax a multiple of x? Compute | 2 -3 2| -2|=| 10|=-5|/-2|. So | -2 | is an eigenvector
-1 0 2] 1] | -5 1 1
of A for the eigenvalue —5.
3 6 7] 1] [ 5] 1 1
6. Is Ax a multiple of x? Compute |3 2 7| -2|=|13|#A4|-2| So |-2| is not
5 6 4] 2 1] 2 2

an eigenvector of A.

7. To determine if 4 is an eigenvalue of A, decide if the matrix A—4/ is invertible.
3 0 -1 4 0 O -1 0 -1
A-4I=| 2 3 1[-|0 4 0= 2 -1 1
-3 4 5 0 0 4 -3 4 1

Invertibility can be checked in several ways, but since an eigenvector is needed in the event that one
exists, the best strategy is to row reduce the augmented matrix for (A—4/)x=0:

-1 0 -1 0 -1 0 -1 0 1 0 1 0
2 -1 1 0|~ 0 -1 -1 O0|~j0 -1 -1 O
-3 4 1 0 0 4 4 0 0 0 0 O

The equation (A—417)x =0 has a nontrivial solution, so 4 is an eigenvalue. Any nonzero solution of
(A—4I)x=0 is a corresponding eigenvector. The entries in a solution satisfy x;, + x; =0 and

—x, —x; =0, with x; free. The general solution is not requested, so to save time, simply take any
nonzero value for x; to produce an eigenvector. If x; =1, then x=(-1,-11).

Note: The answer in the text is (1,1, —1), written in this form to make the students wonder whether the
more common answer given above is also correct. This may initiate a class discussion of what answers
are “correct.”

8. To determine if 1 is an eigenvalue of A, decide if the matrix A—1 is invertible.
4 -2 3 1 0 0 3 -2 3
A-I=| 0 -1 3|-10 1 O|=f 0 -2 3
-1 2 =2 0 0 1 -1 2 =3

Row reducing the augmented matrix [(A—17) 0] yields:

3 2 30 1 -2 3 0 1 0 0 0 1 0 0 0
o -2 3 0(~10 -2 3 0(~|0 2 =3 0|~|0 1 =3/2 0
-1 2 -3 0 0 4 -6 0 0 0 0 O 0 0 0 0

The equation (A —7)x =0 has a nontrivial solution, so 1 is an eigenvalue. Any nonzero solution of
(A—-1T1)x=0 is a corresponding eigenvector. The entries in a solution satisfy x, =0 and
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x, —(3/2)x; =0, with x; free. The general solution is not requested, so to save time, simply take
0

any nonzero value for x, to produce an eigenvector. If x; =2, then x=|3|.

2
30 1 0 2 0
9. For A=1: A-1I= - =
2 1 0 1 2 0

2 0
The augmented matrix for (A—7)x=0 is {2

0 O}' Thus x, =0 and x, is free. The general

solution of (A—-I1)x=0 is x,e,, where e, = L}, and so e, is a basis for the eigenspace

corresponding to the eigenvalue 1.

30 30 0 O
For A=3: A-3I= - =
s S

The equation (A—37/)x=0 leads to 2x, —2x, =0, so that x, =x, and x, is free. The general

. .4
solution is

%)

X

1 1
} =X, { } So L} is a basis for the eigenspace.

X 1

2

Note: For simplicity, the answer omits the set brackets when listing a basis. I permit my students to
list a basis without the set brackets. Some instructors may prefer to include brackets.

-4 2 1 0 1 2
10. For A=-5: A+5I= +5 = .
3 1 0 1 3 6

1 2 0] |1 2 0
The augmented matrix for (A+51)x=0 is ~ . Thus x, =-2x, and x, is
36 0] (0 0 O

free. The general solution is
! {_2}
is .

1

1 -3 1 0 2 -3
11. For A=-1: A+I= + =
-4 5 0 1 -4 6

2 30 1 -3/2 0
~ . Thus x, =(3/2)x, and

-4 6 0 0 0 0
(3/2)x,

X

X X

X -2x, -2 . . .
= =X, Ll A basis for the eigenspace corresponding to —5

The augmented matrix for (A+1)x=0 is {

X 3/2
x, is free. The general solution is { 1} = } = x{ J. A basis for the eigenspace

X

. 1372 o3
corresponding to —1 is ) . Another choice is 5|
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1 -3 (7 0| |-6 3
For A=7: A-7I= — =
-4 5] |0 7] |4 2
) . |=6 =3 0| |1 1/2 0
The augmented matrix for (A—71)x=0 is ~ . Thus x; =(=1/2)x, and x,
-4 -2 0] [0 0 O
xl}_{(—l/Z)xz

X X

is free. The general solution is {
2 2

-1/2
} =X, { 1:|. A basis for the eigenspace

-1/2 -1
corresponding to 7 is { ! } Another choice is { 2}.

4 1 3 0 1 1
12. For A=3: A-3I= - =
3 6 0 3 3 3

1 10 I 1 0
The augmented matrix for (A-3/)x=0 is ~ . Thus x, =—x, and x, is free.
3 3 0] 10 00

-1
A basis for the eigenspace corresponding to 1 is { }

1
4 1 7 0 -3 1
For A=7: A-T7I= - = .
S o _J

-3 1 0 1 -1/3 0
The augmented matrix for (A—71)x=0 is -

0 0 0}. Thus x, =(1/3)x, and
X (1 / 3)x2 1/ 3 i )
. A basis for the eigenspace

1/3 1
corresponding to 7 is { J. Another choice is {3}

x, is free. The general solution is

13. ForA=1:
4 0 1 1 0 O 3 1
A-1I=|-2 1 0|-|0 1 O0|=|-2 0
-2 0 1 0 0 1 =2 0

0
0
0
] 3, +x; =
The equations for (A—17)x =0 are easy to solve: D) 0
X =

Row operations hardly seem necessary. Obviously x, is zero, and hence x; is also zero. There are
0
three-variables, so x, is free. The general solution of (A—71)x=0 is x,e,, where e, =| 1|, and

0

so e, provides a basis for the eigenspace.

For A =2:
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A-2[={-2 1 0|-|10 2 O|=|-2 -1 O

4 0 1| (2 0 O 2 0 1
-2 0 1] |10 0 2| |2 0 -1

2 0 10 2 0 1 0 1 0 12 0
[(A-271) 0]=-2 -1 0 0O0(~0 -1 1 Of~/0O 1 -1 O
-2 0 -1 0 0 0 0 O 0 0 0 O
-1/2
So x, =—=(1/2)x;, x, = x5, with x; free. The general solution of (A-2/)x=0is x;| 1 |. Anice
1
-1
basis vector for the eigenspaceis | 2 |.
2
For A = 3:
4 0 1| |3 0 O 1 0 1
A-3I=|-2 1 0|-|0 3 0|=|—2 =2 O]
-2 0 1] |0 0 3 -2 0 2
1 0 1 0 1 0 1 0 1 0 1 0
[(A-31) 0]=|-2 -2 0 O|~|0 -2 2 0|~|0 1 -1 O
-2 0 -2 0 0 0 0 O 0 0 0 O
-1

So x, =—x;, x, =x;, with x; free. A basis vector for the eigenspaceis | 1.

4 0 —-1{ (3 0 O
14. For A=3: A-(3)=A-3I=|3 0 3|-|0 3 0|=|3 -3 3|
2 -2 5110 0 3
The augmented matrix for (A—3/)x=0 is
1 0 -1 0 I 0 -1 0 1 0 -1 0
[(A-3I) 0]={3 -3 3 0|~|0 -3 6 O0|~0 1 2 0
2 -2 2 0|0 O O O] (O O O O
1
Thus x, = x;,x, =2x,, with x; free. The general solution of (A-3I)x=0 is x;| 2 |.
1
1

A basis for the eigenspace corresponding to 2 is | 2 |.
1
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1 1 10 I 1 10
15. For A=-5: [(A+5]) 0]=|2 2 2 O0|~{0 O O O} Thus x, +x,+x; =0, with x, and
33 3 0] (0 0 0 0f
—X, —x3_ -1 -1
x; free. The general solution of (A+5/)x=0isx=| x, |=x,| 1|+x;| 0| A basis for the
X, 0 1
-1{[-1
eigenspace corresponding to =5 is 1, O
0 1

Note: For simplicity, the text answer omits the set brackets. I permit my students to list a basis without
the set brackets. Some instructors may prefer to include brackets.

1 0 -1 0 1 0 -1 0 1 0 -1 O
1 -1 0 O 0 -1 1 O 01 -1 0
16. For A=4: [(A-41) 0]= ~ = .
2 -1 -1 0 0 -1 0 0 0 0 O
4 2 2 0 0 2 2 0 0 0 0 O
So x, =x;,x, =x;, with x; and x,
free variables. The general solution of (A—47)x=0 is
x| |x 1 0 1110
X, X, 1 0 . . 1110
X= =| " |=x3|  |+x,| .| Basis for the eigenspace : ,
I 1 0 1[0
X, X, 0 1 01

Note: I urge my students always to include the extra column of zeros when solving a homogeneous
system. Exercise 16 provides a situation in which failing to add the column is likely to create problems
for a student, because the matrix A—41 itself has a column of zeros.

0 O 0
17. The eigenvaluesof |0 3 4| are 0, 3, and -2, the numbers on the main diagonal, by Theorem
0 0 2
1.
5 0 0
18. The eigenvaluesof | 0 0 0] are 5, 0, and 3, the numbers on the main diagonal, by Theorem 1.
-1 0 3
1 2 3
19. The matrix |1 2 3| is not invertible because its columns are linearly dependent. So the number O
1 2 3

is an eigenvalue of the matrix. See the discussion following Example 5.
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23.
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5.1 ¢ Solutions 279

2 2 2
The matrix A=|2 2 2| is notinvertible because its columns are linearly dependent. So the
2 2 2

number 0 is an eigenvalue of A. Eigenvectors for the eigenvalue 0 are solutions of Ax =0 and
therefore have entries that produce a linear dependence relation among the columns of A. Any

nonzero vector (in R3) whose entries sum to 0 will work. Find any two such vectors that are not
multiples; for instance,

1 1
1 |and | -1]|.
) 0

. False. The equation Ax =Ax must have a nontrivial solution.
. True. See the paragraph after Example 5.
. True. See the discussion of equation (3).

. True. See Example 2 and the paragraph preceding it. Also, see the Numerical Note.

o & a6 T W

. False. See the warning after Example 3.

a. False. The vector X in Ax =Ax must be nonzero.

=2

. False. See Example 4 for a two-dimensional eigenspace, which contains two linearly independent
eigenvectors corresponding to the same eigenvalue. The statement given is not at all the same as
Theorem 2. In fact, it is the converse of Theorem 2 (for the case r=2).

¢. True. See the paragraph after Example 1.
d. False. Theorem 1 concerns a triangular matrix. See Examples 3 and 4 for counterexamples.

e. True. See the paragraph following Example 3. The eigenspace of A corresponding to A is the null
space of the matrix A —Al.

If a 2x2 matrix A were to have three distinct eigenvalues, then by Theorem 2 there would
correspond three linearly independent eigenvectors (one for each eigenvalue). This is impossible
because the vectors all belong to a two-dimensional vector space, in which any set of three vectors is
linearly dependent. See Theorem 8 in Section 1.7. In general, if an nXxn matrix has p distinct
eigenvalues, then by Theorem 2 there would be a linearly independent set of p eigenvectors (one for
each eigenvalue). Since these vectors belong to an n-dimensional vector space, p cannot exceed 7.

A simple example of a 2Xx2 matrix with only one distinct eigenvalue is a triangular matrix with the
same number on the diagonal. By experimentation, one finds that if such a matrix is actually a
diagonal matrix then the eigenspace is two dimensional, and otherwise the eigenspace is only one
dimensional.

4 1 4 5
Examples: and .
0 4 0 4

If & is an eigenvalue of A, then there is a nonzero vector x such that Ax =2%x. Since A is invertible,
A'Ax = A" (kx), and so x =A(A'x). Since x # 0 (and since A is invertible), A cannot be zero.

Then A ~'x= A™'x, which shows that L' is an eigenvalue of A™".
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Note: The Study Guide points out here that the relation between the eigenvalues of A and A™' is
important in the so-called inverse power method for estimating an eigenvalue of a matrix. See Section 5.8.

26.

27.

Suppose that A is the zero matrix. If Ax=Xx for some x# 0, then

A’x = A(AX) = A(AX) = AMAx = A’x. Since X is nonzero, & must be zero. Thus each eigenvalue of A is
Z€ero.

Use the Hint in the text to write, for any A,(A—Al)" = A" —(\)" = A" =M. Since (A—AI)" is

invertible if and only if A—Al is invertible (by Theorem 6(c) in Section 2.2), it follows that AT -1

is not invertible if and only if A— Al is not invertible. That is, X is an eigenvalue of A" if and only
if A is an eigenvalue of A.

Note: If you discuss Exercise 27, you might ask students on a test to show that A and A" have the same
characteristic polynomial (discussed in Section 5.2). Since det A=det A", for any square matrix A,

28.

29.
30.

31.

32.

33.

det(A—AD) =det(A— A" =det(A” —(M)" ) =det(A—AD).

If A is lower triangular, then A” is upper triangular and has the same diagonal entries as A. Hence,

by the part of Theorem 1 already proved in the text, these diagonal entries are eigenvalues of A”. By
Exercise 27, they are also eigenvalues of A.

Let v be the vector in R"” whose entries are all ones. Then Av = sv.

Suppose the column sums of an nxn matrix A all equal the same number s. By Exercise 29 applied

to A" in place of A, the number s is an eigenvalue of A”. By Exercise 27, s is an eigenvalue of A.

Suppose T reflects points across (or through) a line that passes through the origin. That line consists
of all multiples of some nonzero vector v. The points on this line do not move under the action of A.
So T(v)=v. If A is the standard matrix of 7, then Av =v. Thus v is an eigenvector of A

corresponding to the eigenvalue 1. The eigenspace is Span {v}. Another eigenspace is generated by

any nonzero vector u that is perpendicular to the given line. (Perpendicularity in R* should be a

familiar concept even though orthogonality in R” has not been discussed yet.) Each vector x on the
line through u is transformed into the vector —x. The eigenvalue is —1.

Since T rotates points around a given line, the points on the line are not moved at all. Hence 1 is an
eigenvalue of the standard matrix A of T, and the corresponding eigenspace is the line the points are
being rotated around.

(The solution is given in the text.)
a. Replace k by k +1 in the definition of x,, and obtain x,,, =, u+c,u**'v.
b. Ax, = A(c A u+c,u*v)

=c, A*Au+c,u"Av by linearity

=c, A" Au+c,u* uv since u and v are eigenvectors

=X
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34. You could try to write x,, as linear combination of eigenvectors, v,,..., v p If A,.sh , are

corresponding eigenvalues, and if x, =¢;v, +---+¢,v,, then you could define

— gk k
X, =4 vi++c, v,

In this case, for k=0,1,2,...,
Ax, = Al A v+ +c, v )
= A AV, +ooe cp/’LI];AVp Linearity

=AMV 4t cpxllﬁﬂv The v, are eigenvectors.

p

=X

35. Using the figure in the exercise, plot 7'(u) as 2u, because u is an eigenvector for the eigenvalue 2 of
the standard matrix A. Likewise, plot 7(v) as 3v, because v is an eigenvector for the eigenvalue 3.
Since T is linear, the image of wis T(w)=T(u+v)=T(u)+7T(v).

36. As in Exercise 35, T(u) =—u and 7'(v) =3v because u and v are eigenvectors for the eigenvalues

—1 and 3, respectively, of the standard matrix A. Since T is linear, the image of w is
Tw)y=T(u+v)=T)+T(v).

Note: The matrix programs supported by this text all have an eigenvalue command. In some cases, such
as MATLAB, the command can be structured so it provides eigenvectors as well as a list of the
eigenvalues. At this point in the course, students should nor use the extra power that produces
eigenvectors. Students need to be reminded frequently that eigenvectors of A are null vectors of a
translate of A. That is why the instructions for Exercises 35-38 tell students to use the method of Example
4.

It is my experience that nearly all students need manual practice finding eigenvectors by the method
of Example 4, at least in this section if not also in Sections 5.2 and 5.3. However, [M] exercises do create
a burden if eigenvectors must be found manually. For this reason, the data files for the text include a
special command, nulbasis for each matrix program (MATLAB, Maple, etc.). The output of
nulbasis (A) is a matrix whose columns provide a basis for the null space of A, and these columns
are identical to the ones a student would find by row reducing the augmented matrix [A 0]. With
nulbasis, student answers will be the same (up to multiples) as those in the text. I encourage my students
to use technology to speed up all numerical homework here, not just the [M] exercises,

37. [M] Let A be the given matrix. Use the MATLAB commands eig and nulbasis (or equivalent
commands). The command ev =eig (A) computes the three eigenvalues of A and stores them in a

vector ev . In this exercise, ev=(10,15,5). The eigenspace for the eigenvalue 10 is the null space
of A—-10I. Use nulbasis to produce a basis for each null space:

-3
nulbasis(A-ev(l)*eye(3))=| 2
1
-3
Basis for the eigenspace for 41=10: 2
1
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38.

39.

2
For the next eigenvalue, 15, compute nulbasis(A-ev(2)*eye(3))=|2].
1
2
Basis for the eigenspace for A =15:4 | 2
1
-1/2
For the next eigenvalue, 5, compute nulbasis(A-ev(3)*eye(3))=|— 1/2|.
1
Scaling this vector by 2 to eliminate the fractions provides a basis for the eigenspace for
-1
A=5:91-1
2

[M] ev=eig(a)=(2,-2,-1,1).

2
. 2 .
For A=2: nulbasis (A-ev(l)*eye(4))= ) . Basis:
1

For A=-2: nulbasis(A-ev(2)*eye(4) ){

.
) 1
For A=-1: nulbasis(A-ev(3)*eye(4))= . Basis: 0
1_
2 2
. 2 2
For A=1: nulbasis(A-ev(4)*eye(4))= 0 0
1 1

[M] For A =-4, basis:

—_ O N = O

2
1
.ForA=12, basis: < | -1,/ 2| +. ForA =-8, basis:
0
1
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~1] [10] 0][-5

0 6 1]]-1

40. [M] For A=-14, basis: 1(,] 0 |¢. ForA=42, basis: { | -2 |,| =3
0|5 5 0

o] | 1] o] 5]

Note: Since so many eigenvalues in text problems are small integers, it is easy for students to form a
habit of entering a value for A in nulbasis (A-AI) based on a visual examination of the eigenvalues
produced by eig (A)when only a few decimal places for A are displayed. Using ev=eig(A) and:
nulbasis(A-ev(j)*eye(n)) help avoid problems caused by roundoff errors.

5.2 SOLUTIONS

Notes: Exercises 9-14 can be omitted, unless you want your students to have some facility with
determinants of 3x3 matrices. In later sections, the text will provide eigenvalues when they are needed
for matrices larger than 2x2. If you discussed partitioned matrices in Section 2.4, you might wish to
bring in Supplementary Exercises 12—14 in Chapter 5. (Also, see Exercise 14 of Section 2.4.)

Exercises 25 and 27 support the subsection on dynamical systems. The calculations in these exercises
and Example 5 prepare for the discussion in Section 5.6 about eigenvector decompositions.

2 7 2 7 A0 2-1 7 . o
1. A= A=Al = - = . The characteristic polynomial is
7 2 7 2 0 1 7 2-1
det(A—A)=(2-A)’ =7 =4—4h+A> —49=L% —4A—45

In factored form, the characteristic equation is (A —9)(A+5) =0, so the eigenvalues of A are 9 and
-5.

-4 -1 —4-1 -1 o L

2. A= JA-AL = . The characteristic polynomial is
6 1 6 1-4
det(A— A =(—4-A)(1-A)=6-(=1)=A> +31+2

Since 4> +34+2=(A+2)(A+1), the eigenvalues of A are =2 and —1.

-4 2 —4-1 2 . _

3. A= A=Al = . The characteristic polynomial is
6 7 6 7-A
det(A—Al)=(=4—A)(T=L)—(2)(6) =A% — 31— 40

Use the quadratic formula to solve the characteristic equation and find the eigenvalues:

_ —bENb? —4ac  3+/9+160 3+13

2a 2 2

A

8,-5
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8 2 8—1 2 . . .
4. A= , A=Al = . The characteristic polynomial of A is
3 3 3 3-1

det(A—A)=8-A1)B-1)-03)2)=4* —111+18=(1-9)(A—2). The eigenvalues of A are
9 and 2.

8 4 8- 4 . . _
5. A= A=A = . The characteristic polynomial of A is
4 8 4 8-A

det(A—A1)=(8-L)(B8-L)—(4)(4) =A* —16A+48 = (A —4)(1—12)
Thus, A has eigenvalues 4 and 12.

9 2 9-4 2 . L
6. A= JA—Al = . The characteristic polynomial is
2 5 2 5-1

det(A-= A =9 -A)(5-1)—(-2)(2)=A* =141 +49=(A-T)(A-T)

Thus A has only one eigenvalue, 7, with multiplicity 2.

5 3 5-1 3 . L
7. A= A=Al = . The characteristic polynomial is
—4 4 -4  4-1

det(A-AD)=G-D)4-A)-B)(—4) =1 -91+32
Use the quadratic formula to solve det (A—AI)=0:

_9+./81-4(32)  9+J47
- 2 )

These values are complex numbers, not real numbers, so A has no real eigenvalues. There is no

A

nonzero vector x in R? such that Ax = Ax, because a real vector AX cannot equal a complex
multiple of x.

-4 3 —4-4 3 . L
8. A= JA—Al = . The characteristic polynomial is
2 1 2 -4
det(A—Al)=(-4-A)(1-2)—(2)3) = A* +34-10= (A +5)(1-2)
Thus, A has eigenvalues —5 and 2.

9. det(A—Al)=det| O 4—-1 -1 |. Using cofactor expansion down column 1, the

characteristic polynomial is
4-2 -1 0 -
det(A-Al)=(4-A1)-d 0+1-d
et( )=( ) et{ 0 (2_1)}+ + 6{(4—}») _J
=4 -A)(A* —64+8)+(4- A1)
=(@4-D)A*-64+9)=(4-1)3-1)(3- )
=-1"+104* =331 +36
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11.

12.

13.

14.

15.

5.2 + Solutions
This matrix has eigenvalue 4 with multiplicity 1, and eigenvalue 3 with multiplicity 2.
3-4 1 1
det(A—Al)=det| 0 5-4 0 |. Using cofactor expansion down the first column, the
-2 0 7-2
characteristic polynomial is
5-1 0 1 1
det(A—Al)=(3—-A)-det ( ) + 0+ (-2)det
0 (7-4) S5-4) 0
=(5-A)A* =10A+21)+2(5- 1)
=(5-A)(A* =104 +23)
=-A*+154* =734 +115
The special arrangements of zeros in A makes a cofactor expansion along the first row highly
effective.
3-4 0 0
1-4 4
det(A—Al)=det| 2 1-1 4 |=(3-A)det
0 4-1
1 0 4-41
=@B-D1-ME-D)=CB-DA* -54+4)=-1"+81> - 191 +12
If only the eigenvalues were required, there would be no need here to write the characteristic
polynomial in expanded form.
Make a cofactor expansion along the third row:
-1-4 0 2
-1-4 2 -1-4 0
det(A—Al)=det| 3 1-A4 0 |=-1-det +(2-A)-det
3 0 3 1-4
0 1 2-4

=6+2-A(-1-D1-A)=-+22" + 1+4
Make a cofactor expansion down the third column:
6-4 2 0 6_ 1 5
det(A—Al)=det| -2 9-41 0 [=B—-A)-det
-2 9-1
5 8 3-1
=B-AD[(6-21)(O9-1)—(-2)(-2)]=(3—A)(A* =151 +50)
=-2" +182% =951 +150 or (3— A)(A—5)(A-10)

Make a cofactor expansion along the second column:

4-4 0 - 4-1 -1 4—1 -1
det(A—Al)=det| -1 -4 4 |=(=A) -det —2.det
0 3-1 -1 4
0 2 3-1

=) [4-D)B-D]-2A4-D)4-1]1=-2>+71* =124 +81-30
=—A+74* -44-30

Use the fact that the determinant of a triangular matrix is the product of the diagonal entries:
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det(A— AI) = det g 62 =(5-1*2-1)3-1)

The eigenvalues are 5, 5, 2, and 3.

16. The determinant of a triangular matrix is the product of its diagonal entries:

3-12 0 0 0

6 2-1 0 0
det(A—-AI)=d =@B-AHR2-AH(6-A)(-5-1
et( )=det) 3 6-1 0 G- -A)(6-A) )

2 3 3 -5-1
The eigenvalues are 3, 2, 6, and -5.

17. The determinant of a triangular matrix is the product of its diagonal entries:

[3-2 0 0 0 0

=5 1-2 0 0 0

3 8 0-4 0 0 |=G-2’1-2)*(D
-7 2 -1 0

—4 1 9 -2 3-1

The eigenvalues are 3, 3, 1, 1, and 0.

18. Row reduce the augmented matrix for the equation (A—47)x=0:

0o 2 3 3 0 0 2 3 30 0 2 3 0
0O -2 h 3 0 0 0 A+3 6 O 0 0 A+3 O
1

0 o0 0 14 0/ |0 O O 1 0 (0 O O
o oo -2 000 O OO0 |0 0O 0 O

oS O O O

For a two-dimensional eigenspace, the system above needs two free variables. This happens if and
only if h=-3.

19. Since the equation det(A—Al)= (A, —A)(A, —A)--- (A, — 1) holds for all A, set A=0 and conclude
that detA=AA, ---A,,.

20. det(A” —AI)=det(A" —AIT)
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23.

24.
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=det(A—AI)" Transpose property
=det(A—Al) Theorem 3(c)
False. See Example 1.

False. See Theorem 3.

True. See Theorem 3.

e T

False. See the solution of Example 4.

False. See the paragraph before Theorem 3.

False. See Theorem 3.

o T

True. See the paragraph before Example 4.
d. False. See the warning after Theorem 4.

If A=QR, with Q invertible, and if A = RQ, then write A, =Q'QRQ =Q 'AQ, which shows that
A, is similar to A.

First, observe that if P is invertible, then Theorem 3(b) shows that
1=detI =det(PP™") = (det P)(det P™")
Use Theorem 3(b) again when A = PBP!,
det A =det(PBP™") = (det P)(det B)(det P™') = (det B)(det P)(det P™') = det B
Example 5 of Section 4.9 showed that Av, =v,, which means that v, is an eigenvector of A

corresponding to the eigenvalue 1.

a. Since A is a 2X2 matrix, the eigenvalues are easy to find, and factoring the characteristic
polynomial is easy when one of the two factors is known.

de{b;ﬂ 7'34}=<-6—ﬂ><.7—ﬂ>—<.3><-4>=f ~132+ 3=(A=D(A-3)

The eigenvalues are 1 and .3. For the eigenvalue .3, solve (A—.3/)x=0:

6-3 3 0 13 30 I 1 0
4 7-3 0] |4 4 0] [0 00
Here x, +x, =0, with x, free. The general solution is not needed. Set x, =1 to find an

eigenvector v, :{ ] } A suitable basis for R* is {v,,v,}.

2| |3/7 -1
b. Write x, =v, +cv,: L/J = L/J + { J. By inspection, c is —1/14. (The value of ¢ depends

on how v, is scaled.)

c. For k=12,..., define x, =Akx0. Then x;, = A(v, +c¢v,)=Av, +cAv, =v, +¢(.3)v,, because

v, and v, are eigenvectors. Again

X, = AX,; = A(v, +c(3)v,) = Av, + c(3)Av, = v, +c(.3)(3)v,.
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Continuing, the general pattern is x, = v, +¢(.3)* v,. As k increases, the second term tends to 0

and so x, tends to v,.

a b
26. If a#0, then A={
c d

a b
~ . |=U, and detA=(a)(d —ca™'b)=ad —bc. If a=0,
0 d-ca'd

0 b

c d

then A=
{ 0 b

} ~ {c d} =U (with one interchange), so det A = (-1)'(cb)=0—bc = ad - be.
27. a. Av,=v,, Av,=.5v,, Av,=2v,.
b. The set {v,,v,,v,} is linearly independent because the eigenvectors correspond to different
eigenvalues (Theorem 2). Since there are three vectors in the set, the set is a basis for R*. So there
exist unique constants such that x, = ¢,v, +¢,V, +¢;v;, and W X, =W’ v, +,Ww' v, + ;W v,
Since x,, and v, are probability vectors and since the entries in v, and v, sum to 0, the above
equation shows that ¢, =1.
c. By (b), x, =¢,v, +¢,v, +¢;v,. Using (a),
x, = A'xy = A"V, + , A"V, + A v, = v+, (5) v, 6, (2) v, s v ask — oo
28. [M] Answers will vary, but should show that the eigenvectors of A are not the same as the

eigenvectors of A", unless, of course, AT = A.
29. [M] Answers will vary. The product of the eigenvalues of A should equal det A.

30. [M] The characteristic polynomials and the eigenvalues for the various values of a are given in the
following table:

a Characteristic Polynomial Eigenvalues
31.8 —4-261+4t2 -1 3.1279,1,-.1279
31.9 8—-38+4r2 - 2.7042, 1, .2958
32.0 2-5t+41° -1 2,1,1
32.1 32-62f+412 -1 1.5+.9747i,1
322 4.4—74f+412 — 13 1.5+1.4663i,1

The graphs of the characteristic polynomials are:
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— a=31.8

-------- a=31.9

----a=32.0

————— a=32.1

-o- a=32.2

Notes: An appendix in Section 5.3 of the Study Guide gives an example of factoring a cubic polynomial
with integer coefficients, in case you want your students to find integer eigenvalues of simple 3x3 or
perhaps 4x4 matrices.

The MATLAB box for Section 5.3 introduces the command poly (A), which lists the coefficients
of the characteristic polynomial of the matrix A, and it gives MATLAB code that will produce a graph of
the characteristic polynomial. (This is needed for Exercise 30.) The Maple and Mathematica appendices
have corresponding information. The appendices for the TI calculators contain only the commands that
list the coefficients of the characteristic polynomial.

5.3 SOLUTIONS

5 7 4 4 p-1
1. P= 5 5P : ,A=PDP", and A* = PD*P~'. We compute

e e T b

1 0
2. P:{ } {0 3},A PDP™', and A* = PD*P™'. We compute

L [-3 2 1 1 21t o][-3 2 321 -160
P = ,D* = ,andA =
2 -1 0 81 2 3|0 81| 2 -1| |480 -239
L [t o]at ol 1 o0 a* 0
3. Ab=pD'p' = = .
2 1)lo (-2 1] |24"-2F »*

T2~k _ 2 A (o ok _ ek
s at=rtr [ _ﬂm) 0}{1 2}: 33 +4: (2 63 ~6:(-2)

0 (-2 3 | 2.3 122 43 -3.(2F

5. By the Diagonalization Theorem, eigenvectors form the columns of the left factor, and they
correspond respectively to the eigenvalues on the diagonal of the middle factor.
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-1 1 0
A=2: 1 [A=3:-1|, -1
-1 0 1

6. As in Exercise 5, inspection of the factorization gives:

0 31-1
A=4:1[;A=3:/0],] 3
0 1{]0

7. Since A is triangular, its eigenvalues are obviously *1.

0 O
ForA=1: A-1I= {6 2}. The equation (A—1/)x =0 amounts to 6x, —2x, =0, so x, =(1/3)x,

1/3 1
with x, free. The general solution is x{ J, and a nice basis vector for the eigenspace is v, = {3}
2 0 i .
ForA=—-1: A+1l= 6 ol The equation (A+1/)x=0 amounts to 2x, =0, so x;, =0 with x,
. 0 . , , 0
free. The general solution is x, i and a basis vector for the eigenspace is v, = Ll

1 0 1 0
From v, and v, construct P:[v1 Vz}:L J. Then set D={O J, where the eigenvalues

in D correspond to v, and v, respectively.

8. Since A is triangular, its only eigenvalue is obviously 3.

0 2
ForA=3: A-3]= {O 0}. The equation (A—37/)x=0 amounts to x, =0, so x, =0 with x, free.

1
The general solution is x; {0} Since we cannot generate an eigenvector basis for R? A is not
diagonalizable.

9. To find the eigenvalues of A, compute its characteristic polynomial:

2 _
det(A—Al) = det{

— AN 32 _ — (% _73)2
| 4_J_(2 ME-0—- (DD =r"—-6L+9=(A-3)

Thus the only eigenvalue of A is 3.

-1
ForA=3: A-41 ={ ) J. The equation (A—3/)x=0 amounts to x; +x, =0, so x; =—x, with

-1
x, free. The general solution is x{ J. Since we cannot generate an eigenvector basis for R, A is

not diagonalizable.
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To find the eigenvalues of A, compute its characteristic polynomial:
1-A 3

det(A—Al)=det
4 2=

}:(1—%)(2—70—(3)(4):7&2 —3h—10=(A=5)(A+2)

Thus the eigenvalues of A are 5 and 2.

3
ForA=-2: A+2[ = L 4}. The equation (A+1/)x=0 amounts to x, +x, =0, so x; =—x, with

-1 -1
x, free. The general solution is x, { }, and a nice basis vector for the eigenspace is v, :{ }
1 1

-4 3
ForA=5: A-51 :{ 4 3}. The equation (A—3/)x=0 amounts to —4x, +3x, =0, so

3/4
x, =(3/4)x, with x, free. The general solution is xz{ | }, and a basis vector for the eigenspace is

)

-1 3 -2 0
From v, and v, construct P=[v1 V2:|=|: ) 4}. Then set D:{ 0 5}, where the eigenvalues

in D correspond to v, and v, respectively.

The eigenvalues of A are given to be -1, and 5.
1 1 1 1 1 1 0

ForA=-1: A+I=|2 2 2/, and row reducing [A+I 0] yields [0 O 0O O|. The general
3 33 0 0 0 O

-1 -1 -1] (-1
solutionis x,| 1 |+x;| 0|, and a nice basis for the eigenspace is {v,,v,} = [ I, 0.
1

0 1 0
-5 1 1 1 0 -1/3 0
ForA=5: A-5I=| 2 -4 2|, androw reducing [A—5/ 0] yields |0 1 -2/3 0. The
3 3 -3 0 0 0 0
1/3 1
general solution is x;| 2/3 |, and a nice basis vector for the eigenspace is v; =| 2 |.
1 3
-1 -1 1 -1 0 O
From v,,v, and v, construct P=[V1 v, V3}= 1 0O 2| Thenset D=|0 -1 0],
0O 1 3 0O 0 5

where the eigenvalues in D correspond to v,,v, and v, respectively. Note that if changing the

order of the vectors in P also changes the order of the diagonal elements in D, and results in the
answer given in the text.
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12.

13.
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The eigenvalues of A are given to be 2 and 5.
1 1 1 1 1 1 0
ForA=2: A-2I=|1 1 1|, androw reducing [A— 21 0] yields |0 O 0O O|. The general
1 11 0 0 0 O
-1 -1 -1||-1
solutionis x,| 1 |+x;| 0|, and a nice basis for the eigenspace is {v,,v,}=<| 1 |,| 0
0 1 0 1
-2 1 1 1 0 -1 0
ForA=5: A-5I=| 1 -2 1 |, androw reducing [A—5/ 0] yields [0 1 -1 0] The
1 1 2 0 0 0 O
1 1
general solution is x;| 1|, and a basis for the eigenspace is v, =|1|.
1 1
-1 -1 1 2 0 0
From v,,v, and v, construct P=[V1 v, V3}= 1 0 1| Thenset D={0 2 0|, where
0 11 0 0 5
the eigenvalues in D correspond to v,,v, and v, respectively.
The eigenvalues of A are given to be 5 and 1.
-3 2 -1 1 01 O
ForA=5: A-5I=| 1 -2 -1/, and row reducing [A—SI 0] yields [0 1 1 O]. The
-1 2 3 0 0 0 O
-1 -1
general solution is x;| —1 |, and a basis for the eigenspace is v, =| -1 |.
1 1
1 2 -1 1 2 -1 0
ForA=1: A-1/=| 1 2 -1}, and row reducing [A—1 0] yields {0 O O O|. The
-1 2 1 0 0 00
-2 1 211
general solutionis x,| 1|+x;|0|, and a basis for the eigenspace is {v,,v;}= 1 ,{0 .
0 1 01
-1 2 1 500
From v,,v, and v, construct P=[V1 v, V3]= -1 1 0} Thenset D={0 1 O],
1 0 1 0 0 1

where the eigenvalues in D correspond to v,,v, and v, respectively.
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The eigenvalues of A are given to be 2 and 3.
0 0 -2 1 1 0 O
ForA=2: A-2I=|1 1 2|, and row reducing [A =21 0] yields [0 0 1 Of. The
0 0 1 0 0 0 O
-1
general solution is x, , and a basis for the eigenspace is v, =| 1
0
-1 0 1 0 2 0
ForA=3: A-3I=| 1 0 2|, and row reducing [A-3/ 0] yields |0 0 0 0/ The
0 0 O 0 0 0 O

0 -2 0|2
general solutionis x,| 1 |+x;| 0], and a nice basis for the eigenspace is {v,,v;}= {1 ,{ 0

0 1 Of1
-1 0 =2 2 0 0
From v,,v, and v, construct P=[V1 v, V3}= 1 1 O|. Thenset D=0 3 0],
0 0 1 0 0 3
where the eigenvalues in D correspond to v,,v, and v, respectively.
The eigenvalues of A are given to be 0 and 1.
0o -1 -1 1 0 -1 O
ForA=0: A-0I=| 1 2 1|, and row reducing [A—OI 0] yields [0 1 1 O]. The
-1 -1 O 0 0 0 O
1 1
general solution is x;| —1 |, and a basis for the eigenspace is v, =| -1
1 1
-1 -1 -1 1 11 0
ForA=1: A-I=| 1 1 1|, and row reducing [A—-1 0] yields 0 0 0 O] The
-1 -1 -1 0 0 O
-1 -1 -1
general solutionis x,| 1 |+x;| O], and a basis for the eigenspace is {v,,v,} = ] ]
0 1
I -1 -1 0 0 O
From v,,v, and v, construct P=[Vl Vv, V3}= -1 1 O|. Thenset D={0 1 0],
1 0 1 0 0 1

where the eigenvalues in D correspond to v,,v, and v, respectively. Note that the answer for P

given in the text has the first column scaled by —1, which is also a correct answer, since any nonzero
multiple of an eiegnvector is an eigenvector.

The only eigenvalue of A given is O.
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1 2 3 1 0 -11 O
ForA=0: A-0/=|2 5 -2/, androw reducing [A—0I 0] yields [0 1 4 0| The
1 3 1 0O 0 0 O
11 11
general solution is x,| —4 |, and a basis for the eigenspace is v, =| -4 |.
1 1

Since A =0 has only a one-dimensional eigenspace, we can find at most one linearly independent
eigenvector for A, so A is not diagonalizable over the real numbers. The remaining eigenvalues are
complex, and this situation is dealt with in Section 5.

17. Since A is triangular, its eigenvalue is obviously 2.

0 0 0 1 0 0 O
ForA=2: A-21={2 0 0/, and row reducing [A—2/ 0] yields [0 1 O 0| The general
2 20 0 0 0 O
0 0
solution is x;| O |, and a basis for the eigenspaceis v, =| 0 |.
1 1

Since A =2 has only a one-dimensional eigenspace, we can find at most one linearly independent
eigenvector for A, so A is not diagonalizable.

18. The eigenvalues of A are given to be -2, -1 and 0.

4 -2 2 1 0 -1 0
ForA=-2: A+2I=|3 -1 -2|, and row reducing [A+2I 0] yields |0 1 -1 0]. The
2 2 0 0 0 0 O
1 1
general solution is x;| 1|, and a basis for the eigenspace is v, =|1].
1 1
3 2 2 1 0 -1 O
ForA=-1: A+I=|3 -2 -2/, and row reducing [A+I 0] yields |0 1 -1/2 0]. The
2 2 -1 0 0 0 0
1 2
general solution is x;| 1/2 |, and a basis for the eigenspace is v, =|1|.
1 2
2 2 2 1 -1 0 0
ForA=0: A-0/=|3 -3 -2|, and row reducing [A-0/ 0] yields |0 O 1 0| The
2 2 2 0 0 0 O
1 1
general solution is x,| 1|, and a nice basis vector for the eigenspace is v; =| 1|.
0 0
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1 2 1 -2 0 0
From v,,v, and v, construct Pz[v1 v, V3]= 1 1 1| Thenset D=| 0 -1 0|, where
I 2 0 0 0 O

the eigenvalues in D correspond to v,,v, and v, respectively.

19. Since A is triangular, its eigenvalues are 2, 3, and 5.

3 3 0 9 1 0 1 1 0
0 1 1 =2 _ _ 0 1 1 -2 0
Fori=2: A-2I= , and row reducing [A—21 0] yields .
0 0 0 O 0 00 00
0 0 0 O 0 00 00
-1 -1
o -1 2 . : . .
The general solution is x; ] +x, ol and a nice basis for the eigenspace is
0
-1|]|-1
( | -1 2
vV, V, )= ,
b 1] o
0 1
2 -3 0 9
0 1 2 . .
ForA=3: A-3I= 0 L ol and row reducing [A—3/ 0] yields
0O 0 0 -1
1 32 0 0 O 3/2
0 0 1 0 O . 1 . . . .
. The general solution is x, , and a nice basis for the eigenspace is
0 0 0 1 O 0
0 0 0 0 O 0
3
2
V3 = 0 .
0
o -3 0 9 01 0 0 O
0o 2 1 2 ) ) 0 01 0O
ForA=5 A-5I= , and row reducing [A—51 0] yields .
0 -3 0 0 0 01 O
0 0 -3 0 0 0 0O

The general solution is x,| |, and a basis for the eigenspace is v, =

S O O =
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20.

21.

22
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-1 -1 3 1
-1 2 2 0
From v,,v,,v; and v, construct P=[v, v, v, v, |= L o0 o ol Then set
0 1 0 O
2.0 0 0
0 2 00 . . :
D= 0 0 3 ol where the eigenvalues in D correspond to v,v,, v, and v, respectively.
0 0 0 5

Note that this answer differs from the text. There, P =[v, v; v, v, ] and the entries in D are

rearranged to match the new order of the eigenvectors. According to the Diagonalization Theorem,
both answers are correct.

Since A is triangular, its eigenvalues are 2 and 3.
1 0 0 O 1 0 0 0 O
0 0 0 O ) ) 0 0 0 1 O
ForA=2: A-2]= , and row reducing [A—21 0] yields . The
0 0 0 O 0 0 0 0 O
1 0 0 1 0 0 0 0 O
0 0 010
oo 1 0 . . . L0
general solution is x, 0 + x; Ll and a basis for the eigenspace is {v,,v,} = oll1
0 0 0[]0
0 0 0 O 1 0 0 0 O
0 -1 0 O . ) 01 0 0 O
ForA=3: A-3]= , and row reducing [A—3I 0] yields
0 0 -1 0 0 01 0 O
1 0 0 O 0 0 0 0 O
0 0
o 0 . . . 0
The general solution is x, ol and a basis for the eigenspace is v, = ol
1 1

Since A =3 has only a one-dimensional eigenspace, we can find at most three linearly independent
eigenvectors for A, so A is not diagonalizable.

a. False. The symbol D does not automatically denote a diagonal matrix.
b. True. See the remark after the statement of the Diagonalization Theorem.

c. False. The 3x3 matrix in Example 4 has 3 eigenvalues, counting multiplicities, but it is not
diagonalizable.

d. False. Invertibility depends on O not being an eigenvalue. (See the Invertible Matrix Theorem.)
A diagonalizable matrix may or may not have 0 as an eigenvalue. See Examples 3 and 5 for both
possibilities.

a. False. The n eigenvectors must be linearly independent. See the Diagonalization Theorem.
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24

25

26

27

28

29

b. False. The matrix in Example 3 is diagonalizable, but it has only 2 distinct eigenvalues. (The

53

statement given is the converse of Theorem 6.)

¢. True. This follows from AP = PD and formulas (1) and (2) in the proof of the Diagonalization

Theorem.

Solutions

297

d. False. See Example 4. The matrix there is invertible because 0 is not an eigenvalue, but the matrix
is not diagonalizable.

. A is diagonalizable because you know that five linearly independent eigenvectors exist: three in the
three-dimensional eigenspace and two in the two-dimensional eigenspace. Theorem 7 guarantees that
the set of all five eigenvectors is linearly independent.

. No, by Theorem 7(b). Here is an explanation that does not appeal to Theorem 7: Let v, and v, be

eigenvectors that span the two one-dimensional eigenspaces. If v is any other eigenvector, then it
belongs to one of the eigenspaces and hence is a multiple of either v, or v,. So there cannot exist

three linearly independent eigenvectors. By the Diagonalization Theorem, A cannot be
diagonalizable.

. Let {v,} be a basis for the one-dimensional eigenspace, let v, and v, form a basis for the two-

dimensional eigenspace, and let v, be any eigenvector in the remaining eigenspace. By Theorem 7,

{v,, v,, v5, v,} is linearly independent. Since A is 4x 4, the Diagonalization Theorem shows that

A is diagonalizable.

. Yes, if the third eigenspace is only one-dimensional. In this case, the sum of the dimensions of the

eigenspaces will be six, whereas the matrix is 7x7. See Theorem 7(b). An argument similar to that
for Exercise 24 can also be given.

. If A is diagonalizable, then A = PDP™" for some invertible P and diagonal D. Since A is invertible, 0
is not an eigenvalue of A. So the diagonal entries in D (which are eigenvalues of A) are not zero, and
D is invertible. By the theorem on the inverse of a product,

A =pP Yy =Y 'D'P ' =PD'P!

Since D™ is obviously diagonal, A™" is diagonalizable.

. If A has n linearly independent eigenvectors, then by the Diagonalization Theorem, A= PDP™" for
some invertible P and diagonal D. Using properties of transposes,

AT — (PDP—I)T — (P—I)TDTPT
= (PT)'DP" = QDQ"!

where Q=(P")™". Thus A" is diagonalizable. By the Diagonalization Theorem, the columns of Q

are n linearly independent eigenvectors of A”.

. The diagonal entries in D, are reversed from those in D. So interchange the (eigenvector) columns of

P to make them correspond properly to the eigenvalues in D,. In this case,

o[ !
S}

1 3 0
and D, =
-1 0 5
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30.

31.

32.

33.

CHAPTER 5 -« Eigenvalues and Eigenvectors

Although the first column of P must be an eigenvector corresponding to the eigenvalue 3, there is
1 -3 -3 1
nothing to prevent us from selecting some multiple of { 2}, say { 6} and letting P, ={ 6 J.

We now have three different factorizations or “diagonalizations” of A:

A=PDP"' =PDP ' =P,D P’

A nonzero multiple of an eigenvector is another eigenvector. To produce P,, simply multiply one or

both columns of P by a nonzero scalar other than 1.

For a 2Xx2 matrix A to be invertible, its eigenvalues must be nonzero. A first attempt at a
construction might be something such as {O 4}, whose eigenvalues are 2 and 4. Unfortunately, a
2x?2 matrix with two distinct eigenvalues is diagonalizable (Theorem 6). So, adjust the construction

b
} has the desired properties when a
a

2 3 a
to {0 2}, which works. In fact, any matrix of the form {0

and b are nonzero. The eigenspace for the eigenvalue a is one-dimensional, as a simple calculation
shows, and there is no other eigenvalue to produce a second eigenvector.

Any 2x2 matrix with two distinct eigenvalues is diagonalizable, by Theorem 6. If one of those

a b
eigenvalues is zero, then the matrix will not be invertible. Any matrix of the form {0 0} has the
desired properties when a and b are nonzero. The number a must be nonzero to make the matrix

0 0
diagonalizable; b must be nonzero to make the matrix not diagonal. Other solutions are { }

a b
0 a
and .
0 b
9 -4 -2 -4
-56 32 =28 44 )
A= , ev=elg(A)=(13,-12,-12, 13),
-14 -14 6 -14
42 -33 21 -45

—0.5000  0.3333

Y 1.0000 0/
0  1.0000
-1 1
; : . 0|4
A basis for the eigenspace of A =13 is > o
0 3
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0.2857 0
_ 1.0000 —1.0000
nulbasis (A-ev(2) *eye (4)) R
1.0000 0
0  1.0000
211 0 -1 1 2 0
. . . T - 0 4 7 1
A basis for the eigenspace of A=—121is , . Thus we construct P =
7 0 2 0 7 0
0 1 0 3 0 1
13 0 0 0
0 13 0 _ : . . . .
and D= 0 0 1 ol Notice that the anwer in the text lists the eigenvector in an different

0 O 0 -12
order in P, and hence the eigenvalues are listed in a different order in D. Both answers are correct.

4 9 -7 8 2
-7 9 0 7 14
34. A= 5 10 5 -5 -10|, ev=-eig(A)=(5,-2,-2,5,5),
-2 37 0 4
-3 -13 -7 10 11

[ 2.0000 —1.0000 2.0000 ]
—1.0000  1.0000 0
nulbasis (A-ev (1) *eye (5)) =| 1.0000 0 01,
0  1.0000 0
| 0 0 1.0000 |
2] [-1][2]
-1 1[0
A basis for the eigenspace of A =35 is 1,| 0,0
0 1[0
| O] O] 1]

[—0.4000  0.6000 |
1.4000  1.4000
nulbasis (A-ev(2) *eye(5))=|-1.0000 —-1.0000 |,
1.0000 0

0 1.0000 |
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-2
7
A basis for the eigenspace of A=-21is {| =5 |,| =5
5 0
L 0 4L 5 _
2 -1 2 =2 3] 50 0 0 O]
-1 1 0 7 7 050 0 O
Thus we construct P=| 1 0 0 -5 S5|{and D=|0 0 5 0 O]
0O 1.0 5 O 0 00 =2 0
10 0 1 0 5] 0 0 0 0 -2]

(13 =12 9 -15

35. A=| 6 -12 -5 6 , ev =elg(A)=(7,-14,-14,7,7),

O O O O

[2.0000 1.0000 —1.5000 |
1.0000 0 0
nulbasis (A-ev (1) *eye(5)) = 0 1.0000 01,
0 1.0000 0
i 0 0  1.0000 |
2] 1] [-3]
1{{0|]O
A basis for the eigenspace of A=71is {|01,| 1[,| O
0111110
10]10]] 2]
1 o]
1 0
nulbasis (A-ev(2)*eye(5))=|0 -1|,
1 0
_0 1_
1T 0]
1 0
A basis for the eigenspace of A=—141is |0 |,| -1
/] O
_0_ L 1_
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2 1 -3 1 0 7 0 0 O 0
1 0 0 1 O 0 7 0 0 0
Thus we construct P=0 1 0 0 -1|,and D=|0 0 7 0 0
0O 1 0 1 O 0O 0 0 -14 O
0 0 2 0 1] 10 0 0 0 -14

(24 -6 2 6
72 51 9 —99 9

5.3 ¢ Solutions 301

A= 0 —-63 15 63 63|, ev =eig(A)=(24,-48,36,-48,36),

7215 9 -63 9
0 63 21 -63 -27

nulbasis (A-ev (1) *eye(5)) =

A basis for the eigenspace of A =24 is

nulbasis (A-ev (2) *eye(5)),

A basis for the eigenspace of A =—48 is

nulbasis (A-ev (3) *eye (5)) =

A basis for the eigenspace of A =36 is

1
1
0],
1
_0_
o
1
0.
1
_0_
01T o
1| o
0 -1
1| o
_0_ L 1_

[1.0000 —0.3333]
0.0000  1.0000
3.0000  0.0000 |,

10000 0
0 1.0000
]
of|3
30,0 0
1] o
_0_ _3_
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1 0 0 1 -1 24 0 0 0 O
1 1 0 0 3 0 —-48 0 0 O
Thus we construct P=|0 0 -1 3 O|and D=| 0 0 -48 0 0| . Notice that
1 1 0 1 O 0 0 0 36 0
10 0 1 0 3] | 0 0 0 0 36

the anwer in the text lists the eigenvector in an different order in P, and hence the eigenvalues are listed
in a different order in D. Both answers are correct.

Notes: For your use, here is another matrix with five distinct real eigenvalues. To four decimal places,
they are 11.0654, 9.8785, 3.8238, —3.7332, and —6.0345.

6 8 5 -3 0
7 3 -5 30
3 7 5 35
0 4 1 -7 5
-5 3 2 0 8]

The MATLAB box in the Study Guide encourages students to use eig (A) and nulbasis to
practice the diagonalization procedure in this section. It also remarks that in later work, a student may
automate the process, using the command [P D]= eig (A).You may wish to permit students to use
the full power of eig in some problems in Sections 5.5 and 5.7.

5.4 SOLUTIONS

3 -1
1. Since T'(b,)=3d, —5d,,[T(b))], :{_5} Likewise T'(b,)=—d, +6d, implies that [T'(b,)], :{ 6}
L 0 . .
and T'(b;) =4d, implies that [T'(b;)], = L} Thus the matrix for 7 relative to B and

| 3 -1 0
Dis [[T(b)], [T (D)1, [T (b)], ] {_5 6 4}'

3 -2
2.Since T7(d,)=3b, -3b,,[T(d,)]; = {_3}. Likewise 7'(d,)=—2b, +5b, implies that [T(d,)], z{ 5 }

3 2
Thus the matrix for T relative to D and B is [[T(d1 NplT(dy)], } :{ 3 5}.
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3. a. T(e,)=0b, —Ob, +b,,T(e,) =—b, —2b, +0b,, T(e;) = 2b, +Ob, +3b,

0 -1 2
b. [T(e)lz=|0|,[T(e)lz=|-2|[T(e5)lz=[0].
1 0 3
0o -1 2
¢. The matrix for Trelative to £ and Bis [ [T(e))]; [T(e,)], [T(e;)]z1={0 -2 0|
1 0 3

2 -3
4. Let £={e,,e,} be the standard basis for R, Since [T(b,)]; =T(b,) :{ 2}, [T(b,)]; =T(b,) :{ 0 },

1
and [T(b;)]; =T(by) = {5}, the matrix for 7 relative to B and

| 2 -3 1
Eis [Tl [T,y [T(by)]e]= {_2 0 5}'

5. T(P)=0+3)3-2t+t)=9-3t+1t* +1
b. Let p and q be polynomials in P,, and let ¢ be any scalar. Then
T(p(1)+q() = +3)[p() +q®)]= (1 +3)p(®) + ( +3)q(?)
=T(P®)+T(q)
T(c-p0)=@+3)[c-p®O]=c-(1+3)p(r)
=c-T[p(»)]

and T is a linear transformation.

c. Let B={1,1,1*} and C={1,1,%’}. Since T(b))=T(1)=(t+3)(1) =1 +3, [T(b))]. =

S O = W

Likewise since T'(b,)=T(t) = (¢t +3)(t) = 1 +31, [T(b,)]e = , and since

S = W O
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0
0

T(b,)=Tt*)=(t+3)(t*)=1 +3t%, [T(by)]. = 5| Thus the matrix for 7 relative to B and
1
300
. 1 3 0
Cis[[T(b)]e [Tyl [T(by)]-1= 0 1 3
0 0 1

6. a. T(P)=B—-2+1)+2*B -2t +1>)=3-2t+7t> — 48 + 2¢*
b. Let p and q be polynomials in P,, and let ¢ be any scalar. Then
T(p(t) +q(1) =[p(1) +q()] + 2 [p(1) +q(1)]
=[p(1) +2p()]+[q(0) +2r°q(1)]
=T(p()+T(q@))
T(c-p@)=[c-p0)]+27[c-p(1)]
=c-[p()+20°p(1)]
=c-T[p®)]
and T is a linear transformation.

c. Let B={l,1,7*} and C={1,1,£%,’,¢*} . Since T(b,) =T (1) =1+2¢*(1)=1+2¢%,[T(b))], =

S O NN O

Likewise since T(b,) =T(¢) =1+ (2t*)(t)=t+2,[T(b,)]-=| 0|, and

S N O = O

since T'(by)=T(t*)=1>+(2t°)(t*) =1 +2¢*,[T(b;)] =| 1 |. Thus the matrix for T relative to

N O = O O

Band Cis[[T()]. [Tyl [THh)].1=

S O NN O
S DN O = O
N O = O O
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3
7. Since T'(b,)=T(1)=3+5¢,[T(b,)]z =| 5 |. Likewise since
0
0 0
T(b,)=T(t)=—2t+4t*,[T(b,)], =| -2 |, and since T(b;)=T(t*)=1>,[T(b;)]; =| 0 |. Thus the
4 1
matrix representation of 7 relative to the basis
30 0
B is [[T(bl)]B [T(by)lz [T(b, )]B} =|5 =2 0]. Perhaps a faster way is to realize that the
0 4 1
information given provides the general form of 7'(p) as shown in the figure below:
a, +at +ayt’ L) 3a, + (5a, —2a,)t + (4a, + a,)t*
coordinate coordinate
mapping mapping
o multiplication 3a,
a, Sa,—2a
a, 1Ty 4a,+a,

The matrix that implements the multiplication along the bottom of the figure is easily filled in by
inspection:

77 a 3a, 3 00

? 7 ?lq |=|5a,—2a, | implies that [T], =|5 -2 0

77 ?a, da,+a, 0 4 1
4 0 0 1| 4 0
8. Since [4b, —3b, ], =| -3 |, [T(4b, =3b,)]; =[T1z[4b, =3b,];=|2 1 2| -3|=| 5
0 1 3 1| O -5

and T(4b, —3b,)=5b, —5b,.

5+3(-1) 2
9. a. T(p)=| 5+3(0) |=|5
5+3Q1) 8

b. Let p and q be polynomials in [P,, and let ¢ be any scalar. Then
P+D | | pD+q=D| |pC=D| |q(-D
Tp+q)=| (p+q)(0) |=| p0)+q0) |=| pO) [+| q(0) |=T(p)+T(q)
P+ p()+q() p) qD)

(c-p)=D| [c-(p=1) p(-1)
T(c-p)=| (c-p)O) |=| c-(p(0)) [=c-| p(0) |=c-T(p)
(c-p)D) c-(p(1)) p()
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and 7 is a linear transformation.

c. Let B={l,1,1*} and £ = {e,,e,, e;} be the standard basis for R®. Since

1 -1
[T(b)]e=TMd)=TM)=|1|, [T(b,)]c=T(b,)=T(t)=| 0], and
1 1
1
[T(bs)]g =T(by)= T(t*)=| 0|, the matrix for T relative to B and & is
1
1 -1 1
[Tl [T®)]: [Thy)l:|=|1 0 0]
1 1 1

10. a. Let p and q be polynomials in [P;, and let ¢ be any scalar. Then
P+OE2) | | p(2)+q(=2)| |p(2)| |aq(2)

(p+q)(3) p3)+q(3) p(3) q(3)
T = = = =T T
LA I p+a) || py |7 quy |7 @@
®+20 | | p@+q0 | | p© | | q0
cp(] [e-@=2)] [pC2)
P | | c®3) p(3)
T(c D)= = —c- —c-T
CP= o || eoay |7 pay |76
P | | @Oy p(0)

and T is a linear transformation.

b. Let B={l,1, 2, t3} and £={e,,e,,e;,e,} be the standard basis for R*. Since

1 -2 4
1 3 ) 9
[T(b)]e =T(b)=T()= L [T(by)]e =T(by)=T(1) = 1 , [T(by)]e =T (by)=T(") = Ll
1 0 0
-8
3 27 ) . .
and [T(by)]: =T(b,)=T(t")= ik the matrix for T relative to B and & is
0
1 2 4 -8
1 3 9 27
[T®Ie (Th)); [Th)l (T ]=| Lol
1 0 0 O

-1 -1
11. Following Example 4, if P= [bl bz} ={ 5 J, then the B-matrix is
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PP 1 114 -1]|-1 -1 3 -2 =2
=2 1]l 6 1|2 1| ]0 -1

0 -1

| 2}, then the B-matrix is

" 2 1|6 2|0 -1| |4 O
-1 0f 4 Of1 2 2 2
Start by diagonalizing A. The characteristic polynomial is A* —4X+3 = (L —1)(A—3), so the
eigenvalues of A are 1 and 3.

Following Example 4, if P = [bl bz} = {

ForA=1: A—I:{
3

3}. The equation (A—7)x=0 amounts to —x, +x, =0, so x, = x, with x,
. . ) 1
free. A basis vector for the eigenspace is thus v, = Ll
-3 1 .
ForA=3: A-3I= 31l The equation (A—37)x=0 amounts to —3x, + x, =0, so x; =(1/3)x,
with x, free. A nice basis vector for the eigenspace is thus v, = {3}

1 1
From v, and v, we may construct P = [Vl Vz} = L 3} which diagonalizes A. By Theorem 8, the

basis B ={v,,v,} has the property that the B-matrix of the transformation x> Ax is a diagonal
matrix.

Start by diagonalizing A. The characteristic polynomial is A* —4%—5= (L —5)(L+1), so the
eigenvalues of A are 5 and —1.

ForA=5: A—SI:{ 3

3}. The equation (A—5/)x =0 amounts to x, —x, =0, so x; = x, with
x, free. A basis vector for the eigenspace is thus v, = L}
3 ) .
ForA=-1:A+1= 3 3l The equation (A+7)x=0 amounts to x, +x, =0, so x, =—x, with x,
: : : : -1
free. A nice basis vector for the eigenspace is thus v, = Ll

1 -1
] J which diagonalizes A. By Theorem 8,

the basis B ={v,,v,} has the property that the B-matrix of the transformation x — Ax is a diagonal

From v, and v, we may construct P:[Vl Vz}:{

matrix.
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16.
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Start by diagonalizing A. The characteristic polynomial is A% +3A—10 = (A+5)(h—2), so the
eigenvalues of A are —5 and 2.

6 2
ForA=5: A+5] :{3 J. The equation (A+57)x =0 amounts to 3x, +x, =0, so x;, =(=1/3)x,

-1
with x, free. A basis vector for the eigenspace is thus v, :{ 3}.

-1 2
ForA=2: A-2] :{ 3 6}' The equation (A—27)x=0 amounts to x, —2x, =0, so x; =2x,

with x, free. A basis vector for the eigenspace is thus v, = L }

-1 2
From v, and v, we may construct P=[V1 Vz} :{ 3 J which diagonalizes A. By Theorem 8,

the basis B={v,,v,} has the property that the B-matrix of the transformation x — Ax is a diagonal
matrix. Note that the solution in the text lists the vectors in the reverse order, which is also correct.

Start by diagonalizing A. The characteristic polynomial is A% —9A+18 = (L —3)(A—6), so the
eigenvalues of A are 3 and 6.

1 2

ForA=3: A-3] :{ } The equation (A—37/)x=0 amounts to x, —2x, =0, so x; =2x,

with x, free. A basis vector for the eigenspace is thus v, = { J.

ForA=6: A-61 :{ J. The equation (A—-61)x=0 amounts to x, +x, =0, so x; =—x, with

-1
x, free. A basis vector for the eigenspace is thus v, :{ }
1

2 -1
) J which diagonalizes A. By Theorem 8,

the basis B={v,,v,} has the property that the B-matrix of the transformation x — Ax is a diagonal

From v, and v, we may construct P:[v1 vz}:{

matrix.

a. We compute that

L

so b, is an eigenvector of A corresponding to the eigenvalue 3. The characteristic polynomial of
1

1
Ais A7 —6L+9=(A—3)%, so 3 is the only eigenvalue for A. Now A—3] ={ J, which

implies that the eigenspace corresponding to the eigenvalue 3 is one-dimensional. Thus the matrix
A is not diagonalizable.
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b. Following Example 4, if P = [bl bz}, then the B-matrix for T is

o T M S

If there is a basis B such that [T'], is diagonal, then A is similar to a diagonal matrix, by the second

paragraph following Example 3. In this case, A would have three linearly independent eigenvectors.
However, this is not necessarily the case, because A has only two distinct eigenvalues.

If A is similar to B, then there exists an invertible matrix P such that P"'AP = B. Thus B is invertible
because it is the product of invertible matrices. By a theorem about inverses of products,

B'=pP A" (P = P'A'P, which shows that A™" is similar to B™".

If A=PBP™', then A*> =(PBP)Y(PBP™")=PB(P"'P)BP"' =PB-1-BP™' =PB*P™". So A” is
similar to B>

By hypothesis, there exist invertible P and Q such that P"'BP = A and Q"'CQ = A. Then
P™'BP=0Q7'CQ. Left-multiply by Q and right-multiply by Q™' to obtain

QP~'BPQ™' =007'COQ™".

So C=QP'BPQ™" =(PQO™")'B(PQ™), which shows that B is similar to C.

If A is diagonalizable, then A= PDP™! for some P. Also, if B is similar to A, then B = QAQ_l
for some Q. Then B=Q(PDP Q™' =(QP)D(P”'0™")=(QP)D(QP)™

So B is diagonalizable.

If Ax=xx,x#0, then P"'Ax=4P'x. If B= P 'AP, then
B(P'x)=P'AP(P'x) =P 'Ax =P 'x

by the first calculation. Note that P'x#0, because x#0 and P is invertible. Hence (*) shows

that P™'x is an eigenvector of B corresponding to . (Of course, A is an eigenvalue of both A and B
because the matrices are similar, by Theorem 4 in Section 5.2.)

If A=PBP™', then rank A =rank P(BP™")=rank BP"', by Supplementary Exercise 13 in Chapter
4. Also, rank BP™' =rank B, by Supplementary Exercise 14 in Chapter 4, since P~ is invertible.

Thus rank A =rank B.
If A=PBP™", then
tr(A)= tr((PB)P_l) = tr(P_l (PB)) By the trace property
=tr(P"'PB) =tr(IB) = tr(B)

If B is diagonal, then the diagonal entries of B must be the eigenvalues of A, by the Diagonalization
Theorem (Theorem 5 in Section 5.3). So tr A=tr B ={sum of the eigenvalues of A}.

If A=PDP™" for some P, then the general trace property from Exercise 25 shows that
trA=tr[(PD)P™']1= tr [P"'PD]=tr D. (Or, one can use the result of Exercise 25 that since A is
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27.

28.

29.

30.
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similar to D, tr A=tr D.) Since the eigenvalues of A are on the main diagonal of D, tr D is the sum
of the eigenvalues of A.

For each j, I(b;)=b,. Since the standard coordinate vector of any vector in R" is just the vector
itself, [1(b;)], =b . Thus the matrix for / relative to B and the standard basis £ is simply

b, b,
4.4.

Foreach j,I(b = b i and [I(b MNe = [b ile- By formula (4), the matrix for / relative to the bases
B and Cis M =[[b]. [b

bn}. This matrix is precisely the change-of-coordinates matrix P, defined in Section

[bn]c} In Theorem 15 of Section 4.7, this matrix was

Z]C

denoted by P and was called the change-of-coordinates matrix from B to C.
C«B

If B={b,,...,b,}, then the B-coordinate vector of b i is e I the standard basis vector for R". For

instance,
b,=1-b,+0-b, +---+0-b,
Thus [I(bj)]B =[bj]B =e, and

15 =[], -, ] =[e --e,]1=1

[M] If P is the matrix whose columns come from B, then the B-matrix of the transformation
x> Ax is D= P'AP. From the data in the text,

6 2 -2 12 -1
A=|3 1 =2|,P=[b, b, b=1 1 -I|,

2 2 2] 13 0

-3 3 1]f6 2 2]t 2 -1] [2 -1 0
D=| 1 -1 0|3 1 =2||1 1 -1f=[0 3 0

-2 1 1jj2 =2 2ft 3 0] [0 1 4

31. [M] If P is the matrix whose columns come from B, then the B-matrix of the transformation

x> Ax is D= P"'AP. From the data in the text,

-7 48 -16] -3 -2 3
A=| 1 14 6 P=[b, b, bj=| 1 1 -1,
-3 45 -19] -3 -3 0
-1 -3 -13][-7 -48 -16|[-3 =2 3| [-7 2 -6
D=l 1 3 o 1 14 6/ 1 1 -1{=| 0 -4 -6
0 -1 -13||-3 45 -19/|-3 -3 0 0 0 -1
-6 4 0 9
32. [M] A= =0 6,
-1 2 1 0
-4 4 0 7
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ev=eig(a)=(5, 1, -2, -2)
1.0000

nulbasis (A-ev (1) *eye(4)) = 0.5000
—-0.5000

1.0000

A basis for the eigenspace of A =5 is b, =

2

1.0000
-0.5000
—3.5000 |

1.0000

2
-1

nulbasis (A-ev (2) *eye (4)) =

A basis for the eigenspace of A=1is b, =

2
1.0000

1.5000

1.0000 —0.7500

lbasis (A- 3) * 4)) =
nulbasis (A-ev(3) *eye(4)) 10000

0

A basis for the eigenspace of A =-2 is {b,,b,}=

0
1.0000

54

Solutions

The basis B={b,,b,,b;,b,} is a basis for R* with the property that [T'] p 1s diagonal.

311

Note: The Study Guide comments on Exercise 26 and tells students that the trace of any square matrix A
equals the sum of the eigenvalues of A, counted according to multiplicities. This provides a quick check
on the accuracy of an eigenvalue calculation. You could also refer students to the property of the

determinant described in Exercise 19 of Section 5.2.
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SOLUTIONS

() -1 =2
= A=Al =
L 3} { 1 3—/1}

det(A—AD=(1=M)B=A) = (=2) =A% —4r+5
J16-20

Use the quadratic formula to find the eigenvalues: A= 4t >

shortcut for finding one eigenvector, and Example 5 shows how to write the other eigenvector with
no effort.

=2=i Example 2 gives a

ForA=2+i: A—(2+i)I:{ L
—i

}. The equation (A—Al)x=0 gives

(-1-i)x,—2x,=0
x+(A-i)x,=0
As in Example 2, the two equations are equivalent—each determines the same relation between x,

and x,. So use the second equation to obtain x, =—(1—i)x,, with x, free. The general solution is

—1+i —1+i . . .
X, , and the vector v, = provides a basis for the eigenspace.
1 1

_ | -1=i
For A=2-i: Letv,=V ={ ) } The remark prior to Example 5 shows that v, is

automatically an eigenvector for 2+i. In fact, calculations similar to those above would show that
{v,} is a basis for the eigenspace. (In general, for a real matrix A, it can be shown that the set of

complex conjugates of the vectors in a basis of the eigenspace for A is a basis of the eigenspace for

1)

3 3
A= {3 3}. The characteristic polynomial is A* —6A+18, so the eigenvalues of A are
A= W —3+3.

—J1

—3i
ForA=3+3i: A-(3+3i)] ={ 3l } The equation (A —(3+3i)/)x =0 amounts to

i
x, —ix, =0, so x; =ix, with x, free. A basis vector for the eigenspace is thus v, =| |.
17 1 =M 2 1

_ | i
For A =3 —3i: A basis vector for the eigenspace is v, =V :{ ! }
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3. A ={ g 1l The characteristic polynomial is A* —6X+13, so the eigenvalues of A are

xzﬁii?:§%=3i%,

2-2i 1

ForA=3+2i: A-(3+2i)] :{ g 5 2}. The equation (A—(3+2i)/)x=0 amounts to
- —2-2i

i . . . . .
x, with x, free. A nice basis vector for the eigenspace is thus

—8x, +(=2-2i)x, =0, so x; =

Wi

N
For A =3 —2i: A basis vector for the eigenspace is v, =V :{ 4 }

1 -
4. A= L 3}. The characteristic polynomial is A* —4X+5, so the eigenvalues of A are
p=dENt oy
2
1-i 2
1-i

x +(1-i)x, =0, so x, =—(1—-1i)x, with x, free. A basis vector for the eigenspace is thus
{4+1
v, = .
1

_ | -1-i
For A =2 —i: A basis vector for the eigenspace is v, = Vi :{ }

ForA=2+i: A-Q+i)l= {_ } The equation (A—(2+i)/)x=0 amounts to

3 1
A :{ ) 5}. The characteristic polynomial is A> —8%+17, so the eigenvalues of A are

x=§ig51:4ii

-1- 1
ForA=4+i: A—(4+i)I :{ ) : . } The equation (A—(4+i)I)x=0 amounts to
- —i

(-9
2

—2x,+(1-i)x,=0, so x; =

vl{lﬂ.

—  |1+i
For A =4 —i: A basis vector for the eigenspace is v, =Vi ={ 5 }

x, with x, free. A basis vector for the eigenspace is thus
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7 =5
6. A ={ 3}. The characteristic polynomial is A% —10A + 26, so the eigenvalues of A are

xzwzyﬂ;
2

2—1i -5
—2—i

X, —(2+i)x, =0, so x;, =(2+i)x, with x, free. A basis vector for the eigenspace is thus

2+
v, = Ll

— |21
For A =5 —i: A basis vector for the eigenspace is v, = Vi :{ ! }

ForA=5+i: A—(5+i)I :{ } The equation (A —(5+1i)/)x =0amounts to

NCI|

1 3
X Ax is r=|A|= \/(\/3)2 +1% =2. For the angle of rotation, plot the point (a,b) = (\/3, 1) in the

xy-plane and use trigonometry:

7. A= . From Example 6, the eigenvalues are 3 +i. The scale factor for the transformation

@=arctan (b/a) = arctan (1/ \/5 ) =m/6 radians.

2

¢ @ = /6 radians

)

Note: Your students will want to know whether you permit them on an exam to omit calculations for a

a
matrix of the form { } and simply write the eigenvalues a = bi. A similar question may arise about

a

1 1
the corresponding eigenvectors, { } and {}, which are announced in the Practice Problem. Students
—i i

may have trouble keeping track of the correspondence between eigenvalues and eigenvectors.

3 33
33 3

is r=|h|=+ (3)* + (3\/3 )? = 6. From trigonometry, the angle of rotation ¢ is arctan (b/a) = arctan
(—3\/§ /3)=-m/3 radians.

8. A= . The eigenvalues are 3+ (3\/3 )i. The scale factor for the transformation x — Ax
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2
A ={ 5 O} The eigenvalues are +2i. The scale factor for the transformation x— Ax is

r=|%]=+/(0)* +(2)* =2. From trigonometry, the angle of rotation ¢ is arctan (b/a) = arctan
(—o0) =—m/ 2 radians.

.5
r=|1|=+/(0)> +.5* =.5. From trigonometry, the angle of rotation ¢ is

0 .
A :{ O}' The eigenvalues are £.5i. The scale factor for the transformation x> Ax is

arctan (b/a) = arctan (—e)=—7/2 radians.

-1 3
r=|A|= \/(\/5)2 +(1)> =2. From trigonometry, the angle of rotation ¢ is

-3 1 . . . .
A= . The eigenvalues are —J/3 +i. The scale factor for the transformation x — Ax is

arctan (b/a) = arctan(1/ J3 )=-5m/6 radians.

3 -3 . _ . .
A= . The eigenvalues are 3+ (\/5 )i. The scale factor for the transformation x— Ax is

NERE
r=|kl= 3+ (\/3 ) = 24/3. From trigonometry, the angle of rotation ¢ is

arctan (b/a) = arctan (\/5 /3) =7 /6 radians.

—1-i
From Exercise 1, A=2=i, and the eigenvector v :{ ] } corresponds to A =2—i. Since Re

-1 -1 -1 -1
V= and Im v= , take P= . Then compute
1 0 1 0

" 0 11 =2¢-1 -1 0 13 -1 2 -1
C=P AP= = =
-1 11 3] 1 O -1 -1 2 -1 1 2
Actually, Theorem 9 gives the formula for C. Note that the eigenvector v corresponds to a — bi

1
instead of a + bi. If, for instance, you use the eigenvector for 2+, your C will be { ] 2}.

Notes: The Study Guide points out that the matrix C is described in Theorem 9 and the first column of C
is the real part of the eigenvector corresponding to a —bi, not a+bi, as one might expect. Since students
may forget this, they are encouraged to compute C from the formula C = P AP, as in the solution above.

The Study Guide also comments that because there are two possibilities for C in the factorization of a

2x?2 matrix as in Exercise 13, the measure of rotation of the angle associated with the transformation
x> Ax is determined only up to a change of sign. The “orientation” of the angle is determined by the
change of variable x = Pu. See Figure 4 in the text.
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3 . . . 2+
14. A= | Ll The eigenvalues of A are L =21 (+/2)i, and the eigenvector v =

i
) corresponds
i

to A=2-— (\/5)1'. By Theorem 9, P=[Rev Imv]= {\/?) j and

C= P“AP:{

V272 —ﬁ/zr —3}{& 1}_ 2 -2
0 it 1 o 1| |v2 2

eigenvalues to use and many choices for the muliple of the eigenvector to use,. The solutions can

} There are two choices for whice

look quite different. For example, for 4 =2+ \/Ei an eigenvector is

—v= {_\E * l} =i {1 * (I/E)l} =i-w Using w in Theorem 9, results in
i
P=[Rew Imw]= ! \/5 and
1 0
. 0 B3 =3 V2 2 2
C=P AP= = .
V22 22t 1 o] |2 2
0 5 . . 3+i
15. A= 5 ol The eigenvalues of A are A =1£3i, and the eigenvector v = 5 corresponds to
- i
3 1]
L=1+3i. By Theorem9,P=[Rev Imv]= 0 2 and
o 12 -1 0 5][3 1 1 3] _ _
C=P AP=— = . There are many choices for the muliple of the
60 3|2 2|0 2 -3 1

eigenvector to use, and the solutions can look quite different. For example,

2i 2 0
1 1 0 3] 0 5|1 3 1 3
C=P AP=— = .
6|2 1||-2 2|2 O -3 1

4 =2
16. A= { 1 6}' The eigenvalues of A are A=5=1i, and the eigenvector v :{

3+i| | [1-3i| . . ) ) 1 -3
V= =i =i-w. Using w in Theorem 9, results in P=[Rew Im w]= 5 and

1+

} corresponds to
—i

1 1
A=5+1i. By Theorem 9, P:[ReV IrnV]Z{O J and

" I 14 241 1 5 1 . .
C=P AP= = . There are many choices for the muliple of the
0 -1l 60 -1 -1 5

eigenvector to use, and the solutions can look quite different. For example,
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— 1 0
C—P‘IAP—O 14 =29-1 1] [5 1
B 11 o1|l1 el 1 o] |-1 5

-11 -4
17. A :{ 0 5}. The eigenvalues of A are A =-314i, and the eigenvector

1+i] [-1+i] N - -
V= =—- =—i-w. Using w in Theorem 9, results in P=[Rew Im w]= 1 and

1+2i 1 2
V= 5; corresponds to A =-3+4i. By Theorem 9, P = [Re v Im V] = 0 s and
—5; B

2 -3 4
C=P'AP= { }{ M 5} =[ 4 3} . There are many choices for the muliple

of the eigenvector to use, and the solutions can look quite different. For example,

1+2i —2+i -2 1
V= 5; =—i-w. Using w in Theorem 9, results in P=[Rew Im w]= 5 0
—5i

| 1 42 1 -3 4
and C=P" AP—— = .
5[5 2 20 5| 5 0| |4 3

3 -5
18. A= {2 5}. The eigenvalues of A are A=413i, and the eigenvector v :{

3+i
5 corresponds to
—2i

3 1
A=4+3i. By Theorem 9, P:[RGV Imv]Z{O 2} and

6|0 32 5|0 =2 -3 4

the eigenvector to use, and the solutions can look quite different. For example,

i 112 1|3 -5]3 1 4 3 . ,
C=P AP=— = . There are many choices for the muliple of

2

-1 3 1 110 3)3 -5|-1 3 4 3
P=[Rew Imw]= and C=P AP=— = .
2 0 6|2 1]|2 5| 2 0 -3 4

1.52 -7
19. A :{ } The characteristic polynomial is A*> —1.92%+1, so the eigenvalues of A are

3+1i =143 . ) . .
V= =—i- =—i-w. Using w in Theorem 9, results in

.56
L =.96%.28i. To find an eigenvector corresponding to .96 —.28i, we compute
. 56+ .28i -7
A—(.96-.28i)] =
.56 —56+.28i
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21.

22

23.

24.
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The equation (A —(.96—.28i)I)x =0 amounts to .56x, +(=.56+.28i)x, =0, so x, =((2-i)/2)x,

i
5 } By Theorem 9,

2 -1 . 1[ 0 1][152 -7]2 -1] [96 -28
P=[Rev Imv|= and C=P'AP=— =
2 0 2(-2 2] 56 4|2 0] [.28 .96

1+

with x, free. A nice eigenvector corresponding to .96 —.28i is thus v= {

-3 -8
A ={ 4 5}. The eigenvalues of A are A =1%4i, and the eigenvector v= {
—i

} corresponds to

-1
O I 13 -8|1 1 1 4 . .
C=P AP= = . There are many choices for the muliple
0 -1f 4 5|0 -1 —4 1

of the eigenvector to use, and the solutions can look quite different. For example,

1 1
) =1+4i. By Theorem 9,By Theorem 9, P=[Rev Imv]= {0 } nd

1+i -1+ . . , )
v=| | |=-i- ) =—i-w. Using w in Theorem 9, results in
—i

{—1 1} o {0 1}{—3 —8}{—1 1} [ 1 4}
P=[Rew Imw]= and C=P AP= = .
1 0 1 1| 4 5| 1 0o |4 1

The first equation in (2) is (—=.3+.67)x, —.6x, =0. We solve this for x, to find that

2
X, =((=3+.6i)/.6)x, = ((—1+2i)/2)x,. Letting x, =2, we find that y ={ 14 2] is an eigenvector
— i

—1+2i|2-4i| —-1+2i :
= = v, the vector y is a complex

2
for the matrix A. Since y = =
—1+2i 5 5

multiple of the vector v, used in Example 2.

Since A(ux)=u(AXx)=u(x)=1uUX), X is an eigenvector of A.

(a) properties of conjugates and the fact that X' = X_T
(b) Ax=AX and A is real

(c) x"AX is ascalar and hence may be viewed as a 1X1 matrix
(d) properties of transposes

(e) AT = A and the definition of q

X' Ax=X" (Ax) =\A-X'X because X is an eigenvector. It is easy to see that x’x is real (and positive)

because zz is nonnegative for every complex number z. Since X’ Ax is real, by Exercise 23, so is A.
Next, write Xx =u +iv, where u and v are real vectors. Then

AX=A(u+iv)=Au+iAv and Ax=Au+iiv

The real part of Ax is Au because the entries in A, u, and v are all real. The real part of Ax is hu
because A and the entries in u and v are real. Since Ax and Ax are equal, their real parts are equal,
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too. (Apply the corresponding statement about complex numbers to each entry of Ax.) Thus
Au =), which shows that the real part of x is an eigenvector of A.

25. Write x=Re x+i(Im x), so that Ax = A(Re x)+iA(Im x). Since A is real, so are A(Re x) and
A(Im x). Thus A(Re x) is the real part of Ax and A(Im x) is the imaginary part of Ax.
26. a. If A=a—bi, then
Av=iv=(a—-bi)(Rev+iImv)

=(aRev+bImv)+i(almv—-bRev)
Re Av Im Av

By Exercise 25,
A(Rev)=ReAv=a Rev+bImv
A(Imv)=ImAv=—-b Rev+aImv

b. Let P=[Rev Imv]. By (a),

pamo=e[ ]
ARev)=P| |, A0mv)=P
b a

So
AP = [A(Re v) A(Im V)]

[ Ta -b a b
=| P P =P =PC
[ 26 33 23 20

-6 -8 -1 -13
-14 -19 -16 3
20 20 -20 -14

The MATLAB command [V D] = eig(A) returns

V =-0.5709 - 0.4172i -0.5709 + 0.4172i -0.3708 + 0.0732i1 -0.3708 - 0.0732i
0.4941 - 0.07691 0.4941 + 0.07691 0.4440 + 0.29761 0.4440 - 0.29761
0.0769 + 0.49411i 0.0769 - 0.49411 -0.4440 - 0.29761 -0.4440 + 0.29761

27. [M] A=

-0.0000 - 0.00001 -0.0000 + 0.00001  0.2976 - 0.44401 0.2976 + 0.44401
D = -2.0000 + 5.00001 0 0 0

0 -2.0000 - 5.00001 0 0

0 0 -4.0000 +10.0000i 0

0 0 0 -4.0000 -10.00001

The eigenvalues of A are the elements listed on the diagonal of D. The corresponding
eigenvectors are listed in the corresponding columns of V. To get a nice eigenvector for
-1+

—i

1

0

For A =-4+10i, take v,=V(1:4,3)/V(4,3), and then multiply the vector by 2 resulting in

A=-2+5itake vi=V(1:4,1)/V(3,1), resulting in v, =
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—1—i
2i
Vo =
Y
2
-1 1 -1 -1
-1 0 2
Hence by Theorem 9, P:[Re v, Imv, Rev, Im V2}= 0 0 ) and
o o0 2 0
-2 5 0 O
-5 =2 0 0 ) . -1
C= . Other choices are possible, but C must equal P~ AP.
0O 0 -4 10
0O 0 -10 4
7 11 20 17
-20 40 -86 -74
28. [M] A=
0O -5 -10 -10
10 28 60 53
The matlab command [V D] = eig(A) returns

V=-0.2132+0.21321 -0.2132-0.21321  0.1085 - 0.32541  0.1085 + 0.32541

0 - 0.8528i 0+ 0.8528i 0.3254 +0.10851  0.3254 - 0.10851
0 0 0-0.54231 0+ 0.54231
0+ 0.42641 0-0.4264i -0.2169 + 0.65081  -0.2169 - 0.6508i
D =2.0000 + 5.00001 O 0 0
0 2.0000 - 5.00001 0O 0
0 0 3.0000 + 1.00001 0O
0 0 0 3.0000 - 1.0000

The eigenvalues of A are the elements listed on the diagonal of D. The corresponding
eigenvectors are listed in the corresponding columns of V. To get a nice eigenvector for

1+i
A =2+5itake vi=V(1:4,1)/V(4,1), and then multiply the vector by 2 resulting in v, = _g
2
-2
For A=3+1i, take v,=V(1:4,3)/V(4,3), and then multiply the vector by 4 resulting inv, = 33]
4
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1 1 2 0
-4 0 0o -2
Hence by Theorem 9, P:[Re v, Imv, Rey, Imvz}: 0 0 3 | and
2 0 4 0
2 5 0 0
-5 2 00 ) ) .
C= 0 0 3 1l Other choices are possible, but C must equal P~ AP.
0 0 -1 3

5.6 SOLUTIONS

1. The exercise does not specify the matrix A, but only lists the eigenvalues 3 and 1/3, and the
1 -1 9
corresponding eigenvectors v, ZL} and v, :{ J. Also, X, = L}

a. To find the action of A on x,, express X, in terms of v, and v,. Thatis, find ¢, and ¢, such
that x, = ¢, v, +¢,v,. This is certainly possible because the eigenvectors v, and v, are linearly
independent (by inspection and also because they correspond to distinct eigenvalues) and hence
form a basis for R?. (Two linearly independent vectors in R* automatically span R?.) The row

_ I -1 9 I 0 5 .
reduction [Vl v, XO}Z L1 17 le 1 - shows that x, =5v, —4v,. Since v, and

v, are eigenvectors (for the eigenvalues 3 and 1/3):

15 —4/3 49/3
X, = AX, =5Av, —4Av, =5-3v,—4-(1/3)v, = - =
15 4/3 41/3

b. Each time A acts on a linear combination of v, and v,, the v, term is multiplied by the
eigenvalue 3 and the v, term is multiplied by the eigenvalue 1/3:

X, = AX, = A[5-3v, = 4(1/3)v,]1=5(3)* v, —4(1/3)*v,
In general, x, =5(3)" v, —4(1/3)* v,, for k >0.

1 2 -3
2. The vectors v, =| 0|,v,=| 1|,v5;=|-3| are eigenvectors of a 3x3 matrix A, corresponding to
-3 -5 7
-2
eigenvalues 3, 4/5, and 3/5, respectively. Also, x, =| =5 |. To describe the solution of the equation
3

X, = Ax, (k=1,2,..), first write X, in terms of the eigenvectors.
1 2 -3 2 I 0 0 2

vi v, vy x]=| 0 1 3 =5[~|0 1 0 I|=x,=2v,+v,+2v,
-3 -5 7 3] /0 0 0 2
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Then, x;, = AQ2v, + v, +2v;) =2Av, + Av, + 2Av; =2-3v, +(4/5)v, +2-(3/5)v;. In general,
x, =2-3 v, +(4/5)" v, +2-(3/5)" v,. For all k sufficiently large,
1
x, =2-3v,=2-3*| 0
-3

S 4
3 A= { 5 1 1},det(A — A =(5-A)1.1-A)+.08 = A* —1.64+.63. This characteristic polynomial

factors as (4—.9)(4—.7), so the eigenvalues are .9 and .7. If v, and v, denote corresponding
eigenvectors, and if x, =¢,v, +c,v,, then

X, = A(q vV, +c,v,) = AV, + ¢, AV, =, (9) v, + ¢, (T)V,
and for k >1,

X, =¢,(9v, +¢, (T v,

For any choices of ¢, and c,, both the owl and wood rat populations decline over time.

S 4
4. A= { D5 1 1},det(A —AD=(5-A)(1.1-1)—(4)(.125)= 1> —=1.6A+.6. This characteristic
polynomial factors as (4—1)(4—.6), so the eigenvalues are 1 and .6. For the eigenvalue 1, solve
-5 4 0 -5 4 0 . . . 4
(A-Dx=0: ~ . A basis for the eigenspace is v, =| _|. Let v, be an
=125 1 0 0 0 O 5
eigenvector for the eigenvalue .6. (The entries in v, are not important for the long-term behavior of

the system.) If x, =¢,v, +¢,v,, then x, =c,Av, +¢,Av, =¢,v, +¢,(.6)v,, and for k sufficiently
large,

4 ‘ 4
X, =¢ 5 +¢,(.6)" v, =¢ 5

Provided that ¢, # 0, the owl and wood rat populations each stabilize in size, and eventually the

populations are in the ratio of 4 owls for each 5 thousand rats. If some aspect of the model were to
change slightly, the characteristic equation would change slightly and the perturbed matrix A might
not have 1 as an eigenvalue. If the eigenvalue becomes slightly larger than 1, the two populations
will grow; if the eigenvalue becomes slightly less than 1, both populations will decline.

-325 1.2
characteristic equation:

62162 —4(5775) 1.6+
,1:16 1.6 4(5775):16_2 25:1.05and.55

2

Because one eigenvalue is larger than one, both populations grow in size. Their relative sizes are
determined eventually by the entries in the eigenvector corresponding to 1.05. Solve
(A-1.051)x=0:

{ -65 3 0} {—13 6 0} ) ) { 6}
~ . An eigenvector is v, = .

4 3 ) . .
5. A= ,det(A—Al)=A" —1.6A+.5775. The quadratic formula provides the roots of the

=325 15 0 0 0 O 13
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Eventually, there will be about 6 spotted owls for every 13 (thousand) flying squirrels.
4 3 5
. When p=.5A= — and det(A— A=A -1.64+.63=(A1—-.9)(A1-.7).

The eigenvalues of A are .9 and .7, both less than 1 in magnitude. The origin is an attractor for the
dynamical system and each trajectory tends toward 0. So both populations of owls and squirrels
eventually perish.

The calculations in Exercise 4 (as well as those in Exercises 27 and Exercise 33 in Section 5.2) show
that if the largest eigenvalue of A is 1, then in most cases the population vector x, will tend toward a

multiple of the eigenvector corresponding to the eigenvalue 1. [If v, and v, are eigenvectors, with
v, corresponding to A =1, and if x, =¢,v, +¢,v,, then x, tends toward ¢,v,, provided ¢, is not

zero.] So the problem here is to determine the value of the predation parameter p such that the largest
eigenvalue of A is 1. Compute the characteristic polynomial:

A4-1 3
de{ }:(.4—/1)(1.2—/1)+.3p:/12—1.6/1+(.48+.3p)
-p 12-1

By the quadratic formula,

1644167 —4(48+.3p)
2
The larger eigenvalue is 1 when

1.6+\/1.62 —4(48+.3p) =2 and \/2.56—1.92—1.217 =4
In this case, .64—-1.2p=.16, and p=.4.

A

. a. The matrix A in Exercise 1 has eigenvalues 3 and 1/3. Since |3|>1 and [1/3| <1, the origin is a
saddle point.

b. The direction of greatest attraction is determined by v, ={ J, the eigenvector corresponding to
the eigenvalue with absolute value less than 1. The direction of greatest repulsion is determined

1
by v, = L}, the eigenvector corresponding to the eigenvalue greater than 1.

c¢. The drawing below shows: (1) lines through the eigenvectors and the origin, (2) arrows toward
the origin (showing attraction) on the line through v, and arrows away from the origin (showing

repulsion) on the line through v,, (3) several typical trajectories (with arrows) that show the

general flow of points. No specific points other than v, and v, were computed. This type of
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drawing is about all that one can make without using a computer to plot points.

Note: If you wish your class to sketch trajectories for anything except saddle points, you will need to go
beyond the discussion in the text. The following remarks from the Study Guide are relevant.

Sketching trajectories for a dynamical system in which the origin is an attractor or a repellor is more
difficult than the sketch in Exercise 7. There has been no discussion of the direction in which the
trajectories “bend” as they move toward or away from the origin. For instance, if you rotate Figure 1 of
Section 5.6 through a quarter-turn and relabel the axes so that x, is on the horizontal axis, then the new
figure corresponds to the matrix A with the diagonal entries .8 and .64 interchanged. In general, if A is a
diagonal matrix, with positive diagonal entries a and d, unequal to 1, then the trajectories lie on the axes
or on curves whose equations have the form x, =r(x;)*, where s=(Ind)/(Ina) and r depends on the
initial point x,,. (See Encounters with Chaos, by Denny Gulick, New York: McGraw-Hill, 1992, pp. 147—
150.)

8. The matrix from Exercise 2 has eigenvalues 3, 4/5, and 3/5. Since one eigenvalue is greater than 1
and the others are less than one in magnitude, the origin is a saddle point. The direction of greatest
repulsion is the line through the origin and the eigenvector (1,0,—3) for the eigenvalue 3. The

direction of greatest attraction is the line through the origin and the eigenvector (-3,-3,7) for the
smallest eigenvalue 3/5.

17 -3 ,
9. A=| | pdtA-AD=0-25h+1=0

2 and .5

- 2.5+4/2.5% —4(1) 2524225 25+15
2 2 2

The origin is a saddle point because one eigenvalue is greater than 1 and the other eigenvalue is less
than 1 in magnitude. The direction of greatest repulsion is through the origin and the eigenvector v,

-3 =30 1 1 O
found below. Solve (A—21)x=0: ~ , SO X =—x,, and x; is free. Take
-12 -12 0 0 0 O

v, :{ J. The direction of greatest attraction is through the origin and the eigenvector v, found
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below. Solve (A—.51)x=0: {

vl

12 -3 0 I =25 0 )
~ , SO0 x, =.25x,, and x, is free. Take
-12 3 0] |0 0 0

3 4
10. A{ ; 1J,det(A—M):)f—1.4X+.45=0
x—1‘4i‘/1‘42_4(‘45) 14416 14t4 5and
2 2 2 ' )

The origin is an attractor because both eigenvalues are less than 1 in magnitude. The direction of
greatest attraction is through the origin and the eigenvector v, found below. Solve

-2 4 0 1 2 0 ) 2
(A-5DHx=0: ~ , SO x; =2x,, and x, is free. Take v, =| |.
-3 6 0 0 0 0 1

4 5
11. A:{ A 13},det(A—M)=x2—1.7x+.72:0

174172 =4(72) 172401 17%.1
A= 5 = 5 = 5 =.8and .9

The origin is an attractor because both eigenvalues are less than 1 in magnitude. The direction of
greatest attraction is through the origin and the eigenvector v, found below. Solve

-4 5 0 1 -125 0 _ 5
(A-.81)x=0: = , 50 x; =1.25x,, and x, is free. Take v, =| |.
-4 5 0] [0 0 0 4

5 6
12. A:{ ; 14},det(A—M)=k2—1.9X+.88=0

1.9+41.97-4(88) 19+J09 19+3
A= 5 = 5 = 5 =.8and 1.1

The origin is a saddle point because one eigenvalue is greater than 1 and the other eigenvalue is less
than 1 in magnitude. The direction of greatest repulsion is through the origin and the eigenvector v,

-6 6 0 1 -1 0 )
found below. Solve (A—1.11)x=0: ~ , SO x; =X,, and x, is free. Take
-3 3 0] |0 0 O

v, = L} The direction of greatest attraction is through the origin and the eigenvector v, found

-3 6 0 1 -2 0 .
below. Solve (A—.81)x=0: ~ , S0 x; =2x,, and x, is free. Take

-3 6 0] [0 0 O
2
V2=l
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323 -401.32) 23+ *
23 232 41 32)=2-3—2\/-01=2-32—-1:1.1and1.2

The origin is a repellor because both eigenvalues are greater than 1 in magnitude. The direction of
greatest repulsion is through the origin and the eigenvector v, found below. Solve

-4 3 0 1 =75 0
-4 3 0 0 0 O

8 3
13. A:{ A 15},det(A—M):x2—2.3x+1.32=0

3
(A—1-21)X=03{ }, $0 x, =.75x,, and x, is free. Take Vv, :L}.

K=24 247 -4(143) 244 04:242_2:1.1and1.3

17 6 ,
4 A=| | de(A-h) =) ~24)+143=0

2 2

The origin is a repellor because both eigenvalues are greater than 1 in magnitude. The direction of
greatest repulsion is through the origin and the eigenvector v, found below. Solve

4 6 0 1 15 0 . -3
(A-130)x=0: ~ , 80 x;, =—1.5x,, and x, is free. Take v, = 5|

-4 -6 O 0 0 0
4 0 2 1

15. A=|.3 .8 .3|. Giveneigenvector v, =|.6 | and eigenvalues .5 and .2. To find the eigenvalue for
3 25 3

v,, compute

-1 0 0 1 0 =2 0| x=2x 2
ForA=.5: | 3 3 0 ~{0 1 3 0}, x,=-3x;. Setv,=|-31|.
| 32 0 0 0 0 0| xjisfree 1
2 0 2 0 1 01 0 x=-x -1
ForA=2: |3 6 3 O]~ 0 1 0 O0f, x,=0 .Setvy=| 0
32 3 0 0 0 0 O xjisfree 1
Given x, =(0,.3,.7), find weights such that x, =¢,v, + cv, +c;v;.
d 2 -1 0 1 0 0 1
vi v, v, x]=[6 -3 0 3[~[0 1 0 .|
31 17 0 0 0 3
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X, =V, +.lv, +.3v,
X, = Av, +.1Av, + 3Av, = v, +.1(.5)v, +.3(.2)v;, and

X, =V, +.1(.5)¢v,+.3(.2)f v,. As k increases, X, approaches v,.

16. [M]
90 .01 .09 1.0000
A=.01 90 .01|-ev=eig(a)=]|0.8900 |.To four decimal places,
.09 .09 .90 .8100
0.9192 91/99
v, =nulbasis (A-eye(3))=|0.1919 |. Exact: |19/99
1.0000 | 1
Sy
v, =nulbasis(A-ev(2)*eye(3))=| 1
L O_
—1]
v, =nulbasis(A-ev(3)*eye(3))=| 0
1

The general solution of the dynamical system is x, = ¢, v, +¢,(.89)" v, +¢; (.8 1) v5.

Note: When working with stochastic matrices and starting with a probability vector (having nonnegative
entries whose sum is 1), it helps to scale v, to make its entries sum to 1. If
v, =(91/209,19/209,99/209), or (.435,.091,.474) to three decimal places, then the weight ¢, above
turns out to be 1. See the text’s discussion of Exercise 27 in Section 5.2.

0 1.6
17. a. A=
3 8

A 167 ., . :
b. det 3 =A"—.84—-.48=0. The eigenvalues of A are given by

8-1
8+,/(—8)2—4(-48) 844256 8+1.
A= 8+ 8)2 4(=48) _8% 2256 = 8_216:1.2 and —.4

The numbers of juveniles and adults are increasing because the largest eigenvalue is greater than
1. The eventual growth rate of each age class is 1.2, which is 20% per year.
To find the eventual relative population sizes, solve (A—1.21)x=0:

-12 16 0 1 —4/3 0| x=(4/3)x, 4
~ S . Setv,=| |
3 -4 0 0 0 0] x,is free 3

Eventually, there will be about 4 juveniles for every 3 adults.
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c. [M] Suppose that the initial populations are given by x, = (15, 10). The Study Guide describes

how to generate the trajectory for as many years as desired and then to plot the values for each
population. Let x, =(j,,a,). Then we need to plot the sequences {j, },{a,},{j, +a,}, and

{j./a,}. Adjacent points in a sequence can be connected with a line segment. When a sequence is

plotted, the resulting graph can be captured on the screen and printed (if done on a computer) or
copied by hand onto paper (if working with a graphics calculator).

0 0 .42
18. a. A=|6 O 0
0 .75 .95
0.0774 + 0.4063i
b. ev=eig(A)=|0.0774-0.4063i
1.1048
The long-term growth rate is 1.105, about 10.5 % per year.
0.3801
v=nulbasis(A-ev(3)*eye(3))=]0.2064
1.0000

For each 100 adults, there will be approximately 38 calves and 21 yearlings.

Note: The MATLAB box in the Study Guide and the various technology appendices all give directions
for generating the sequence of points in a trajectory of a dynamical system. Details for producing a
graphical representation of a trajectory are also given, with several options available in MATLAB, Maple,
and Mathematica.

5.7 SOLUTIONS

1. From the “eigendata” (eigenvalues and corresponding eigenvectors) given, the eigenfunctions for the
differential equation X’ = Ax are v,e* and v,e”. The general solution of X' = Ax has the form

-3 -1
C{ 1:|€4t+02|: Jez’

The initial condition x(0)= {

J determines ¢, and c, :

-3 -1 -6
o) ' +e, 20 =
1 1 1
-3 -1 -6 1 0 5/2
1 1 1 0 1 -3/2

-3 -1
Thus ¢, =5/2, ¢, =-3/2, and x(t)z%{ Je‘“ —%{ }ez’.
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2. From the eigendata given, the eigenfunctions for the differential equation x’ = Ax are Vle_3’ and

v,e ", The general solution of x"= Ax has the form

-1 Ly
c e +c,| e
- . 2 .
The initial condition x(0) ZL} determines ¢, and ¢, :
q - 6_3(0)+62 ! 'O = 2
1 1 3
-1 1 2 I 0 12
I 1 3] [0 1 5/2

1|-1 1
Thus ¢, =1/2, ¢, =5/2, and X(t) =— e +§ e’
21 1 211

2 3
3. A:{ | 2},det(A—M):X2 —1=(h—-1)(A+1)=0. Eigenvalues: 1 and —1.
1
1

30 I 3 0 ) -3

For A = 1: ~ , S0 x; =-3x, with x, free. Take x, =1 and v, = .
-1 -3 0] [0 0 O 1
3 30 1 10 _ -1

ForA=-1: ~ , 80 x; =—x, with x, free. Take x, =1 and v, = .
-1 -1 0] |0 0 O 1

3
For the initial condition x(0) :{2}, find ¢, and ¢, such that ¢, v, +¢,v, =x(0):
[v v x(O)]— -3 -1 3] |1 0 =52
b 1 1 2] [0 1 992
51731 .97 &
Thus ¢, =-5/2,¢, =9/2, and x(t) =—= | e += e,

2 21 1

Since one eigenvalue is positive and the other is negative, the origin is a saddle point of the
dynamical system described by x’= Ax. The direction of greatest attraction is the line through v,

and the origin. The direction of greatest repulsion is the line through v, and the origin.
-2 -5 5 .
4. A= : Nt det(A—Al)=A" =21 -3=(A+1(A—3)=0. Eigenvalues: —1 and 3.

-5 -5 0 1 1 0 ) -1
For A = 3: ~ , S0 x; =—x, with x, free. Take x, =1 and v, = Ll

I 1 0] [0 O O
-1 -5 0 1 5 0 ) =5
ForA=-1: ~ , S0 x; ==5x, with x, free. Take x, =1 and v, = .
I 5 0] [0 0 O 1
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3
For the initial condition x(0) = {2}, find ¢, and ¢, such that ¢,;v, +¢,v, =x(0):

[ 0]- -1 =5 3] [1 0 134
i o XU 2T 0 1 s

13| -1 505
Thus ¢, =13/4,c, =—5/4, and X(t)zx{ Je3t —Z{ Je".

Since one eigenvalue is positive and the other is negative, the origin is a saddle point of the
dynamical system described by x’= Ax. The direction of greatest attraction is the line through v,

and the origin. The direction of greatest repulsion is the line through v, and the origin.
7 -1 ) .
5 A= 3 a3l det (A—Al)=4"—-10A+24 =(h—4)(L—6)=0. Eigenvalues: 4 and 6.

3 -1 0 1 -1/3 0 _ 1
For A =4: 3 ~ ol so x; =(1/3)x, with x, free. Take x, =3 and v, = 3l

-1 0] |O 0
I -1 0 I -1 0 , 1
For A = 6: ~ , S0 x, =x, with x, free. Take x, =1 and v, =| |.
3 3 0 0 0 O 1

3
2

[ (0)]_1 1 3] [1 0 -2
i 2 XU 2T 1 72

111 711
Thus ¢, =-1/2,¢, =7/2, and X(t)z—EL’}e‘" +—{ }e&.

For the initial condition x(0) :{ }, find ¢, and ¢, such that ¢, v, +¢,v, =x(0):

211

Since both eigenvalues are positive, the origin is a repellor of the dynamical system described by
x’ = Ax. The direction of greatest repulsion is the line through v, and the origin.

1 2
6. A={3 4}, det (A=A =22 +3A+2=(+D(Ar+2)=0. Eigenvalues: —1 and —2.

3 20 I =2/3 0 ) 2
For A = -2: ~ , 80 x; =(2/3)x, with x, free. Take x, =3 and v, =| |.

3 -2 0] |0 0 0 3

2 20 1 -1 0 _ 1
ForA=-1: ~ , 80 x; =x, with x, free. Take x, =1 and v, =| |.

3 3 010 0 O 1

3
For the initial condition x(0) :{2}, find ¢, and ¢, such that ¢,v, +c,v, =x(0):

: (0)1_213~10—1
i 2 XU o701 s
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Th _ _ — 2 —2t 1 —t
us ¢, =—1,¢, =5, and x(f) = 3 e +5 : e

Since both eigenvalues are negative, the origin is an attractor of the dynamical system described by
x’ = Ax. The direction of greatest attraction is the line through v, and the origin.

7 -1 1 1
. From Exercise 5, A= {3 3}, with eigenvectors v, = {3} and v, = L} corresponding to
. . , , 1 1
eigenvalues 4 and 6 respectively. To decouple the equation X" = Ax, set P=[v, v,]= 3 1 and let
4 0 o 1 o . ,
D= 0 6l sothat A=PDP~ and D =P AP. Substituting x(#) = Py(#) into X'= Ax we have

%(Py) = A(Py)= PDP"'(Py) = PDy

Since P has constant entries, < (Py)= P(% (y)), so that left-multiplying the equality

t

P(L(y))=PDy by P yields y'=Dy, or

P’(OFF O}P(t)}
@] [0 6]y

1 2 1
. From Exercise 6, A= {3 4}, with eigenvectors v, = {3} and v, =L} corresponding to

2 1
eigenvalues —2 and —1 respectively. To decouple the equation x"= Ax, set P=[V1 V2J=|:3 J

and let D ={_(2) _ﬂ, sothat A=PDP™' and D= P 'AP. Substituting x(¢) = Py(¢) into X' = Ax
we have

<(Py)= A(PY) = PDP"(Py) = PDy
@

P(%(y))=PDy by P! yields y’ = Dy, or
{yl’(t)}:r OHW)}
0] 0 -1y,

-3 2 1-i
{ } An eigenvalue of A is —2 +i with corresponding eigenvector v :{ ] } The

Since P has constant entries, < (Py) = P(%(y)), so that left-multiplying the equality

. A

-1 -1

complex eigenfunctions ve" and ve” form a basis for the set of all complex solutions to x’ = Ax.
The general complex solution is

1-i ) 1+ ;
c{ | i|€(—2+t)t+cz{ | :|e(—2—z)t
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where ¢, and ¢, are arbitrary complex numbers. To build the general real solution, rewrite ve"""

as:
o [1=i o [1=i ,
ve 2 = | }e’z’e” ={ | }e‘z’ (cost +isint)

cost—icost+isint—i’ sint} Y
= e

cost+isint

cost sint

[cost+sint | sint—cost
— e—21+l e—zt

The general real solution has the form
cost+sint | _,, sinf—cost | _,,
q e +c, . e
cost sint

where ¢, and ¢, now are real numbers. The trajectories are spirals because the eigenvalues are
complex. The spirals tend toward the origin because the real parts of the eigenvalues are negative.

-2 1 —

eigenfunctions ve™ and Ve form a basis for the set of all complex solutions to x’= Ax. The
general complex solution is

¢ F +2i:|e(2+i)t +c, {1 _2’}6(2—1');

where ¢, and ¢, are arbitrary complex numbers. To build the general real solution, rewrite ve

3 1 1+i
A ={ } An eigenvalue of A is 2 +i with corresponding eigenvector v :{ 5 } The complex

(2+i)t

as:

RN [ 1+i ,
ve? = 5 e = ) e* (cost +isint)

cost+icost+isint + i’ sint} 2
e

—2cost—2isint

[cost—sint 5, .|sint+cost| ,,
= e’ +i ) e
—2cost —2sint

The general real solution has the form
cost—sint | ,, sint+cost | ,,
q e’ +c, . e
—2cost —2sint
where ¢, and ¢, now are real numbers. The trajectories are spirals because the eigenvalues are
complex. The spirals tend away from the origin because the real parts of the eigenvalues are positive.

-3+3i
. The
2
complex eigenfunctions ve"' and Ve form a basis for the set of all complex solutions to x’ = Ax.

The general complex solution is

-3 -9
:{ 3}. An eigenvalue of A is 3i with corresponding eigenvector v :{
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) {—3 ;— 3"}(3“‘ ‘o, {—32— 3’.}(‘3"”

where ¢, and ¢, are arbitrary complex numbers. To build the general real solution, rewrite ve®"

as:

Gip | =3+30 ..
ve ' = 5 (cos3t +isin3t)

+1

2sin 3t

3 —3cos 3t —3sin 3¢
- 2cos 3t

{—3 sin 37 + 3cos 31

The general real solution has the form

—3cos3t —3sin 3t —3sin 3¢+ 3cos 3¢
! 2cos 3t 2 2sin 3¢

where ¢, and ¢, now are real numbers. The trajectories are ellipses about the origin because the real
parts of the eigenvalues are zero.

-7 10 3—i
:{ 4 5}. An eigenvalue of A is —1+ 2i with corresponding eigenvector v :{ 5 } The
complex eigenfunctions ve and Ve form a basis for the set of all complex solutions to x"= Ax.

The general complex solution is

¢ F;’}e(—mm +c, F;l}e(—mm

where ¢, and ¢, are arbitrary complex numbers. To build the general real solution, rewrite ve'™"**""

as:

) 3—i
ye~1H2r { 5 }e‘t (cos2t +isin2t)

3cos2t+sin2t | _, | 3sin2t—cos2t| _,
= e +i . e
2cos 2t 2sin 2t

The general real solution has the form

3cos2t+sin2t | _, 3sin2t—cos2t | _,

e +c e
! 2cos2t g 2sin 2t

where ¢, and ¢, now are real numbers. The trajectories are spirals because the eigenvalues are
complex. The spirals tend toward the origin because the real parts of the eigenvalues are negative.

4 -3 1+i
A= {6 2}. An eigenvalue of A is 1+ 3i with corresponding eigenvector v :{ 5 } The

complex eigenfunctions ve and Ve form a basis for the set of all complex solutions to x"= Ax.

The general complex solution is

¢ F;"}e(mm +c, |:1;i:|e(1—3i)t
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where ¢, and ¢, are arbitrary complex numbers. To build the general real solution, rewrite ve"*>"’

as:

. 1+
veI+301 :{ ) }e’(cos3t+isin3t)

cos3t—sin3t| , |sin3t+cos3t| ,
= l e
2cos 3t 2sin 3t

The general real solution has the form

cos3t—sin3t | , sin3t +cos3t | ,
¢ e +c, ) e
2cos 3t 2sin 3¢t

where ¢, and ¢, now are real numbers. The trajectories are spirals because the eigenvalues are
complex. The spirals tend away from the origin because the real parts of the eigenvalues are positive.

-2 1
:{ 2}. An eigenvalue of A is 2i with corresponding eigenvector v :{ 4

i
g } The complex

eigenfunctions ve* and Ve form a basis for the set of all complex solutions to x’= Ax. The
general complex solution is

[l

where ¢, and ¢, are arbitrary complex numbers. To build the general real solution, rewrite ve*”’

as:

) 1—1i
ve?! ={ A l} (cos2t +isin2t)

cos 2t +sin 2¢ e sin 2¢ — cos 2t
4cos2t 4sin 2t

The general real solution has the form

cos 2t +sin 2t N sin 2t — cos 2t
c
4cos2t 4sin 2t

where ¢, and ¢, now are real numbers. The trajectories are ellipses about the origin because the real

parts of the eigenvalues are zero.

-8 -12 -6

[M] A=| 2 1 2 |. The eigenvalues of A are:
7 12 5

ev=eig(A)=

1.0000

-1.0000

-2.0000

nulbasis (A-ev(l) *eye(3)) =
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-1.0000
0.2500
1.0000
4
so that v, =| 1
4
nulbasis (A-ev(2) *eye(3)) =
-1.2000
0.2000
1.0000
-6
sothat v, =| 1
5
nulbasis (A-ev(3)*eye(3))=
-1.0000
0.0000
1.0000
-1
sothat v;=| 0
1
4 -6 -1
Hence the general solution is x(f)=¢,| 1|e' +c,| 1|e” +¢;| 0[e™. The origin is a saddle point.
4 5 1

A solution with ¢, =0 is attracted to the origin while a solution with ¢, =¢; =0 is repelled.
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-6 -11 16
16. [M] A=| 2 5 —4|. The eigenvalues of A are:
-4 -5 10
ev=eig(A)=
4.0000
3.0000
2.0000
nulbasis (A-ev(l) *eye(3)) =
2.3333
-0.6667
1.0000
7

so that v, =| -2
3

nulbasis (A-ev(2) *eye(3)) =
3.0000
-1.0000
1.0000
3
so that v, = -1
1
nulbasis (A-ev(3) *eye(3)) =
2.0000
0.0000
1.0000
2
so that v, =|0
1

7 3 2
Hence the general solution is x(¢) =c¢,| =2 |¢" +¢,| =1 |¢” +¢;| 0 |¢*. The origin is a repellor,
3 1 1

because all eigenvalues are positive. All trajectories tend away from the origin.
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17. [M] A=|-11 -23 —9|. The eigenvalues of A are:

6 15 4
ev=eig(A)=
5.0000 + 2.00001
5.0000 - 2.00001
1.0000
nulbasis (A-ev (1) *eye(3)) =
7.6667 - 11.33331
-3.0000 + 4.66671
1.0000
23-34i
so that v, =| -9 +14i
3
nulbasis (A-ev(2)*eye(3))=
7.6667 + 11.33331
-3.0000 - 4.66671

1.0000

23+34i
so that v, =| -9—-14i

3

nulbasis (A-ev(3)*eye(3)) =
-3.0000
1.0000
1.0000

-3
so that v, =| 1

1

Hence the general complex solution is
23-34i 23+34i

X(t)=c,| -9+14i | +c,| —9—14i [e57 + ¢,

3 3

Rewriting the first eigenfunction yields

23-34i 23cos 2t +34sin 2t

-3

1|é'

1

5.7

23sin 2t — 34 cos 2t

Solutions

—9+14i [ (cos2t +isin2t) =| —9cos 2t —14sin2¢ | +i| —9sin 27 + 14 cos 2t |e™

3

Hence the general real solution is
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23cos 2t +34sin 2t 23sin 2t — 34 cos 2t -3
X(t)=c¢;| —9cos 2t —14sin2t |e” +c,| —9sin 2t +14cos2t [ +c;| 1 |e'
3cos2t 3sin 2¢ 1

where ¢, c,, and ¢, are real. The origin is a repellor, because the real parts of all eigenvalues are
positive. All trajectories spiral away from the origin.

53 =30 -2
18. [M] A=|90 -52 -3|. The eigenvalues of A are:
20 -10 2

ev=eig(A)=

-7.0000

5.0000 + 1.0000i

5.0000 - 1.00001i
nulbasis (A-ev (1) *eye(3)) =

0.5000
1.0000
0.0000
1
so that v, =| 2
0

nulbasis (A-ev(2) *eye(3)) =
0.6000 + 0.20001

0.9000 + 0.30001

1.0000
6+2i
so that v, =| 9+3i
10

nulbasis (A-ev (3) *eye(3)) =
0.6000 - 0.20001
0.9000 - 0.30001

1.0000
6—-2i
so that v, =| 9-3i
10
Hence the general complex solution is
1 6+2i 6—2i
xX(H)=¢|2 e+ )| 9+3i o5 4 ;| 9-3i o5
0 10 10
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Rewriting the second eigenfunction yields
6+2i 6cost —2sint 6sint + 2cost
9+3i | (cost+isint)=| 9cost —3sins |€> + i| 9sins +3cost |e

10 10cost 10sint

Hence the general real solution is
1 6cost —2sint 6sint +2cost
X(1)=c,| 2 |e”" +c,| 9cost —3sint e +c;| 9sint +3cost |e
0 10cost 10sint

where ¢, c,, and ¢; are real. When ¢, =c¢; =0 the trajectories tend toward the origin, and in other
cases the trajectories spiral away from the origin.

[M] Substitute R, =1/5, R, =1/3,C, =4, and C, =3 into the formula for A given in Example 1, and
use a matrix program to find the eigenvalues and eigenvectors:

-2 3/4 1 -3
A= , M==5:v,=| |, h,=-25:v,=
1 -1 2 2

-3

1
The general solution is thus x(7) =¢, {2} e +e, { 5

4
:|€_2'51. The condition x(0) :L} implies that

1 3jc 4
eI By a matrix program, ¢, =5/2 and ¢, =-1/2, so that
2 2]lg 4

{vl (t)} =x(1) 22{1}_5, —l{_?’} e
v, (1) 22 2] 2

[M] Substitute R, =1/15,R, =1/3,C, =9, and C, =2 into the formula for A given in Example 1,
and use a matrix program to find the eigenvalues and eigenvectors:

-2 13 1 -2
A= s, M==lv,=| |, A, =-25:v,=
3/2 =3/2 3 3

1 2 3
The general solution is thus x(f) =¢, {3} e’ + c, { 3} ¢, The condition x(0) = L} implies

1 2]c 3
that {3 M 1}2{ } By a matrix program, ¢, =5/3 and ¢, =-2/3, so that

3l |3
t 1 -2
v (1) = x(t) _3 o 2 o 25t
v, (1) 313 3l 3
[M] A= {_5 _5}. Using a matrix program we find that an eigenvalue of A is -3 + 6/ with

+ 61
corresponding eigenvector v :{ 5 } The conjugates of these form the second

eigenvalue-eigenvector pair. The general complex solution is
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x(t)=¢ {2 ;61} o(3HONE 4 ¢, {2 _56118(—3—61'”

where ¢, and ¢, are arbitrary complex numbers. Rewriting the first eigenfunction and taking its real
and imaginary parts, we have

. 2+ 6i
ve! 3O — { 5 l} e (cos 6t + i sin 6¢)
2cos6t —6sin6r | ;| 2sin6r+6c0s67 | _,,
= e +1 . e
5cos 6t 5sin 6¢

The general real solution has the form
2co0s 6t — 6sin 61 3 {2 sin 67 + 6.¢cos 61 Y
e +c, e

)=
x(1) Cl{ 5cos 6t 5sin 6¢

0
where ¢, and ¢, now are real numbers. To satisfy the initial condition x(0) :{15} we solve

2 6 0
G 5 +c, ol=11s to get ¢, =3,c, =—1. We now have

i (1) 2cos6t—6sin6r | ;| 2sin6f +6c0s6r | —20sin 6¢ 3
=x(1)=3 e - : e = , ¢
ve(t) 5cos 6t 5sin 6¢ 15cos 61 —55in 6¢

[M] A={

4 8}' Using a matrix program we find that an eigenvalue of A is —.4 +.8i with

—1-2i
corresponding eigenvector v :{ i } The conjugates of these form the second eigenvalue-

eigenvector pair. The general complex solution is
—-1-2i . —1+2i .
_ (—4+8i) (—4-8i)
X(t)=c e +c e
e e

where ¢, and ¢, are arbitrary complex numbers. Rewriting the first eigenfunction and taking its real
and imaginary parts, we have

. —-1-2i
Ve(—.4+,81)t — |: .

{—cos.8t+25in.8t} 4 ,[—sin.St—Zcos.St} _ar
e +i e’

c0s.8¢t

} e~ (cos.8¢ + isin .8¢)

sin .8t

The general real solution has the form

—C0s.8¢+2sin.8¢ | _,, —sin.8r —2¢co0s.8¢ | _,,
e +c, e’
cos.8¢

X(1)=¢ {

sin.8¢
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0
where ¢, and ¢, now are real numbers. To satisfy the initial condition x(0) =Lz}, we solve

-1 -2 0
Cl{ J+c{ 0}:[12} to get ¢, =12,¢, =—6. We now have

i (1) —C0s.8¢+2sin.8¢ | _,, —sin.8t —2co0s.81 | _,, 30sin.8¢ 4t
=x(1)=12 e -6 ] e = ) e
Ve (1) c0s.8¢ sin .8t 12cos.8¢ — 65sin . 8¢

5.8 SOLUTIONS

1. The vectors in the given sequence approach an eigenvector v,. The last vector in the sequence,
X, :{ 3326} is probably the best estimate for v,. To compute an estimate for A,, examine

[4.9978
*11.6652
of A, is 4.9978.

}. This vector is approximately A,v,. From the first entry in this vector, an estimate

2. The vectors in the given sequence approach an eigenvector v,. The last vector in the sequence,
-2520| . . . .
X, = ] , is probably the best estimate for v,. To compute an estimate for A;, examine

| -1.2536
| 5.0064
estimate of A, is 5.0064.

}. This vector is approximately A,v,. From the second entry in this vector, an

3. The vectors in the given sequence approach an eigenvector v,. The last vector in the sequence,

5188
X, ={ ) }, is probably the best estimate for v,. To compute an estimate for A;, examine

9075
of A, is .9075.

4594
Ax, :{ } This vector is approximately A,v,. From the second entry in this vector, an estimate

4. The vectors in the given sequence approach an eigenvector v,. The last vector in the sequence,

X, ={ 7502}, is probably the best estimate for v,. To compute an estimate for A;, examine

_[-4012
* 1 -3009

of A, is —.4012.

}. This vector is approximately A,v,. From the first entry in this vector, an estimate
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24991

5. Since A’x =
-31241

} is an estimate for an eigenvector, the vector

1 24991 =7999 | . , o :
=—— = is a vector with a 1 in its second entry that is close to an
31241| -31241
. . . . 4.0015
eigenvector of A. To estimate the dominant eigenvalue A, of A, compute Av = 50000 | From the

second entry in this vector, an estimate of A, is —5.0020.

2045 1 [-2045] [-4996]
4093 4093| 4093 | |

a vector with a 1 in its second entry that is close to an eigenvector of A. To estimate the dominant
—-2.0008
4.0024

. 5 . . .
. Since A’x :{ } is an estimate for an eigenvector, the vector v=

eigenvalue A, of A, compute Av :{ } From the second entry in this vector, an estimate of

A, is 4.0024.

6 7 1
g 5}, X, = {0} The data in the table below was calculated using Mathematica, which

carried more digits than shown here.

. [M] Az{

5
9998
1
12.9990
12.9987

12.9990

2 3 4

1 9932 1
9565 1 19990
m 115 12.6957 12.9592 12.9927
8 11.0 12.7826 12.9456 12.9948

8 12.7826 12.9592 12.9948

k

Ax,

11.5

My

The actual eigenvalue is 13.

2 1
4 5
carried more digits than shown here.

1
8. [M] A :{ }, X, = {0} The data in the table below was calculated using Mathematica, which

k

o

1

2

3

4

5

|

O =

| |

] ] 5] b

o

AXx,

| —
EE N \S)
L 1

|

il

1.5714
6.1429

1.5116
6.0233

1.5019
6.0039 6.0006

1.5003

2

N

7

6.1429

6.0233

6.0039

6.0006

The actual eigenvalue is 6.
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8 0 12 1
9. [M] A=|1 -2 1|,x,=|0|. The data in the table below was calculated using Mathematica,
0 30 0
which carried more digits than shown here.
k 0 1 2 3 4 5 6
(1] C1 ] 1 1 1 1 1
X, 0 125 .0938 .1004 .0991 .0994 .0993
10 | 0 .0469 .0328 .0359 .0353 .0354
(8] [ 8] 8.5625 8.3942 8.4304 8.4233 8.4246
Ax, 1 75 .8594 .8321 .8376 .8366 .8368
10| 375 ] 2812 3011 2974 2981 2979
yA 8 8 8.5625 8.3942 8.4304 8.4233 8.4246

Thus s =8.4233 and u, =8.4246. The actual eigenvalue is (7++/97)/2, or 8.42443 to five
decimal places.

1 2 =2 1
10. [M] A=|1 1 9|,x, =| 0|. The data in the table below was calculated using Mathematica,
0 1 9 0

which carried more digits than shown here.

k 0 1 2 3 4 5 6
1] 1] 1 3571 0932 0183 .0038

X, 0 1 6667 1 1 1 1
10] K 3333 7857 9576 9904 9982
1] 3] 1.6667 7857 .1780 0375 .0075
AX, 1 2 4.6667 8.4286 9.7119 9.9319 9.9872
10| 1] 3.6667 8.0714 9.6186 9.9136 9.9834
m 1 3 4.6667 8.4286 9.7119 9.9319 9.9872

Thus 15 =9.9319 and u, =9.9872. The actual eigenvalue is 10.

1
5 2}, X, = {0} The data in the table below was calculated using Mathematica, which

carried more digits than shown here.

{5 2
11. [M] A=

k 0 1 2 3 4

w3 P A P I PN

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.




344 CHAPTER 5

* Eigenvalues and Eigenvectors

A 5 5.8 5.9655 5.9942 5.9990
X
¢ 2 2.8 2.9655 2.9942 2.9990
Hy 5 5.8 5.9655 5.9942 5.9990
R(xy) 5 5.9655 5.9990 5.99997  5.9999993

The actual eigenvalue is 6. The bottom two columns of the table show that R(x,) estimates the
eigenvalue more accurately than g, .

-3 1
12. [M] A :{ 5 2}, X, = {O} The data in the table below was calculated using Mathematica,
which carried more digits than shown here.
k 0 1 2 3 4
1 1 1 1 1
X
, 0 —.6667 —-4615 —.5098 -.4976
4 -3 -4.3333 -3.9231 —4.0196 -3.9951
X
¢ 2 2.0000 2.0000 2.0000 2.0000
y7A -3 —4.3333 -3.9231 -4.0196 -3.9951
R(x;) -3 -3.9231 -3.9951 -3.9997 —3.99998

13.

14.

15.

16.

The actual eigenvalue is —4. The bottom two columns of the table show that R(x, ) estimates the
eigenvalue more accurately than g, .

If the eigenvalues close to 4 and —4 have different absolute values, then one of these is a strictly
dominant eigenvalue, so the power method will work. But the power method depends on powers of
the quotients A,/A, and A,/A, going to zero. If |A,/A, | is close to 1, its powers will go to zero

slowly, and the power method will converge slowly.

If the eigenvalues close to 4 and —4 have the same absolute value, then neither of these is a strictly
dominant eigenvalue, so the power method will not work. However, the inverse power method may
still be used. If the initial estimate is chosen near the eigenvalue close to 4, then the inverse power
method should produce a sequence that estimates the eigenvalue close to 4.

Suppose Ax=2Ax, with x # 0. For any o, Ax—alx=(A—)x. If « is not an eigenvalue of A, then
A— ol isinvertible and A —« is not 0; hence

x=(A-al)'(A-a)x and A—a) 'x=(A-al)'x

This last equation shows that X is an eigenvector of (A—od)™" corresponding to the eigenvalue
A-a)".

Suppose that 4 is an eigenvalue of (A—ad)™" with corresponding eigenvector x. Since
(A-al)'x=pux,
x = (A—al)(ux) = A(ux) — ()(x) = U(AX) - ox
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Solving this equation for Ax, we find that

sz[lj(a,ux+x) :(0{+ljx
H H

5.8

Thus A=a+ (/1) is an eigenvalue of A with corresponding eigenvector x.

10 -8 -4 1

17. [M] A=|-8 13
—4 5

Mathematica, which carried more digits than shown here.

4 |,x,=| 0|, =3.3. The data in the table below was calculated using

4 0

k 0 1 2
1 1 1
X, 0 7873 7870
0 0908 0957
26.0552 47.1975 47.1233
¥, 20.5128 37.1436 37.0866
2.3669 45187 45083
2 26.0552 47.1975 47.1233
v 3.3384 332119 3.3212209

Thus an estimate for the eigenvalue to four decimal places is 3.3212. The actual eigenvalue is

(25-+/337)/2, or 3.3212201 to seven decimal places.

g8 0 12

18. [M] A=|1 -2

1

0

1[,x,=|0|,a=-1.4. The data in the table below was calculated using
0 30

Mathematica, which carried more digits than shown here.

k 0 1 2 3 4
1 1 1 1 1
X, 0 .3646 3734 3729 3729
0 —-.7813 —.7855 -.7854 -.7854
40 -38.125 —41.1134 —-40.9243 —40.9358
\ 14.5833 -14.2361 —-15.3300 —-15.2608 —-15.2650
-31.25 29.9479 32.2888 32.1407 32.1497
M 40 —38.125 —41.1134 -40.9243 —40.9358
Vi -1.375 -1.42623 —1.42432 —1.42444 —1.42443
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Thus an estimate for the eigenvalue to four decimal places is —1.4244. The actual eigenvalue is
(7—=~97)/2, or —1.424429 to six decimal places.

10 7 8 7 1
7 5 6 5 0
19. [M] A= Xo=| |
8 6 10 9 0
7 5 9 10 0
(a) The data in the table below was calculated using Mathematica, which carried more digits than
shown here.
k 0 1 2 3
1 1 988679 | 961467 |
0 7 709434 691491
K 0 3 1 1
0 i 1.932075 | .942201 |
10 26.2 [29.3774]  [29.0505 |
7 18.8 21.1283 20.8987
Ax; 26.5 30.5547 30.3205
7 247 | 28.78387 | | 28.6097 |
H 10 26.5 30.5547 30.3205
k 4 5 6 7
958115 [.957691]  [.957637] [.957630 ]
.689261 .688978 .688942 .688938
e 1 1 1 1
| .943578 | | .943755 | .943778 | |.943781 |
[29.0110] [29.0060 | [29.0054 | [29.0053
20.8710 20.8675 20.8671 20.8670
A%y 30.2927 30.2892 30.2887 30.2887
| 28.5889 | | 28.5863 | | 28.5859 | | 28.5859 |
H 30.2927 30.2892 30.2887 30.2887

Thus an estimate for the eigenvalue to four decimal places is 30.2887. The actual eigenvalue is
30.2886853 to seven decimal places. An estimate for the corresponding eigenvector is

957630
.688938

) .
943781
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(b) The data in the table below was calculated using Mathematica, which carried more digits than

shown here.
k 0 1 2 3 4
1 [—.609756 | —.604007] [-.603973] [-.603972]
0 1 1 1 1
Xk 0 —.243902 —-.251051 —.251134 —251135
0 | 146341 | 148899 | | .148953 | | .148953 |
25 [—59.5610 ] —59.5041| [-59.5044] [-59.5044 ]
41 98.6098 98.5211 98.5217 98.5217
Y 10 —24.7561 —24.7420 —24.7423 —24.7423
-6 | 14.6829 | 14,6750 | 14.6751| | 14.6751]
)7 41 98.6098 08.5211 98.5217 98.5217
v, —0243902 0101410 0101501 0101500 0101500

Thus an estimate for the eigenvalue to five decimal places is .01015. The actual eigenvalue is

.01015005 to eight decimal places. An estimate for the corresponding eigenvector is

—.603972
1
-251135 |
.148953
1 2 3 2
2 12 13 11 0
20. [M] A= X0 =| |-
-2 3 0 2 0
4 5 7 2 0
(a) The data in the table below was calculated using Mathematica, which carried more digits than
shown here.
k 0 1 2 3 4
1 25 [.159091] [.187023] [.184166 |
0 .5 1 1 1
X 0 -5 272727 170483 .180439
0 1 | 181818 | | .442748 | |.402197 |
1 1.75 [3.34091] [3.58397] [3.52988]
A 2 11 17.8636 19.4606 19.1382
R -2 3 3.04545 3.51145 3.43606
4 2 17.90909 | |7.82697] |7.80413 ]
o 4 11 17.8636 19.4606 19.1382
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k 5 6 7 8 9
[.184441] [.184414 ] 184417 | [.184416 | [.184416 |

1 1 1 1 1
Xk 179539 179622 179615 179615 179615
| 407778 | 407021 | 407121 | | 407108 | 407110 |
[3.53861 | [3.53732] [3.53750 ] [3.53748 | [3.53748 ]
19.1884 19.1811 19.1822 19.1820 19.1820
AX, 3.44667 3.44521 3.44541 3.44538 3.44539
| 7.81010 | | 7.80905 | | 7.80921 | | 7.80919 | | 7.80919 |
7 19.1884 19.1811 19.1822 19.1820 19.1820

Thus an estimate for the eigenvalue to four decimal places is 19.1820. The actual eigenvalue is
19.1820368 to seven decimal places. An estimate for the corresponding eigenvector is

.184416
1
179615 |
407110
(b) The data in the table below was calculated using Mathematica, which carried more digits than
shown here.
k 0 1 2
1 1] o1
0 226087 222577
* 0 —.921739 —917970
0 | 660870 | | 660496 |
115 [ 81.7304 [ 81.9314]
26 18.1913 18.2387
Vi ~106 ~75.0261 752125
76 | 53.9826 | | 54.1143 ]
7 115 81.7304 81.9314
v, .00869565 .0122353 .0122053

Thus an estimate for the eigenvalue to four decimal places is .0122. The actual eigenvalue is
.01220556 to eight decimal places. An estimate for the corresponding eigenvector is

1
222577
-917970 |
660496
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0
2

41 [.327[.2567 [.20487 [.16384
1171.021].004 '] .0008 || .00016

Notice that A’x is approximately .8(A*x).

.8 5
21. (a) A:{O },XZ{S}. Here is the sequence Afx for k=1,...5:

Conclusion: If the eigenvalues of A are all less than 1 in magnitude, and if x#0, then A*x is
approximately an eigenvector for large k.

1 0 5
(b)A:{O 8})(:{5} Here is the sequence Afx for k=1,...5:

A

S
Notice that A*x seems to be converging to { 0}.

Conclusion: If the strictly dominant eigenvalue of A is 1, and if x has a component in the
direction of the corresponding eigenvector, then {A*x} will converge to a multiple of that
eigenvector.

0 2

I

Notice that the distance of A*x from either eigenvector of A is increasing rapidly as k increases.

8 0 ) ) .
c. A= ,X= 5| Here is the sequence A"x for k=1,...5:

Conclusion: If the eigenvalues of A are all greater than 1 in magnitude, and if X is not an

eigenvector, then the distance from A*x to the nearest eigenvector will increase as k — oo.

Chapter 5 SUPPLEMENTARY EXERCISES

1. a. True. If A is invertible and if Ax=1-x for some nonzero x, then left-multiply by A~ to obtain
X = A_lx, which may be rewritten as A7'x =1-x. Since x is nonzero, this shows 1 is an
eigenvalue of A™".

b. False. If A is row equivalent to the identity matrix, then A is invertible. The matrix in Example 4
of Section 5.3 shows that an invertible matrix need not be diagonalizable. Also, see Exercise 31
in Section 5.3.

¢. True. If A contains a row or column of zeros, then A is not row equivalent to the identity matrix
and thus is not invertible. By the Invertible Matrix Theorem (as stated in Section 5.2), 0 is an
eigenvalue of A.
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ga

False. Consider a diagonal matrix D whose eigenvalues are 1 and 3, that is, its diagonal entries
are 1 and 3. Then D? is a diagonal matrix whose eigenvalues (diagonal entries) are 1 and 9. In
general, the eigenvalues of A” are the squares of the eigenvalues of A.

True. Suppose a nonzero vector x satisfies Ax = Ax, then

A’x = A(AX) = A(Ax) = AAx = I°x

This shows that x is also an eigenvector for A*

True. Suppose a nonzero vector X satisfies Ax = Ax, then left-multiply by A™" to obtain
x=A""(Ax)=AA7'x. Since A is invertible, the eigenvalue A is not zero. So A'x=A"'x, which
shows that x is also an eigenvector of A™".

False. Zero is an eigenvalue of each singular square matrix.

True. By definition, an eigenvector must be nonzero.
2 0 1 0 , :
False. Let A= 0 2 then e, = 0 and e, = ) are eigenvectors of A for the eigenvalue 2,

and they are linearly independent.

True. This follows from Theorem 4 in Section 5.2

. False. Let A be the 3x3 matrix in Example 3 of Section 5.3. Then A is similar to a diagonal

matrix D. The eigenvectors of D are the columns of I,, but the eigenvectors of A are entirely
different.

2.0 1 0
False. Let A= {O 3}. Then e, :LJ and e, = L} are eigenvectors of A, but e, +e, is not.

(Actually, it can be shown that if two eigenvectors of A correspond to distinct eigenvalues, then
their sum cannot be an eigenvector.)

False. All the diagonal entries of an upper triangular matrix are the eigenvalues of the matrix
(Theorem 1 in Section 5.1). A diagonal entry may be zero.

True. Matrices A and A" have the same characteristic polynomial, because
det(A" —AI)=det(A—AI)" =det(A—Al), by the determinant transpose property.

False. Counterexample: Let A be the 5x5 identity matrix.

p. True. For example, let A be the matrix that rotates vectors through /2 radians about the origin.

Then Ax is not a multiple of x when X is nonzero.

False. If A is a diagonal matrix with O on the diagonal, then the columns of A are not linearly
independent.

True. If Ax=Ax and Ax=A4,x, then 4x=Ax and (4, —4,)x=0. If x#0, then 4 must equal
A,.
False. Let A be a singular matrix that is diagonalizable. (For instance, let A be a diagonal matrix

with O on the diagonal.) Then, by Theorem 8 in Section 5.4, the transformation x> Ax is

represented by a diagonal matrix relative to a coordinate system determined by eigenvectors of
A.
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t. True. By definition of matrix multiplication,
A=Al =Ale, e, - e, ]=[Ae Ae2 - Ae |

n

If Ae; =de; for j=1,...,n, then A is a diagonal matrix with diagonal entries d,...,d

u. True.If B= PDPfl, where D is a diagonal matrix, and if A= QBQ_I, then
A=Q(PDP"Q™"' =(QP)D(QP)™", which shows that A is diagonalizable.
v. True. Since B is invertible, AB is similar to B(AB)B‘I, which equals BA.

w. False. Having n linearly independent eigenvectors makes an nxn matrix diagonalizable (by the
Diagonalization Theorem 5 in Section 5.3), but not necessarily invertible. One of the eigenvalues
of the matrix could be zero.

x. True. If A is diagonalizable, then by the Diagonalization Theorem, A has # linearly independent

eigenvectors v,,...,v, in R". By the Basis Theorem, {v,,...,v,} spans R". This means that

each vector in R" can be written as a linear combination of v,,...,v

ne

2. Suppose Bx#0 and ABx =Ax for some A.Then A(Bx)=Ax. Left-multiply each side by B and

obtain BA(Bx) = B(Ax) = M(Bx). This equation says that Bx is an eigenvector of BA, because
Bx #0.

. a. Suppose Ax=Ax, with x#0. Then (5] — A)x=5x— Ax=5x—Ax=(5-A)x. The eigenvalue
is 5—A.

b. (51 —=3A+ A*)X =5x —3Ax + A(AX) = 5x — 3(AX) + A*x = (5= 3L+ A?)x. The eigenvalue is
5-30+A%

. Assume that Ax = Ax for some nonzero vector x. The desired statement is true for m =1, by the
assumption about A. Suppose that for some k >1, the statement holds when m = k. That is, suppose

that A¥x = A*x. Then A**'x = A(A*x) = A(A1*x) by the induction hypothesis. Continuing,
Ax = 2* Ax = 2*'x, because x is an eigenvector of A corresponding to A. Since X is nonzero, this

equation shows that **' is an eigenvalue of A with corresponding eigenvector X. Thus the
desired statement is true when m =k +1. By the principle of induction, the statement is true for each
positive integer m.

. Suppose Ax =Ax, with x #0. Then
p(AX=(col +c,A+c,A” +...+ ¢, A")x

=X+ AX+c, A’X +...+ ¢, A"x

=X+ AX + A X+, e, V'x = p(A)X

So p(A) is an eigenvalue of p(A).

6. a. If A=PDP™', then A* =PD*P™', and

B=5I-3A+A>=5PIP' =3PDP™"' + PD* P!
= P(51-3D + D) P!

Since D is diagonal, so is 5 —3D + D*. Thus B is similar to a diagonal matrix.
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7.

10.

11.

b. p(A)=c,I +¢,PDP™" +¢,PD*P" +..-+¢, PD"P”"
= P(cyl +¢,D +c,D* +---+¢c D")P!
= Pp(D)P!
This shows that p(A) is diagonalizable, because p(D) is a linear combination of diagonal
matrices and hence is diagonal. In fact, because D is diagonal, it is easy to see that

p2 0 }

D)=
p(){o o(7)

If A= PDP_I, then p(A)= Pp(D)P‘l, as shown in Exercise 6. If the (j, j) entry in D is A, then the

(j,J) entry in D* is A*, and so the (j,j) entry in p(D) is p(A). If p is the characteristic
polynomial of A, then p(A)=0 for each diagonal entry of D, because these entries in D are the
eigenvalues of A. Thus p(D) is the zero matrix. Thus p(A)=P-0-P' =0.

. a. If A is an eigenvalue of an nxn diagonalizable matrix A, then A= PDP~" for an invertible

matrix P and an nxn diagonal matrix D whose diagonal entries are the eigenvalues of A. If the
multiplicity of A is n, then A must appear in every diagonal entry of D. Thatis, D = Al. In this

case, A=P(A)P' = APIP"' = APP™' = I

3 1
b. Since the matrix A= {O 3} is triangular, its eigenvalues are on the diagonal. Thus 3 is an

eigenvalue with multiplicity 2. If the 2x2 matrix A were diagonalizable, then A would be 3/, by
part (a). This is not the case, so A is not diagonalizable.

. If I — A were not invertible, then the equation ({/ — A)x=0. would have a nontrivial solution x. Then

x—Ax=0 and Ax=1-x, which shows that A would have 1 as an eigenvalue. This cannot happen if
all the eigenvalues are less than 1 in magnitude. So / — A must be invertible.

To show that A* tends to the zero matrix, it suffices to show that each column of A* can be made as
close to the zero vector as desired by taking & sufficiently large. The jth column of A is Ae;, where

e; is the jth column of the identity matrix. Since A is diagonalizable, there is a basis for R"

consisting of eigenvectors v,,...,v,, corresponding to eigenvalues A,,...,A,. So there exist scalars

ne

Cs..., C,, such that

e, =V, ++¢,v, (aneigenvector decomposition of e;)

Then, for k=1,2,...,

Afe;=c; (M) v+ o+, ) Y, ()

If the eigenvalues are all less than 1 in absolute value, then their kth powers all tend to zero. So (*)

shows that Akej tends to the zero vector, as desired.

a. Take x in H. Then x = cu for some scalar c. So Ax = A(cu) =c(Au) = c(M) = (cA)u, which
shows that Ax isin H.
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b. Let x be a nonzero vector in K. Since K is one-dimensional, K must be the set of all scalar
multiples of x. If K is invariant under A, then Ax is in K and hence Ax is a multiple of x. Thus x
is an eigenvector of A.

Let U and V be echelon forms of A and B, obtained with r and s row interchanges, respectively, and
no scaling. Then det A=(—1)"det U and det B=(-1)"det V

Using first the row operations that reduce A to U, we can reduce G to a matrix of the form

U Y
G = { 0 B}' Then, using the row operations that reduce B to V, we can further reduce G’ to

U Y
G’ = { 0 V}' There will be r+s row interchanges, and so

A X s u vy| . u Y|, . . .
det G =det =(-D""det Since is upper triangular, its determinant
0 B 0 Vv (U
equals the product of the diagonal entries,
and since U and V are upper triangular, this product also equals (det U ) (det V). Thus

det G=(—1)"""(det U)(det V) = (det A)(det B)

For any scalar A, the matrix G — Al has the same partitioned form as G, with A—Al and B—Al as
its diagonal blocks. (Here / represents various identity matrices of appropriate sizes.) Hence the
result about det G shows that det(G —Al)=det(A—Al)-det(B—Al)

By Exercise 12, the eigenvalues of A are the eigenvalues of the matrix [3] together with the

5 2
3}. The only eigenvalue of [3] is 3, while the eigenvalues of {_4 } are

eigenvalues of { 3

1 and 7. Thus the eigenvalues of A are 1, 3, and 7.

1 5
By Exercise 12, the eigenvalues of A are the eigenvalues of the matrix {2 4} together with the

—4 1 5
eigenvalues of { J. The eigenvalues of {2 4} are —1 and 6, while the eigenvalues of

3
multiplicity 2.

-7 -4
{ } are —5 and —1. Thus the eigenvalues of A are —1,—5, and 6, and the eigenvalue —1 has

Replace a by a— A in the determinant formula from Exercise 16 in Chapter 3 Supplementary
Exercises.

det(A—A)=(a—b-1)""[a=\+(n—-1b]
This determinant is zero only if a—b—A=0 or a—A+(n—1)b=0. Thus A is an eigenvalue of A if

and only if A=a—b or A=a+ (n—1). From the formula for det(A—AI) above, the algebraic
multiplicity is n—1 for a—b and 1 for a+(n—1)b.

The 3x3 matrix has eigenvalues 1-2 and 1+ (2)(2), thatis, —1 and 5. The eigenvalues of the 5x5
matrix are 7—3 and 7+ (4)(3), thatis 4 and 19.
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17. Note that det(A—Al) = (a,, = M)(ayy, —A) — ay,ay, =A* —(ay, + ay A+ (a),ayy — ay50,;)
=\* —(tr A)A +det A, and use the quadratic formula to solve the characteristic equation:

1o tr A£+/(tr A)*> —4det A
2
The eigenvalues are both real if and only if the discriminant is nonnegative, that is,

2
trA
(tr A)* —4det A >0. This inequality simplifies to (tr A)> >4det A and (r?j > det A.
18. The eigenvalues of A are 1 and .6. Use this to factor A and A*.
-1 =3)1 0|1 2 3
A= L
2 2110 6|42 -1
T o012 3
2 2]0 6f| 42 -1

~ l{—l —3} 2 3
T4 2 2]|2-6)F —(6)

_1[2+6(6)  —3+3(.6)
4 4-4(6)  6-2(6)

11—2 -3
— = ask — oo
4| 4 6

U
Y. C,=| 5};det(CP—M)=6—57y+7&2zp(k)

[0 10
20.C,= 0 0 1}
24 26 9

det(C, —AI)=24-26A+91% =1> = p(L)

21. If p is a polynomial of order 2, then a calculation such as in Exercise 19 shows that the characteristic
polynomial of C, is p(A) = (=1)? p(L), so the result is true for n = 2. Suppose the result is true for
n=k for some k=2, and consider a polynomial p of degree k +1. Then expanding det(C, —Al)

by cofactors down the first column, the determinant of C,, —Al equals

Y 1 - 0
(—\)det (') 1 +(=1)""q,
-a;, -—a, —a, —\
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k-1

The kxk matrix shownis C, —Al, where q(t)=a, +a,t+---+a,t +1*. By the induction

assumption, the determinant of C, —A[ is (-D*g(A). Thus
det(C, —AT) = (=1 ay + (~A)(=1)* g(L)
=(=D"Ma, + Ma, +---+a, A+ A5)]
= (=D pn)

So the formula holds for n =k +1 when it holds for n = k. By the principle of induction, the formula
for det(C, —Al) is true for all n>2.

0 1 0
a Cp =0 0 1
-a, -a, —a,

b. Since A is a zero of p, a, + a,A+a,\* +1* =0 and —a, —aA—a,A* =A’. Thus
1 A A
C, A= A2 =|A\?
A =gy —aAh—a | |3
Thatis, C,(1, A A%) = A(1,A,A%), which shows that (1,A,A?) is an eigenvector of C,

corresponding to the eigenvalue A .

From Exercise 22, the columns of the Vandermonde matrix V are eigenvectors of C,, corresponding

to the eigenvalues A,,A,,A; (the roots of the polynomial p). Since these eigenvalues are distinct, the

eigenvectors from a linearly independent set, by Theorem 2 in Section 5.1. Thus V has linearly
independent columns and hence is invertible, by the Invertible Matrix Theorem. Finally, since the
columns of V are eigenvectors of C,, the Diagonalization Theorem (Theorem 5 in Section 5.3)

shows that V~'C ,V 1s diagonal.

[M] The MATLAB command roots (p) requires as input a row vector p whose entries are the
coefficients of a polynomial, with the highest order coefficient listed first. MATLAB constructs a
companion matrix C, whose characteristic polynomial is p, so the roots of p are the eigenvalues of

C,. The numerical values of the eigenvalues (roots) are found by the same QR algorithm used by

the command eig (A).

[M] The MATLAB command [P D]=eig (A) produces a matrix P, whose condition number is
1.6x10%, and a diagonal matrix D, whose entries are almost 2, 2, 1. However, the exact eigenvalues

of A are 2, 2, 1, and A is not diagonalizable.

[M] This matrix may cause the same sort of trouble as the matrix in Exercise 25. A matrix program
that computes eigenvalues by an interative process may indicate that A has four distinct eigenvalues,

all close to zero. However, the only eigenvalue is 0, with multiplicity 4, because A* =0.
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Orthogonality and
Least Squares

6.1 SOLUTIONS

Notes: The first half of this section is computational and is easily learned. The second half concerns the
concepts of orthogonality and orthogonal complements, which are essential for later work. Theorem 3 is
an important general fact, but is needed only for Supplementary Exercise 13 at the end of the chapter and
in Section 7.4. The optional material on angles is not used later. Exercises 27-31 concern facts used later.

-1 4 .
1. Since u= and v= , u-u=(—1)2+22=5,v-u=4(—1)+6(2)=8,anduzg
2 6 uu 5
3 6
2. Since w=| —1|and x=|-2|, w-w=3+(=1)?+(-5)*=35,x- w=6(3) + (=2)(-1) + 3(=5) = 5,
-5 3
and ~——~ zi:l.
w-w 35 7
3 3/35
3. Since w=|—-1|, w-w=3"+(-1)>+(-5)* =35, and w=|—-1/35]|.
W-W
-5 -1/7

. 1] s 1 -1/5
4. Since u= , wru=(-D)"+2"=5and —u= .
2 u-u 2/5

i 4
5. Since u= and V:L}, u-v=(=D@) +26)=8, v-v=4>+6> =52, and

u-v 214 8/13
—_— V:— = .
V-V 1316 12/13
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6 3
Since x=| 2| and w=|—1|, x- w=6(3) + (-2)(-1) + 3(=5) =5, X-X=6" +(=2)> +3* =49, and
3] -5
(6 30/49
(ﬂszi 2 |=|-10/49]|.
XX 49
3 15/49
3
. Since w=| =1, [|wll=w-w =37 + (1> +(=5)> =35.
-5
6

Since x=| -2 |, ||x[l=vx-x =46 +(=2)> +3% =49 = 7.
3

. A unit vector in the direction of the given vector is

1 -30]_ 1 [-30]_[-3/5
[=30)> +407 | 40] 50| 40] | 4/5

A unit vector in the direction of the given vector is

-6 -6 NG

_F)\2 2 _12)2 61
Je6r +4 137 | 4| V61|, 2 dEl

A unit vector in the direction of the given vector is

1 7/4 o[ 7/3/69
1/2|= 172 |=|2//69

2 EE J69/16
AT +1127 +12 | IR

A unit vector in the direction of the given vector is
1 {8/3}_ 1 {8/3}_[4/5}
J@/3)2+22 L 2] ~100/91 2] [3/5

X 10 -1 2 2 2
Since x = 3 and y = e | x=y|[*=[10—(-=D]" +[-3—(-5)]" =125 and

dist (x,y) =125 =5/5.
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19.

20.

21.

22.

23.

24.

6.1 ¢ Solutions

0 —4
Since u=|-5| and z=| -1|, |lu—z|f=[0- (=D +[-5—-(=D]* +[2-8]* =68 and
2 8

dist (u,z) =\/§ = 2\/ﬁ.

Since a - b =8(-2) + (-5)(-3) =-1 #0, a and b are not orthogonal.

Since u - v=12(2) + (3)( -3) + (-5)(3) = 0, u and v are orthogonal.

Since u - v=3(-4) + 2(1) + (-5)(-2) + 0(6) = 0, u and v are orthogonal.
Sincey - z=(-3)(1) + 7(-8) + 4(15) + 0(=7) =1 # 0, y and z are not orthogonal.

a. True. See the definition of || v ||.
b. True. See Theorem 1(c).

¢. True. See the discussion of Figure 5.

1 1
d. False. Counterexample: {0 0}.

True. See the box following Example 6.

o

True. See Example 1 and Theorem 1(a).
False. The absolute value sign is missing. See the box before Example 2.
True. See the defintion of orthogonal complement.

True. See the Pythagorean Theorem.

e R0 TR

True. See Theorem 3.
Theorem 1(b):
+v)w=w+v)w=@ +vHw=ud'w+vw=u-w+v-w
The second and third equalities used Theorems 3(b) and 2(c), respectively, from Section 2.1.
Theorem 1(c):

(cu)-v=(cu) v=c@' v)=c(u-v)

The second equality used Theorems 3(c) and 2(d), respectively, from Section 2.1.

359

Since u - u is the sum of the squares of the entries in u, u - u = 0. The sum of squares of numbers is

zero if and only if all the numbers are themselves zero.
One computes that u - v = 2(=7) + (=5)(—4) + (-1)6 = 0, [|u|f=u-u=2% +(=5)* + (-1)* =30,

[vIF=v-v=(7)+(4>+6" =101, and |[u+ V| =(+V)-(u+v)=
2+ (=1)* +(=5+(—4)> +(=1+6)* =131.

One computes that
lu+v|f=u+v)-@+v)=u-u+2u-v+v-v|u| +2u- v+| v|}

and
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lu-v|f=u-v)-(u—v)=u-u-2u-v+v-vu|* 2u v+| v|}
)

la+vIP +la=vIP=lulP +2u-v+ [ vIF +lalf -2u-v+ [ vIP=2]u]? 2] v]P

a X
When v = L}}, the set H of all vectors {
y

entries satisfy ax + by = 0. If a # 0, then x = — (b/a)y with y a free variable, and H is a line through

} that are orthogonal to v is the subspace of vectors whose

-b
the origin. A natural choice for a basis for H in this case is { { } } Ifa=0and b #0, then by =0.
a

Since b # 0, y =0 and x is a free variable. The subspace H is again a line through the origin. A

1
natural choice for a basis for H in this case is { {0} }, but { { } } is still a basis for H since a =0

a
and b#0.If a = 0 and b = 0, then H = R? since the equation Ox + Oy = 0 places no restrictions on x or
y.

Theorem 2 in Chapter 4 may be used to show that W is a subspace of R®, because W is the null space
of the 1 x 3 matrix u’. Geometrically, W is a plane through the origin.

If y is orthogonal to w and v, then y - u =y - v =0, and hence by a property of the inner product,
y-(u+v)=y-u+y-v=0+0=0. Thusy is orthogonal to u + v.

An arbitrary w in Span{u, v} has the form w=cu+c¢,v.If y is orthogonal to u and v, then
u-y=v-y=0.By Theorem 1(b) and 1(c),
w-y=(cu+cv) y=cy)+c(v-y)=0+0=0

A typical vector in W has the form w=¢,v, +...+¢,v . If x is orthogonal to each V;, then by
Theorems 1(b) and 1(c),
wW-x=(qV,+...+¢,V,) Xx=¢ (V- X)+...+¢,(v,-X)=0

So x is orthogonal to each w in W.

a. Ifzisin W, uisin W, and ¢ is any scalar, then (cz) - u=c(z - u) = c0 = 0. Since u is any
element of W, ¢z is in W=,

b. Let z, and z, be in W*. Then for any uin W, (z, +z,)-u=z,-u+z, -u=0+0=0. Thus
z,+z, isin W

c. Since 0 is orthogonal to every vector, 0 is in W*. Thus W™ is a subspace.

Suppose that x is in Wand W*. Since x is in W*, x is orthogonal to every vector in W, including x
itself. So x - x = 0, which happens only when x = 0.
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32. [M]
a. One computes that | a, ||=||a, [|=||a; ||=[|a, ||=1 and that a,-a; =0 for i #.
b. Answers will vary, but it should be that || Au || =||u || and || Av || = || v ||.

c. Answers will again vary, but the cosines should be equal.

d. A conjecture is that multiplying by A does not change the lengths of vectors or the angles
between vectors.

33. [M] Answers to the calculations will vary, but will demonstrate that the mapping
x> T((x)= (ﬂj v (for v # 0) is a linear transformation. To confirm this, let x and y be in R", and
V-V
let ¢ be any scalar. Then

T(X+y):(w)v=((x-V)+(y'V))V =(X.Vjv+(u]V=T(X)+T(Y)
V-V V-V

\ A4 V-V

T(cx):(wjvz(c(x'qu=c(x'v)v=cT(X)
V-V V-V V-V

34. [M] One finds that

and

-5 1
-1 4 105 0 -1/3

N=| 1 O ,R=|0 1 1 0 -4/3
0 -1 000 1 13
_O 3_

The row-column rule for computing RN produces the 3 X 2 zero matrix, which shows that the rows of
R are orthogonal to the columns of N. This is expected by Theorem 3 since each row of R is in Row
A and each column of N is in Nul A.

6.2 SOLUTIONS

Notes: The nonsquare matrices in Theorems 6 and 7 are needed for the QR factorization in Section 6.4. It
is important to emphasize that the term orthogonal matrix applies only to certain square matrices. The
subsection on orthogonal projections not only sets the stage for the general case in Section 6.3, it also
provides what is needed for the orthogonal diagonalization exercises in Section 7.1, because none of the
eigenspaces there have dimension greater than 2. For this reason, the Gram-Schmidt process (Section 6.4)
is not really needed in Chapter 7. Exercises 13 and 14 are good preparation for Section 6.3.

-1 3
1. Since | 4 |-| -4 |=2#0, the set is not orthogonal.
=3 |-7
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1110 1| |5 0||-5
Since |2 |-|1|=|-2]|-|-2|=|1||-2|=0, the set is orthogonal.
| 1] |2 1 1 2 1
—6][ 3
. Since | -3 |-| 1|=-30=0, the set is not orthogonal.
| 9] [-1
[ 210 21 4] [0]] 4]
Since | =5|-|0|=|=5|-|-2|=|0|:| =2 | =0, the set is orthogonal.
|1-3] 10 -3/ 6] |O 6|
[ 3] [-1 31 3] [-1]][3]
. -2 3 2118 3118 .
Since . = . = . =0, the set is orthogonal.
113 1|7 =317
L 3] 4 3110 [ 4]10]
417 3
. 1 :
Since sl s =-32#0, the set is not orthogonal.
| 8] [-1
Since u, -u, =12-12=0, {u,,u,} is an orthogonal set. Since the vectors are non-zero, u, and u,

are linearly independent by Theorem 4. Two such vectors in R? automatically form a basis for R*. So
{u,,u,} is an orthogonal basis for R’. By Theorem 5,
_Xeu X-u,

1
X= u, + u, =3u, +—u,
u u, -u, 2

Since u,-u, =-6+6=0, {u,,u,} is an orthogonal set. Since the vectors are non-zero, u, and u,

are linearly independent by Theorem 4. Two such vectors in R? automatically form a basis for R*. So
{u,,u,} is an orthogonal basis for R>. By Theorem 5,
XU, X-u,

X= u, + u, =——u, +—u,
u,-u, u,-u, 2 4

Since u, -u, =u, -u; =u, -u; =0, {u,,u,.u;} is an orthogonal set. Since the vectors are non-zero,
u,, u,, and u; are linearly independent by Theorem 4. Three such vectors in R* automatically form
a basis for R>. So {u,,u,,u,} is an orthogonal basis for R3. By Theorem 5,

X-u X U, XUy, 5

3
X= u, + u, + u; =—u, ——u, +2u,
u - u, -u, u; U, 2
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Since u, -u, =u, -u; =u, -u; =0, {u,,u,.u;} is an orthogonal set. Since the vectors are non-zero,
. . . 3 .
u,, u,, and u; are linearly independent by Theorem 4. Three such vectors in R’ automatically form

a basis for R>. So {u,,u,,u,} is an orthogonal basis for R3. By Theorem 5,

X-u, X-u, XUy 4
X= u, + u, + u; =—u +-u, +—u,
u, -u, u,-u, u;-u, 3 3 3

1 —4
Lety= {7} and u 2{ 2}. The orthogonal projection of y onto the line through u and the origin is

the orthogonal projection of y onto u, and this vector is

. yu 1 -2
y=—u=—u=
u-u 2 1

1 -1
Lety 2{ J and u 2{ 3}. The orthogonal projection of y onto the line through u and the origin is

the orthogonal projection of y onto u, and this vector is

. y-u 2 { 2/5}
y:—u:——u:
u-u 5 —

The orthogonal projection of y onto u is
. _yu 13 —4/5
y=—u=——u=

u-u 65 715

The component of y orthogonal to u is

. [145
Y7V g5

. i< 5] 195
us = - = .
Y=YTW=Y= 51 srs

The orthogonal projection of y onto u is

. yu 2 14/5
y:—u:—u:
u-u 5 2/5

The component of y orthogonal to u is
. |45
Y7V 2855

. ey |45 [
us = - = .
Y=YTW=Y=E 51T 28/5

The distance from y to the line through u and the origin is ||y — § ||. One computes that
- y-u 3] 318 3/5
—V=yvy—"—u= - =
yoy=y u-u 1| 10|6 -4/5
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so ||y —¥|=v9/25+16/25 =1 is the desired distance.

The distance from y to the line through u and the origin is |ly — § ||. One computes that

s e R

so|ly-y|=v36+9 = 3J/5 is the desired distance.

1/3 -1/2
Letu=|1/3], v= 0. Sinceu- v=0, {u, v} is an orthogonal set. However, ||u|*=u-u=1/3
1/3 1/2

and || v|*=v-v=1/2, so {u, v} is not an orthonormal set. The vectors u and v may be normalized to
form the orthonormal set

V313|212
il A e
u \%

3731 | 212

0 0
Letu=| 1|, v=|-1|. Sinceu - v=-1#0, {u, v} is not an orthogonal set.
0 0
—6 8] , )
Let u= ol V=l 6l Since u - v =0, {u, v} is an orthogonal set. Also, ||u|["=u-u=1 and
| vIF=v-v=1, so {u, v} is an orthonormal set.
[—2/3 1/3
Letu=| 1/3|, v=|2/3|. Sinceu-v=0, {u, v} is an orthogonal set. However, ||u|’=u-u=1
2/3 0

and || v ||2= v-v=5/9, so {u, v} is not an orthonormal set. The vectors u and v may be normalized
to form the orthonormal set

-2/3 1//5
| )2
ulib iy 2/3 0

1/-10 3/4/10 0
Letu= 3/\/% , V= —1/\/% ,and w= —1/\/5 .Sinceu-v=u-w=v-w=0, {u,v,w}isan

3/320 ~1/-20 /42

orthogonal set. Also, |[u|’=u-u=1, |v|*’=v-v=1, and ||w|*=w-w=1, so {u, v, w} is an

orthonormal set.
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1/\18 142 -2/3
Let u=|4/4/18 , V= Of, and w=| 1/3|. Sinceu-v=u-w=v-w=0, {u,v,w}isan

1718 —“1/\2 —2/3

orthogonal set. Also, |[u|*=u-u=1, |v|’=v-v=1, and ||w|*=w-w=1, so {u, v, w} is an
orthonormal set.

a. True. For example, the vectors u and y in Example 3 are linearly independent but not orthogonal.
True. The formulas for the weights are given in Theorem 5.
False. See the paragraph following Example 5.

False. The matrix must also be square. See the paragraph before Example 7.

I

False. See Example 4. The distance is |ly — ¥ ||

®

True. But every orthogonal set of nonzero vectors is linearly independent. See Theorem 4.

b. False. To be orthonormal, the vectors is S must be unit vectors as well as being orthogonal to each
other.

c. True. See Theorem 7(a).
d. True. See the paragraph before Example 3.
e. True. See the paragraph before Example 7.

To prove part (b), note that
Ux)-Uy)=Ux) Uy)=x'U'Uy=xy=x"y
because U'U =1.Ify=x1in part (b), (Ux) - (UX) = x - X, which implies part (a). Part (c) of the

Theorem follows immediately fom part (b).

A set of n nonzero orthogonal vectors must be linearly independent by Theorem 4, so if such a set
spans Wit is a basis for W. Thus W is an n-dimensional subspace of R”, and W =R".

If U has orthonormal columns, then U”U =1 by Theorem 6. If U is also a square matrix, then the

equation U'U =1 implies that U is invertible by the Invertible Matrix Theorem.

If U is an n x n orthogonal matrix, then / =UU ' =UU" . Since U is the transpose of U, Theorem

6 applied to U” says that U” has orthogonal columns. In particular, the columns of U” are linearly
independent and hence form a basis for R”" by the Invertible Matrix Theorem. That is, the rows of U
form a basis (an orthonormal basis) for R".

Since U and V are orthogonal, each is invertible. By Theorem 6 in Section 2.2, UV is invertible and
wov )_1 =v'ut=vUT = (UV)", where the final equality holds by Theorem 3 in Section 2.1. Thus
UV is an orthogonal matrix.

If U is an orthogonal matrix, its columns are orthonormal. Interchanging the columns does not
change their orthonormality, so the new matrix — say, V — still has orthonormal columns. By

Theorem 6, V'V =1I. Since Vis square, V' =V~ by the Invertible Matrix Theorem.
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Suppose that § = RALY Replacing u by cu with ¢ # 0 gives
u-u

W oy CYW YU

y - (cu) _
(cu)-(cu) (cw) c? (u-u) c? (u-u) u-u

So § does not depend on the choice of a nonzero u in the line L used in the formula.

If v,-v, =0, then by Theorem 1(c) in Section 6.1,

(V) (V) =c|[V, - (c;V,)]=cic5(V, - V,) =¢,c,0=0

X-u
Let L = Span{u}, where u is nonzero, and let 7(X) =——u . For any vectors x and y in R" and any
u-u

scalars ¢ and d, the properties of the inner product (Theorem 1) show that
(cx+dy)-u u
u-u

T(cx+dy)=

=cx-u+a,’y-uu
u-u

_ cx-uu+dy-u

u-u u-u

=cT(x)+dT(y)

Thus 7 is a linear transformation. Another approach is to view 7 as the composition of the following

u

three linear mappings: x> a=Xx-v,at>b=a/v-v,and b bv.

Let L = Span{u}, where u is nonzero, and let 7'(x) =refl, y = 2proj, y —y . By Exercise 33, the
mapping y - proj,y is linear. Thus for any vectors y and z in R" and any scalars ¢ and d,

T(cy+dz)=2proj, (cy+dz)—(cy+dz)
=2(c proj,y +d proj,z)—cy —dz
=2c proj,y —cy+2d proj,z—dz
=c(2 proj,y—y)+d(2proj,z—1z)
=cT(y)+dT(z)

Thus 7 is a linear transformation.

[M] One can compute that A" A=1001 4+~ Since the off-diagonal entries in A" A are zero, the columns
of A are orthogonal.
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36. [M]
a. One computes that U =1 4> While

82 0 -20 8 6 20 24 0
0 42 24 0 -20 6 20 -32
-20 24 58 20 0 32 0 6
ULﬂﬁz(—l—j 8 0 20 8 24 -20 6 0
100 6 -20 0 24 18 0O -8 20

20 6 32 -20 0 358 0 24
24 20 0 6 -8 0 18 =20
0 -32 6 0 20 24 -20 42

The matrices U'U and UU" are of different sizes and look nothing like each other.

b. Answers will vary. The vector p=UU "y is in ColU because p=U(U"y) . Since the columns of
U are simply scaled versions of the columns of A, ColU = ColA. Thus each p is in Col A.

¢. One computes that U’z =0.

d. From (c), z is orthogonal to each column of A. By Exercise 29 in Section 6.1, z must be

orthogonal to every vector in Col A; that is, z is in (Col A)".

6.3 SOLUTIONS

Notes: Example 1 seems to help students understand Theorem 8. Theorem 8 is needed for the Gram-
Schmidt process (but only for a subspace that itself has an orthogonal basis). Theorems 8 and 9 are
needed for the discussions of least squares in Sections 6.5 and 6.6. Theorem 10 is used with the QR
factorization to provide a good numerical method for solving least squares problems, in Section 6.5.
Exercises 19 and 20 lead naturally into consideration of the Gram-Schmidt process.

1. The vector in Spanf{u,} is

10
72 -6
X% u,=—u,=2u,=
2
Si X-u,
mce x =cu, +c,u, +c3uy + u,, the vector
u, -uy
10 10 0
xu, |8 |6 |2
uw,ou, |2 |2 ] 4
0 2] |2

isin Span{u,,u,,u;}.
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2. The vector in Spanfu,} is

2
v-u 14 4
Lu =—u, =2u, =
u, - 2
2
Si V-
ince x = u, +c,u, +c;uy +c,u,, the vector
u -u
2 2
vou, 50 |4 1
\ u, = - _|=
u -u -3 2 -5
3] [2 1

isin Spanf{u,,u;,u,}.

3. Since u, -u, =-1+14+0=0, {u,,u,} is an orthogonal set. The orthogonal projection of y onto

Span{u,,u,} is

1 -1 -1

y:y-ul u1+y~u2 u2=§u1+§u2=é 1 +§ li=| 4
wow o wew, o200 27 2 |72

0 0 0

4. Since u, -u, =-12+12+0=0, {u,,u,} is an orthogonal set. The orthogonal projection of y onto
Span{u,,u,} is

30 5 6 3 e

=2t u, + y i u2=—u1—1—u2=— 4|1-=| 3|=(3
u -u u,-u, 25 25 5 5

0 0| |0

5. Since u,-u, =3+1-4=0, {u,,u,} is an orthogonal set. The orthogonal projection of y onto
Span{u,,u,} is

T S e B I
y= y u, + y U w,=—u-——u,=—-1-=-1|=
u, -u, u,-u, 14 6 2
-2 2 6

6. Since u,-u, =0-1+1=0, {u,,u,} is an orthogonal set. The orthogonal projection of y onto

Span{u,,u,} is

275 37 50 [0
y: y-u u, + y-u, ll2:__7u1+_u2:__ —1(+—1|=4
u - u,-u, 18 2 2 ! 2 ! !

7. Since u,-u, =5+3-8=0, {u;,u,} is an orthogonal set. By the Orthogonal Decomposition
Theorem,
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5 10/3 -7/3
y=Y-u1 u1+y-u2 u, =0u, +=u,=| 2/3|,z=y-y=| 7/3
8/3 713

andy = §+ z, where § isin Wand zisin W,

. Since u, -u, =—14+3-2=0, {u,,u,} is an orthogonal set. By the Orthogonal Decomposition

Theorem,
| 3/2 =5/2
y=y'u1 u1+y-u2 w, =2u,+—u,=|7/2|,z=y-y=| 1/2

andy = §+ z, where § isin Wand zisin W,

. Since u, -u, =u, -uy; =u, -uy; =0, {u,,u,,u,} is an orthogonal set. By the Orthogonal

Decomposition Theorem,

2 2

oy . . 2 2 |4 o1
yzyu1u1+yu2 u2+yu3 Uy =20+ -0y — Uy =, Z=Y -y =

ul _ul u2 .u2 ll3 '“3 N 3 3 . O 3

0 -1

andy = §+ z, where § isin Wand zisin W,

Since u,-u, =u, -u; =u, -u; =0, {u,,u,,u;} is an orthogonal set. By the Orthogonal
Decomposition Theorem,

5 -2

. . ° 2 2
yzyul u1+yll2 u2+yu3 u3:lu1+ﬁu2—§u3= ,Z=y-§=

ul'ul uz.u2 u3‘U3 3 3 3 3 2

6 0

andy = § + z, where § isin Wand zisin W™,

Note that v, and v, are orthogonal. The Best Approximation Theorem says that §, which is the

orthogonal projection of y onto W =Span{v,,v,}, is the closest point to y in W. This vector is

3

. ) -1
=2V v, + YV, V2=1V1+§V2=

\RA7 vV, V, 2 2 1

-1

Note that v, and v, are orthogonal. The Best Approximation Theorem says that y, which is the
orthogonal projection of y onto W =Span{v,,v,}, is the closest point to y in W. This vector is
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13. Note that v, and v, are orthogonal. By the Best Approximation Theorem, the closest point in

Span{v,,v,} tozis

-1

. L'V, Z-V, 2 7 -3
i= L, ==V, ==V, =

vV, 'V, v, V, 3 3 -2

3

14. Note that v, and v, are orthogonal. By the Best Approximation Theorem, the closest point in
Span{v,,v,} tozis

1

. : 0
p=2 Ny 4 2V V2=lV1+0V2=

\SRAS v, -V, 2 -1/2

-3/2

15. The distance from the point y in R’ to a subspace W is defined as the distance from y to the closest
point in W. Since the closest point in Wto y is § = proj,,y, the desired distance is || y — §||. One

3 2
computes that §=| -9 |,y —§=| 0|, and ||y —§||=+/40 =2410.
-1 6

16. The distance from the point y in R* to a subspace W is defined as the distance from y to the closest
point in W. Since the closest point in Wto y is § = proj,,y, the desired distance is || y — §||. One

-1 4
|- . |4

computes that y = 3,y—y= 4,and||y—§'||:8.
9 4

L o 8/9 -=2/9 2/9
17. a. UTU={0 J,UUTz -2/9 5/9 4/9
2/9  4/9 5/9

b. Since U'U =1,, the columns of U form an orthonormal basis for W, and by Theorem 10
8/9 =2/9 2/9|4| |2
proj,y =UUTy=|-2/9  5/9 4/9|/8|=|4|.
2/9  4/9 5/9]1 5
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1/10  -3/10
a. UTU:[I]:LUUT:{ }

-3/10  9/10
b. Since U'U =1, {u,} forms an orthonormal basis for W, and by Theorem 10
i uU” 1/10 -3/10||7 -2
1(0) = = = .

Py Y=310 909 7] 6
By the Orthogonal Decomposition Theorem, u, is the sum of a vector in W =Span{u,,u,} and a
vector v orthogonal to W. This exercise asks for the vector v:
0 0 0

v:u3—projwu3:u3—(—%ul+%u2j: 0|-|-2/5|=|2/5
1 4/5 1/5

Any multiple of the vector v will also be in W+,

By the Orthogonal Decomposition Theorem, u, is the sum of a vector in W =Span{u,,u,} and a
vector v orthogonal to W. This exercise asks for the vector v:
0 0 0
v:u4—proqu4:u4—(éul—%u2j: 1|-| 1/5|=|4/5
o [-2/5 2/5

Any multiple of the vector v will also be in W,

a. True. See the calculations for z, in Example 1 or the box after Example 6 in Section 6.1.

b. True. See the Orthogonal Decomposition Theorem.

c. False. See the last paragraph in the proof of Theorem 8, or see the second paragraph after the
statement of Theorem 9.

d. True. See the box before the Best Approximation Theorem.

e. True. Theorem 10 applies to the column space W of U because the columns of U are linearly
independent and hence form a basis for W.

. True. See the proof of the Orthogonal Decomposition Theorem.
. True. See the subsection “A Geometric Interpretation of the Orthogonal Projection.”

. True. The orthgonal decomposition in Theorem 8 is unique.

e o T

. False. The Best Approximation Theorem says that the best approximation to y is projy, y.
e. False. This statement is only true if x is in the column space of U. If n > p, then the column space

of U will not be all of R”, so the statement cannot be true for all x in R”.

By the Orthogonal Decomposition Theorem, each x in R” can be written uniquely as X = p + u, with
p in Row A and u in (Row At By Theorem 3 in Section 6.1, (Row A)t =Nul 4, so uisin NulA.

Next, suppose Ax = b is consistent. Let X be a solution and write X = p + u as above. Then
Ap=A(x—u)=Ax—-Au=Db - 0=b, so the equation Ax = b has at least one solution p in Row A.

Finally, suppose that p and p, are both in RowA and both satisfy Ax =b. Then p —p, isin
Nul A= (Row A)", since A(p—p,)=Ap—-Ap,=b—-b=0. The equations p=p, +(p—p,) and
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p = p + 0 both then decompose p as the sum of a vector in RowA and a vector in (Row A, By
the uniqueness of the orthogonal decomposition (Theorem 8), p =p,, and p is unique.

. By hypothesis, the vectors w,, ..., W p are pairwise orthogonal, and the vectors v, , ..., vV, are

q

pairwise orthogonal. Since w; is in Wfor any i and v, is in W+ for any j, W, - v; =0 for any i

and j. Thus {w,,...,w,,v,...,v } forms an orthogonal set.

. For any y in R", write y = y + z as in the Orthogonal Decomposition Theorem, with § in

Wand zin W* . Then there exist scalars Cpse-sC, and d,,...,d, suchthat y =y +z =

aw+...+c,w,+d\v, +...+d,v,. Thus the set {W;,...,w,V;,...,V_} spans R",

. The set {W,...,W ., V,,...,V,} is linearly independent by (a) and spans R" by (b), and is thus a

basis for R". Hence dimW +dimW~* = p+¢=dimR".

25. [M] Since U Tu=1 4> U has orthonormal columns by Theorem 6 in Section 6.2. The closest point to

y in Col U is the orthogonal projection y of y onto Col U. From Theorem 10,

[1.2]
4
1.2
1.2
4
1.2
4
4

>
Il
=
d
,_]
<
Il

26. [M] The distance from b to ColU is || b — b||, where b=UU"b. One computes that

2 8
92 .08
44 .56
b=UUb= ! ,b—b= 0 ,||b—l3||:@
-2 -8 5
—.44 -.56
.6 -1.6
—92] |—.08 ]

which is 2.1166 to four decimal places.
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6.4 SOLUTIONS

Notes: The QR factorization encapsulates the essential outcome of the Gram-Schmidt process, just as the
LU factorization describes the result of a row reduction process. For practical use of linear algebra, the
factorizations are more important than the algorithms that produce them. In fact, the Gram-Schmidt
process is not the appropriate way to compute the QR factorization. For that reason, one should consider
deemphasizing the hand calculation of the Gram-Schmidt process, even though it provides easy exam
questions.

The Gram-Schmidt process is used in Sections 6.7 and 6.8, in connection with various sets of
orthogonal polynomials. The process is mentioned in Sections 7.1 and 7.4, but the one-dimensional
projection constructed in Section 6.2 will suffice. The QR factorization is used in an optional subsection
of Section 6.5, and it is needed in Supplementary Exercise 7 of Chapter 7 to produce the Cholesky
factorization of a positive definite matrix.

-1
1. Set v, =x, and compute that v, =X, — X% vV, =X, —3v,=| 5. Thus an orthogonal basis for W
\/RA7] 3
31 -1
is Of,| 5
-1||-3
5
2. Set v, =x, and compute that v, =X, — X2 Vi vV, =X, —lv1 =| 4 |. Thus an orthogonal basis for W
v,V 2 g
0 5
is 41,1 4
2| ]-8
3
3. Set v, =x, and compute that v, =X, — X vV, =X, —lv1 =|3/2 |. Thus an orthogonal basis for
Yh 3/2
2 3
Wis 4 |=51,]3/2
1]]3/2
3
4. Set v, =x, and compute that v, =X, — X% Vv, =X, —(=2)v, =| 6 |. Thus an orthogonal basis for
\/RA7] 3
3113
Wis |41,
5|13
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5
X, V, 1 .
5. Set v, =x, and compute that v, =x, — vV, =X, -2V, = Nt Thus an orthogonal basis for W
-1
1 5
_ —4 1
is ,
0|4
1]]-1
4
X,V 6 :
6. Set v, =x, and compute that v, =X, — v, =X, —(-3)v, = 3| Thus an orthogonal basis for
Vl ° Vl .
0
3 4
. -1 6
Wis ,
2113
-1 0

7. Since || v, ||=~/30 and || v, [=+/27/2 =36/2, an orthonormal basis for W is

2/30 ] [2/4/6 |

{—”Vl ”,—”V2 ”}: ~5/30 |.| 1/4/6
\% vV

P 1130 | | 1746

8. Since || v, ||=\/% and || v, ||=\/574=3\/6, an orthonormal basis for W is

3/350 | [ 1/46 ]
{ A ,L}z ~4/4/50 |,| 2//6
vi v | sid50 | | 1746

-

9. Call the columns of the matrix X,, X,, and x; and perform the Gram-Schmidt process on these

vectors:
vV, =X,
1
X,V 3
— 2 iy _ —
V,=X,————V, =X, —(-2)v, =
\/RA S 3
-1
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-3
X;-V X,V 3 1 1
V3 =X3— Ly -2 :X3__V1_(__j 2=
V-V, V,:V, 2 2 1
3
3 1| ]-3
. . 3 1
Thus an orthogonal basis for W is sl
31 -1 3

10. Call the columns of the matrix X,, X,, and x; and perform the Gram-Schmidt process on these

vectors:
vV, =X,
3
X,V 1
vV, =X, — v, =X, —(-3)v, =
V-V, 1
-1
-1
X,V Xy V 1 5 -1
V3 =X3— Ly =22 2=X3 TV oV =
vV, vV, V, 2 2 3
-1
-1 31 ]-1
. ) 3 1] -1
Thus an orthogonal basis for W is ks
1| -1 -1

11. Call the columns of the matrix X,, X,, and x; and perform the Gram-Schmidt process on these

vectors:
vV, =X,
s
0
vV, =X, —MV1 =X, —(-Dv,=| 3
V-V, 3
L 3_

2
0
X5V X5V 1
— 3V 3° Vo o —
Vy=X;— v, - V,=X;—4v, = —— |v, =| 2
v,-V, vV, V, 3
2
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1 3 2

-1 0 0

Thus an orthogonal basis for Wis < | —1|,| 3|,| 2
1|3 2

L 1) 3] [-2]

12. Call the columns of the matrix X,, X,, and x; and perform the Gram-Schmidt process on these

vectors:
Vi =X
oy
1
Vy=x, 2 Vly —x —dv,=| 2
\7RA 7 q
L 1_
- g
3
R et i A A
-3
L 3_
[ 1] [-1] [ 3]
-1 1 3
Thus an orthogonal basis for W is 0l,| 2(,] O
1 113
1] | 1] [ 3]
13. Since A and Q are given,
5 9
- {5/6 1/6 -3/6 1/6} 1 7 {6 12}
R=Q0 A= =
-1/6 5/6 1/6 3/6||-3 -5 0 6
5
14. Since A and Q are given,
-2 3

5/7 217 —4/7 2/7|| 2 2| |0 7
4 6

. [=207 517 27 47 5 7| [7 07
R=0"A= =

15. The columns of Q will be normalized versions of the vectors v,, v,, and v, found in Exercise 11.
Thus
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Cuds 2 12

145 0 0 NN N
O=|-1/5 12 12|,R=Q"A=| 0 6 -2

15 -172 172 o o0 4

L UN5 12 —1/2]

16. The columns of Q will be normalized versions of the vectors v,, v,, and v, found in Exercise 12.

17.

18.

19.

20.

21.

Thus
12 -1/N2) 1/2]
“1/2  1/@J2)  1/2 2 8 7
0= 0 1/2 0,R=0"A=|0 2V2 32
172 1/22) -1/2 o 0 6
/2 1/2V2) 12
a. False. Scaling was used in Example 2, but the scale factor was nonzero.
b. True. See (1) in the statement of Theorem 11.

¢. True. See the solution of Example 4.

False. The three orthogonal vectors must be nonzero to be a basis for a three-dimensional
subspace. (This was the case in Step 3 of the solution of Example 2.)

True. If x is not in a subspace w, then x cannot equal proj,, X, because proj,, x isin W. This idea

was used for v, in the proof of Theorem 11.

c. True. See Theorem 12.

Suppose that x satisfies Rx = 0; then Q Rx = Q0 = 0, and Ax = 0. Since the columns of A are linearly
independent, x must be 0. This fact, in turn, shows that the columns of R are linearly indepedent.
Since R is square, it is invertible by the Invertible Matrix Theorem.

If y is in ColA, then y = Ax for some x. Then y = QRx = Q(Rx), which shows that y is a linear
combination of the columns of Q using the entries in Rx as weights. Conversly, suppose that y = Ox

for some x. Since R is invertible, the equation A = QR implies that O = AR So
y = AR"'x = A(R™'X), which shows that y is in Col A.

Denote the columns of Q by {q;....,q, }. Note that n < m, because A is m X n and has linearly

independent columns. The columns of Q can be extended to an orthonormal basis for R™ as follows.
Let f, be the first vector in the standard basis for R" that is not in W, =Span{q;,...,q,}, let

u, =f, —proj, f,, and let q,,, =u,/||u, ||. Then {q;....,q,.q,.,,} is an orthonormal basis for

W, =Span{q,,....q,.q,,,}. Nextlet f, be the first vector in the standard basis for R that is
notin W,,,, let u, =f, —proj,, f,, andlet q,,, =u,/||u, ||. Then {q,.....q,.q,.,9q,:,} is an

orthogonal basis for W, , =Span({q,,...,q,.q,.,,4,,,}. This process will continue until m — n vectors
have been added to the original n vectors, and {q;,....q,,.q,,,.---.9,,} is an orthonormal basis for R".
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Let O)=[q,,; --- 4, and O, =[Q Q,]. Then, using partitioned matrix multiplication,

QR—QR—A
o784

We may assume that {u,,...,u,} is an orthonormal basis for W, by normalizing the vectors in the

original basis given for W, if necessary. Let U be the matrix whose columns are u,,...,u,. Then, by

Theorem 10 in Section 6.3, T'(x) = proj,, x=(UU ")x for x in R". Thus 7 is a matrix transformation
and hence is a linear transformation, as was shown in Section 1.8.

Given A = OR, partition A=[A, A, |, where A has p columns. Partition Q as 0=[Q, ]

Rll R12

where Q, has p columns, and partition R as R ={ }, where R, is a p X p matrix. Then

22
Rll R12

A:[A1 A2]=QR=[Q1 QZ]{O R
2

} =[OR, QR,+O,R,]

Thus A = Q,R,,. The matrix Q, has orthonormal columns because its columns come from Q. The
matrix R, is square and upper triangular due to its position within the upper triangular matrix R. The
diagonal entries of R,, are positive because they are diagonal entries of R. Thus Q,R,; is a QR
factorization of A, .

[M] Call the columns of the matrix x,, X,, X;, and x, and perform the Gram-Schmidt process on
these vectors:

VvV, =X

V, =X, ———V, =X, —(-1)v,=[ 3

0]
5
X,V X,V X,V
4 Vi 4'V2 4 V3o _ —
V=X~ Vi 27 3—X4__V1_(_1)V2_(__jv3— 0
VitV V' Vs V3 V3 0
5]
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|

(o)

|

W
S O & © O
S O wn O

25. [M] The columns of Q will be normalized versions of the vectors v,, v,, and v, found in Exercise

24. Thus

12 12 143
110 1/2 0
0=-3/10 -1/2 1/\3
4/5 0 1/\3
110 1/2 0

20 =20 -10 10

. 0 6 -8 -6
,R=0"TA=

0 © 0 0 6/3 =33

0 0 0 0 5V2

~1/42

26. [M] In MATLAB, when A has n columns, suitable commands are

Q = A(:,1)/norm(A(:,1))

(o)

for j=2: n

% The first column of Q

v=A(:,]) —Q*(Q"*A(:,7))

Q(:,3J)=v/norm(v)

% Add a new column to Q

end

6.5 SOLUTIONS

Notes: This is a core section — the basic geometric principles in this section provide the foundation
for all the applications in Sections 6.6—6.8. Yet this section need not take a full day. Each example
provides a stopping place. Theorem 13 and Example 1 are all that is needed for Section 6.6. Theorem 15,
however, gives an illustration of why the QR factorization is important. Example 4 is related to Exercise

17 in Section 6.6.

1. To find the normal equations and to find X, compute

-1

o[- 2
ATA= 2
2 -3 3|

o[- 2 -1
A=
2 3 3

SRS

2
{ 6 —11}
3=
-11 22
3
-4
11
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) T T 6 -11| x —4
a. The normal equations are (A" A)x=A"b: = .
-11 22| x, 11

b. Compute
6 —11]'[—4 2 114
R=(A"A)"Ab= 1
-11 22 11 11]11 6] 11
1133 13
S22 |2
2. To find the normal equations and to find X, compute

2 1
. [2 2 2 12 38
10323 & 10

5

~ (2 2 2 24

ATb= 8 |=
Lo 3l -2

) T T 12 8 || x 24
a. The normal equations are (A" A)x=A"b: = .
8 10|l x, -2

b. Compute

Ty tarp |12 8 [24] 1[10 —8[-24
X = = e
8 10| | 2| 56/-8 12 -2

1 [—224 __—4
56 168 | | 3
3. To find the normal equations and to find X, compute
F 1 o]
- 1 -1 0 2|-1 2 6 6
A A= =
-2 2 3 5] 0 3 6 42
L 2 5_
[ 3
r 1 -1 0 2| 1 6
A'b= =
-2 2 3 5|4 —6
| 2

. T T 6 6] x 6
a. The normal equations are (A" A)x=A"b: =
6 42| x, -6

b. Compute
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6 6'T6 42 -6 6
x=(A"A)"ATb= - L
6 42| |-6| 216|-6 6] -6
1 [288] [ 4/3
C216] =72 |-1/3

4. To find the normal equations and to find X, compute

1 3
ATA_l 111 1_33
_3—111 1_311

5
A (111 6
Ab= 1|=
3 -1 1 14
0

. T T 3 3| x 6
a. The normal equations are (A" A)x=A"b: =
3 11| x, 14

b. Compute

-1
o} 140
3 11| 14| 24|-3 3|14

1|24 1
- 5{24} - H
5. To find the least squares solutions to Ax = b, compute and row reduce the augmented matrix for the
system A" Ax=A"b:
4 2 2 14 1 0 1 5
[ATA ATb]|=[2 2 0 4|~l0 1 -1 -3
2 0 2 100 |0 O 0 O

5 -1
so all vectors of the form X=| =3 |+ x;| 1| are the least-squares solutions of Ax = b.
0 1

6. To find the least squares solutions to Ax = b, compute and row reduce the augmented matrix for the
system A"Ax=A"b:

6 3 3 27 I 0o 1 5
(AT ATb]=[3 3 0 12[~[0 1 -1 -I
3 0 3 15 0 0 0 O
5 -1
so all vectors of the form X=| —1 |+ x;| 1| are the least-squares solutions of Ax = b.
0 1
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1 2] 3
-1 [ 43
7. From Exercise 3, A= , b= , and X= . Since
0 —4 | —1/3
2 | 2
1 3 2 3] [-1
. -1 4/3' 1 |2 1| -3
AX— — = — —
0 -1/3 —4 -1 -4 3
2 2 1 2| |1

the least squares error is || AX—b|j= V20 =245.

1 3 5
1
8. From Exercise 4, A=|1 -1|, b=|1], and )?:{J. Since
1 1 0
1 3 . 5 4 5 -1
Ax-b=|1 —1{1}—1:0—1=—1
1 1 0 2 0 2

the least squares error is || AR—b ||=/6.

9. (a) Because the columns a, and a, of A are orthogonal, the method of Example 4 may be used to

find b, the orthogonal projection of b onto Col A:

b b 2 1 : 1 |
b= A a,=—a, +—a,=—| 3|+=|1|=|1

a -a a,-a, 7
-2 4 0

(b) The vector X contains the weights which must be placed on a, and a, to produce b. These
2/7|
7]

weights are easily read from the above equation, so X ={

10. (a) Because the columns a, and a, of A are orthogonal, the method of Example 4 may be used to

find b, the orthogonal projection of b onto Col A:

X 1 | 2 4
f):b.a1 a1+b-a2 a,=3a,+—-a,=3-1|+-4|=|-1

(b) The vector x contains the weights which must be placed on a, and a, to produce b. These

3
weights are easily read from the above equation, so X = .
1/2

11. (a) Because the columns a,, a, and a, of A are orthogonal, the method of Example 4 may be used

to find b, the orthogonal projection of b onto Col A:
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a,-3 ;- a3 -4,
4 0 1 3
211 =5 1| 1 1
==| |+0 += =
3|6 1| 31 0 4
1 -1 =5 -1
(b) The vector X contains the weights which must be placed on a,, a,, and a; to produce b. These
2/3
weights are easily read from the above equation, so X=| 0.
1/3

12. (a) Because the columns a,, a, and a, of A are orthogonal, the method of Example 4 may be used

to find b, the orthogonal projection of b onto Col A:

~ b-a b-a, b-a, 1 14 5
b= a + a, + : a3=§al+?az+ -3 a,

1 2
a,-a -3, a;-a;
1 1 0 5
1 1 N 14101 5/ -1 |2
3]0 3(1] 31| |3
-1 1 -1] |6
(b) The vector % contains the weights which must be placed on a, , a,, and a, to produce b. These
1/3
weights are easily read from the above equation, so X=| 14/3|.
-5/3

13. One computes that

(11 0
Au=|-11|,b—Au=| 2|,|b-Aul|=+/40

11 |6

- -
Av=|-12|,b—Av=| 3|,||b—Av|=+29

7 )

Since Av is closer to b than Au is, Au is not the closest point in Col A to b. Thus u cannot be a least-
squares solution of Ax =b.

14. One computes that

3 2
Au=|8|,b—Au=|—4|||b-Au=24
2 2
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15.

16.

17.

18.

19.

7 )
Av=|2[,b-Av=| 2|,|b-Av|=24
8 —4

Since Au and Au are equally close to b, and the orthogonal projection is the unigue closest point in
Col A to b, neither Au nor Av can be the closest point in Col A to b. Thus neither u nor v can be a
least-squares solution of Ax = b.

35 7
The least squares solution satisfies R& =Q"b. Since R = {0 J and Q"b :{ J, the augmented

matrix for the system may be row reduced to find

e oovly s S ]

and so X :{ } is the least squares solution of Ax = b.

1772

2 3
The least squares solution satisfies R&=Q"b. Since R = {O 5} and Q"b :{ .

} , the augmented
matrix for the system may be row reduced to find
T 2 3 17/2 1 0 29
[ R Q b} - -
0 5 9/2 o 1 9
. |29]. .
and so X= 9 is the least squares solution of Ax = b.

True. See the beginning of the section. The distance from Ax to bis || Ax —b ||.

True. See the comments about equation (1).

False. The inequality points in the wrong direction. See the definition of a least-squares solution.
True. See Theorem 13.

e R0 T

True. See Theorem 14.

®

True. See the paragraph following the definition of a least-squares solution.

b. False. If x is the least-squares solution, then A X is the point in the column space of A closest to
b. See Figure 1 and the paragraph preceding it.

c. True. See the discussion following equation (1).

d. False. The formula applies only when the columns of A are linearly independent. See Theorem
14.

e. False. See the comments after Example 4.
f. False. See the Numerical Note.

a. f Ax =0, then A” Ax = A" 0=0. This shows that Nul A is contained in Nul AT A.

b. If A"Ax=0, then x” AT Ax=x"0=0. So (Ax)" (Ax) =0, which means that || A ||*=0, and
hence Ax = 0. This shows that Nul A” A is contained in Nul A.
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20. Suppose that Ax = 0. Then A" Ax=A"0=0. Since A" A is invertible, x must be 0. Hence the
columns of A are linearly independent.

21. a. If A has linearly independent columns, then the equation Ax = 0 has only the trivial solution. By

Exercise 19, the equation A" Ax=0 also has only the trivial solution. Since ATAisa square
matrix, it must be invertible by the Invertible Matrix Theorem.

b. Since the n linearly independent columns of A belong to R™, m could not be less than n.

¢. The n linearly independent columns of A form a basis for Col A, so the rank of A is n.

22. Note that AT A has n columns because A does. Then by the Rank Theorem and Exercise 19,
rank A’ A=n—dimNul A’ A =n—dim Nul A = rank A

23. By Theorem 14, b=A%= A(ATA)' ATb. The matrix A(A"A)" AT is sometimes called the hat-

matrix in statistics.

24. Since in this case A’ A=1, the normal equations give X = A"b.

2 2|l «x 6
25. The normal equations are {2 2}{ } = {6} , whose solution is the set of all (x, y) such that x + y =
Yy

3. The solutions correspond to the points on the line midway between the lines x + y=2 and x + y =
4.

26. [M] Using .7 as an approximation for V212, a, =a, =.353535 and q, =.5. Using .707 as an
approximation for V2172, a, =a, =.35355339, a, =.5.

6.6 SOLUTIONS

Notes: This section is a valuable reference for any person who works with data that requires statistical
analysis. Many graduate fields require such work. Science students in particular will benefit from
Example 1. The general linear model and the subsequent examples are aimed at students who may take a
multivariate statistics course. That may include more students than one might expect.

1. The design matrix X and the observation vector y are

1 0 1
lel,y:l,

1 2 2

1 3 2

and one can compute

4 6 6| 4 9
xTx = Xly=| LA=(X"X)"x"y=
{6 14} y L J p= ) y 4
The least-squares line y = f, + f,x is thus y =.9 + .4x.

2. The design matrix X and the observation vector y are
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b ek e

and one can compute

4 12 6] 4 -6
X'X = Xly=| LB=X"X)"X"y=
Lz 46} Y {25} A= X)Xy 7

The least-squares line y = /3, + f,x is thus y =—.6 + .7x.

3. The design matrix X and the observation vector y are

1 -1 0
le O,yzl,

1 1 2

1 2 4

and one can compute

4 2 71 5 1.1
X'x = Xy=l |, B=(X"X)"X"Ty=| "~
2 efraliosmaroi|l]

The least-squares line y =/, + fx isthusy=1.1 + 1.3x.

4. The design matrix X and the observation vector y are

1 2 3
X:13,y:2,

1 5 1

1 6 0

and one can compute

4 16 6] 43
xTx = Xly=| LB=X"TX)"X"y=
{16 74} y {17}'6 ( )Xy -7

The least-squares line y = /3, + f,x is thus y =4.3 — .7x.

5. If two data points have different x-coordinates, then the two columns of the design matrix X cannot
be multiples of each other and hence are linearly independent. By Theorem 14 in Section 6.5, the
normal equations have a unique solution.

6. If the columns of X were linearly dependent, then the same dependence relation would hold for the
vectors in R* formed from the top three entries in each column. That is, the columns of the matrix
1 x xf
1 x, x; | wouldalso be linearly dependent, and so this matrix (called a Vandermonde matrix)
I x5 x32
would be noninvertible. Note that the determinant of this matrix is (x, —x,)(x; — x,)(x; —x,) # 0
since x;, x,,and x; are distinct. Thus this matrix is invertible, which means that the columns of X
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are in fact linearly independent. By Theorem 14 in Section 6.5, the normal equations have a unique

solution.

7. a. The model that produces the correct least-squares fit is y = X + € where

.
2 4
X=[3 9
4 16

5 25]

[1.8]
2.7
3.4
3.8

5=

139

B
b,

},ande:

~ | 1.76
b. [M] One computes that (to two decimal places) S :{ 20}, so the desired least-squares equation

is y=1.76x—.20x>.

8. a. The model that produces the correct least-squares fit is y = X + € where

X xl2 x13 Y1 A §
X =|: ,y=| : [,f=|p, |,ande=
| X, x,% xz Y i €n
b. [M] For the given data,
4 16 64] [1.58]
6 36 216 2.08
8 64 512 2.5
10 100 1000 2.8
X = andy =
12 144 1728 3.1
14 196 2744 34
16 256 4096 3.8
|18 324 5832 | | 4.32 ]
5132
SO ﬁ =X"X)"'x Ty =|-.03348 |, and the least-squares curve is
.001016

y=.5132x—.03348x* +.001016x".

9. The model that produces the correct least-squares fit is y = X+ € where

cos1
X =|cos?2

cos 3

sin 1

sin 3

7.9

-9

. A
sin2|,y=|54 ,ﬂz{B},andez €

Sl

&
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10. a. The model that produces the correct least-squares fit is y = X8 + € where

p~0200)  ,—07(10)

[21.34] 6
e—.02(11) e—.07(11) 20.68 €
. M, 2
X =| =202 20702 | v =120.05 |, B = y ,ande=|¢ |,
B
p~0204) =074 18.87 €
_e—.02(15) e~ 0705) | _18'30_ L&

~ 119.94
b. [M] One computes that (to two decimal places) = LO 10} so the desired least-squares

equation is y= 19.94¢~% +10.10°"".

11. [M] The model that produces the correct least-squares fit is y = X + € where

1 3cos .88 [ 3] 6 |
1 2.3cos1.1 23 €
X=|1 1.65cosl.42|,y=|1.65 ,ﬂ={ﬁ},ande: &
1 1.25c081.77 1.25 ¢ 3
1 10lcos2.14]  [1.01] & |

. (1.4
One computes that (to two decimal places) :{ 81 J . Since e = .811 < 1 the orbit is an ellipse. The

equation r = /(1 — e cos @) produces r = 1.33 when = 4.6.

12. [M] The model that produces the correct least-squares fit is y = X+ €, where

1 3.78] 91 6
1 411 98 €
X=[1 439|,y=|103 ,ﬂ:{ﬁo},ande= &
1 473 110 A €
|1 488|  [112] &

8.56
19.24
p=1856+19.24 In w. When w = 100, p = 107 millimeters of mercury.

One computes that (to two decimal places) ,B :{ } , so the desired least-squares equation is
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13. [M]
a. The model that produces the correct least-squares fit is y = X8+ € where
[ R B} -
S TS 0 %
12 22 2 289‘89 a
. €
13 3 62.0 ez
o444 104.7 €
15 5 5 159.1 ’;" €
xX={1 6 6 6 |y=2220[,8=|""|ande=| ¢
17 77 294.5 P €,
1 8 8 8§ 380.4 h €
1 9 9 ¢ 471.1 €
1 10 10* 10° 3717 o
o112 1P 0808 o
809.2 €»
12 o122 12)) T ST
—.8558
One computes that (to four decimal places) ,B = :Z(S)ii , so the desired least-squares
-.0274

polynomial is y(f) =—.8558 +4.7025¢ +5.5554* —.0274¢".
b. The velocity v(¢) is the derivative of the position function y(¢), so
v(t) =4.7025+11.11087 —.0822¢%, and v(4.5) = 53.0 ft/sec.

14. Write the design matrix as [1 X]. Since the residual vector e =y — X B is orthogonal to Col X,

0=1-e=1-(y=XB)=1"y-1" X)J

ety <[ zx}m{y-nﬁo—/zzmy-nﬁo—n/zz

This equation may be solved for y to find y = ﬂAO + ,81)_6.

15. From equation (1) on page 369,

el ) Hs

oy R
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16.

17.

18.

19.

20.

CHAPTER 6 + Orthogonality and Least Squares

The equations (7) in the text follow immediately from the normal equations X' X B=X Ty.

The determinant of the coefficient matrix of the equations in (7) is "Z X - (Zx)z. Using the 2 x 2

formula for the inverse of the coefficient matrix,

breelse Y8
Hence

s _ QY- 0 ) j _ny = 0QY)
0 an2 —(Z:x)2 A anz —(Z:x)2

Note: A simple algebraic calculation shows that z y— (Z X) Bl =n ﬁo, which provides a simple

formula for /4, once S, is known

a. The mean of the data in Example 1 is x =5.5, so the data in mean-deviation form are (-3.5, 1),

1 =35
1 -

(-.5,2), (1.5, 3), (2.5, 3), and the associated design matrix is X = | L5l The columns of X are
1 2.5

orthogonal because the entries in the second column sum to 0.

4 0 9
b. The normal equations are X' X B=X "y, or P = . One computes that
0 21| B 7.5

- 9/4 .
B= {5/14} so the desired least-squares line is y=(9/4)+(5/14)x =(9/4)+(5/14)(x=5.5).

Since

by n X
S NN K

X"X isa diagonal matrix when Z x=0.

The residual vectore =y — X B is orthogonal to Col X, while y=X [? is in Col X. Since € and y are
thus orthogonal, apply the Pythagorean Theorem to these vectors to obtain

SSM=llyIP=I1§ +elP=l13 I +lelP=II X BIP +]ly - X BIP=SS(R) +SS(E)
Since B satisfies the normal equations, X Tx /A3 =X"y, and
IXBIP=(XB) XB)=B"X"xp=B"x"y
Since || X,B I’=SS(R) and y"y=||y|]* =SS(T), Exercise 19 shows that
SS(E)=SS(T)-SS(R)=y"y- A" X"y
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6.7 SOLUTIONS

Notes: The three types of inner products described here (in Examples 1, 2, and 7) are matched by
examples in Section 6.8. It is possible to spend just one day on selected portions of both sections.
Example 1 matches the weighted least squares in Section 6.8. Examples 2—6 are applied to trend analysis
in Seciton 6.8. This material is aimed at students who have not had much calculus or who intend to take
more than one course in statistics.

For students who have seen some calculus, Example 7 is needed to develop the Fourier series in
Section 6.8. Example 8 is used to motivate the inner product on Cla, b]. The Cauchy-Schwarz and
triangle inequalities are not used here, but they should be part of the training of every mathematics
student.

1. The inner product is (x, y) =4x,y, +5x,y,. Letx=(1, 1),y = (5, -1).
a. Since || x|P=(x, x)=9, || x|| = 3. Since ||y |P=(y, y) =105, ||y |=+/105. Finally,
| (x,y) =15 =225.
b. A vector z is orthogonal to y if and only if (x, y) = 0, that is, 20z, —5z, =0, or 4z, = z,. Thus

1
all multiples of L} are orthogonal to y.

2. The inner product is (x,y)=4x,y, +5x,y,. Let x = (3, -2), y = (-2, 1). Compute that
IxIP=¢x.x)=56. [y [P=(y. ) =21 [x[Ply[F=56-21=1176. (x.y) = =34, and [<x, y) ['=1156.
Thus |(x, y) " <||x|P|ly |I*, as the Cauchy-Schwarz inequality predicts.

3. The inner product is { p, g) = p(=1)g(=1) + p(0)g(0) + p(1)q(1), so
(4+1,5-4r*) =3(1)+4(5)+5(1)=28.

4. The inner product is { p, g) = p(=1)g(=1) + p(0)g(0) + p(1)g(1), so (3t—t2, 3+2t2> _
() +03)+2(5)=-10.

5. The inner product is { p, g) = p(—=1)g(-1) + p(0)g(0) + p(1)¢g(1), so
(p.p)=(4+1,4+1)=3"+4"+5" =50 and || p = \/(p. p) =+/50 =52 . Likewise
(G q)=(5—47,5-4*) =1 +5* +1 =27 and || ¢||=/(g.9) =~27 =33 .

6. The inner product is { p, g} = p(~1)g(=1) + p(0)g(0) + p(1)g(1), so {p, p) =3t 1,3t —1*) =
(—4)* +07+2% =20 and || p|l=p. p) =20 = 24/5. Likewise (g,q) =(3+21*,3+21%) =
52 +32+5%=59 and || ¢ |l=/g.q) =~/59.

7. The orthogonal projection § of g onto the subspace spanned by p is
(¢.p) _28 _56 14

A+1)="—+—t

= P50 25 25

8. The orthogonal projection § of g onto the subspace spanned by p is
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1

(q,p) 10 2 3
e p=——Gt—1t)=—=t+—t
p ( ) P

§= -
(p,p) 20

9. The inner product is {p, g) = p(-3)q(=3) + p(=1)g(-1) + p(1)gq(1) + p(3)gq(3).
a. The orthogonal projection p, of p, onto the subspace spanned by p, and p, is

A b E) 20 O
2=<P2 Po) 0+<P2 p1>p1=—(1)+—t=5
(Pos Po? (P> py) 4 20

b. The vector g=p, — p, =1* -5 will be orthogonal to both p, and p, and {p,, p;,q} will be an
orthogonal basis for Span{p,, p,, p,}. The vector of values for g at (-3, -1, 1, 3) is (4, 4, -4, 4),

so scaling by 1/4 yields the new vector g = (1/4)(t* =5).

10. The best approximation to p = r by vectors in W =Span{ p,, p;.q} will be

<p’p0> +<p7pl> +<P’¢]> :91 +ﬁt+9[t2_5j=ﬂt
<po,po>p° <p1,p1>p‘ <q,q>q 4() 20() 4 4 5

P = projy p =

11. The orthogonal projection of p = 1 onto W = Span{ p,, p;, p,} Will be

(P, py) (P, 1) p.py) 0.5 34 0 » 17
+ + p2—5(1)+10(l)+ 4(z 2) t

p=projy p= 0 I
" <P0,Po> <P1vP1> <P2,P2> 5

12. Let W =Span{ p,, p;» p,}. The vector p; = p—proj, p =1 —(17/5)t will make {Pos D1 P2 D3}
an orthogonal basis for the subspace P5 of P4. The vector of values for p, at(-2,-1,0, 1, 2) is

(-6/5, 12/5, 0, -12/5, 6/5), so scaling by 5/6 yields the new vector p; = (5/6)(> —(17/5)1) =
(5/6)t —=(17/6)t.

13. Suppose that A is invertible and that (u, v) = (Au) - (Av) for u and v in R". Check each axiom in the
definition on page 376, using the properties of the dot product.

i. (u,v)=(Au)- (Av)=(Av) - (Au) =(v, u)

ii. (u+v,w)y=A®W+V)- - (AwW) = (Au+ Av) - (AW) = (Au) - (AW) + (AV) - (AwW) =(u, w) + (v, W)

iii. {cu, v) = (A(cw)) - (Av) = (c(Aw)) - (Av) = c((Au) - (AV)) = c(u, v)

iv. (u,u)=(Au)-(Au)=|| Au|]*>0, and this quantity is zero if and only if the vector Au is 0. But
Au = 0 if and only u = 0 because A is invertible.

14. Suppose that T'is a one-to-one linear transformation from a vector space V into R”" and that (u, v) =
T(u) - T(v) for u and v in R". Check each axiom in the definition on page 376, using the properties of
the dot product and 7. The linearity of 7 is used often in the following.

. (u,vy=TW)- - T(v)=T(v)- - T(u) ={v, )

ii. w+v,wy=Ta+v) - T(w)=(T@) + T(v))- T(w) =T) - T(w) + T(v) - T(W) ={u, w) +{V, W)

iii. {cu, v) = T(cu) - T(v) = (cT(w)) - T(v) = c(T(n) - T(v)) = c(u, v)

iv. (wu)=T(u) -T(u)=||T@)|*=0, and this quantity is zero if and only if u = 0 since T'is a one-
to-one transformation.
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Using Axioms 1 and 3, (u, cv) ={cv, u) = ¢(v, u) = c(u, v).
Using Axioms 1, 2 and 3,
Jlu-v|f=@-v,u-—v)=(wu—-v)—(v,u—v)
=(u,u) —(u, v) —(v,u) +(v, v) =(u,u) — 2w, v) +(Vv, V)
=l —2(u,v) +[|v|P

Since {u, v} is orthonormal, ||u|*=|| v|*=1 and (u, v) = 0. So |[u-v|}=2.

Following the method in Exercise 16,
lu+v|P=@+v,u+v)=@u+v)+(v,u+v)
=(uu) +{u, v) +{v,u) +({v,v) =(u,u) + 2(u, v) +(V, V)
=[lulf + 26w, v) +[ v |

Subtracting these results, one finds that ||u+v ||2 —Jlu—-v ||2: 4(u,v), and dividing by 4 gives the
desired identity.

In Exercises 16 and 17, it has been shown that ||[u—v|*=||u| =2(u,v) +|| v| and ||u+v|=

lu|f* +2¢u,v) +| v|]* . Adding these two results gives||u+v | +[|lu—=v|*=2]u|* +2| v|*.

let u={£] and V=|:\/\/§]. Then ||u|*=a+b,

nonnegative, |u|=va+b, |v|=va+b. Plugging these values into the Cauchy-Schwarz
inequality gives

Wab =, )| < |u|l|v|=Va+bJa+b=a+b

Dividing both sides of this equation by 2 gives the desired inequality.

|v|*=a+b, and (u,v)= 2\ab. Since a and b are

The Cauchy-Schwarz inequality may be altered by dividing both sides of the inequality by 2 and then
squaring both sides of the inequality. The result is

((u,V>j2 < NulPlivie
2 4

_|4 |1 2_ 2 42 2 _ _ .
Now let u= b and v= { . Then ||ul|["=a”+b~, ||v|[ =2, and (u, v) = a + b. Plugging these

values into the inequality above yields the desired inequality.
The inner product is (f,g)= J.; f()g®)dre. Let f(t)=1- 3%, gt)=t —1>. Then

_[! 2 3 o [la,s 3 _
(f-g)=] =3 e—r")dr=[ 3 —4r’ +1dr=0

The inner productis {f,g) = _[Olf(t)g(t) dt. Letf(1)=5t-3, g(t)=1 —1*. Then
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(flg>=L;(Sﬁ—$03—t%dt:LiSﬂﬁ—&3+3ﬁdt:0

The inner product is (f.¢)= [ f()g(t)dr. so (f.f)=[ (1~3)di=[ 9 61 +1dr =415, and

I £ lIl=CF £ =2/4/5.

- - 1 L3 20 L6 5, 4
The inner product is (f,g)zjof(t)g(t) dt, so (g,g)zj.o(t —17) dtzj.ot -2 +17dr=1/105, and

I gll=+(g.g) =1/~/105.

The inner productis (f,g) = J: f(@®)g(t)dt. Then 1 and ¢ are orthogonal because (1, f) = J‘_llt dt=0.

So 1 and 7 can be in an orthogonal basis for Span{l, z,7*}. By the Gram-Schmidt process, the third
basis element in the orthogonal basis can be

2 2

an - ()
Since (*,1)=[' r2dr=2/3, (L) = 1dr=2, and (.ry=[' £’dr=0, the third basis element can
B - | - B B - | — 4 B - 1 — Y

be written as 7> — (1/3). This element can be scaled by 3, which gives the orthogonal basis as
{1,2,3* —1}.

The inner productis (f,g) = J‘_zz f(@®)g()dt. Then 1 and ¢ are orthogonal because (1, 1) = J‘_zzt dt=0.

So 1 and 7 can be in an orthogonal basis for Span{l, z,7*}. By the Gram-Schmidt process, the third
basis element in the orthogonal basis can be

t2 _<tz_’1>1_@t
1,1y (t,1)

. 2w (2.2, _[2 _ 28 (%3, . .
Since (£2,1) = [_2t dt=16/3, (1,1)= I_zldt—4, and (t ,t>_j_2t dt =0, the third basis element can

be written as #* —(4/3). This element can be scaled by 3, which gives the orthogonal basis as
{1,1,3t> —4).

[M] The new orthogonal polynomials are multiples of —17¢+5¢ and 72 —155¢* +35¢*. These
polynomials may be scaled so that their values at -2, -1, 0, 1, and 2 are small integers.

[M] The orthogonal basis is f,(r)=1, f,(r)=cost, f,(t)= cos’t —(1/2) =(1/2)cos 21, and
()= cos’t —(3/4)cos 1 = (1/4)cos 3t.
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6.8 SOLUTIONS

Notes: The connections between this section and Section 6.7 are described in the notes for that section.
For my junior-senior class, I spend three days on the following topics: Theorems 13 and 15 in Section 6.5,
plus Examples 1, 3, and 5; Example 1 in Section 6.6; Examples 2 and 3 in Section 6.7, with the
motivation for the definite integral; and Fourier series in Section 6.8.

1. The weighting matrix W, design matrix X, parameter vector 3, and observation vector y are:

1 0 0 0 O 1 2 0
0 2 0 0 O 1 -1 0
W=0 0 2 0 0, X=[1 0 ,ﬂ:{ﬁ()},y: 2
000 20 11 : 4
00 0 0 1] 1 2] | 4]
The design matrix X and the observation vector y are scaled by W:

(1 -2] 0]

2 2 0

=2 0| Wy=|4

2 2 8

|1 2] | 4]

Further compute

wywx =[] aoyrwy <[ 28
0 16] 24
and find that
. e 114 0]f28] [ 2
B = (WX WE)~ () Wy{ 0 1/16}{24}_[3/2}

Thus the weighted least-squares line is y = 2 + (3/2)x.

2. Let X be the original design matrix, and let y be the original observation vector. Let W be the
weighting matrix for the first method. Then 2W is the weighting matrix for the second method. The
weighted least-squares by the first method is equivalent to the ordinary least-squares for an equation
whose normal equation is

WX) WX B =WX)" Wy (1)

while the second method is equivalent to the ordinary least-squares for an equation whose normal
equation is

QWX 2W)X B=WX)" 2W)y )

Since equation (2) can be written as A4WX) WX ,[;’ =4wWx)" Wy, it has the same solutions as
equation (1).
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3. From Example 2 and the statement of the problem, p,(t)=1, p,(t)=t, p,(t)= -2,
ps(t) = (5/6)r> —(17/6)t, and g=0(3,5,5,4, 3). The cubic trend function for g is the orthogonal
projection p of g onto the subspace spanned by p,, p,, p,,and p;:

(&, Do) +<g,p1> +<g,p2> +<g,p3>
(PosPo) A pp) " (papa) APy ps)

200+ 2L +_—7(t2 -2) +£(§t3 —1—71‘)
5 10 14

=4—Lt—l(t2 —2)+l(§t3 —Htj=5—gt—ll2 L
0 6 2 6

132 3

This polynomial happens to fit the data exactly.

4. The inner product is  p, ¢) = p(-5)q(=5) + p(=3)q(=3) + p(-Dg(=1) + p(1)q(1) + p(3)q(3) + p(5)q(5).
a. Begin with the basis {1, ¢, t*} for P,. Since 1 and 7 are orthogonal, let p,(t)=1 and p,(t)=t.

Then the Gram-Schmidt process gives

2 2
p2(t) =t2 _ul_ut =t2 —E=t2 _2

AL () 6 3
The vector of values for p, is (40/3, -8/3, —=32/3, -32/3, —8/3, 40/3), so scaling by 3/8 yields the
new function p, = (3/8)(t* —(35/3)) = (3/8)t* — (35/8).

b. The data vectoris g = (1, 1, 4, 4, 6, 8). The quadratic trend function for g is the orthogonal
projection p of g onto the subspace spanned by p,, p, and p,:

(&, Py o+ (8. p) 4 (8, P2 pzzg(l)+@t+g(gtz_§j
(Py> Do) (PP (P2, D2) 6 70  84\8 8

5 1(32 35] 59 5 3,
=44+ t+—| - | ==+ ——t
7 8 8) 16 7 112

p=

5. The inner productis (f, g) = J.OM f(@®)g)dt. Let m # n. Then

. . 2, . 1 27
{sin mt, sin nt) = .[o sin mt sin nt dt = E-[O cos((m—n)t)—cos((m+n)t)dt =0
Thus sin mt¢ and sin nt are orthogonal.
6. The inner productis (f,g) = Ij” f(@)g(t)dt. Let m and n be positive integers. Then
. 2, 1 p27 . .
(sin mt,cos nt) = jo sin mt cos nt dt = EIO sin((m+n)t)+sin((m—n)t)dt =0
Thus sinmt and cosnt are orthogonal.

7. The inner productis (f, g) = Ij” f()g(t)dt. Let k be a positive integer. Then

2 1 ¢2
|| cos kt ||*=(cos kt,cos kt) = IO " cos?kt dt = E-[O "l +cos 2kt dt =1
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and

I sin &t [P=(sin kesin &)= [ sin*h dr =% [T1-cos 2kt di=r

8. Let f(t) = t — 1. The Fourier coefficients for f are:

G _
=0 j f()dt_—j t—ldt=—1+7
and for k> 0,

1 ¢27 1 c27
a, =—| " ft)cos ke dt =—[ " (t=)cos kt dt =0
0 oo

1 27 X 1 pc2r .
b, = —J. f(t)sin kt dt = —I (t=Dsin kt dt =——
70 w0
The third-order Fourier approximation to fis thus

a—20+blsint+bzsin 2t +bysin 3t =—1+ 7 —2sint—sin 2t—§ sin 3¢

9. Let f{t) =2z — t. The Fourier coefficients for f are:

ao 2 1 27
20— Ndt=—| 2m—tdt=
T=o—, fwd=—]

and for k> 0,

1 c2r 1 c2rx
a, =— " f(6)cos ke dt =—[ " (2w —1) cos kt dt =0
7o /A

1 e27 . 1 c27 . 2
b, _;jo F(t)sin ke dt _;jo (27 1) sin ket di =
The third-order Fourier approximation to fis thus

a . . . . . 2.
70+blsm t+b,sin 2t + bysin 3t =7 +2sin ¢ +sin 2t+§sm 3t

1 forO<tr<rm : ..
10. Let f()= . The Fourier coefficients for f are:
-1 forzx<t<2m

ao

I f()d:—j dt—— 7 dr=0
andfork>0,
1 c2r 1 ¢ 1 (2r
a, _;Io f(t)cos kt dt—;_[o cos kt dt—;jﬂ cosktdt=0

4/(km) for k odd

b —ljz”f(t)sinktdt—lj”sinkzdt—ljz”sinktdz—
T xdo 7t J0 VA 0 for k even

The third-order Fourier approximation to fis thus

. . 4 . 4 .
b;sin t +b;sin 3t =—sin ¢t +—sin 3t
V4 3z
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11. The trigonometric identity cos 2f =1—2sin’* shows that
sin’t = 1 —lcos 2t
2 2

The expression on the right is in the subspace spanned by the trigonometric polynomials of order 3 or
less, so this expression is the third-order Fourier approximation to sin”7 .

12. The trigonometric identity cos 3t =4 cos’t —3cost shows that
3, 3 1
cos’t =—cos t +—cos 3¢
4 4

The expression on the right is in the subspace spanned by the trigonometric polynomials of order 3 or
less, so this expression is the third-order Fourier approximation to cosz.

13. Let fand g be in C [0, 2rt] and let m be a nonnegative integer. Then the linearity of the inner product
shows that

((f+ g), cos mty = f, cos mt) + (g, cos mt), {( f+ g), sin mt) = f, sin mt) + { g, sin mt)
Dividing these identities respectively by (cos mt, cos mt) and (sin mt, sin mf) shows that the Fourier
coefficients a,, and b, forf+ g are the sums of the corresponding Fourier coefficients of f and of g.

14. Note that g and /& are both in the subspace H spanned by the trigonometric polynomials of order 2 or
less. Since 4 is the second-order Fourier approximation to f; it is closer to f than any other function in
the subspace H.

15. [M] The weighting matrix W is the 13 x 13 diagonal matrix with diagonal entries 1, 1, 1, .9, .9, .8, .7,
.6,.5,.4,.3,.2,.1. The design matrix X, parameter vector 3, and observation vector y are:

1 0 0 0 )
11 11 0.0
1 2 22 2 8.8
1 3 3 3 zz'i
2 3 ’
15 5 5 [;0 159.1
X=[1 6 6 6| 8= ﬂl Ly =|222.0
1 7 70 7 ﬁ2 294.5
1 8 Q2 g3 3 380.4
1 9 92 e 471.1
1 10 10> 10° 71T
, , 686.8
1 11 117 11 209
112 127 12 -

The design matrix X and the observation vector y are scaled by W:
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1.0 00 0.0 0.0] [ 0.00]
1.0 1.0 1.0 1.0 8.80
1.0 20 4.0 8.0 29.90
9 27 81 243 55.80
9 36 144 576 94.23
8 40 200 100.0 127.28
WX =| .7 42 252 151.2|,Wy=|155.40
6 42 294 2058 176.70
5 40 320 2560 190.20
4 3.6 324 2916 188.44
3 3.0 300 300.0 171.51
2 22 242 2662 137.36
1 12 144 1728 | 80.92
Further compute
6.66 22.23 120.77 797.19 747.844
; 2223 120.77 797.19 5956.13 ; 4815.438
WX)' WX = . (WX) Wy =
120.77  797.19  5956.13  48490.23 35420.468
797.19 5956.13 48490.23 420477.17 285262.440
and find that
—0.2685
. S ; 3.6095
B=(WX)"WX)" (WX) Wy = 5 8576
—-0.0477

Thus the weighted least-squares cubic is y = g(r) =—.2685+3.6095¢ +5.85761* —.0477¢". The

velocity at t = 4.5 seconds is g'(4.5) = 53.4 ft./sec. This is about 0.7% faster than the estimate
obtained in Exercise 13 of Section 6.6.

1 forO<t<rxm . o
16. [M] Let f(¢)= . The Fourier coefficients for f have already been found to be
-1 forx<t<2m

4/(kr) for k odd

. Thus
0 for k even

a, =0 forall k>0 and b, :{

f4(@) =isin t +isin 3tand fi (1) =isin t +isin 3t +isin 5t
V4 kY4 V4 3z hY/4

A graph of f, over the interval [0, 27] is
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Chapter 6 SUPPLEMENTARY EXERCISES

1.

s

S o B

A graph of f; over the interval [0, 27] is

A graph of f; over the interval [-27, 27] is

False. The length of the zero vector is zero.
True. By the displayed equation before Example 2 in Section 6.1, with ¢ = -1,
== Dx =l =1l == x]l
True. This is the definition of distance.
False. This equation would be true if 7|| v || were replaced by | r ||| v ||.
False. Orthogonal nonzero vectors are linearly independent.
True.If x-u=0andx-v=0,thenx-(u—-v)=x-u—-x-v=0.
True. This is the “only if” part of the Pythagorean Theorem in Section 6.1.
True. This is the “only if” part of the Pythagorean Theorem in Section 6.1 where v is replaced
by —v, because || —v ||’ is the same as || v||*.

False. The orthogonal projection of y onto u is a scalar multiple of u, not y (except when y
itself is already a multiple of u).
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j- True. The orthogonal projection of any vector y onto W is always a vector in W.

k. True. This is a special case of the statement in the box following Example 6 in Section 6.1 (and
proved in Exercise 30 of Section 6.1).

1. False. The zero vector is in both Wand W+,
m. True. See Exercise 32 in Section 6.2. If v;-v; =0, then
(c;v;)-(c;v)=cic;(v;-v;)=c;c;0=0.
n. False. This statement is true only for a square matrix. See Theorem 10 in Section 6.3.
o. False. An orthogonal matrix is square and has orthonormal columns.

p. True. See Exercises 27 and 28 in Section 6.2. If U has orthonormal columns, then U =11t
U is also square, then the Invertible Matrix Theorem shows that U is invertible and U A

In this case, UU T = I, which shows that the columns of U” are orthonormal; that is, the rows
of U are orthonormal.

q. True. By the Orthogonal Decomposition Theorem, the vectors proj,, v and v —proj,, v are
orthogonal, so the stated equality follows from the Pythagorean Theorem.

r. False. A least-squares solution is a vector X (not AX) such that AX is the closest point to b
in Col A.

s. False. The equation X= (ATA)' A™b describes the solution of the normal equations, not the

matrix form of the normal equations. Furthermore, this equation makes sense only when ATA
is invertible.

2. If {v,,v,} is an orthonormal set and x =c¢,v, +¢,V,, then the vectors ¢,;v, and c¢,v, are orthogonal
(Exercise 32 in Section 6.2). By the Pythagorean Theorem and properties of the norm
IxIP=llcv, + covy IP=llev, [P+l vy IP= (e v, ID* + (e v, D e P+ e, P

So the stated equality holds for p = 2. Now suppose the equality holds for p = k, with k > 2. Let
{vy,...,V,,;} be an orthonormal set, and consider X =c¢,v, +...+ ¢, V, + ¢, Vi =W, + iy Viss

where u, =¢,v, +...+¢,v,. Observe that u, and c,,,v,,, are orthogonal because V; - v;,; =0 for j
= 1,...,k. By the Pythagorean Theorem and the assumption that the stated equality holds for &, and
because || ¢ Vi 7= e Pll Ve IF =l e P

IxIP=llw, + Vi IP=lug 1P+l e Vi P=le P+ Al e P

Thus the truth of the equality for p = k implies its truth for p = k + 1. By the principle of induction,
the equality is true for all integers p = 2.

3. Given x and an orthonormal set {V;,...,v,} in R", let X be the orthogonal projection of x onto the
subspace spanned by V...,V . By Theorem 10 in Section 6.3, X=(X"V,)V; +...+(X-V,)V . By
Exercise 2, || X|* =|x- v, [ +...+|x- v, |*. Bessel’s inequality follows from the fact that
IX|]* <||x|I*, which is noted before the proof of the Cauchy-Schwarz inequality in Section 6.7.

4. By parts (a) and (c) of Theorem 7 in Section 6.2, {Uv,,...,Uv, } is an orthonormal set in R”". Since
there are n vectors in this linearly independent set, the set is a basis for R”.
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10.
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Suppose that (U x)-(U y) = x-y for all x, y in R", and let e,,...,e, be the standard basis for R". For
j=1,...,n, Ue; is the jth column of U. Since ||Ue, ||2:(Uej)-(Uej) =e;-e; =1, the columns of U

are unit vectors; since (Ue;)-(Ue,)=e;-e, =0 for j # k, the columns are pairwise orthogonal.

If Ux = Ax for some x # 0, then by Theorem 7(a) in Section 6.2 and by a property of the norm,
Ix||=]| Ux||=||Ax || = | A ||| x ||, which shows that | A | = 1, because x # 0.

Let u be a unit vector, and let Q=1 —2uu’. Since (uu’ )’ =u" v’ =uu’,
O'=(I-2uu’) =1 -2wu’) =71-2uu’ =0

Then
00" =0* =(I -2uu’ )’ =1 —2un” - 2uu” +4(uu” )(uu")

Since u is a unit vector, ' u=u-u=1, so (un’ )(uu’)=u@’ )(w)u’ =uu’, and
00" =1 -2uu’ —2uu’ +4un’ =71

Thus Q is an orthogonal matrix.

a. Suppose that x - y = 0. By the Pythagorean Theorem, ||x||* +||y [P=||x+y|I*. Since T preserves
lengths and is linear,
1T+ I7W = ITx+pIP= 1T +TW |
This equation shows that 7(x) and 7(y) are orthogonal, because of the Pythagorean Theorem.
Thus T preserves orthogonality.
b. The standard matrix of T'is [T(el) ... T(e, )] , where e,,...,e, are the columns of the identity
matrix. Then {T'(e,),...,T(e,)} is an orthonormal set because T preserves both orthogonality and

lengths (and because the columns of the identity matrix form an orthonormal set). Finally, a
square matrix with orthonormal columns is an orthogonal matrix, as was observed in Section 6.2.

Let W= Span{u, v}. Given z in R", let Z = proj,,z. Then Z is in Col A, where A= [u V]. Thus
there is a vector, say, X in R*, with AX=%. So, X is a least-squares solution of Ax = z. The normal

equations may be solved to find X, and then Z may be found by computing A X.

Use Theorem 14 in Section 6.5. If ¢ # 0, the least-squares solution of Ax = cb is given by
(AT A)" A" (¢b), which equals c(ATA) AT, by linearity of matrix multiplication. This solution is

c times the least-squares solution of Ax = b.

T

X a 1 A4 1 =2 5
Letx=|y|, b=|b|, v=|-2|, and A=|v' |=|1 -2 5|. Then the given set of equations is
Z c 5 VT 1 -2 5

Ax = Db, and the set of all least-squares solutions coincides with the set of solutions of the normal

equations A" Ax=A"b. The column-row expansions of A"A and A™b give

ATA=w +w +w =3w  ATb=av+bv+cev=(a+b+c)v
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Thus A" Ax =3(vv" )x =3v(v' x) =3(v' x)Vv since v'x is a scalar, and the normal equations have

become 3(V'X)V=(a+b+c)v, so 3(V'X)=a+b+c, or vV x=(a+b+c)/3. Computing v’ x gives
the equation x — 2y + 5z = (a + b + ¢)/3 which must be satisfied by all least-squares solutions to Ax =
b.

The equation (1) in the exercise has been written as VA = b, where V is a single nonzero column
vector v, and b = Av. The least-squares solution A of VA = b is the exact solution of the normal
equations V' VA =V"b. In the original notation, this equation is v vA=v’ Av. Since v'v is
nonzero, the least squares solution A is vV Av/(v'v). This expression is the Rayleigh quotient
discussed in the Exercises for Section 5.8.

a. The row-column calculation of Au shows that each row of A is orthogonal to every u in Nul A. So

each row of A is in (Nul A)*. Since (Nul A)* is a subspace, it must contain all linear
combinations of the rows of A; hence (Nul A)l contains Row A.

b. If rank A = r, then dimNul A = n — r by the Rank Theorem. By Exercsie 24(c) in Section 6.3,
dimNul A +dim(Nul A)* =n, so dim(Nul A)" must be r. But Row A is an r-dimensional

subspace of (Nul At by the Rank Theorem and part (a). Therefore, Row A= (Nul At

c. Replace A by Al in part (b) and conclude that Row A" =(Nul AT)*. Since Row A" =Col A,
Col A=(Nul A")™ .

The equation Ax = b has a solution if and only if b is in Col A. By Exercise 13(c), Ax=b has a
solution if and only if b is orthogonal to Nul A", This happens if and only if b is orthogonal to all

solutions of ATx=0.

If A=URU" with U orthogonal, then A is similar to R (because U is invertible and U T=U"),s0A
has the same eigenvalues as R by Theorem 4 in Section 5.2. Since the eigenvalues of R are its n real
diagonal entries, A has n real eigenvalues.

a. If U=[u1 u, ... un], then AU:[Xlul Au, ... Aun]. Since u, is a unit vector and
u,,...,u, are orthogonal to u,, the first column of U AU is U" (Aju,)=AU"u, =\e,.

b. From (a),

}\’1 & * & &
UTAU =
: A
0
View U” AU as a2 x 2 block upper triangular matrix, with A, as the (2, 2)-block. Then from

Supplementary Exercise 12 in Chapter 5,
det(U" AU — A1) =det((A, —M)1,)-det(A — A1, )= (A, —A)-det(A —M1, )
This shows that the eigenvalues of U" AU, namely, A,,...,A,, consist of A, and the eigenvalues

of A, . So the eigenvalues of A, are A,,...,A

>
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[M] Compute that || Ax ||/|| x || = .4618 and cond(A)x (|| Ab||/||b]]) =3363x(1.548x107*) =.5206.. In
this case, || Ax ||/|| x || is almost the same as cond(A) X || Ab ||/|| b ||.

[M] Compute that || Ax |[/|| x || = .00212 and cond(A) x (|| Ab |//|| b ||) = 3363 x (.00212) = 7.130. In
this case, || Ax ||/|| x || is almost the same as || Ab ||/|| b ||, even though the large condition number
suggests that || Ax ||[/|| x || could be much larger.

[M] Compute that || Ax||/||x|l=7.178x10™® and cond(A)x (]| Ab||/||b|]) =23683x(2.832x107*) =

6.707. Observe that the relative change in x is much smaller than the relative change in b. In fact the
theoretical bound on the relative change in x is 6.707 (to four significant figures). This exercise
shows that even when a condition number is large, the relative error in the solution need not be as
large as you suspect.

[M] Compute that || Ax ||/|| x || = .2597 and cond(A)x (|| Ab||/||b||) = 23683x(1.097x107°) =.2598 .

This calculation shows that the relative change in x, for this particular b and Ab, should not exceed
.2598. In this case, the theoretical maximum change is almost acheived.
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Symmetric Matrices
and Quadratic
Forms

7.1 SOLUTIONS

Notes: Students can profit by reviewing Section 5.3 (focusing on the Diagonalization Theorem) before
working on this section. Theorems 1 and 2 and the calculations in Examples 2 and 3 are important for the
sections that follow. Note that symmetric matrix means real symmetric matrix, because all matrices in the
text have real entries, as mentioned at the beginning of this chapter. The exercises in this section have
been constructed so that mastery of the Gram-Schmidt process is not needed.

Theorem 2 is easily proved for the 2 X 2 case:

b
It A:F d}, then 7»=%(a+di«/(a—d)2+4b2).

c

If b = 0 there is nothing to prove. Otherwise, there are two distinct eigenvalues, so A must be

d—\
diagonalizable. In each case, an eigenvector for A is { }

- 57
1. Since A= s ; = A", the matrix is symmetric.
. __3 i T N .
2. Since A= 5 3 # A", the matrix is not symmetric.
. [2 2 T . .
3. Since A= 4 4 # A", the matrix is not symmetric.
_ 8 3
4. Since A={8 0 —2|=A", the matrix is symmetric.
13 2 0
-6 2 0
5. Since A=| 0 —6 2|# A", the matrix is not symmetric.
0 0 -6
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10.

11.

CHAPTER 7

PTP{

Thus P is not

-1
Let P=| 2
2

pP'p=

Thus P is not

2/
Let P=

NEY

Symmetric Matrices and Quadratic Forms

Since A is not a square matrix A# A’ and the matrix is not symmetric.
6 8
Let P= , and compute that
8 -6
- 6 8|6 8 1 0
P P= = =1,
8 —-6|.8 -6 0 1
. . . . a4 .r |6 8
Since P is a square matrix, P is orthogonal and P~ =P’ = g 6l
/N2 =1/N2
. Let P= V2 V2 , and compute that
N2 N2
prp_| VN2 UN2YIN2 12 _{1 o}_l
~1N2 U2 [N a2 1
/N2 1/4/2
Since P is a square matrix, P is orthogonal and P' = PT = V2 V2 .
~1\2 12
=5 2
. Let P= I and compute that

=5 2|5 2 29 0
= =1,

2 5| 2 5 0 29
orthogonal.

2 2

-1 2|, and compute that

2 -1
-1 2 2|-1 2 2 9 0 0
2 -1 2 2 -1 2|=|0 9 0(&[
2 2 1) 2 2 -1 0 0 9
orthogonal.
3 2/3 1/3

0 1/\5  —2/45], and compute that

3 —4/J45 —2/[45
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2/3 0 V513 273 2/3 1/3

1 00
P'P=|2/3 1/\5 -4/\45 0 15 2/J5|=[0 1 0f|=1,
1/3 —2/5 —2/45||5/3 —4/J45 —2/J45] [0 0 1

2/3 0 573

Since P is a square matrix, P is orthogonal and P~ = P =|2/3 15 —4/4/45 |

173 =2/J5 -2//45

5 5 =5 -
-5 5 =5 .
12. Let P= , and compute that
S5 5 05
-5 5 5 =5
5 -5 5 =5|| 5 5 =5 - 1 0 0 O
r 5 5 5 S5|-5 5 =5 01 0 O
PTp= = =1,
-5 =5 5 5| 5 5 5 . 0 0 1 O
-5 5 5 =5|-5 5 5 =5 0 0 0 1
S =5 5 =5
. . . . 0T S 5 5 5
Since P is a square matrix, P is orthogonal and P =P" = 5 s s 5|
-5 5 5 =5

3 1
13. Let A= { ) 3}. Then the characteristic polynomial of A is (3—A)* —=1=A% —6A+8=(A—4)(A—2),

1
so the eigenvalues of A are 4 and 2. For A = 4, one computes that a basis for the eigenspace is L} ,

132

which can be normalized to get u, =
112

:l. For A = 2, one computes that a basis for the eigenspace

—1/~2
\/_:l Let

-1
is { }, which can be normalized to get u, =
1 142

Pefu, uz]{l/\/i _Uﬁ}nw{“ 0}

U2 12 0 2

Then P orthogonally diagonalizes A, and A= PDP™".
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1 5
14. Let A= L J. Then the characteristic polynomial of A is

(1-2)* =25=A> =21 —24 = (A —6)(AL +4), so the eigenvalues of A are 6 and —4. For A = 6, one
112
. For
1/\2

1
computes that a basis for the eigenspace is L}, which can be normalized to get u, = l:

-1
A = —4, one computes that a basis for the eigenspace is { J, which can be normalized to get

. _{-1/@}
Rl

Let

~ N2 -2 f6 0
P=[u uz]_l:llx/i l/ﬁ}andD—{o _4}

Then P orthogonally diagonalizes A, and A= PDP™".

16 —4
J. Then the characteristic polynomial of A is

15. Let A:{

(16-0)(1-A)—16=A* —=17A=(A—17)A, so the eigenvalues of A are 17 and 0. For A = 17, one
—4/\17
1/\17 |

For A = 0, one computes that a basis for the eigenspace is L} , which can be normalized to get

/17 Lot
u, = .
S PYNIT

o, uz]{—m\/ﬁ 1/\/ﬁ}mw{17 0}

—4
computes that a basis for the eigenspace is { J, which can be normalized to get u, = {

P=

TN YN 0 0

Then P orthogonally diagonalizes A, and A= PDP™".

-7 24
16. Let A= {24 7}. Then the characteristic polynomial of A is (=7 =A)(7=A) =576 =A> =625 =
(A —25)(A+25), so the eigenvalues of A are 25 and —25. For A = 25, one computes that a basis for

3 3/5
the eigenspace is L}, which can be normalized to get u, = {4/5}. For A = -25, one computes that a

-4 —4/5
basis for the eigenspace is { 3}, which can be normalized to get u, :{ 3/5}. Let
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3/5 —-4/5 25 0
P=[u u,]= and D =

4/5  3/5 0 -25

Then P orthogonally diagonalizes A, and A= PDP™".

1 1 3
17. Let A=|1 3 1|. The eigenvalues of A are 5, 2, and —2. For A = 5, one computes that a basis for
31 1

1 1/ \/5
the eigenspace is | 1 |, which can be normalized to get u, =| 1/ V3 |. For A =2, one computes that a

1 /3
1 l/\/g

basis for the eigenspace is | =2 |, which can be normalized to get u, =| -2/ J6 |. For A =-2, one

1 1/-/6
-1 ~1/\2

computes that a basis for the eigenspace is | 0 |, which can be normalized to get u; = 0] Let

1 1/4/2
13 16 12 5

0 O
P=[u, u, u]={1/3 -2/J6 0landD=|0 2 0
VNI VNGRS NG 0 0 -2
Then P orthogonally diagonalizes A, and A= PDP™".
-2 =36 0
18. Let A={-36 -23 0. The eigenvalues of A are 25, 3, and —50. For A = 25, one computes that a
0 0 3
-4 —4/5
basis for the eigenspace is | 3 |, which can be normalized to get u, =| 3/5|. For A =3, one
0 0
[0] 0
computes that a basis for the eigenspace is | 0 |, which is of length 1, so u, =| 0 |. For A =50, one
|1 1
3] 3/5
computes that a basis for the eigenspace is | 4 |, which can be normalized to get uy =| 4/5 |. Let
0 0
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-4/5 0 3/5 25 0 0
P=[u uw, uw]=l 3/5 0 4/5|andD=| 0 3 0
0 1 0 0 0 =50

Then P orthogonally diagonalizes A, and A= PDP™".

3 2 4
19. Let A=|-2 6 2/|. The eigenvalues of A are 7 and —2. For A = 7, one computes that a basis for
4 2 3
-1||1
the eigenspace is { 2|,/ 0| ;. This basis may be converted via orthogonal projection to an
0|1
-1|4
orthogonal basis for the eigenspace: 2|,| 2| ;. These vectors can be normalized to get
0115
~1/+/5 4//45 )
u, = 215 |, u, = 2/~/45 |. For A = -2, one computes that a basis for the eigenspace is | —1 |,
0 5//45 2
-2/3
which can be normalized to get u; =| —1/3 |. Let
2/3
~1/\5 4145 273 70 0
P=[u, u, u]=| 2//5 2/4/45 -1/3|andD=[0 7 0
0 5/V45  2/3 00 -2

Then P orthogonally diagonalizes A, and A= PDP™".

7 4 4
20. Let A=|—4 5 0. The eigenvalues of A are 13,7, and 1. For A = 13, one computes that a basis
4 0 9
2 2/3
for the eigenspace is | —1 |, which can be normalized to get u, =| —1/3 |. For A =7, one computes
2 2/3
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-1 -1/3
that a basis for the eigenspace is | 2 |, which can be normalized to get u, =| 2/3|. For A =1, one
2 2/3
2 2/3
computes that a basis for the eigenspace is | 2 |, which can be normalized to get uy =| 2/3|. Let
-1 -1/3
2/3 -1/3  2/3 13 0 0
P=[u uw, uw]=(-1/3 2/3 2/3|andD=| 0 7 0
2/3  2/3 -1/3 0 0 1

Then P orthogonally diagonalizes A, and A= PDP™".

4 1 3 1
1 4 1 3 _ _
Let A= 3 1 4 1 The eigenvalues of A are 9, 5, and 1. For A = 9, one computes that a basis
1 3 1 4
1 1/2
. |1 . _ 1/2
for the eigenspace is L which can be normalized to get u, = ol For A = 5, one computes that a
1 1/2
-1 -1/2
. : ] . : 172
basis for the eigenspace is L which can be normalized to get u, = sl For A =1, one
1 1/2
-1 0
: . . 0](-1 L :
computes that a basis for the eigenspace is L . This basis is an orthogonal basis for the
0 1
~1/\2 0
. . 0 ~1/42
eigenspace, and these vectors can be normalized to get u; = , Uy = . Let
142 0
0 12
1/2 -1/2 -1/42 0 90 0 0
172 172 0 -1/42 050 0
P=[u; u, u; uj= and D =
172 172 12 0 00 10
172 12 0 U2 00 01
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Then P orthogonally diagonalizes A, and A= PDP™".

2 0 0 O
0 0 1 , .
Let A= 00 2 of The eigenvalues of A are 2 and 0. For A = 2, one computes that a basis for
01 0 1
1{{0]|0
_ . o110 _ . . :
the eigenspace is olloll 111 This basis is an orthogonal basis for the eigenspace, and these
0f[1]]0
1 0 0
. 0 12 0
vectors can be normalized to get u; = ol u, = ol and u; = L For A = 0, one computes
0 1742 0
0 0

-1 ~1/\2

that a basis for the eigenspace is ol which can be normalized to get u, = 0 Let
1 1742
1 0 O 0 20 0 0
0 N2 0 -142 02 0 0
P=[u, uw, u; u,l= and D =
0 0 1 0 0 2 0
0 N2 0 142 0000
Then P orthogonally diagonalizes A, and A= PDP™".
31 1 1 3 1 1|1 1
Let A=|1 3 1]|.Sinceeachrowof Asumsto5, All|=|1 3 1|1|=|5|=5]|1
1 1 3 1 1 1 3|1 1
1
and | 1 |is an eigenvector of A with corresponding eigenvalue A = 5. The eigenvector may be
1

/3

normalized to get u, =|1/ V3 |. For A =2, one computes that a basis for the eigenspace is

/3

-1]|-1
1|,/ O], soA=2isan eigenvalue of A. This basis may be converted via orthogonal
0
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-1||-1
projection to an orthogonal basis 1], =1 ;for the eigenspace, and these vectors can be
0| 2
~1/42 ~1//6
normalized to get u, = 1/+/2 | and u; = ~1/6 |. Let
0 2//6
1/\3 -1/\J2 -1/46 50 0
P=[u, w, wu]=|1/3 1/J2 -1/J6| andD={0 2 0
1/43 0 2/v6 0.0 2
Then P orthogonally diagonalizes A, and A= PDP™".
5 4 2 -2 -20 -2 -2
Let A=|-4 5  2/|. One may compute that A| 2|=| 20|=10| 2|,s0 v,=| 2| isan
-2 2 2 1 10 1 1

eigenvector of A with associated eigenvalue A, =10. Likewise one may compute that
1 1 1 1
1|=1] 1|,s0 | 1] is an eigenvector of A with associated eigenvalue A, =1. For A, =1, one
0 0 0 0

I[|1
computes that a basis for the eigenspace is 1], 0| ;. This basis may be converted via orthogonal
0112

1 1
projection to an orthogonal basis for the eigenspace: {v,,v5} =1 | 1|, 1| ;. The eigenvectors v,,
0| 4
273 142 17418
v,,and v, may be normalized to get the vectors u, =| 2/3|, u, = 1/+/2 |, and u; = ~1/18 |.
1/3 0 4/18
Let
2/3 12 118 10 0 0
P=[u, uw, uy]=| 2/3 1/¥2 -1/\18andD=| 0 1 0
1/3 0 4/418 0 0

Then P orthogonally diagonalizes A, and A= PDP™".

a. True. See Theorem 2 and the paragraph preceding the theorem.
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28.

29.

30.

31.

32.

33.
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b. True. This is a particular case of the statement in Theorem 1, where u and v are nonzero.

e

False. There are n real eigenvalues (Theorem 3), but they need not be distinct (Example 3).
d. False. See the paragraph following formula (2), in which each u is a unit vector.

a. True. See Theorem 2.
b. True. See the displayed equation in the paragraph before Theorem 2.

c. False. An orthogonal matrix can be symmetric (and hence orthogonally diagonalizable), but not
every orthogonal matrix is symmetric. See the matrix P in Example 2.

d. True. See Theorem 3(b).

Since A is symmetric, (B' AB)" =B"A"B"" = B" AB, and B” AB is symmetric. Applying this result
with A = I gives B” B is symmetric. Finally, (BB")" =B""B" = BB" , so BB" is symmetric.

Let A be an n X n symmetric matrix. Then
(Ax) y=(Ax)"y =x A"y =x" Ay =x- (4y)
since A" = A.
Since A is orthogonally diagonalizable, A= PDP™", where P is orthogonal and D is diagonal. Since

A is invertible, A™' = (PDP_I)_1 =PD'P™". Notice that D' isa diagonal matrix, so A7lis
orthogonally diagonalizable.

If A and B are orthogonally diagonalizable, then A and B are symmetric by Theorem 2. If AB = BA,
then (AB)" =(BA)" = A"B" = AB. So AB is symmetric and hence is orthogonally diagonalizable by
Theorem 2.

The Diagonalization Theorem of Section 5.3 says that the columns of P are linearly independent
eigenvectors corresponding to the eigenvalues of A listed on the diagonal of D. So P has exactly k
columns of eigenvectors corresponding to A. These k columns form a basis for the eigenspace.

If A=PRP™, then P"'AP=R. Since P is orthogonal, R = P" AP . Hence

R' =(P"AP) =P" AP =

P" AP = R, which shows that R is symmetric. Since R is also upper triangular, its entries above the
diagonal must be zeros to match the zeros below the diagonal. Thus R is a diagonal matrix.

It is previously been found that A is orthogonally diagonalized by P, where

~1/\2 -6 143 8 0 0
P=[u, u, u]=| 1/v2 -1/\J6 1//3]andD={0 6 0
0 2/\J6 143 0 0 3

Thus the spectral decomposition of A is

T T T T T T
A=)kuu, +iuu, +iusu,; =8uu, +6u,u, +3uu,

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



7.1 + Solutions 415

1/2 -1/2 0 1/6 1/6 -2/6 1/3 1/3 1/3
=8| -1/2 1/2 0|+6] 1/6 /6 -2/6|+3/1/3 1/3 1/3
0 0 0 -2/6 -2/6 4/6 1/3 1/3 1/3
34. It is previously been found that A is orthogonally diagonalized by P, where
1/\2 -1/418 =273 70 0
P=[u, uw, uw]=| 0 4/\18 -1/3|andD=|0 7 0
N2 Vs 243 00 -2

Thus the spectral decomposition of A is

T T T T T T
A=huu, +iuu, +Aiuuy; =7uu; +7u,u, —2uyu,

1/2 0 1/2 1/18 -4/18 -1/18 4/9 2/9 -4/9
=7 0 O 0|+7|-4/18 16/18  4/18|-2| 2/9 1/9 =-2/9
1/2 0 1/2 -1/18  4/18 1/18 -4/9 -=2/9 4/9

35. a. GivenxinR", bx=(uu’ )x =u(u’x) = (u’ x)u, because u’x is a scalar. So Bx = (x - u)u. Since
u is a unit vector, Bx is the orthogonal projection of x onto u.

b. Since B =(uu’)” =u""u’ =uu’ =B, Bisa symmetric matrix. Also,
B? =(uu” )(uu” ) =u(u”w)u’ =un’ =B because u'u=1.

¢. Since u’u=1, Bu=(uu’ Ju=u(w’u)=u(l)=u, souis an eigenvector of B with corresponding
eigenvalue 1.

36. Givenany yinR" let § =Byandz=y — § . Suppose that B =B and B> = B. Then
B"B=BB=B.

a. Since z-§=(y—¥)-(By)=y-(By)—§-(By)=y' By—(By) By=y By—y'B'By=0,zis
orthogonal to §y.

b. Any vector in W = Col B has the form Bu for some u. Noting that B is symmetric, Exercise 28
gives

(y-y)-(Bw)=[B(y-y)]-u=[By-BBy]-u=0
since B> = B. Soy—§y isin W*, and the decomposition y =§ + (y —§ ) expresses y as the sum

of a vector in W and a vector in W+. By the Orthogonal Decomposition Theorem in Section 6.3,
this decomposition is unique, and so § must be proj, y.
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5 2 9 -6
2 5 -6 9 )
37. [M] Let A= 9 6 5 5| The eigenvalues of A are 18, 10, 4, and —12. For A = 18, one
-6 9 2 5
-1 -1/2
. ) ) . : 172
computes that a basis for the eigenspace is L which can be normalized to get u, = ol For
1 1/2
1
} ) ! . :
A = 10, one computes that a basis for the eigenspace is 1l which can be normalized to get
1
1/2 1
1/2 . . 1 .
u, = a2l For A = 4, one computes that a basis for the eigenspace is 1k which can be
1/2 -1
1/2 1
. 1/2 . . -1
normalized to get u; = ual For A =-12, one computes that a basis for the eigenspace is L
-1/2 1
1/2
. ) -1/2
which can be normalized to get u, = sl Let
1/2
-1/2 1/2 1/2 1/2 18 0 O 0
1/2 1/2 1/2 -1/2 0O 10 O 0
P=[u, uw, u, u,= and D= . Then P
-1/2 1/2 -1/2 -1/2 0O 0 4 0
/2 1/2 -1/2 1/2 O 0 0 -12

orthogonally diagonalizes A, and A= PDP™".

38 —-18 -06 -.04
-.18 59 -.04 12 )
38. [M] Let A= . The eigenvalues of A are .25, .30, .55, and .75. For A =
-.06 -04 47 -12

-04 12 -12 41

.25, one computes that a basis for the eigenspace is , which can be normalized to get u, =

—_ NN A
[N T N NS

For
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-1
. . |2 : .
A = .30, one computes that a basis for the eigenspace is 51 which can be normalized to get
4
-2 2
-4 . . |-l .
u, = . For A = .55, one computes that a basis for the eigenspace is 4l which can be
8 2
4 -2
_ -2 _ . 4
normalized to get u; = . For A = .75, one computes that a basis for the eigenspace is ,
4 2
-4 g =2 4 -4
hich b lized to eet .8 Let P=[ ] 4 -4 -2 8
ch can be normalized to get u, = .Let P=|u;, uw, u; u,f=
. SR P e I R
4 2 8 4 4
25 0 0 0
0 .30 0 0 . . O
and D= . Then P orthogonally diagonalizes A, and A= PDP™".
0 0 .55 0
0 0 0 .75
31 58 .08 44
S8 =56 44 -58 .
[M] Let A= . The eigenvalues of A are .75, 0, and —1.25. For A = .75, one
08 44 19 -08
44 -58 -08 31
113
: . . 10]2 o .
computes that a basis for the eigenspace is ollal This basis may be converted via orthogonal
11]10
1][3]
o . J10]] 4 .
projection to the orthogonal basis oll all These vectors can be normalized to get
1|3

2 3/:/50 2
0 4/~50 -1
u = u, = V50 . For A = 0, one computes that a basis for the eigenspace is al

0" | 47450
142 3750 2
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-4
. . -2 .
which can be normalized to get u; = gl For A = —1.25, one computes that a basis for the
4
-2 -4
. |4 . . 8
eigenspace 1s L which can be normalized to get u, = 5|
2 4
1/x/§ 3/\/% -4 -4 75 0O 0 0
0 4/4/50 -2 8 0 75 0 0
Let P=[u, w, u; u,l= and D= :
0 4450 8 -2 0 0
N2 31350 4 4 0 0 0 -125

Then P orthogonally diagonalizes A, and A= PDP™".

10 2 2 -6 9
2 10 2 -6 9
40. [M]Let A=| 2 2 10 -6 9
-6 -6 -6 26 9
9 9 9 9 -19

. The eigenvalues of A are 8, 32, -28, and 17. For A = 8,

1] [-1]
-1 0
one computes that a basis for the eigenspace is 0 |,| 1 | ¢. This basis may be converted via
0(]0
L 0 4 L O .
R
-1 1
orthogonal projection to the orthogonal basis 0 |,| =2 | . These vectors can be normalized to get
01]]0
L 0 Jd L O .
[ 2] - 1/46] (1]
YN 1//6 1
u, = 0, w=|_2/6| For A = 32, one computes that a basis for the eigenspace is | 1],
0 0 -3
L 0] L 0] L 0
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112
17412
which can be normalized to get u; =| 1/./12 |- For A = -28, one computes that a basis for the
-3/412
L O_
Sy - 1/20]
1 1720
1|, which can be normalized to get u, =| 1/+/20 |. For A = 17, one computes that
1 1720
4] | —4/~20 |
0 15
1 NG
1|, which can be normalized to get us =|1/4/5 |. Let
1 1745
L 1745

P=[u,

o
Il
o o o ®

S O O o O

2 e 112 1820 145
12 e w2 1420 145

U u, u)= 0 —2/J6 112 1420 1745 and
0 0 -3/12 1320 145
0 0 0 —4/720 1745
0 0 O]
0 0 O
32 0 0. Then P orthogonally diagonalizes A, and A= PDP™".
0 28 0
0 0 17
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Notes: This section can provide a good conclusion to the course, because the mathematics here is widely
used in applications. For instance, Exercises 23 and 24 can be used to develop the second derivative test
for functions of two variables. However, if time permits, some interesting applications still lie ahead.
Theorem 4 is used to prove Theorem 6 in Section 7.3, which in turn is used to develop the singular value

X, |=4x] +2X7 + x5 +6x,x, +2X, X,

—1], X' Ax=42)* +2(=1)* +(5)* +6(2)(=1) + 2(=1)(5) = 21.

decomposition.
5 1/3
1. a. x'Ax=[x, x,] i =5x12+(2/3)x1x2+x22
/3 1 || x
6
b. When x = e x' Ax =5(6)% +(2/3)(6)(1) + (1)* =185.
1
Q\Wmnx:&} x' Ax=5(1)* +(2/3)(D)3) +(3)* =16.
4 3 0«
2. a. xTAX:[xl X, x3] 3 2 1
0 1 1| x
2
b. When x=
5
173
c. When x=|1//3 |,
/3

X' Ax = 4(1/+/3)% +2(1//3)% + (1//3)? + 6(1/\/3)(1/~/3) + 2(1//3)1//3) =5.

. The matrix of the quadratic form is

. The matrix of the quadratic form is

. The matrix of the quadratic form is

. The matrix of the quadratic form is

. The matrix of the quadratic form is

10 -3
-3 -3
5 3/2
1372 0]
20 15/2
[15/2  -10]
0 1/2
1172 0]
8 -3 2
-3 7 -1|
2 -1 -3
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o 2 3
b. The matrix of the quadratic formis |2 0 —4|.
13 4 0
5 5/2 -3/2
. a. The matrix of the quadratic formis | 5/2 -1 0.
| —3/2 0 7
[0 -2 0
b. The matrix of the quadratic formis [-2 0 2.
0o 2 1

1 5
. The matrix of the quadratic formis A= {5 J. The eigenvalues of A are 6 and —4. An eigenvector

1742
1742

:l. Then A= PDP™', where

1
forA=061is L}, which may be normalized to u, = {

—1/\2
12

6 0
:l and D= {0 4}. The desired change of variable is x = Py, and

-1
:l. An eigenvector for A = —4 is { J,

which may be normalized to u, ={

{1/& ~1/2

P=[u w]=

U2 142

the new quadratic form is

x' Ax=(Py)" A(Py)=y' P' APy =y' Dy =6y —4y;

9 4 4
. The matrix of the quadratic formis A=|-4 7 0. The eigenvalues of A are 3, 9, and 15. An
4 0 11
) -2/3
eigenvector for A =3 is | =2 |, which may be normalized to u, =| —2/3 |. An eigenvector for A =9
1 1/3
-1 -1/3 2
is | 2|, which may be normalized to u, =| 2/3|. An eigenvector for A = 15is | —1 |, which may
2 2/3 2
2/3
be normalized to u; =|{ —1/3 |. Then A= PDP™', where
2/3
-2/3 -1/3  2/3 30 O
P=[u, uw, wu;]=[-2/3 2/3 -1/3|and D=|0 9 0| The desired change of variable
/73 2/3  2/3 0 0 15

is x = Py, and the new quadratic form is
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10.

11.
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x" Ax=(Py)" A(Py)=y" P" APy =y Dy =3y{ +9y; +15y;

The matrix of the quadratic form is A :{ 6}' The eigenvalues of A are 7 and 2, so the

-1
quadratic form is positive definite. An eigenvector for A =7 is { 2}, which may be normalized to

{—1/\/3 2/\/5}. Then

2/5 1/+/5

A=PDP”', where P=[u, u,] zl:

2
}. An eigenvector for A =2 is L}, which may be normalized to u, = l:

~1/\J5 2/45
215 145

variable is x = Py, and the new quadratic form is

x' Ax=(Py)" A(Py)=y' P"APy=y' Dy =Ty +2y;

7 0
:l and D = {0 2}. The desired change of

The matrix of the quadratic form is A :{ 3}. The eigenvalues of A are 11 and 1, so the

2
quadratic form is positive definite. An eigenvector for A = 11 is { J, which may be normalized to

2/5 1745
u, = . Then
—1//5 2/5

11 0
A=PDP', where P = [u1 :l and D ={ 0 J. The desired change of

1
}. An eigenvector for A = 1 is {2} , which may be normalized to u, :{

. ]_{ INCI VNS
VNG YN

variable is x = Py, and the new quadratic form is

x" Ax=(Py)’ A(Py)=y" PT APy =y’ Dy =11y? + y?

2 5
The matrix of the quadratic formis A = {5 2}. The eigenvalues of A are 7 and -3, so the quadratic

1/\/5}. A

1
form is indefinite. An eigenvector for A =7 is L}, which may be normalized to u, = { N
1/N2

—1/\2

. Then A=PDP™,
1/\/5}

-1
eigenvector for A = -3 is { J, which may be normalized to u, ={

U2 =142
U2 12

= Py, and the new quadratic form is

x" Ax=(Py)" A(Py)=y' P" APy =y' Dy =Ty} -3y}

7 0
where P=[u; wu,]|= l: :l and D :{ 3}. The desired change of variable is x

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



12.

13.

14.

7.2 e+ Solutions 423

2
The matrix of the quadratic form is A :{ } The eigenvalues of A are —1 and -6, so the

1
quadratic form is negative definite. An eigenvector for A = -1 is {2} , which may be normalized to

{1/«/5 —2/6} Then

u, =

2/5 U5 |

-1 0
A=PDP”', where P=[u, u,] :l: } and D :{ 0 6} . The desired change of

-2
}. An eigenvector for A = -6 is { J , which may be normalized to u, = l:

U5 =245
215 145

variable is x = Py, and the new quadratic form is

x' Ax=(Py)" A(Py)=y' P' APy =y' Dy=—y; -6y,

9}. The eigenvalues of A are 10 and 0, so the

The matrix of the quadratic form is A :{

1
quadratic form is positive semidefinite. An eigenvector for A = 10 is { 3}, which may be

1710
-3/4/10

:l. Then A=PDP™", where P=[u u2]=|:

normalized to u, = {

3/4/10 1410 37410 10 0
u, = and D= . The
17310 -3/410  1/410 0 0

desired change of variable is x = Py, and the new quadratic form is

x" Ax=(Py)" A(Py)=y" P APy =y" Dy =10y}

3
}. An eigenvector for L =0 is {J, which may be normalized to

8 3
The matrix of the quadratic formis A= L’ 0}. The eigenvalues of A are 9 and —1, so the quadratic

3/4/10
. An
1710

}. Then A=PDP™',

3
form is indefinite. An eigenvector for A =9 is L}, which may be normalized to u, = l:

-1 —-1/4/10
eigenvector for A = -1 is { }, which may be normalized to u, = V1o
3 3/4/10
3o -1V {9 0
an =
11510 37410

Py, and the new quadratic form is

x' Ax=(Py)" A(Py)=y" P" APy =y' Dy=9y? -2

where P=[u;, wu,] :{ } The desired change of variable is x =
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-2 2 2 2

-6 0
[M] The matrix of the quadratic form is A= 5 0 9 3| The eigenvalues of A are 0, —6, —
2 0 3 -9

8, and —12, so the quadratic form is negative semidefinite. The corresponding eigenvectors may be
computed:

3 0 -1 0
1 -2 1 0

A=0:| |,A=-6: ,A=-8: ,Ah=—12:
1 1 1 -1
1 1 1 1

These eigenvectors may be normalized to form the columns of P, and A = PDP™', where

3/412 0 -1/2 0 0O 0 0 0
12 206 172 0 0 6 0 0

P= and D =
ud12 u\e 12 —142 0 0 -8 0
U2 16 12 12 0 0 0 -12

The desired change of variable is x = Py, and the new quadratic form is

x' Ax=(Py)" A(Py)=y' P' APy =y" Dy =—6y; —8y; —12y}

4 3/2 0 2
_ ) _ 3/2 4 2 .
[M] The matrix of the quadratic form is A= . The eigenvalues of A are
0 2 4 3/2
-2 0 3/2 4

13/2 and 3/2, so the quadratic form is positive definite. The corresponding eigenvectors may be
computed:

—47[3 417 3
0|5 0||-5
A=13/2: Jo L a=3/2: ,
34 30| 4
5|10 5/ o

Each set of eigenvectors above is already an orthogonal set, so they may be normalized to form the
columns of P, and A= PDP™"', where

3/3/50 —4/4/50  3/4/50  4//50 13/2 0 0 0
e 5//50 0 -5/~/50 o | 012 0 0
4150 3/450 47450  =3/4/50 0 0 3/2 0

0 5/4/50 0 5/450 00 0 32

The desired change of variable is x = Py, and the new quadratic form is
13 13 3 3
X' Ax=(Py)' A(Py) =y P'APy =y Dy =—y[ + =y + )i+ 03
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1 9/2 0 -6
. . ) 9/2 1 6 0 )
17. [M] The matrix of the quadratic formis A= 0 6 L o/l The eigenvalues of A are
-6 0 9/2 1

17/2 and —13/2, so the quadratic form is indefinite. The corresponding eigenvectors may be

computed:
-41|3 4 3
015 0|5
A=17/2: , ,A=—13/2: ,
3|4 -3 4
5/10 5 0

Each set of eigenvectors above is already an orthogonal set, so they may be normalized to form the
columns of P, and A= PDP™", where

3/3/50 —4/4/50  3/4/50  4//50 17/2 0 0 0
e 5//50 0 -5/~/50 of o | 0 172 0 0
4/50  3/50 47450 =3/4/50 0 0 -13/2 0

0 5/4/50 0 5/450 0 0 0 -1372

The desired change of variable is x = Py, and the new quadratic form is

X Ax = (Py)’ A(Py) =y P"apy=y'Dy="1y2 2 Dy Dy

2 2 2 2
11 -6 -6 -6
_ . _ -6 -1 0 0 _
18. [M] The matrix of the quadratic formis A= 6 0 0 Ll The eigenvalues of A are 17, 1, —

-6 0 -1 O

1, and -7, so the quadratic form is indefinite. The corresponding eigenvectors may be computed:

-3 0 0 1
0 -2
A=17 ,A=1: ,A=—1 S A==T7
1 -1 1 1
1 1 1 1
These eigenvectors may be normalized to form the columns of P, and A= PDP™", where
—3/12 0 0 1/2 7 0 0 0
/12 0 —2/46 172 1 0 0
P= and D =
/N2 142 16 172 0 -1 0
V12 12 e 12 0.0 0 =7

The desired change of variable is x = Py, and the new quadratic form is

x' Ax=(Py) A(Py)=y"P"APy=y Dy =17y} +y3 —y; =Ty;
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23.
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Since 8 is larger than 5, the x22 term should be as large as possible. Since xl2 + x% =1, the largest
value that x, cantakeis 1, and x, =0 when x, =1. Thus the largest value the quadratic form can

take when x'x=1 is 5(0) + 8(1) = 8.

Since 5 is larger in absolute value than —3, the x12 term should be as large as possible. Since
xl2 + x22 =1, the largest value that x, cantakeis 1, and x, =0 when x, =1. Thus the largest value

the quadratic form can take when x'x=1is 5(1) - 3(0) = 5.

a. True. See the definition before Example 1, even though a nonsymmetric matrix could be used to
compute values of a quadratic form.

b. True. See the paragraph following Example 3.

¢. True. The columns of P in Theorem 4 are eigenvectors of A. See the Diagonalization Theorem in
Section 5.3.

d. False. Q(x) = 0 when x = 0.
e. True. See Theorem 5(a).

f. True. See the Numerical Note after Example 6.

a. True. See the paragraph before Example 1.

b. False. The matrix P must be orthogonal and make P” AP diagonal. See the paragraph before
Example 4.

c. False. There are also “degenerate” cases: a single point, two intersecting lines, or no points at all.
See the subsection “A Geometric View of Principal Axes.”

d. False. See the definition before Theorem 5.

e. True. See Theorem 5(b). If x’ Ax has only negative values for x # 0, then x’ Ax is negative
definite.

The characteristic polynomial of A may be written in two ways:
b

)
det(A—Al)=det|
b d-

}:Xz—(a+d)k+ad—b2

and

A=A =2y) =A% = (A + ) A+ A,
The coefficients in these polynomials may be equated to obtain %, +1, =a+d and A\, =
ad —b* =det A.

If det A > 0, then by Exercise 23, A, >0, so that i, and A, have the same sign; also,

ad =det A+b* >0.

a. If det A>0and a > 0, then d > 0 also, since ad > 0. By Exercise 23, A, + A, =a+d >0. Since },
and ), have the same sign, they are both positive. So Q is positive definite by Theorem 5.

b. If det A > 0 and a <0, then d < 0 also, since ad > 0. By Exercise 23, &, + A, =a+d <0. Since A,
and %, have the same sign, they are both negative. So Q is negative definite by Theorem 5.

c. If det A <0, then by Exercise 23, 3,1, <0. Thus A, and %, have opposite signs. So Q is
indefinite by Theorem 5.
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Exercise 27 in Section 7.1 showed that B’ B is symmetric. Also x’ B' Bx=(Bx)" Bx=|| Bx|| =0, so

the quadratic form is positive semidefinite, and the matrix B” B is positive semidefinite. Suppose

that B is square and invertible. Then if x’ B’ Bx =0, || Bx || = 0 and Bx = 0. Since B is invertible, x =

0. Thus if x # 0, x” B Bx >0 and B' B is positive definite.

Let A=PDP", where P" = P™'. The eigenvalues of A are all positive: denote them X,,...,4,. Let C

be the diagonal matrix with \/X— ,...,\/Z on its diagonal. Then D=C*=C"C .If B=PCP", then B

is positive definite because its eigenvalues are the positive numbers on the diagonal of C. Also
B"B=(PcP") (PcP")=(P"" C"P")(PCP")=PC"CP" =PDP" = A

since PTP=1.

Since the eigenvalues of A and B are all positive, the quadratic forms x’ Ax and x’ Bx are positive
definite by Theorem 5. Let x # 0. Then x” Ax >0 and x" Bx>0, so x! (A+B)x= x! AX+x' Bx > 0,

and the quadratic form X’ (A+ B)X is positive definite. Note that A + B is also a symmetric matrix.
Thus by Theorem 5 all the eigenvalues of A + B must be positive.

The eigenvalues of A are all positive by Theorem 5. Since the eigenvalues of A™" are the reciprocals
of the eigenvalues of A (see Exercise 25 in Section 5.1), the eigenvalues of A™' are all positive. Note
that A™' is also a symmetric matrix. By Theorem 5, the quadratic form x” A™'x is positive definite.

SOLUTIONS

Notes: Theorem 6 is the main result needed in the next two sections. Theorem 7 is mentioned in Example
2 of Section 7.4. Theorem 8 is needed at the very end of Section 7.5. The economic principles in Example
6 may be familiar to students who have had a course in macroeconomics.

1.

5 2 0
The matrix of the quadratic form on the leftis A={2 6 -2 |. The equality of the quadratic
0o -2 7

forms implies that the eigenvalues of A are 9, 6, and 3. An eigenvector may be calculated for each
eigenvalue and normalized:

1/3 2/3 -2/3
A=9: 2/3|,A=6:| 1/3|,A=3: 2/3
-2/3 1/3 1/3

/3 2/3 -2/3
The desired change of variable is x = Py, where P=| 2/3 1/3 2/3]|.
-2/3 2/3 1/3
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3 1 1
2. The matrix of the quadratic form on the leftis A= 1 2 2. The equality of the quadratic forms
1 2 2

implies that the eigenvalues of A are 5, 2, and 0. An eigenvector may be calculated for each
eigenvalue and normalized:

1/4/3 —2/6 0
L=5:11/3 |, a=2:] 1/J6|,4=0:|-1/2
/43 1/4/6 12

/N3 2146 0
The desired change of variable is x = Py, where P=|1/ V3 16 —1/42 .

U3 16 142

3. (a) By Theorem 6, the maximum value of x’ Ax subject to the constraint x’ x =1 is the greatest
eigenvalue %, of A. By Exercise 1, &, =9.

(b) By Theorem 6, the maximum value of x’ Ax subject to the constraint x' x =1 occurs at a unit
1/3

eigenvector u corresponding to the greatest eigenvalue A, of A. By Exercise 1, u==%| 2/3|.
-2/3

(c) By Theorem 7, the maximum value of x’ Ax subject to the constraints x'x =1 and x"u =0 is
the second greatest eigenvalue X, of A. By Exercise 1, &, =6.

4. (a) By Theorem 6, the maximum value of x’ Ax subject to the constraint x' x =1 is the greatest
eigenvalue %, of A. By Exercise 2, &, =5.

(b) By Theorem 6, the maximum value of x’ Ax subject to the constraint x' x =1 occurs at a unit

1//3
eigenvector u corresponding to the greatest eigenvalue A, of A. By Exercise 2, u==%|1/ V3.

/3

(c) By Theorem 7, the maximum value of x’ Ax subject to the constraints x'x =1 and x"u =0 is
the second greatest eigenvalue X, of A. By Exercise 2, i, = 2.

-2
S. The matrix of the quadratic formis A :{ 5}. The eigenvalues of A are A, =7 and %, =3.

(a) By Theorem 6, the maximum value of x’ Ax subject to the constraint x’ x =1 is the greatest
eigenvalue ), of A, whichis 7.
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(b) By Theorem 6, the maximum value of x’ Ax subject to the constraint x' x =1 occurs at a unit
eigenvector u corresponding to the greatest eigenvalue A, of A. One may compute that {_J is

—1/\/5}
V2 |

(c) By Theorem 7, the maximum value of x’ Ax subject to the constraints x'x=1 and x"u=0 is
the second greatest eigenvalue X, of A, which is 3.

an eigenvector corresponding to A, =7, so u= il:

7 3/2

6. The matrix of the quadratic formis A=
3/2 3

}. The eigenvalues of A are A, =15/2 and

Ay =5/2.

(a) By Theorem 6, the maximum value of x’ AX subject to the constraint x’ x =1 is the greatest
eigenvalue X, of A, which is 15/2.

(b) By Theorem 6, the maximum value of x’ Ax subject to the constraint x’ x =1 occurs at a unit
. . . 3.
eigenvector u corresponding to the greatest eigenvalue A, of A. One may compute that L} is an

3/\/5}
1/410 |

(c) By Theorem 7, the maximum value of x’ Ax subject to the constraints x'x =1 and x"u =0 is
the second greatest eigenvalue A, of A, which is 5/2.

eigenvector corresponding to A, =15/2, so u= ili

. The eigenvalues of the matrix of the quadratic form are %, =2, %, =-1, and A, =—-4. By Theorem

6, the maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit eigenvector u

1/2
corresponding to the greatest eigenvalue A, of A. One may compute that 1| is an eigenvector
1
1/3
corresponding to A, =2, so u=%|2/3|.
2/3

. The eigenvalues of the matrix of the quadratic form are %, =9, and A, =-3. By Theorem 6, the

maximum value of x’ Ax subject to the constraint x' x =1 occurs at a unit eigenvector u
-1 -2
corresponding to the greatest eigenvalue %, of A. One may compute that | 0| and | 1| are linearly
1 0
independent eigenvectors corresponding to A, =9, so u can be any unit vector which is a linear
-1 -2
combinationof | 0| and | 1|. Alternatively, u can be any unit vector which is orthogonal to the
1 0
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1
eigenspace corresponding to the eigenvalue %, =—3. Since multiples of | 2 | are eigenvectors
1
1
corresponding to %, = -3, u can be any unit vector orthogonal to | 2 |.
1

This is equivalent to finding the maximum value of x’ Ax subject to the constraint x’x =1. By
Theorem 6, this value is the greatest eigenvalue A, of the matrix of the quadratic form. The matrix of

3}, and the eigenvalues of A are A, =5+ \/g, A, =5 —\/g. Thus

the quadratic formis A :{
the desired constrained maximum value is A, =5+ 5.

This is equivalent to finding the maximum value of x’ Ax subject to the constraint x' x=1. By
Theorem 6, this value is the greatest eigenvalue A, of the matrix of the quadratic form. The matrix of

-1
the quadratic formis A :{ 5}, and the eigenvalues of A are A, =1+ J17 s Ay =1- J17. Thus

the desired constrained maximum value is A, =1++/17.

Since x is an eigenvector of A corresponding to the eigenvalue 3, Ax = 3x, and X' AX=x' (3x) =

3(x"x) =3||x|[* =3 since x is a unit vector.

Let x be a unit eigenvector for the eigenvalue A. Then x’ Ax=x' (Ax) =A(x' X) =X since x' x=1.
So A must satisfy m <A< M.

If m=M, thenlett=(1-0)m+O0M=mand x =u,. Theorem 6 shows that uﬁAun =m. Now

suppose that m < M, and let ¢ be between m and M. Then 0 <t —m <M —m and 0 < (t — m)/(M — m)
< 1. Let

o= (t—m)/(M —m), and let x=+1-au, +\/Eul. The vectors V1-«u, and \/Etul are orthogonal

because they are eigenvectors for different eigenvectors (or one of them is 0). By the Pythagorean
Theorem

x| x|P=[VI-ou, | +[Vou, P=[1-alllu, I +|allu F=1-2)+a=1
since u, and w, are unit vectors and 0 < o0 < 1. Also, since u, and u, are orthogonal,
x' Ax = (ﬂun + «/Etul )" A(ﬂun + \/Etul)
= (Mun + \/au1 ) (m@un +M\/Eu1)
=|1-o|mulu,+|a|Mulu, =(1-)m+oM =t

Thus the quadratic form x’ Ax assumes every value between m and M for a suitable unit vector x.
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0 1/2 3/2 15
. . _ 1/2 0 15 3/2 .

14. [M] The matrix of the quadratic form is A= . The eigenvalues of A are

3/2 15 0 1/2

15 3/2 1/2 0

M =17, h, =13, hy=—14, and i, =-16.
(a) By Theorem 6, the maximum value of x’ Ax subject to the constraint x' x =1 is the greatest
eigenvalue X, of A, whichis 17.

(b) By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x=1 occurs at a unit

1
. : . L.
eigenvector u corresponding to the greatest eigenvalue A, of A. One may compute that | is an
1
1/2
. . 1/2
eigenvector corresponding to 4, =17, so u== ol
1/2

(c) By Theorem 7, the maximum value of x” Ax subject to the constraints X' x=1 and x"u=0 is
the second greatest eigenvalue A, of A, which is 13.

0 3/2 5/2 7/2
. . _ 3/2 0 7/2 5/2 _

15. [M] The matrix of the quadratic formis A= . The eigenvalues of A are

5/2 7172 0 3/2

712 5/2 3/2 0

M=15/2, h,=-1/2, h3=-5/2, and L, =-9/2.
(a) By Theorem 6, the maximum value of x’ Ax subject to the constraint x’ x =1 is the greatest
eigenvalue X, of A, which is 15/2.

(b) By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit

1
. : . L.
eigenvector u corresponding to the greatest eigenvalue A, of A. One may compute that | is an
1
1/2
) . 1/2
eigenvector corresponding to &, =15/2, so u=% ol
1/2

(c) By Theorem 7, the maximum value of x’ Ax subject to the constraints x'x=1 and x"u =0 is
the second greatest eigenvalue i, of A, which is —1/2.
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4 -3 -5 -5
: . : -3 0 -3 3 :
16. [M] The matrix of the quadratic form is A = 5 1 0 Ll The eigenvalues of A are A, =9,
-5 3 -1 0

hy =3, hy=1, and A, =-9.

(a) By Theorem 6, the maximum value of x’ Ax subject to the constraint x’ x =1 is the greatest
eigenvalue X, of A, whichis 9.

(b) By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x=1 occurs at a unit

-2

eigenvector u corresponding to the greatest eigenvalue A, of A. One may compute that is

/-6

0
/46|
176

(c) By Theorem 7, the maximum value of X’ AX subject to the constraints x’ x=1 and x"u =0 is the
second greatest eigenvalue A, of A, which is 3.

an eigenvector corresponding to A, =9, so u==

-2 -10 0 0
17. [M] The matrix of the quadratic formis A= 5 0 13 3l The eigenvalues of A are
-2 0 3 -13
A =-4, b, =-10, A;=-12, and 1, =-16.

(a) By Theorem 6, the maximum value of x’ AX subject to the constraint x' x =1 is the greatest
eigenvalue X, of A, which is 4.

(b) By Theorem 6, the maximum value of x” Ax subject to the constraint x’ x =1 occurs at a unit

-3

1
eigenvector u corresponding to the greatest eigenvalue A, of A. One may compute that is

-3/\12
1/12
112 |
1/12

(c) By Theorem 7, the maximum value of x’ Ax subject to the constraints x'x=1 and x"u=0 is
the second greatest eigenvalue %, of A, which is —10.

an eigenvector corresponding to A, =—4, so u==
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7.4 SOLUTIONS

Notes: The section presents a modern topic of great importance in applications, particularly in computer
calculations. An understanding of the singular value decomposition is essential for advanced work in
science and engineering that requires matrix computations. Moreover, the singular value decomposition
explains much about the structure of matrix transformations. The SVD does for an arbitrary matrix almost
what an orthogonal decomposition does for a symmetric matrix.

1 0 1 0
1. Let A= {0 3}. Then A" A= {0 9}, and the eigenvalues of A" A are seen to be (in decreasing
order) A, =9 and i, =1. Thus the singular values of A are 0, = J9=3 and o, = Ji=1.

-5 0 25 0
2. Let A= 0 0}. Then A" A :{ 0 0}, and the eigenvalues of A" A are seen to be (in decreasing

order) A, =25 and X, = 0. Thus the singular values of A are 0, =/25=5 and o, = Jo =o0.

1
3. Let A= Jo . Then ATA= 6 o
| 0 6 Jo o7

A —1304+36=(L—9)(L—4), and the eigenvalues of A" A are (in decreasing order) A =9 and
L, = 4. Thus the singular values of A are 0, = J9 =3 and o, = Ja=2.

}, and the characteristic polynomial of A" A is

3 2 3 243
4. Let A= {\/_ :l Then A”A :{ \/_:l, and the characteristic polynomial of A" A is

0 3 2437
A* —10L+9=(A—9)(A—1), and the eigenvalues of AT A are (in decreasing order) A =9 and
L, =1. Thus the singular values of A are 0, =/9=3 and o, = Ji=1.

-3 0 9 0
S. Let A :{ 0 0}. Then A"A= {0 0}, and the eigenvalues of A" A are seen to be (in decreasing

order) &, =9 and X, = 0. Associated unit eigenvectors may be computed:

ool

I 0
Thus one choice for Vis V = {O J. The singular values of A are 0, =J/9=3 and o, = Jo=o.

3 0
Thus the matrix £ is X = {0 0}. Next compute

u =—Av, =
o, 0
Because Av, = 0, the only column found for U so far is u,. Find the other column of U is found by

extending {u,} to an orthonormal basis for R>. An easy choice is u, = { J.
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-1 0
Let U = . Thus
0 1

e i O

-2 0 4 0
6. Let A :{ 0 J. Then A"A= {0 J, and the eigenvalues of A" A are seen to be (in decreasing

order) A, =4 and A, =1. Associated unit eigenvectors may be computed:

S

1 0
Thus one choice for Vis V = {0 J. The singular values of A are 0, = J4=2 and o, = Ji=1.

2 0
Thus the matrix X is X = {O J. Next compute

1 -1 1 0
u =—Av, = u, =—Av, =
o, 0 o, -1

-1
Since {u,,u,} is a basis for R, let U :{ 0

T B

2 -1 8 2
7. Let A:{2 2}. Then A" A :{2 5}, and the characteristic polynomial of A" A is

A —1304+36=(L—9)(L—4), and the eigenvalues of A" A are (in decreasing order) A, =9 and
L, = 4. Associated unit eigenvectors may be computed:

I ANl B B VNS
k_g{l/ﬁ}x_él{ 2/6}

2/5  —1/45
145 245

3 0
o, = V4 =2. Thus the matrix T is X = {0 2}. Next compute

Thus one choice for Vis V = l: :l The singular values of A are 0, =/9=3 and

P RN L |25
u, =—Av, = u, =—Av, =
1 O-l 1 2/\/3 2 0_2 2 1/\/5
/N5 =2/+/5
Since {u,,u,} is a basis for R? let U = V5 V5 . Thus
215 145
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A:UEVT{

1145 —2/\/5}{3 o}{ 2145 1/\/1
2/5 U500 20 -5 2145

2 3 T 4 6 . . T,
. Let A= o a2l Then A" A= 6 13 and the characteristic polynomial of A" A is

A* =170 +16=(L—16)(L—1), and the eigenvalues of AT A are (in decreasing order) A, =16 and
L, =1. Associated unit eigenvectors may be computed:

N B VNC B B YV
s 18 aea ]

15 —2/45
215 145

4 0
o, = J1=1. Thus the matrix £is X = {0 J. Next compute

2/~/5 —1//5
ulziAVI:{ \/_}’UZZLAVZZI: \/_}

Thus one choice for Vis V = l: :l The singular values of A are 0, = J16=4 and

o) 175 o, 2/5
2/N5  —1/4/5
Since {u,,u,} is a basis for R? let U = V5 V5 . Thus
UNCE NG
. |25 <145 {4 0} N5 245
A=U2XV =
N5 2450 245 145
7 1
. 74 32 . . T
.Let A=|0 O|. Then A" A= 2 2| and the characteristic polynomial of A" A is
5 5

A2 =100%+900 = (A —90)(A —10), and the eigenvalues of A" A are (in decreasing order) A =90
and A, =10. Associated unit eigenvectors may be computed:

IOV 225 B B VAVE
x_90.{1/ﬁ},x_10.{ 2/\/3}

2/5  =1/5
Thus one choice for Vis V = V5 V5 . The singular values of A are 0, = V90 =310 and
15 2135
310 0
o, = J10. Thus the matrix X is £ = 0 10 |. Next compute
0 0
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| 132 | ~1/32
ul=;1AV1= 0 ,uzzo_—zAVZ: 0
132 132

Since {u,,u,} is not a basis for R’, we need a unit vector u, that is orthogonal to both u, and u,.

The vector u, must satisfy the set of equations ulTX =0 and ugx =0. These are equivalent to the
linear equations

0 0
x+0x,+x;, = 0
,sox=|1|,andu;=|1
- +0x,+x; = 0
0 0
V2 =142 0
Therefore let U = 0 0 1/|.Thus

U2 142 0

A=UzV = 0 0 1 0 \/E{ ]

142 142 0 0 0 -5 215

4 =2
20 -10
10. Let A=|2 —1|. Then A”A :{ 10 5}, and the characteristic polynomial of A" A is
0 O

A* —25) =M\ —25), and the eigenvalues of A" A are (in decreasing order) 4, =25 and %, =0.
Associated unit eigenvectors may be computed:

ol s
] 28] 1

2/5 145

Thus one choice for Vis V = . The singular values of A are 0, = J25=5 and
~1N5 235

5 0
o, = JO=0. Thus the matrix £is £=[0 0. Next compute
0 0

215
1

u =—Ayv, = 1/+/5
o, 0

Because Av, = 0, the only column found for U so far is u,. Find the other columns of U found by
extending {u,} to an orthonormal basis for R®. In this case, we need two orthogonal unit vectors u,

and u; that are orthogonal to u,. Each vector must satisfy the equation ulTX =0, which is equivalent
to the equation 2x; + x, = 0. An orthonormal basis for the solution set of this equation is
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1/\/5 0
u,=|-2/5 [,u;=]0|.
0 1
2/\5 145 0
Therefore, let U =| 1//5 —2/+/5 0. Thus
0 0 1

2/:5 15 0 5 0
A=USV =l 1/\5 =2/5 0lj0o o

{2/\/5 —1/@}

0 o 1lo oll/A5 2/
BN 81 —27
11. Let A= 6 -2|. Then ATA:{ 7 9}, and the characteristic polynomial of A" A is
6 -2

A% =90\ =M(A—90), and the eigenvalues of A” A are (in decreasing order) A, =90 and %, =0.
Associated unit eigenvectors may be computed:

3/410 1/4/10
A=90: ,A=0: .
-1/+/10 3/410
3/410  1/+4/10
-1/+10  3/~/10

Thus one choice for Vis V :{ :l The singular values of A are 0, = V90 =310 and

310 0
o, =0 =0. Thus the matrix  is = 0 0. Next compute
0 0
-1/3
u, ZLAVI =| 2/3
“ 2/3

Because Av, = 0, the only column found for U so far is u;. The other columns of U can be found by
extending {u,} to an orthonormal basis for R®. In this case, we need two orthogonal unit vectors u,

and u; that are orthogonal to u,. Each vector must satisfy the equation ulTX =0, which is equivalent
to the equation —x, + 2x, + 2x; = 0. An orthonormal basis for the solution set of this equation is

2/3 2/3
u, =|-1/3|,u;=| 2/3]|.
2/3 -1/3

-1/3  2/3  2/3
Therefore, let U =| 2/3 -1/3  2/3|. Thus
2/3  2/3 -1/3
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A=UxXVT = 2/3 -1/3 2/3

173 2/3  2/3][3V10 0{
2/3  2/3 -1/3 0 0

3/410  =1/4/10
17410 37410

11
2 0
12. Let A=| 0 1| Then A"TA= {0 3}, and the eigenvalues of A" A are seen to be (in decreasing
-1 1

order) &, =3 and X, = 2. Associated unit eigenvectors may be computed:

S

0 1
Thus one choice for Vis V = L O}' The singular values of A are 0, = \/5 and 0, = 2. Thus the

NI
matrix Tis £=| 0 ~/2|. Next compute
0 0
1/43 1742
ulziAvlz 1//3 ,uzziszz 0
0,

O
113 2 ~1/\2

Since {u,,u,} is not a basis for R’, we need a unit vector u, that is orthogonal to both u, and u,.

The vector u, must satisfy the set of equations ulTX =0 and ugx =0. These are equivalent to the
linear equations

| 1/-/6 13 12 146
x+x,+x;, = 0
40 O,sox= -2 |,andu; = —2/\/8 . Therefore let U = 1/x/§ 0 —2/\/8 .
x+0x, —x, =
b 1 1//6 N3 -2 146
Thus

U3 12 sV o

0 1

A=UVT =[1//3 0 —2/J6| 0 \E{ }
U3 =142 1e|| 0 0

3 2

3 2 2
13. Let A{2 ; 2}. Then A" =|2 3|, ATTAT:AAT:{
p )

17

8
, and the eigenvalues of
8 17

A™ A" are seen to be (in decreasing order) A, =25 and %, =9. Associated unit eigenvectors may
be computed:
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I D VNG X I B YNNG}
-

Thus one choice for Vis V = {l/ﬁ _l/\/i:l. The singular values of A" are o, =/25=5 and
N2 142
5 0]
o, =9 =3. Thus the matrix is £=|0 3. Next compute
0 0]
12 1318
u, =LATV1 =[1/\2 ,u, =LATV2 =| 1/\18
o 0 i —4/\18

Since {u,,u,} is not a basis for R’, we need a unit vector u, that is orthogonal to both u, and u,.

The vector u, must satisfy the set of equations ulTX =0 and ugx =0. These are equivalent to the
linear equations

0 -2 -2/3
X +x,+0x;, =

b 3 ,sox=| 2|,andu,=| 2/3
—x +x, —4x; = | 13

/N2 —1/18  =2/3
Therefore let U =|1/+/2  1/:/18  2/3|. Thus
0 —4/18  1/3

142 -1/\18 2735 o

U2 142
AT=uzvi=|1/J2 118 2/3 |0 3{ 5 (]
12 142

0 —4/418 1/3 |0 0

An SVD for A is computed by taking transposes:

U2 12 0
12 14215 0 o
{ 2 \/_MO 5 0} 1718 1718 —4/418
N2 12 273 2/3 1/3
215 —1/45

15 245

eigenvector associated with the greatest eigenvalue %, of A" A, so the first column of V is a unit

From Exercise 7, A=U VT with v = l: :l Since the first column of V is unit

vector at which || Ax || is maximized.

a. Since A has 2 nonzero singular values, rank A = 2.
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40| -78 .58
b. By Example 6, {u,,u,}= 371, =33 is a basis for Col A and {v;}=1< | =58 | ; is a basis
-84 ||-.52 .58

for Nul A.

16. a. Since A has 2 nonzero singular values, rank A = 2.

17.

18.

19.

20.

21.

=86 |—-.11
b. By Example 6, {u,,u,}= 311, .68 is a basis for Col A and
41| (=73
.65 || =34
.08 . . .
{vy,v,}= , 1s a basis for Nul A.
-.16||-.84
-73||-.08

Let A=UXVT =UXV™". Since A is square and invertible, rank A = n, and all of the entries on the
diagonal of £ must be nonzero. So Al=wzvHh'=vzlvt=vz'u".

First note that the determinant of an orthogonal matrix is £1, because 1=det ] =detU Ty =
(detUT)(detU) = (detU)>. Suppose that A is square and A=U >VT. Then X is square, and
det A= (detU)(detZ)(detV")=+detE =+0,...0,.

Since U and V are orthogonal matrices,
Ara=wzvhuzv' =v'v'uzv =vEEV =vEEv!
If 0,,...,0, are the diagonal entries in X, then >'Y is a diagonal matrix with diagonal entries

0'12,. ..,0,” and possibly some zeros. Thus V diagonalizes A" A and the columns of V are

r

eigenvectors of A" A by the Diagonalization Theorem in Section 5.3. Likewise
A" =uzviwzvh =vzvivE' vt =uEsHu =uEEHuT

so U diagonalizes AA” and the columns of U must be eigenvectors of AA” . Moreover, the

. . . 2 2 .
Diagonalization Theorem states that ¢,",...,0,” are the nonzero eigenvalues of A" A . Hence
o,,...,0, are the nonzero singular values of A.

If A is positive definite, then A= PDP’ | where P is an orthogonal matrix and D is a diagonal matrix.
The diagonal entries of D are positive because they are the eigenvalues of a positive definite matrix.

Since P is an orthogonal matrix, PP" =1 and the square matrix P’ is invertible. Moreover,
(PHY'T=(PHY'=P=P"), so P’ isan orthogonal matrix. Thus the factorization A= PDP’ has
the properties that make it a singular value decomposition.

Let A=UZXV". The matrix PU is orthogonal, because P and U are both orthogonal. (See Exercise
29 in Section 6.2). So the equation PA=(PU)ZV" has the form required for a singular value

decomposition. By Exercise 19, the diagonal entries in X are the singular values of PA.
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The right singular vector v, is an eigenvector for the largest eigenvector A, of A” A. By Theorem 7

in Section 7.3, the second largest eigenvalue A, is the maximum of x' (AT A)x over all unit vectors
g g 2

orthogonal to v, . Since x (AT A)x =|| Ax 2, the square root of &,, which is the second largest

singular value of A, is the maximum of || Ax || over all unit vectors orthogonal to v,.

From the proof of Theorem 10, UL=[ou, ... ou, 0 ... 0]. The column-row expansion
of the product (U =W shows that
T
Vi
A=UZWV' =UZ)| | |=owyv, +..+0uv,’
T
Vﬂ
where r is the rank of A.
0 fori#j
From Exercise 23, A" = O'lvlulT +...+O',Vruf. Then since ul.Tuj = {1 fOI'l. J.,
ori=j

T . _ T T _ T _ T _
Au;=(oyvu +...+o,vu)u;=(0;v,u;)u; =0,v;(u;u;)=0,v;

Consider the SVD for the standard matrix A of T, say A=UXV".Let B={v,,...,v,} and
C ={u,,...,u,,} be bases for R" and R™ constructed respectively from the columns of V and U. Since

the columns of V are orthogonal, vy =€, where e is the jth column of the n X n identity matrix.

To find the matrix of 7 relative to B and C, compute
T(v;)=Av,=UZV'v,=UZe,=Uce; = clUe, = cu,
so [T(v;)]c = 0;e;. Formula (4) in the discussion at the beginning of Section 5.4 shows that the

“diagonal” matrix X is the matrix of 7T relative to B and C.

-18 13 4 4 528 =392 224  -176
2 19 -4 12 r =392 1092 -176 536
[M] Let A= . Then A" A= , and the
-14 11 -12 8 224  -176 192 -128
-2 21 4 8 -176 536 -128 288

eigenvalues of A" A are found to be (in decreasing order) %, =1600, %, =400, A, =100, and
L, = 0. Associated unit eigenvectors may be computed:

—4 8 4 -2
A I B e I
2™ a7 -8t 4

4 2 4 8
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-4 8 4 -2
) ) 8 4 -2 - .
Thus one choice for Vis V = 5 4 g . The singular values of A are ¢, =40, o, =20,
4 2 4 8
40 0 0 O
L. 0 20 0 O
0, =10, and o, =0. Thus the matrix X is X = . Next compute
0 0 10 O
0 0 0 O
S -5
1 S 1 5
u, =—Av, = ,u, =—Av, = ,
o, S o, -5
S 5
-5
1 S
u; =—Av, =
o 5
-5

Because Av, = 0, only three columns of U have been found so far. The last column of U can be found
by extending {u;, u,, us} to an orthonormal basis for R*. The vector u, must satisfy the set of

equations u, x=0, u.x=0, and ujx=0.These are equivalent to the linear equations

-1 -5
X +x+x;+x,=0 | 5
X +x,—x;+x,=0,s0x= 1 ,andu, = '5 .
X +x+x-x,=0 )
1 TX T 1 5
(5 -5 -5 -5
S 5 5 =5
Therefore, let U = . Thus
S =5 5 5
S5 5 =5 5
(5 -5 -5 -5][40 0 0 O][-4 8 -2 4
r |5 5 5 =5) 0 20 0 0} 8 4 4 2
A=UXV" =
S -5 5 5|0 0 10 0 4 -2 -8 4
S5 5 =5 S5]Lo0 0 0 0)-2 -4 4 8
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2 4
27. [M] Let A= 0 2.Then ATA=|-38 -3 121 10 -52/|, andthe

1 =2 4 4 -8

eigenvalues of AT A are found to be (in decreasing order) A, =270.87, A, =147.85, i, =23.73,
L, =18.55, and A5 = 0. Associated unit eigenvectors may be computed:

[—.10] [-39] [-74] 411 [-36]
61 29 -27 -.50 —.48

Aol =21 [ hyt| 84|, hy:| =07 [,hy:| 45|,h5:| —.19
-52 -.14 38 -23 -72

| .55 |-19] | 49] | 58]  [-29]

[—10 -39 -74 41 -36]
61 29 -27 -50 -48
Thus one choice for Vis V=] -21 .84 -07 .45 -.19|. The nonzero singular values of A
-52 -14 38 =23 -T2
| 55 =19 49 58 -29]
are o, =16.46, o,=12.16, 0, =4.87, and o, =4.31. Thus the matrix X is

16.46 0 0 0 0
0 12.16 0 0 0
= . Next compute
0 0 4.87 0 0
0 0 0 431 O
-.57 —-.65
1 .63 1 -24
U =—Av, = Wy, =— AV, = )
o, 07 o, —-.63
=51 34
-42 27
1 —-.68 1 -29
u, =—Av, = u, =—Av, =
o, .53 o, -.56
-.29 -.73

_57 —65 —42 27

N e e | 63 24 =68 —20|

nce 1S a basis 10r , 1€ = . us
(U, 05, 05,0} 07 -63 53 —56

-51 34 -29 -73

A=UxvVT
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-.10 61 =21 -52 55
=57 —-65 -—-42 27|/16.46 0 0 0 0
-39 29 84 -14 -.19
.63 -24 —-68 -29 0 12.16 0 0 0
= =74 =27 =07 38 .49
.07 -.63 53 -56 0 0 4387 0 0
41 -50 45 -23 58
-51 34 -29 -73 0 0 0 431 0
-36 -48 -19 -72 -29
4 0 -3 -7 102 91 0 108
-6 9 9 9 r -91 110 39 -16 )
28. [M] Let A= . Then A"A= , and the eigenvalues of
7 -5 10 19 0 39 206 246
-1 2 4 -1 108 —16 246 492

AT A are found to be (in decreasing order) &, =649.9059, A, =218.0033, A, =39.6345, and
L, =2.4564. The singular values of A are thus o, =25.4933, o, =14.7649, o, =6.2956, and
o, =1.5673. The condition number o, / o, = 6.266.

531 7 9 (255 168 90 160  47]
6 4 2 8 -8 168 111 60 104 30
29. [M]Let A=|7 5 3 10 9| Then ATA=| 90 60 34 39 8|, andthe
9 6 4 9 -5 160 104 39 415 178
18 5 2 11 4 | 47 30 8 178 267

eigenvalues of A" A are found to be (in decreasing order) A, = 672.589, A, = 280.745,

Ay =127.503, A, =1.163, and A5 =1.428x107". The singular values of A are thus o, = 25.9343,
0, =16.7554, 0,=11.2917, o, =1.07853, and o, =.000377928. The condition number
o0,/05=068,622.

7.5 SOLUTIONS

Notes: The application presented here has turned out to be of interest to a wide variety of students,
including engineers. I cover this in Course Syllabus 3 described in the front mater of the text, but I only
have time to mention the idea briefly to my other classes.

19 22 6 3 2 20

1. The matrix of observations is X = and the sample mean is
12 6 9 15 13 5

72 12
M = éLO} = LO}. The mean-deviation form B is obtained by subtracting M from each column of X,

7 10 -6 -9 -10
so B=
2 -4 -1 5 3 =5

1, 1] 430 -135] [ 86 -27
S=——BB == =
6-1 5/-135 80 |27 16

}. The sample covariance matrix is
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1 5 2 6 7

2. The matrix of observations is X =
3 11 6 8 15

3
11} and the sample mean is

24| |4
= %{ 54} = {9} The mean-deviation form B is obtained by subtracting M from each column of X,

-6 2 -3 -1 6
28 40| |56 8
S:_l_BBT=l =
6-1 5[40 90 8 18
3. The principal components of the data are the unit eigenvectors of the sample covariance matrix S.

86 27
=27 16

-3 1 2 2 3 -1 , .
so B= 5| The sample covariance matrix is

One computes that (in descending order) the eigenvalues of S :{ } are A, =95.2041 and

—2.93348
A, =6.79593. One further computes that corresponding eigenvectors are v, :{ | }
.340892 . : o .
v, = | . These vectors may be normalized to find the principal components, which are
946515 .322659
u = for &, =95.2041 and u, = for &, =6.79593.
—.322659 946515

4. The principal components of the data are the unit eigenvectors of the sample covariance matrix S.

56 8
One computes that (in descending order) the eigenvalues of § :{ } are ), =21.9213 and

490158
L, =1.67874. One further computes that corresponding eigenvectors are v, = { } and

1

-2.04016
v, :{ | } These vectors may be normalized to find the principal components, which are

—-.897934

[ 44013
b 44013

for A, =21.9213 and u, =
.897934

} for %, =1.67874.

164.12  32.73  81.04
5. [M] The largest eigenvalue of S =| 32.73 539.44 249.13|is A, =677.497, and the first
81.04 249.13 189.11
principal component of the data is the unit eigenvector corresponding to i, , which is
.129554
u, =| .874423 | . The fraction of the total variance that is contained in this component is

467547

A 1 tr(S)=677.497/(164.12+539.44+189.11) =.758956 so 75.8956% of the variance of the data is
contained in the first principal component.
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6.

10.

11.

. Since the unit eigenvector corresponding to %, =21.9213 is u, = {

CHAPTER 7 <« Symmetric Matrices and Quadratic Forms
29.64 18.38 5.00
[M] The largest eigenvalue of S =| 18.38 20.82 14.06 | is A, =51.6957, and the first principal
5.00 14.06 29.21
.615525
component of the data is the unit eigenvector corresponding to %,, whichis u, =|.599424 |. Thus
511683

one choice for the new variable is y, =.615525x, +.599424x, +.511683x,. The fraction of the total

variance that is contained in this component is
My 1tr(8)=51.6957/(29.64 + 20.82 + 29.21) = .648872, so 64.8872% of the variance of the data is

explained by y,.

946515
-.322659
new variable is y, =.946515x, —.322659x,. The fraction of the total variance that is contained in this
component is i, /tr(S)=95.2041/(86+16) =.933374, so 93.3374% of the variance of the data is
explained by y,.

Since the unit eigenvector corresponding to i, =95.2041 is u, :{ }, one choice for the

44013
.897934
variable is y, =.44013x, +.897934x,. The fraction of the total variance that is contained in this
component is X, /tr(S)=21.9213/(5.6+18) =.928869, so 92.8869% of the variance of the data is
explained by y,.

}, one choice for the new

5 2 0
. The largest eigenvalue of S={2 6 2| is A, =9, and the first principal component of the data is
0 2 7
1/3
the unit eigenvector corresponding to ;, which is u, =| 2/3 |. Thus one choice for y is
2/3

y=01/3)x, +(2/3)x, + (2/3)x,, and the variance of y is A, =9.

5 4 2
[M] The largest eigenvalue of S=|4 11 4| is &, =15, and the first principal component of the
2 45

1/6
data is the unit eigenvector corresponding to ,, whichis u, =| 2/ 6 |. Thus one choice for yis

176

y= (1/\/8))(1 +(2/\/6)x2 +(1/x/6)x3, and the variance of y is A, =15.

a. If w is the vector in R with a 1 in each position, then [X; ... Xy]w=X+...+X, =0 since
the X, are in mean-deviation form. Then
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Y, Ylw=[P'X, o PX w=PT[X, . X, Jw=PT0=0
Thus Y, +...+Y, =0, and the Y, are in mean-deviation form.

b. By part a., the covariance matrix Sy of Y,,...,Yy is

1
SY=E[Y1 oYY, YT
1
=EPT[X1 o X JPT[X e XD
=PT(ﬁ[X1 XX XN]TjPzPTSP

since the X, are in mean-deviation form.

12. By Exercise 11, the change of variables X = PY changes the covariance matrix S of X into the
covariance matrix P’ SP of Y. The total variance of the data as described by Y is tr(P’ SP).

However, since P”SP is similar to S, they have the same trace (by Exercise 25 in Section 5.4). Thus
the total variance of the data is unchanged by the change of variables X = PY.

13. Let M be the sample mean for the data, and let Xk =X, —M. Let B= [Xl XN] be the

matrix of observations in mean-deviation form. By the row-column expansion of BB, the sample
covariance matrix is

S=—' BB

N-1

1 Xi
=E[Xl XN:| AZ

Xy

1 N S T 1 N T
=— XX} =— > (X, -M)(X, -M

N—IZ‘ Xk N_lé( ¢ ~M)(X, —M)

Chapter 7 SUPPLEMENTARY EXERCISES

1. a. True. This is just part of Theorem 2 in Section 7.1. The proof appears just before the statement
of the theorem.

1 0

c. True. This is proved in the first part of the proof of Theorem 6 in Section 7.3. It is also a
consequence of Theorem 7 in Section 6.2.

0 -1
b. False. A counterexample is A :{ }

d. False. The principal axes of x’ Ax are the columns of any orthogonal matrix P that
diagonalizes A. Note: When A has an eigenvalue whose eigenspace has dimension greater than
1, the principal axes are not uniquely determined.
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1
e. False. A counterexample is P = L } The columns here are orthogonal but not

orthonormal.
f. False. See Example 6 in Section 7.2.

2 0 1
g. False. A counterexample is A= {O 3} and x = {O} Then x” Ax=2>0, but x’ Ax is an

indefinite quadratic form.

h. True. This is basically the Principal Axes Theorem from Section 7.2. Any quadratic form can be
written as x’ Ax for some symmetric matrix A.

i. False. See Example 3 in Section 7.3.

J. False. The maximum value must be computed over the set of unit vectors. Without a restriction
on the norm of x, the values of x’ AX can be made as large as desired.

k. False. Any orthogonal change of variable x = Py changes a positive definite quadratic form into
another positive definite quadratic form. Proof: By Theorem 5 of Section 7.2., the classification
of a quadratic form is determined by the eigenvalues of the matrix of the form. Given a form

x’ Ax, the matrix of the new quadratic form is P~'AP, which is similar to A and thus has the
same eigenvalues as A.

1. False. The term “definite eigenvalue” is undefined and therefore meaningless.
m. True. If x = Py, then X' Ax=(Py)" A(Py)=y' P' APy =y" P" APy .

n. False. A counterexample is U = L } The columns of U must be orthonormal to make

UU"x the orthogonal projection of x onto Col U.

0. True. This follows from the discussion in Example 2 of Section 7.4., which refers to a proof
given in Example 1.

p. True. Theorem 10 in Section 7.4 writes the decomposition in the form U V", where U and V
are orthogonal matrices. In this case, V" is also an orthogonal matrix. Proof: Since V is
orthogonal, Vis invertible and V™' =V’ . Then vHT=wv™H =), and since Vis square

and invertible, V" is an orthogonal matrix.

2 0
q. False. A counterexampleis A= {0 J. The singular values of A are 2 and 1, but the singular

values of ATA are 4 and 1.

2. a. Each term in the expansion of A is symmetric by Exercise 35 in Section 7.1. The fact that
(B+C)" =B" + C" implies that any sum of symmetric matrices is symmetric, so A is

symmetric.

b. Since u/u, =1 and u?u1 =0 forj#1,

Au, = uu ), +...+ Qo uu u, =hu, @)+ +hu, W)=k,

n-n-n
Since u, # 0, X, is an eigenvalue of A. A similar argument shows that A ; 1s an eigenvalue of A

forj=2,...,n.
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. If rank A = r, then dimNul A = n — r by the Rank Theorem. So 0 is an eigenvalue of A with
multiplicity n — r, and of the » terms in the spectral decomposition of A exactly n — r are zero. The
remaining r terms (which correspond to nonzero eigenvalues) are all rank 1 matrices, as mentioned
in the discussion of the spectral decomposition.

. a. By Theorem 3 in Section 6.1, (Col Ayt =Nul A" =Nul A since A” = A.
b. Lety be in R". By the Orthogonal Decomposition Theorem in Section 6.3,y = § + z, where § is
in Col A and z is in (Col A)". By part a., z is in Nul A.

. If Av = Av for some nonzero A, then v= LAy = A(?Clv), which shows that v is a linear
combination of the columns of A.

. Because A is symmetric, there is an orthonormal eigenvector basis {u,,...,u,} for R". Let r = rank A.

If r =0, then A = O and the decomposition of Exercise 4(b) is y = 0 + y for each y in R"; if » = n then
the decomposition is y = y + 0 for each y in R".

Assume that O < r < n. Then dimNul A = n — r by the Rank Theorem, and so 0 is an eigenvalue of A
with multiplicity n — r. Hence there are r nonzero eigenvalues, counted according to their
multiplicities. Renumber the eigenvector basis if necessary so that u,,...,u, are the eigenvectors

corresponding to the nonzero eigenvalues. By Exercise 5, u,,...,u, are in Col A. Also, u,_,,...,u,

are in Nul A because these vectors are eigenvectors corresponding to the eigenvalue 0. For y in R”,
there are scalars c,...,c, such that

y=qu +...+cu, +c, U, +...+cu,
5} Y/

This provides the decomposition in Exercise 4(b).

. If A=R"R and R is invertible, then A is positive definite by Exercise 25 in Section 7.2.

Conversely, suppose that A is positive definite. Then by Exercise 26 in Section 7.2, A= B’ B for
some positive definite matrix B. Since the eigenvalues of B are positive, 0 is not an eigenvalue of B
and B is invertible. Thus the columns of B are linearly independent. By Theorem 12 in Section 6.4, B
= QR for some n X n matrix Q with orthonormal columns and some upper triangular matrix R with

positive entries on its diagonal. Since Q is a square matrix, Q' Q =1, and
A=B"B=(OR)' (OR)=R"Q"QR=R"R
and R has the required properties.
. Suppose that A is positive definite, and consider a Cholesky factorization of A=R"R with R upper

triangular and having positive entries on its diagonal. Let D be the diagonal matrix whose diagonal
entries are the entries on the diagonal of R. Since right-multiplication by a diagonal matrix scales the

columns of the matrix on its left, the matrix L =R’ D" is lower triangular with 1’s on its diagonal.
If U=DR, then A=R"D"'DR=LU.

. If A is an m x n matrix and x is in R”, then X’ A" Ax = (Ax)" (Ax) =|| Ax|]* 0. Thus A" A is positive

semidefinite. By Exercise 22 in Section 6.5, rank A" A =rank A.
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11.

12.
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If rank G = r, then dimNul G = n — r by the Rank Theorem. Hence O is an eigenvalue of G with

multiplicity n — r, and the spectral decomposition of G is
G=\uu, +...+)uu’

rerr

Also A,,...,A, are positive because G is positive semidefinite. Thus

Gz(\/k_lul)(\/k_lulT)+...+(\/X_,u,)(\/k_,urT)
By the column-row expansion of a matrix product, G = BB where B is the n X r matrix
B :[\/7‘71“1 \/Zur]. Finally, G=A"A for A=B".

Let A=UZXV" be a singular value decomposition of A. Since U is orthogonal, U'U =1 and
A=UXU'UV" =PQ where P=UXU" =UZU " and Q=UV". Since X is symmetric, P is
symmetric, and P has nonnegative eigenvalues because it is similar to X, which is diagonal with

nonnegative diagonal entries. Thus P is positive semidefinite. The matrix Q is orthogonal since it is
the product of orthogonal matrices.

a. Because the columns of V. are orthonormal,
AATy =W, DV YV.D"'U )y =W, DD'U y=UU"y
Since U,U rT y is the orthogonal projection of y onto ColU, by Theorem 10 in Section 6.3, and

since ColU, = Col A by (5) in Example 6 of Section 7.4, AA™y is the orthogonal projection of
y onto Col A.

b. Because the columns of U, are orthonormal,
AT Ax=V.D'U"YU.DV x=V.D'DV)x=V.V'x

Since V,V,TX is the orthogonal projection of x onto ColV, by Theorem 10 in Section 6.3, and

since ColV, =Row A by (8) in Example 6 of Section 7.4, A" Ax is the orthogonal projection of
x onto Row A.

c. Using the reduced singular value decomposition, the definition of A", and the associativity of
matrix multiplication gives:

AATA=U,DV" V. DU YU,DV")=W,DD"'U YU, DV])
=U.DD"'DV! =U,DV/ =A
ATAAT =(V,D'UYU,DV] )V, D"UT) = (V,D"' DV, )(V,D"'U])
=v.D"'DD'U" =v.D'U] = A"

a. If b = Ax, then x* = A*b = A" Ax. By Exercise 12(a), x" is the orthogonal projection of x onto
Row A.

b. From part (a) and Exercise 12(c), Ax" = A(A"Ax) =(AA"A)x = Ax=b.

c. Let Au=b. Since x" is the orthogonal projection of x onto Row A, the Pythagorean Theorem
shows that ||u|*=||x" || +|[u—x" || >||x" ||*, with equality only if u =x".
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14. The least-squares solutions of Ax = b are precisely the solutions of Ax = b, where b is the

orthogonal projection of b onto Col A. From Exercise 13, the minimum length solution of Ax = b is

A"b, so A*D is the minimum length least-squares solution of Ax = b. However, b= AA*b by
Exercise 12(a) and hence A*b = A*AA*b = A*b by Exercise 12(c). Thus A*b is the minimum

length least-squares solution of Ax = b.

15. [M] The reduced SVD of Ais A=U rDV,T, where
966641 253758 —.034804

9.84443 0 0
185205 —.786338 —.589382

U, = D= 0 2.62466 0l,
125107 —398296 570709

0 0 1.09467

125107 —-398296  .570709

[—.313388  .009549  .633795]
-313388  .009549  .633795
andV, =| -.633380  .023005 -.313529
.633380 -.023005  .313529
035148  .999379  .002322

So the pseudoinverse A* =V, D™'U[ may be calculated, as well as the solution % = A*b for the

system Ax = b:
[-05 -35 325 325 7
-05 -35 325 325
AT=|-05 .15 -175 -175|,
05 -15 175 175

10 =30 —150 -.150]

>
Il
|

Row reducing the augmented matrix for the system A’z =% sh

% isin Col A" =Row A. A basis for Nul A is {a,,a,}=

O'—"—‘OOI

ows that this system has a solution, so

-1

, and an arbitrary element of

S O O =

Nul A is u = ca, + da,. One computes that || %||=+/131/50, while || +u [|=/(131/50)+ 2¢> +2d>.

Thus if u#0, ||%|| < ||% + u||, which confirms that % is the minimum length solution to Ax = b.

16. [M] The reduced SVD of Ais A=U ,DVrT, where
-.337977 936307 .095396

12.9536
| 591763 290230 752053 3 0
T -231428 —.062526 -206232| 0

—.694283 —.187578 —.618696

0 0
1.44553 0f,
0 .337763
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andV, =

So the pseudoinverse A"

[—.690099
0
.341800
.637916
| 0
0 -.05
0 0
2 5
-1 =35
0 0

system Ax = b:
(.5

0

AT=|0

5

1 0

Row reducing the augmented matrix for the system A’z =% shows that this system has a solution, so

% isin Col A" =Row A. A basis for Nul A is {a,,a,} =

721920
0
.387156
573534
0

=v.D'U!

—.15]
0
1.5
-1.05
O_

¢ Symmetric Matrices and Quadratic Forms

.050939 |

0
—-.856320
513928
0

may be calculated, as well as the solution x = A"b for the

[2.3]
0

5.0

-9
0

o
I

1
OOO'—‘OI

0

- o O O

, and an arbitrary element of

Nul A is u = ca, + da,. One computes that || X||=~/311/10, while ||)2+u||=\/(311/10)+c2 +d*.

Thus if u#0, || x|| < || % + u ||, which confirms that % is the minimum length solution to Ax = b.
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The Geometry of

Vector Spaces

8.1 SOLUTIONS

Notes. This section introduces a special kinds of linear combination used to describe the sets created
when a subspace is shifted away from the origin. An affine combination is a linear combination in which
the coefficients sum to one. Theorems 1, 3, and 4 connect affine combinations directly to linear
combinations. There are several approaches to solving many of the exercises in this section, and some of
the alternatives are presented here.

T O O ) PO W
S NN PN B

Solve cy(vo — Vi) + ¢3(V3 — V1) + c4(V4 — v)) =y — v; by row reducing the augmented matrix.
{—3 -1 2 4} B {—3 -1 2 4} _ {—3 0 45 4.5} _ {1 0 -15 —1.5}
0 2 5 1 0 1 25 5 0125 5 0 1 25 5
The general solution is ¢, = 1.5¢4 —1.5, ¢3=-2.5¢4 + .5, with ¢4 free. When ¢4 =0,
y—vi=—15(v;—v))+.5(v3—v;) and y=2v;—1.5v,+ .5v;
If c4=1, then ¢, =0 and
y-Vvi=—2(v3—v)+1(v4—vy) and y=2v;—2v3+ vy
If ¢, = 3, then

y—vi=3(v;—Vv)—T7(vz—v) +3(v4—vy) and y=2v;+3v,—Tv;+3v,

Of course, many other answers are possible. Note that in all cases, the weights in the linear
combination sum to one.

1 -1 3 5 -2 2 4
2. v, = 1,V2= 2,V3= 2,y= 7,SOV2—V1= 1,V3—V1= 1,andy—V1= 6

Solve ¢y(v, — vy) + ¢3(v3 — v;) = y — v, by row reducing the augmented matrix:
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-2 2 4 1 -1 =2 1 0 2
1 1 6 0 2 8 0 1 4
The general solutionis c;=2 and c3=4,s0 y—v; = 2(v;—Vv;) +4(v3—v;) and

y = =5v; + 2v;, + 4v;. The weights sum to one, so this is an affine sum.

3. Row reduce the augmented matrix [v,-v; v3;-v; y-v,] to find a solution for writing y-v, in terms of
v,-v; and v;-v,. Then solve for y to get y = —3v, + 2v, + 2v;. The weights sum to one, so this is an
affine sum.

4. Row reduce the augmented matrix [v,-v; v3-v; y-v{] to find a solution for writing y-v; in terms of
v,-v; and v;-v,. Then solve for y to get y = 2.6v, — .4v, — 1.2v;. The weights sum to one, so this is
an affine sum.

5. Since {by, by, bs} is an orthogonal basis, use Theorem 5 from Section 6.2 to write

b b b
pJ: pj lbl+pj 2b2+pj 3
b, b, b,<b, b;eb,

3

a. p; =3b; — b, —b; € aff S since the coefficients sum to one.
b. p, =2b; + Ob, + b; ¢ aff S since the coefficients do not sum to one.
c. p;=-b;+2b, + Ob;y € aff S since the coefficients sum to one.

6. Since {by, by, b;} is an orthogonal basis, use Theorem 5 from Section 6.2 to write

b b b
pJ: pj lbl+pj 2b2+pj 3
b, b, b,<b, b;eb,

3

a. p; =-—4b; +2b, +3b; € aff § since the coefficients sum to one.
b. p» =.2b; + .5b, + .3b; € aff S since the coefficients sum to one.

c. p;=b; +b,+b; ¢ aff S since the coefficients do not sum to one.

100 2 2 2

) O 10 1 -4 2

7. The matrix [v; v, v3 p; p2 Ps3] row reduces to 00 1 -1 3 2
000 O 0 -5

Parts a., b., and c. use columns 4, 5, and 6, respectively, as the “augmented” column.

a. p;=2v;+V,—v; s0p;isin Span S. The weights do not sum to one, so p, ¢ aff S.

b. p>=2v;—4v, +3v;, 50 pyisin Span S. The weights sum to one, so p, € aff S.

¢. Pps ¢ Span S because 0 = —5, so p; cannot possibly be in aff S.
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100 3 0 -2

The matrix [v; v, v3 p; p, ps] row reduces to 0 10-10 6 '
0 0 1 0 -3

000 0 1 0

Parts a., b., and c. use columns 4, 5, and 6, respectively, as the “augmented” column.
a. p;=3v;—V,+v; sop;isin Span S. The weights do not sum to one, so p; ¢ aff S.

b. p. ¢ Span S because 0 = 1 (column 5 is the augmented column), so p, cannot possibly be

in aff S.
c. p; =—2v; + 6v,—3v;, s0 ps is in Span S. The weights sum to one, so p; € aff S.

Choose v, and v, to be any two point on the line x=x;u+p. For example, take x;=0 and x;=1 to get

-3 1
v, = 0 and v, = { 2} respectively. Other answers are possible.
Choose v; and v, to be any two point on the line x=x;u+p. For example, take x;=0 and x;=1 to get
[ 1] 6
v, =| =3 | and Vv, =| =2 | respectively. Other answers are possible.
4 2

True. See the definition at the beginning of this section.
False. The weights in the linear combination must sum to one. See the definition.
True. See equation (1).

Be TP

False. A flatis a translate of a subspace. See the definition prior to Theorem 3.

True. A hyperplane in R’ has dimension 2, so it is a plane. See the definition prior to Theorem 3.

o

False. If § = {x}, then aff S = {x}. See the definition at the beginning of this section.

T B

True. Theorem 2.

i

True. See the definition prior to Theorem 3.

d. False. A flat of dimension 2 is called a hyperplane only if the flat is considered a subset of R’. In
general, a hyperplane is a flat of dimension n — 1. See the definition prior to Theorem 3.
e. True. A flat through the origin is a subspace translated by the 0 vector.

Span {v, — v, v3 — v} is a plane if and only if {v, — v;, v3 — v;} is linearly independent. Suppose c,
and c; satisfy cy(v, — vy) + ¢3(v3 — vq) =0. Then c,v; + ¢33 — (¢ + ¢3)v; =0. Then ¢; =¢; =0,
because {vy, v,, v3} is a linearly independent set. This shows that {v, — v;, v; — v} is a linearly
independent set. Thus, Span {v, — v|, v; — v} is a plane in R’

Since {v;, V,, v3} is a basis for R?, the set W = Span {v, — v, v; — v} is a plane in R®, by
Exercise 13. Thus, W + v, is a plane parallel to W that contains v;. Since v, = (v, —Vvy) + v, W+
v, contains v,. Similarly, W + v, contains v;. Finally, Theorem 1 shows that aff {v;, v,, v3} is the
plane W + v, that contains v;, v,, and vs.

Let S={x:Ax=Db}. To show that S is affine, it suffices to show that S is a flat, by Theorem 3.
Let W= {x: Ax=0}. Then Wis a subspace of R", by Theorem 2 in Section 4.2 (or Theorem 12
in Section 2.8). Since S = W + p, where p satisfies Ap = b, by Theorem 6 in Section 1.5, Sis a
translate of W, and hence S is a flat.
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16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

Suppose p, q € Sand ¢t € R. Then, by properties of the dot product (Theorem 1 in Section 6.1),
[(I-Hp+tql-v=A-HPp - V)+t(q-v)=(1-0Dk+tk =k
Thus, [(1 —)p + ¢ q] € S, by definition of S. This shows that S is an affine set.

A suitable set consists of any three vectors that are not collinear and have 5 as their third entry. If
5 is their third entry, they lie in the plane x; = 5. If the vectors are not collinear, their affine hull

1/[0]]1
cannot be a line, so it must be the plane. For exampleuse S =4|01,[ 1 |,| 1
5115(15

A suitable set consists of any four vectors that lie in the plane 2x; + x, — 3x3 = 12 and are not col-
linear. If the vectors are not collinear, their affine hull cannot be a line, so it must be the plane.

6|0 0 3
For exampleuse S =4|0 [,/ 12,] 0 |,| 3
O[O0 ]|4|]|-1
If p, q € f(S), then there existr, s € S such that f (r) =p and f (s) = q. Given any ¢ € R, we must
show thatz= (1 —)p + £ qis in £ (S). Since fis linear,
z=((1-0p+tq =(1-0f@+tf(s)=f((1—-Dr+ts)
Since S is affine, (1 —f)r+¢s e S. Thus, zis in S and f (S) is affine.

Given an affine set 7, let S= {x € R": f(x) € T}. Consider x,y € Sandt€ R. Then

fd=Dx+ry)=A-0fX) +1 f(y)

Butf(x)e Tandf(y) e T,so (1 —t) f(x) + ¢ f(y) € T because T is an affine set. It follows that
[(1-0x+1ry] e S. Thisis true for all X,y € Sand r € R, so S is an affine set.

Since B is affine, Theorem 1 implies that B contains all affine combinations of points of B. Hence
B contains all affine combinations of points of A. That is, aff A C B.

Since B c aff B, we have A c B c aff B. But aff B is an affine set, so Exercise 21 implies
aff A c aff B.

Since A C (A U B), it follows from Exercise 22 that aff A C aff (A U B).
Similarly, aff B C aff (A U B), so [aff A U aff B] C aff (A U B).

One possibility is to let A ={(0, 1)} and B = {(1, 0)}. Then (aff A) U (aff B) consists of the two
coordinate axes, but aff (A U B) = R”.

Since (A N B) € A, it follows from Exercise 22 that aff (A N B) C aff A.
Similarly, aff (A N B) C aff B, so aff (A N B) C (aff A N aff B).

One possibility is to let A = {(0, 1)} and B = {(0, 2)}. Then both aff A and aff B are equal to the
x-axis. ButANB=,soaff (ANB)=3.
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8.2 SOLUTIONS

Notes: Affine dependence and independence are developed in this section. Theorem 5 links affine
independence to linear independence. This material has important applications to computer graphics.

3 0 2 -3 -1 . . .
1. Let v;= 3 ,Vy = 6 , V3= ol Thenv, —v, = 9 , V3=V = 3l Since v; — v; is a multiple

of v, — vy, these two points are linearly dependent. By Theorem 5, {v;, v,, v3} is affinely dependent.
Note that (v, — v;) — 3(v3 — v;) = 0. A rearrangement produces the affine dependence relation 2v; + v,
—3v; =0. (Note that the weights sum to zero.) Geometrically, vy, v,, and v; are collinear.

2 5 -3 3 -5 .
2. vy = 1 ,Vy = 4 , V3= ol Vo=V, = 3 ,V3— V| = 3l Since v; — v; and v, — v; are not

multiples, they are linearly independent. By Theorem 5, {v,, v,, vs} is affinely independent.
3. The set is affinely independent. If the points are called v, v,, v3, and vy, then row reduction of
[vi v, v3 vy4] shows that {vy, v,, v3} is a basis for R* and v, = 16v, + 5v, — 3v;. Since there is

unique way to write v, in terms of the basis vectors, and the weights in the linear combination do not
sum to one, v, is not an affine combination of the first three vectors.

2 3 0

4. Name the points vy, V, v3, and v4. Then Vv, —v;=|=8|, v3—v,=|=T7|, v,—v;=| 2|. To study
4 -9 —6

the linear independence of these points, row reduce the augmented matrix for Ax = 0:

2 3 00 2 3 00 2300 1 0 -6 0
-8 -7 2 0(~|0 5 2 0(~{0 5 2 0|~{0 1 4 O0O]. The first three columns
4 9 -6 0 0 -15 -6 0 0 0 0O 00 00O

are linearly dependent, so {v,, v,, v3, v4} is affinely dependent, by Theorem 5. To find the affine
dependence relation, write the general solution of this system: x; = .6x3, x, = —.4x;, with x; free. Set
x3 =5, for instance. Then x; =3, x, = -2, and x; = 5. Thus, 3(v, — v{) — 2(v3 — v;) + 5(v4 — v;) = 0.
Rearrange to obtain —6v; + 3v, — 2v3 + 5v, = 0.

Alternative solution: Name the points v, v,, v;, and v4. Use Theorem 5(d) and study the
homogeneous forms of the points. The first step is to move the bottom row of ones (in the
augmented matrix) to the top to simplify the arithmetic:

1 1 1 1 1 00 12
[~~~~]—201—2 01 0 -6
Vi Vo V3 V|~ ~

P2 s 32 70 jo0 1 4
3 7 -6 3 000 O

Thus, x; + 1.2x4 =0, x, — .6x4 = 0, and x3 + .4x, = 0, with x, free. Take x, =5, for example, and
get x; =—6, x, =3, and x3= —2. An affine dependence relation is —6v; + 3v, — 2v3 + 5v, = 0.

5. —4v; + 5v, — 4v; + 3v4 = 0 is an affine dependence relation. It can be found by row reducing the
matrix [V, ¥, ¥, ¥,], and proceeding as in the solution to Exercise 4.

Copyright © 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



458 CHAPTER 8 < The Geometry of Vector Spaces

6. The set is affinely independent, as the following calculation with homogeneous forms shows:

I 1 11171000

1 0213 ]o1 00
A A e N T
1 =2 20/ loo 01

Alternative solution: Row reduction of [v; v, v3 v4] shows that {v;, v,, v3} is a basis for R? and

vy =—2v; + 1.5v, + 2.5v;, but the weights in the linear combination do not sum to one, so this v, is
not an affine combination of the basis vectors and hence the set is affinely independent.

Note: A potential exam question might be to change the last entry of v, from 0 to 1 and again ask if
the set is affinely independent. Notice that row reduction of this new set of vectors [v; v, V3 V4]

shows that {v,, v,, v3} is a basis for R’ and v4 = -3V + v, + 3v; is an affine combination of the basis.

7. Denote the given points as vy, v,, v3, and p. Row reduce the augmented matrix for the equation

X1V + X2V, + x3V3 = p. Remember to move the bottom row of ones to the top as the first step to
simplify the arithmetic by hand.

1 1 1 1 1 0 0 2]

1 2 1 5 0 1 0 4

[Vy Vv, V3 P]~|-1 1 2 4|~ 0 0 1 -1
2 0 2 =2 0 0 0 0

|1 1 0 20 0 0 O]

Thus, x; =2, xo =4, x3 =—1, and p = -2V, + 4V, — V3, s0 p = =2V, + 4v, — v;, and the barycentric
coordinates are (-2, 4, —1).
Alternative solution: Another way that this problem can be solved is by “translating” it to the
origin. That is, compute v, — vy, v3 — v, and p — vy, find weights ¢, and c; such that

(Vo= v) +c3(V3—vy) = p-Vy

and then write p = (1 — ¢, — ¢3)Vy + c2V2 + ¢3v3. Here are the calculations for Exercise 7:

21 11 1 171 0 510 1 4
_1 2 2| |-t 3 4 -1 5
2TV 2 T 2 BT T 2T 2 T el P T 2T 2] T | s
1|1 0 ol | 1] |4 2| | 1 1
10 4 10 4
2 3 5 0 1 -1
[Va=vi vi-vi p-v ]~ o 4 -4l 10 o0 o
0 -1 1 0 0 0

Thus p—vy = 4(vy—v))—1(v3—Vvy), and p = -2 v; +4v, — V.
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Denote the given points as vy, v,, v3, and p. Row reduce the augmented matrix for the equation
xﬁl + )Cz%z + X3%3 = f)

11 1 1 1 0 0 2

0 1 1 -1 0 1 0 -1

[V, Vv, V3 B]~| 1 1 4 1|~ 0 0 1 0
2 0 -6 —4 0 0 0 0

|1 2 5 0/ |0 0 0 0

Thus. p =2V, — v, + 0V3, so p = 2v; — V,. The barycentric coordinates are (2, —1, 0).
Notice v;=3v; +V,

a. True. Theorem 5 uses the point v, for the translation, but the paragraph after the theorem
points out that any one of the points in the set can be used for the translation.
b. False, by (d) of Theorem 5.

c. False. The weights in the linear combination must sum to zero, not one. See the definition at the
beginning of this section.

d. False. The only points that have barycentric coordinates determined by S belong to aff S. See the
definition after Theorem 6.

e. True. The barycentric coordinates have some zeros on the edges of the triangle and are only
positive for interior points. See Example 6.

False. By Theorem 5, the set of homogeneous forms must be linearly dependent, too.

a
b. True. If one statement in Theorem 5 is false, the other statements are false, too.

i

False. Theorem 6 applies only when S is affinely independent.

&

False. The color interpolation applies only to points whose barycentric coordinates are
nonnegative, since the colors are formed by nonnegative combinations of red, green, and blue.
See Example 5.

e. True. See the discussion of Fig. 5.
When a set of five points is translated by subtracting, say, the first point, the new set of four

points must be linearly dependent, by Theorem 8 in Section 1.7, because the four points are in R’.
By Theorem 5, the original set of five points is affinely dependent.

Suppose vy, ..., v,arein R"and p =2 n + 2. Since p—12>n + 1, the points v, — v, V3 = Vi, ... , V, = V;
are linearly dependent, by Theorem 8 in Section 1.7. By Theorem 5, {v,, V,, ..., v, } is affinely
dependent.

If {v,, v»} is affinely dependent, then there exist ¢; and c,, not both zero, such that ¢, + ¢, = 0, and
civi + v, = 0. Then ¢, = - ¢; # 0 and ¢,v| = — v, = ¢V, Which implies that v; = v,.
Conversely, if vi=v,, letc;=1and ¢c; =—1. Then ¢;vi + ;v = vi+(-1)vi= 0and ¢; + ¢, =0,
which shows that {vy, v,} is affinely dependent.

Let S; consist of three (distinct) points on a line through the origin. The set is affinely dependent
because the third point is on the line determined by the first two points. Let S, consist of two
(distinct) points on a line through the origin. By Exercise 13, the set is affinely independent
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15.

16.

17.

18.

19.

because the two points are distinct. (A correct solution should include a justification for the sets
presented.)

1
a. The vectors v, — v; = {2} and v; —v; = { 2} are not multiples and hence are linearly

independent. By Theorem 5, S is affinely independent.
b w o (438 p o (03] no(-F) po(E-17) s o (512)

Cc. Ppsis(—,—+), p7is (0, +,-), and pgis (+, +, —).

1 4
a. The vectors v, — v, = L} and v — v, = {2} are not

multiples and hence are linearly independent. By
Theorem 5, S is affinely independent.

POCHED oG -39 oG hd
p4 H(+’_’_)’ p5 H(+’+’_)’

pPs < (+,+,4), p; < (—,0,+).

See the figure to the right.  Actually,
2 5 12 _3

19 _2 _3 S5 12 _ 3
Py © (31519 Ps © (13 1),

9 2 3 1 3
p6 A4 (H, H’ H)’ p7 A4 (_E’ O’ _)

Suppose S = {by, ..., b;} is an affinely independent set. Then (7) has a solution, because p is in
aff S. Hence (8) has a solution. By Theorem 5, the homogeneous forms of the points in S are
linearly independent. Thus (8) has a unique solution. Then (7) also has a unique solution,
because (8) encodes both equations that appear in (7).

The following argument mimics the proof of Theorem 7 in Section 4.4. If S = {by, ..., b;} is
an affinely independent set, then scalars cy, ..., ¢, exist that satisfy (7), by definition of aff S.
Suppose x also has the representation

x=db+-+db;, and di+ - +d,=1 (7a)
for scalars dy, ..., d;. Then subtraction produces the equation
0=X—X=(C1—d1)b1+"'+ (Ck—dk)bk (7b)

The weights in (7b) sum to zero because the c¢’s and the d’s separately sum to one. This is
impossible, unless each weight in (8) is zero, because S is an affinely independent set. This
proves thatc; =d;fori=1, ..., k.

X X a 0 0 0
Let p=| y|. Then |y =2 O[+=|b|+—|0|+ l—i—l—E 0| So the barycentric coordi-
a c a b c y
Z z 0 0 0

nates are x/a, y/b, z/c, and 1 — x/a — y/b — z/c. This holds for any nonzero choices of a, b, and c.

If {p1, p2, P53} is an affinely dependent set, then there exist scalars ¢, ¢,, and c3, not all zero, such
that ¢1p; + cop2 + ¢3p3 = 0 and ¢; + ¢, + ¢c3 = 0. But then, applying the transformation f,
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afP)+ofPy)+afP;) = flaptop, +aps) = f(0) =0,

since fis linear. This shows that { f(p;), f(P,), f(P3)}is also affinely dependent.

If the translated set {p, + q, p> + q, p; + q} were affinely dependent, then there would exist real
numbers ¢, ¢,, and c¢3, not all zero and with ¢; + ¢, + ¢3 = 0, such that
aPr+@+ep+q@+cps+q=0.
But then,
cipr+apa+cps+(cr+e+c)q=0.
Since ¢; + ¢; + ¢3 =0, this implies ¢;p; + c2p; + ¢3 ps; = 0, which would make {p;, p», p;} affinely
dependent. But {p;, p,, p3} is affinely independent, so the translated set must in fact be affinely
independent, too.
b a b ¢ a a, 1
a c .y~
Let a={ 1},b={ 1}, andc={ 1}. Then det[a b ¢] = det|a, b, ¢, |=det|h b, 1],
a b, )
I 1 1 aq ¢ 1

by using the transpose property of the determinant (Theorem 5 in Section 3.2). By Exercise 30 in
Section 3.3, this determinant equals 2 times the area of the triangle with vertices at a, b, and c.

If p is on the line through a and b, then p is an affine combination of a and b, so p is a linear
combination of a and b. Thus the columns of [a b p] are linearly dependent. So the determinant
of this matrix is zero.
r
If [a b ¢]|s| =p, then Cramer’s rule gives r = det[p b ¢] /det[a b ‘¢]. By Exercise 21, the
t

numerator of this quotient is twice the area of Apbc, and the denominator is twice the area of Aabc.
This proves the formula for r. The other formulas are proved using Cramer’s rule for s and ¢.

Let p= (1 — x)q + xa, where q is on the line segment from b to ¢. Then, because the determinant
is a linear function of the first column when the other columns are fixed (Section 3.2),

det[p b €] = det[(1-x)q+xa b €)= (1—-x)-det[q b ¢] +x-det[a b ¢]

Now, [q b ¢] is a singular matrix because q is a linear combination of b and ¢. So det[q b ¢] =
Oand det[p b ¢] = x-det[a b ¢].
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8.3 SOLUTIONS

Notes: The notion of convexity is introduced in this section and has important applications in computer
graphics. Bézier curves are introduced in Exercises 21-24 explored in greater detail in Section 8.6.

0
1. Theset V = { } 0<y< 1} is the vertical line segment from (0,0) to
y

(0,1) that includes (0,0) but not (0,1). The convex hull of S includes
each line segment from a point in V to the point (2,0), as shown in the
figure. The dashed line segment along the top of the shaded region
indicates that this segment is not in conv S, because (0,1) is not in S.

2. a. Conv S includes all points p of the form

{1/2} { X } {1/2+t(x—1/2)}
p=(1-1) +1 = , where
2 1/x 2—1(2-1/x)

x21/2and 0<t <1. Notice that if r=a/x, then

1/24+a—al(2x) . 1/2+a
p(x) = and lim p(x) = 5 , establishing that there are points

2-2alx—alx®

arbitrarily close to the line y=2 in conv S. Since the curve y=1/x is in S, the line segments

between y=2 and y=1/x are also included in conv S, whenever x >1/2.

b. Recall that for any integer n, sin(x+ 2n7x) =sin (x) . Then
X x+2nr X+ 2nrt
p=0-1)| . +1| =l € conv S.
sin(x) sin(x + 2nr) sin(x)
Notice that sin(x) is always a number between -1 and 1. For a

fixed x and any real number r, an integer n and a number ¢ (with 0 <7 <1) can be chosen so that

r=Xx+2nrt.
¢. Conv S includes all points p of the form

0 X X
p=~1-1) +1 =t , where x>0 and 0<t<1.
M L/} L/}}

> Xx—eo

) a
Letting t=a/x lim p = 0} establishing that there are point arbitrarily close to y=0 in the set.

3. From Exercise 5, Section 8.1,

a. p; =3b; —b,—b; & conv S since some of the coefficients are negative.
b. p> =2b; + Ob, + b; ¢ conv S since the coefficients do not sum to one.

c. p;=—b; +2b, + 0b; & conv S since some of the coefficients are negative.
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4. From Exercise 5, Section 8.1,
a.p; =—4b; +2b, +3b; & conv S since some of the coefficients are negative.
b. p» =.2b; + .5b, + .3b; € conv S since the coefficients are nonnegative and sum to one.
c. ps=b; +by+b; ¢ conv S since the coefficients do not sum to one.
5. Row reduce the matrix [V, ¥, ¥; ¥V, P, P,]to obtain the barycentric coordinates
Pi=—+tvi+iv,+2vi+lv,,sop ¢ convS,andp,=1v, +1v, +Lv;+1v,,s0p;, € convS.

6. Let W be the subspace spanned by the orthogonal set S = {vy, v,, v3}. As in Example 1, the
barycentric coordinates of the points py, ..., ps with respect to S are easy to compute, and they
determine whether or not a point is in Span S, aff S, or conv S.

. -V vV -V
a. prOJWp1=p1 1V1+P1 2y 4P V3 o

\SRAZ} VoV, 2 Vyov,
2 0] [-2 -1
_of a2 o) 2|
To2|-1| 2] 2 T2 T
2 1 2 5

This shows that p; is in W= Span S. Also, since the coefficients sum to 1, p; is an aff S.
However, p; is not in conv S, because the coefficients are not all nonnegative.
9 9 9

1 1
b. Similarly, proj =2 v+2vyv,+2v, = —v,+—V,+—v: = p,. This shows that
Y, Projy P 919293414223 P2 | 1)

lies in Span S. Also, since the coefficients sum to 1, p, is in aff S. In fact, p, is in conv S,
because the coefficients are also nonnegative.

. 9 18 . .
C. projy p3 = EVI +%V2 —EV3 = Vv, +V, —2v3 = p3. Thus psisin Span S. However, since

the coefficients do not sum to one, p; is not in aff S and certainly not in conv S.

d. projy ps = %Vl +%v2 +%V3 # Py. Since projy Py is the closest point in Span S to p., the

point p, is not in Span S. In particular, p, cannot be in aff S or conv S.

-1 2 4 2 3 2 0
7. v = ol V27| 5 V3T (P P ] P2, P PeT], , T={vi, va, v3}

a. Use an augmented matrix (with four augmented columns) to write the homogeneous forms of
Pi, ---, P4 in terms of the homogeneous forms of v, v,, and v3, with the first step interchanging
rows 1 and 3:
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P11 111 (rtoo 3o 3 3

[V V2 Vs By By By By |~|-1 2 4 2 3 20(~0 10 L L -1 3
03 11220 2 1 1 3 _1

001535 3 -3

The first four columns reveal that 1V, ++v, +2v;=p, and Lv, +<v, +5v;=p;. Thus column 4
contains the barycentric coordinates of p; relative to the triangle determined by 7. Similarly,
column 5 (as an augmented column) contains the barycentric coordinates of p,, column 6
contains the barycentric coordinates of ps;, and column 7 contains the barycentric coordinates of
Ps.

b. p; and p4 are outside conv T, because in each case at least one of the barycentric coordinates is
negative. p; is inside conv 7T, because all of its barycentric coordinates are positive. p, is on the

edge v;v, of conv 7, because its its barycentric coordinates are nonnegative and its first

coordinate is 0.

. . : 12 3 2 8 2 3

a. The barycentric coordinates of p;, p,, ps, and p, are, respectively, (E’E’_E)’ (— = —),

201l 9 _1 5
(3’0’3)’ and (13’ 13’13)'

b. The point p,; and p, are outside conv 7 since they each have a negative coordinate. The point p, is

inside conv 7 since the coordinates are positive, and p; is on the edge v,;v; of conv T.

The points p, and p; are outside the tetrahedron conv S since their barycentric coordinates contain
negative numbers. The point p, is on the face containing the vertices v,, v3;, and v, since its first
barycentric coordinate is zero and the rest are positive. The point p4 is inside conv § since all its
barycentric coordinates are positive. The point ps is on the edge between v, and v; since the first and
third barycentric coordinates are positive and the rest are zero.

The point q is inside conv S because the barycentric coordinates are all positive. The point q; is
outside conv S because it has one negative barycentric coordinate. The point q, is outside conv S for

the same reason. The point q; is on the edge between v, and v; because (O, %, %, O) shows that q; is

a convex combination of v, and v;. The point qs is on the face containing the vertices vy, v,, and v;

because (% 14 0) shows that qs is a convex combination of those vertices.

a. False. In order for y to be a convex combination, the ¢’s must also all be nonnegative. See the
definition at the beginning of this section.

b. False. If S is convex, then conv § is equal to S. See Theorem 7.

c. False. For example, the union of two distinct points is not convex, but the individual points are.

a. True. See the definition prior to Theorem 7.

b. True. Theorem 9.

c. False. The points do not have to be distinct. For example, S might consist of two points in R*. A
point in conv S would be a convex combination of these two points. Caratheodory’s Theorem
requires n + 1 or fewer points.
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If p, q € f(S), then there existr, s € S such that f(r) = p and f(s) = q. The goal is to show that the
line segmenty = (1 —H)p + tq, for 0 <¢ < 1, is in f(S). Since f is linear,

y=U=-0p+1q =(1=-0f)+1f(s)= f((1 -Or+1s)
Since Sis convex, (1 —H)r+tse Sfor0<t<1. Thusy € f(S) and f(S) is convex.

Supposer,s € Sand 0 <t < 1. Then, since f is a linear transformation,
Sl =0r+1s]=(1-0)f(r) +1f(s)

But f(r) e Tand f(s) € T,so (1 —1)f(r) + ¢ f(s) € T since T is a convex set. It follows that
(1 =9Hr +ts e S, because S consists of all points that f maps into T. This shows that S is convex.

It is straightforward to confirm the equations in the problem: (1) %vl +%v2 +%v3 +%v4 =p and

(2) vi—v,+v;—v,=0. Notice that the coefficients of v, and v; in equation (2) are positive. With
the notation of the proof of Caratheodory’s Theorem dy=1and d;=1. The corresponding

coefficients in equation (1) are ¢, =+ 3 and ¢c3 = . The ratios of these coefficients are ¢, / d; = ;
and c3/d; = %. Use the smaller ratio to ehmmate v; from equation (1). That is, add —g times

equation (2) to equation (1):
— 1_1 1,1 _ 1 1 1
(———)V1+(3 6)V2+(€—€)V3 +(€+€)V4 —€V1+§V2 +§V4
To obtain the second combination, multiply equation (2) by —1 to reverse the signs so that d, and dy4
become positive. Repeating the analysis with these terms eliminates the v, term resulting in

—1 1 1
p_EV1+EV2 +§V3.

-1 0 3 1 1
v = { O}’ vV, = LJ, V3 = [J, Vyu = {_J, p= {2} It is straightforward to confirm the

equations in the problem: (1) |+

0.

\D) +3L 3+—=vy, =p and (2) 10v,—6vo+7v3—1lvy,=

121 v 121 121 11

Notice that the coefficients of v, and v; in equation (2) are positive. With the notation of the proof of
Caratheodory’s Theorem, d; = 10 and d; = 7. The corresponding coefficients in equation (1) are

= ﬁ and c3 = 13271 The ratios of these coefficients are ¢;/d; = m—lO = m and
cyldy = 121 +7 = 83477 Use the smaller ratio to eliminate v, from equation (1). That is, add — B0 21 5
times equation (2) to equation (1):

1 72+

_ 1 _
P=1{gr- 1210)V1+(121 1210) 2 (121 1210) 3+(_+ )V4__V2+ V3+

1210

To obtain the second combination, multiply equation (2) by —1 to reverse the signs so that d, and ds4
become positive. Repeating the analysis with these terms eliminates the v, term resulting in

— (1, 10 72 _ 6 37 4 T - 1 6 4
(121+121)V1+(121 121)V2+(121+121)V3+( Ve =ity 2ty

121) 113
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17. Suppose A C B, where B is convex. Then, since B is convex, Theorem 7 implies that B contains

all convex combinations of points of B. Hence B contains all convex combinations of points of A.
That is, conv A C B.

18. Suppose A C B. Then A C B C conv B. Since conv B is convex, Exercise 17 shows that

conv A C conv B.

19 a. Since A C (A U B), Exercise 18 shows that conv A C conv (A U B). Similarly,
conv B C conv (A U B). Thus, [(conv A) U (conv B)] C conv (A U B).

b. One possibility is to let A be two adjacent corners of a square and B be the other two corners.
Then (conv A) U (conv B) consists of two opposite sides of the square, but conv (A U B) is the
whole square.

20.a. Since (A N B) C A, Exercise 18 shows that conv (A N B) C conv A. Similarly,
conv (A N B) C conv B. Thus, conv (A N B) C [(conv A) N (conv B)].

b. One possibility is to let A be a pair of opposite vertices of a square and let B be the other pair
of opposite vertices. Then conv A and conv B are intersecting diagonals of the square.
A N B is the empty set, so conv (A N B) must be empty, too. But conv A N conv B contains
the single point where the diagonals intersect. So conv (A N B) is a proper subset of conv A

M conv B.
21. b, fi(%) ) 2. B () .
© P2 £(3 3 2
w50 o )
Po Po

23. g(t) =1 - fy(r) + tf1(2)
= (1 =0[(1 = Opo + tpi] + f[(1 = HPy + tpa] = (1 — 1)’po + 2¢(1 — )P, + °Pa.

The sum of the weights in the linear combination for g is (1 — t)2 +2t(1 -1+ #%, which equals
(1=2t+)+Q2t=2+1*=1. The weights are each between 0 and 1 when 0 < ¢ <1, so g(¢) is in

conv{po, Pi, P2}.

24. h(r) = (1 — g (1) + tg(f). Use the representation for g;(¢) from Exercise 23, and the analogous
representation for g,(f), based on the control points p;, p», and ps, and obtain

h(r) = (1 = DI(1 = 1)’po + 2t(1 = 1)py + £°pa] + 1[(1 = 1)°py + 26(1 — D), + £°p3]
=(1-0)°po + 2t(1 = 2t + )py + (1> — £)po + t(1 = 2t + 1) py + 215 (1 — H)po + £°p3
=(1-3t+ 37— )po + 21— 42+ 267)p, + (> — )p»

+ (1 =202+ O)py + (217 = 207)p, + £ps
=(1 =343 = )po+ Bt — 62+ 3£°)p; + (3> = 3t7)p, + 1°ps

By inspection, the sum of the weights in this linear combination is 1, for all #. To show that the
weights are nonnegative for 0 <7 < 1, factor the coefficients and write
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h(t) = (1 — £)°po + 32(1 — 1)*py + 3(1 — )po + £°p; for 0<r< 1

Thus, h(?) is in the convex hull of the control points py, pi, P2, and ps.

8.4 SOLUTIONS

Notes: In this section lines and planes are generalized to higher dimensions using the notion of
hyperplanes. Important topological ideas such as open, closed, and compact sets are introduced.

-1 3 31 | -1 4
1. Letv, 2{ 4} and v, ZL}. Then v, —v; :L} —{ 4} :{ 3}. Choose n to be a vector orthogonal to

3
v, — v, , for example let n= L} . Then f(xy, x) =3x; + 4x, and d = f(v)) =3(-1) + 4(4) =13.

This is easy to check by verifying that f(v,) is also 13.

1 -2 -2 1 -3
2. Letv, = LJ and v, 2{ J. Then v, —V, 2{ J —L} 2{ 5}. Choose n to be a vector orthogonal

5
tov, —v,, for example let n={ 3} . Then f(xy, x;) =5x; — 3xand d = f(vy)=5(1) — 3(4)=-7.

3. a. The set is open since it does not contain any of its boundary points.
b. The set is closed since it contains all of its boundary points.
c. The set is neither open nor closed since it contains some, but not all, of its boundary points.
d. The set is closed since it contains all of its boundary points.
e. The set is closed since it contains all of its boundary points.
4. a. The setis closed since it contains all of its boundary points.
b. The set is open since it does not contain any of its boundary points.
c. The set is neither open nor closed since it contains some, but not all, of its boundary points.
d. The set is closed since it contains all of its boundary points.

e. The set is open since it does not contain any of its boundary points.

5. a. The set is not compact since it is not closed, however it is convex.
b. The set is compact since it is closed and bounded. It is also convex.
c. The set is not compact since it is not closed, however it is convex.
d. The set is not compact since it is not bounded. It is not convex.

e. The set is not compact since it is not bounded, however it is convex.

6. a. The setis compact since it is closed and bounded. It is not convex.

b. The set is not compact since it is not closed. It is not convex.
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c. The set is not compact since it is not closed, however it is convex.
d. The set is not compact since it is not bounded. It is convex.

e. The set is not compact since it is not closed. It is not convex.

1 2 -1 a
7. a. Let vi=| 1|, v,=|4|, v3 =|-2|, n=| b | and compute the translated points
3 1 5 c
-2
Vo=V =| 3|, v3—v; =|-3
-2 2

To solve the system of equations (v, — v;) - n =0 and (v; — v;) - n =0, reduce the augmented
matrix for a system of two equations with three variables.

a a
1 3 =-2]|b6|=0, [2-3 2]|b|=0.
c c

) 1 3 -2 0 1 0 0 O .
Row operations show that ~ . A suitable normal vector
-2 -3 2 0 0 3 -2 0

b. The linear functional is f(xj,Xx,,%3) = 2x, +3x3,s0d = f(1,1,3) = 2+9 = 11. Asacheck,

evaluate f at the other two points on the hyperplane: f(2,4,1) = 8+3 = 11 and
f=1,-2,5) = —-4+15 = 11.
4

8. a. Find a vector in the null space of the transpose of [v,-v; v3-v,]. For example, taken=| 3.
-6

b. £(x) = 4x; + 3%, — 6x3, d=F(v;) =8

9. a. Find a vector in the null space of the transpose of [v,-v; v3-v; v4-v;]. For example, take

b. f(X)=3x1—x2+2x3 + x4, d=f(v)) =5
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10. a. Find a vector in the null space of the transpose of [v,-v; v3;-v; v4-v]. For example, take

11.

12.

13.

14.

15.
16.
17.

b. f(X) = —2X1 + 3)62 - 5)C3 + X4, d =f(V1) =4

nep=2; n0=0<2; nev, =5>2; nev, =-2<2; nev, =2. Hence v, is on the same side of H
as 0, v, is on the other side, and v; is in H.

Let H=[f:d], where f (x|, x5, x3) = 3x1 + x, — 2x3. f(a;)) ==5, f(a,) =4. f(a;) =3, f(by) =7,
f(by)=4,and f (b3) = 6. Choose d =4 so that all the points in A are in or on one side of H and all
the points in B are in or on the other side of H. There is no hyperplane parallel to H that strictly
separates A and B because both sets have a point at which f takes on the value of 4. There may be
(and in fact is) a hyperplane that is not parallel to H that strictly separates A and B.

H={x:n -x=d}and H,={x:n, -x=d,}. Sincep, € H,,d; =n,- p; =4. Similarly,
d, =mn, - p,=22. Solve the simultaneous system [1 2 4 2]x=4 and [2 3 1 5]x=22:

1 2 4 2 4 1 0 -10 4 32
2 3 1 5 22 o 1 7 -1 -14

The general solution provides one set of vectors, p, v, and v,. Other choices are possible.

32 10 -4 32 10 -4

-14 =7 1 -14 =7 1

X= 0 + x5 q + x4 0 =p+x3V, +x,V,, where p= 0 , V)= q ,Vy) = 0
0 0 1 0 0 1

Then Hi N H, = {X:X=pP+x3V] + x4V2}.
Since each of F; and F, can be described as the solution sets of A;x=b; and A,x=b, respectively,

A b
where A; and A, have rank 2, their intersection is described as the solution set to { l}x = {bl}
2

A
Since 2 <rank GA: D <4, the solution set will have dimensions 6 —2=4,6—-3=3, or 6 —4=2.

f(xl, X7, X3) =Ax= X1 — 3X2 + 4)63 — 2)64 andd =b=5
f (x1, X2, X3) = AX=2x; + 5x, — 3x3 + 6xsand d = b= 0

Since by Theorem 3 in Section 6.1, Row B=(Nul B) + , choose a nonzero vector ne Nul B. For

1

example take n=| =2 |. Then f (x, X3, x3) =x; — 2x, + x3and d = 0

1
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18. Since by Theorem 3, Section 6.1, Row B=(Nul B) 1 , choose a nonzero vector ne Nul B. For
-11

example take n=| 4 |. Thenf (x;, x5, x3) =—11x; +4x; + x3and d =0
1

19. Theorem 3 in Section 6.1 says that (Col B)" = Nul B”. Since the two columns of B are clearly linear
independent, the rank of B is 2, as is the rank of B". SodimNulB'=1, by the Rank Theorem, since

there are three columns in B”. This means that Nul B” is one-dimensional and any nonzero vector n
in Nul B” will be orthogonal to H and can be used as its normal vector. Solve the linear system

B"x = 0 by row reduction to find a basis for Nul B":
-5

1 4 -7 0 1 0 5 O
~ = n=| 3
0O 2 -6 0 0O 1 -3 0 1
Now, let f(x;, x5, x3) = —=5x; + 3x, + x3. Since the hyperplane H is a subspace, it goes through the
origin and d must be 0.

The solution is easy to check by evaluating f at each of the columns of B.

20. Since by Theorem 3, Section 6.1, Col B=(Nul BT) 1 , choose a nonzero vector ne Nul B" . For

-6
example take n=| 2 |. Then f (x|, x5, x3) = —6x; +2x, +x3and d =0
1
21. a. False. A linear functional goes from R" to R. See the definition at the beginning of this section.
b. False. See the discussion of (1) and (4). There is a 1xn matrix A such that f (x) = Ax for all x in
R". Equivalently, there is a point n in R" such that f(x) =n - x for all x in R".
c. True. See the comments after the definition of strictly separate.
d. False. See the sets in Figure 4.
22. a. True. See the statement after (3).

=3

. False. The vector n must be nonzero. If n =0, then the given set is empty if d # 0 and the set
isall of R"if d = 0.

c. False. Theorem 12 requires that the sets A and B be convex. For example, A could be the
boundary of a circle and B could be the center of the circle.

d. False. Some other hyperplane might strictly separate them. See the caution at the end of
Example 8.

3
23. Notice that the side of the triangle closest to pis v,V, . A vector orthogonal to v, v, .is n=|: 2} .

Take f (x1, x5) = 3x; — 2x, . Then f (v,) =f(v3)=9 and f (p)=10 so any d satisfying 9 <d < 10 will
work. There are other possible answers.
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-2
Notice that the side of the triangle closest to pis v,v, A vector orthogonal to v, v, is n=|: 3|

Take f (x1, x,) = —=2x; +3x, . Then f(v,) =f(v3)=4 and f (p)=5 so any d satisfying 4 <d <5 will
work. There are other possible answers.

Let L be the line segment from the center of B(0, 3) to the center of B(p, 1). This is on the line
through the origin in the direction of p. The length of L is (4> + 1%)"* = 4.1231. This exceeds the
sum of the radii of the two disks, so the disks do not touch. If the disks did touch, there would be no
hyperplane (line) strictly separating them, but the line orthogonal to L through the point of tangency
would (weakly) separate them. Since the disks are separated slightly, the hyperplane need not be
exactly perpendicular to L, but the easiest one to find is a hyperplane H whose normal vector is p.
So define f by f(x)=p-x.

To find d, evaluate f at any point on L that is between the two disks. If the disks were tangent, that
point would be three-fourths of the distance between their centers, since the radii are 3 and 1. Since
the disks are slightly separated, the distance is about 4.1231. Three-fourths of this distance is greater
than 3, and one-fourth of this distance is greater than 1. A suitable value of d is f(q), where q =
(250 + (75)p=3,.75). Sod=p-q=43)+ 1(.75) = 12.75.

The normal to the separating hyperplane has the direction of the line segment between p and q. So,
4
letn=p—-q= { 2} . The distance between p and q is V20 , which is more than the sum of the radii

of the two balls. The large ball has center q. A point three-fourths of the distance from q to p will be
greater than 3 units from q and greater than 1 unit from p. This point is

6 21 [5.0
x=.75p + .25q = .75 [+.25| |=
1 3] |15

[ x
Compute n*x = 17. The desired hyperplane is { } 1 4x-2y= 17} .
y

Exercise 2(a) in Section 8.3 gives one possibility. Or let S = {(x, y) : x2y2 =1and y > 0}. Then
conv S is the upper (open) half-plane.

One possibility is B= {(x,y) : x’y*=1and y>0} and A = {(x, y) : |x| <1 and y = 0}.
Letx,y € B(p, 0) and suppose z = (1 —)x + ry, where 0 <7< 1. Then
llz—pll = [I[(1 =Hx+2yl=pll = |1 -Hx-p)+1(y—p)
SA-nlx-pl+tlly-pl < A-D5+16= 06

where the first inequality comes from the Triangle Inequality (Theorem 17 in Section 6.7) and the
second inequality follows from x, y € B(p, o). It follows that z € B(p, o) and B(p, O) is convex.

Let S be a bounded set. Then there exists a & > 0 such that S C B(0, 6). But B(0, 0) is
convex by Exercise 29, so Theorem 9 in Section 8.3 (or Exercise 17 in Section 8.3) implies that
conv S C B(p, o) and conv S is bounded.
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8.5 SOLUTIONS

Notes: A polytope is the convex hull of a finite number of points. Polytopes and simplices are important
in linear programming, which has numerous applications in engineering design and business
management. The behavior of functions on polytopes is studied in this section.

1. Evaluate each linear functional at each of the three extreme points of S. Then select the extreme

point(s) that give the maximum value of the functional.
a. f(p) =1, f(p) = -1,and f(p;) = 3,som=1atp,.

b. f(p) = 1, f(p2) = 5,and f(ps) = 1,som=5atp,.
c. f(p) = -3, f(p2) = -3,and f(ps) = 5,s0m=>5 at ps.

2. Evaluate each linear functional at each of the three extreme points of S. Then select the point(s) that
give the maximum value of the functional.
a. f(p) =-1, f(p) = 3,and f(ps) = 3, som =3 on the set conv{p,, ps}.

b. f(p) =1, f(p) = 1,and f(ps) = —1,s0m=1 on the set conv{p,, p,}.
c¢. f(p) = -1, f(p») = -3,and f(ps) = 0,s0m=0at ps.

3. Evaluate each linear functional at each of the three extreme points of S. Then select the point(s) that
give the minimum value of the functional.
a. f(p) = 1, f(p2) = —1,and f(p;) = -3, som =-3 at the point p;

b. f(p) =1, f(p2) = 5,and f(p;) = 1,som = 1 on the set conv{p;, ps}.

c. f(p) = -3, f(pr) = -3,and f(p3) = 5, som=-3 on the set conv {py, p>}.

4. Evaluate each linear functional at each of the three extreme points of S. Then select the point(s) that
give the maximum value of the functional.
a. f(p) =-1, f(p) = 3,and f(ps) = 3,som=-1 at the point p;.

b. f(p) =1, f(p) = 1,and f(p3) = —1, som =-1 at the point ps.

c. f(p1) = -1, f(pr) = -3,and f(ps) = 0, som=-3 at the point p,.
5. The two inequalities are (a) x; + 2x, < 10 and (b) 3x; + x, < 15. Line (a) goes from (0,5) to (10,0).

Line (b) goes from (0,15) to (5,0). One vertex is (0,0). The x;-intercepts (when x, = 0) are 10 and 5,
so (5,0) is a vertex. The x,-intercepts (when x; = 0) are 5 and 15, so (0,5) is a vertex. The two lines

O[|5((4]1]0
intersect at (4,3) so (4,3) is a vertex. The minimal representation is {{0}, {0}, {3}, {5}}
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The two inequalities are (a) 2x; + 3x, < 18 and (b) 4x; + x, £ 16. Line (a) goes from (0,6) to (9,0).
Line (b) goes from (0,16) to (4,0). One vertex is (0,0). The x;-intercepts (when x, = 0) are 9 and 4, so
(4,0) is a vertex. The x,-intercepts (when x; = 0) are 6 and 16, so (0,6) is a vertex. The two lines

O|(4](3]]0
intersect at (3,4) so (3,4) is a vertex. The minimal representation is {O}’ {O}’ L}, {6}}

The three inequalities are (a) x; + 3x, < 18, (b) x; + x, £ 10, and (c) 4x; + x, < 28. Line (a) goes from
(0,6) to (18,0). Line (b) goes from (0,10) to (10,0). And line (c) goes from (0,28) to (7,0). One
vertex is (0,0). The x,-intercepts (when x, = 0) are 18, 10, and 7, so (7,0) is a vertex. The x,-
intercepts (when x; = 0) are 6, 10, and 28, so (0,6) is a vertex. All three lines go through (6,4), so

. .. . 0]17/16]1]0
(6,4) is a vertex. The minimal representation is , , , .
0| (0] (4]]|6

The three inequalities are (a) 2x; + x, £ 8, (b) x; + x, £ 6, and (c) x; + 2x, < 7. Line (a) goes from
(0,8) to (4,0). Line (b) goes from (0,6) to (6,0). And line (c) goes from (0,3.5) to (7,0). One vertex is
(0,0). The x;-intercepts (when x, = 0) are 4, 6, and 7, so (4,0) is a vertex. The x,-intercepts (when x;
=0) are 8, 6, and 3.5, so (0,3.5) is a vertex. All three lines go through (3,2), so (3,2) is a vertex. The

o 11014113 0
minimal representation is | sl A ]
01101235

The origin is an extreme point, but it is not a vertex. Itis an
extreme point since it is not in the interior of any line segment
that lies in S. It is not a vertex since the only supporting
hyperplane (line) containing the origin also contains the line
segment from (0,0) to (3,0).

One possibility is a ray. It has an extreme point at one end.

One possibility is to let S be a square that includes part of the boundary but not all of it. For example,
include just two adjacent edges. The convex hull of the profile P is a triangular region.

convP =

a. fo(S°) =6, f1(S°) =15, f»(S°) =20, fx(S7) =15, fu(S)=6,and 6-15+20—15+6=2.
b.

fo fi f2 Vg Ja
s! 2
S? 3
s? 4 4
s 5 10 10 5
s? 6 15 20 15 6
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n n+l a a! . . . .
f:(87) = , where = ———— is the binomial coefficient.
k+1 b)) bla—b)!

13. a. To determine the number of k-faces of the 5-dimensional hypercube C °, look at the pattern that is

14.

15.

16.

17.

18.

&

e o T o

®

&

followed in building C * from C”. For example, the 2-faces in C * include the 2-faces of C* and
the 2-faces in the translated image of C 3. In addition, there are the 1-faces of C* that are
“stretched” into 2-faces. In general, the number of k-faces in C " equals twice the number of k-
faces in C "' plus the number of (k — 1)-faces in C"~'. Here is the pattern: fi(C") = 2£.(C"™ ")
+fi(C"™ . Fork=0,1,...,4,and n = 5, this gives fo(C>) =32, f1(C°) =80, f,(C") =80,
fi(C 5) =40, and f4C %) = 10. These numbers satisfy Euler’s formula since, 32 — 80 + 80 — 40 +
10 =2.

k[ a !
The general formula is f; (C") = 2" k71 where = % s the binomial coefficient.
k b bl(a-b)!
X'is a line segment ./B/. 2 X?is a parallelogram v,

vV,

fo(X? =6, £1(X*) =12, f,(X)=8. X’ is an octahedron.

foXH =8, LiXH =24, /L(XH =32, f(XH =16, 8—24+32-16=0

n a !
FU(Xmy=2k1 ., 0<k<n-1,where | |=———— is the binomial coefficient.
k+1 b) bla—b)!

fo(P") = fo(Q) +1
fiP") = fil(Q) + fr-1(Q)
o1t (P") = fua(Q) +1

. True. See the definition at the beginning of this section.

. True. See the definition after Example 1.

False. S must be compact. See Theorem 15.

. True. See the comment after Fig. 7.

False. It has six facets (faces).

True. See Theorem 14.

c. False. The maximum is always attained at some extreme point, but there may be other points that

d.

are not extreme points at which the maximum is attained. See Theorem 16.

True. Follows from Euler’s formula with n = 2.

Let v be an extreme point of the convex set Sandlet T={y e S:y=#v}. If y and z are in 7, then
yz C S since S is convex. But since v is an extreme point of S, v ¢ yz, so yz C T. Thus T'is
convex.
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Conversely, suppose v € S, but v is not an extreme point of S. Then there exist y and z in S such
that ve yz,withv#yandv#z. Itfollows thaty and z are in T, but yz ¢ T. Hence T is not
convex.

Let S be convex and let x € ¢S + dS, where ¢ > 0 and d > 0. Then there exist s; and s, in S such that
X = ¢S; +ds,. Butthen

d
X =cS;+ds, = (c+d)(cidsl+mszj.

Now show that the expression on the right side is a member of (c + d)S.

For the converse, pick an typical point in (¢ + d)S and show it is in ¢S + dS.
For example, let S = {1, 2} in R'. Then2S = {2,4},3S ={3,6} and 2+ 3)S = {5, 10}.
However, 25 + 35 = {2,4} +{3,6} = {2+3,4+3,2+6,4+6} = {5,7,8,10} #(2 + 3)S.

Suppose A and B are convex. Letx,y € A+ B. Then there exista, c € A and b, d € B such that
x=a+bandy=c+d. Forany?suchthat)<¢<1, we have

w=_0-t)x+ty =(1-t)a+b)+t(c+d)
= [(1-Ha+1e]+[(1—1)b+1d]

But (1 —)a + tc € A since A is convex, and (1 — /)b + rd € B since B is convex. Thus wisin A + B,
which shows that A + B is convex.

a. Since each edge belongs to two facets, kr is twice the number of edges: kr = 2e. Since each edge
has two vertices, sv = 2e.
- = 2e _,42e _ 1,1 _1,41
b. v—e+r=2,s0 = —e+ 5 =2 = st =2t

c. A polygon must have at least three sides, so k = 3. At least three edges meet at each vertex,
so s = 3. But both k and s cannot both be greater than 3, for then the left side of the equation

in (b) could not exceed 1/2.
When k = 3, we get %—% = % so s =23, 4, or5. For these values, we get e =6, 12, or 30,

corresponding to the tetrahedron, the octahedron, and the icosahedron, respectively.

When s = 3, we get %—% = %, so k=3,4,or5and e =6, 12, or 30, respectively.

These values correspond to the tetrahedron, the cube, and the dodecahedron.

8.6 SOLUTIONS

Notes: This section moves beyond lines and planes to the study of some of the curves that are used to
model surfaces in engineering and computer aided design. Notice that these curves have a matrix
representation.

1.

The original curve is x(7) = (1 — £)’py + 31(1 = 1)’p; + 3t*(1 = )p, + £'ps (0 <1< 1). Since the
curve is determined by its control points, it seems reasonable that to translate the curve, one
should translate the control points. In this case, the new Bézier curve y(#) would have the
equation
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2.

y(® = (1 =)’ (po + b) + 3t(1 — £)°(p; + b) + 3t°(1 = 1)(p> + b) + £°(p3 + b)
=(1-0’po+3t(1 —1)’py + 3t°(1 = )p + £'ps
+ (1=-0b+3t(1 -0)’b+3*(1 = )b + £’b

A routine algebraic calculation verifies that (1 — £)° + 31(1 — £)> + 3t’(1 =) + £ = 1 for all .
Thus y(f) = x(¢) + b for all ¢, and translation by b maps a Bézier curve into a Bézier curve.

a.

Equation (15) reveals that each polynomial weight is nonnegative for 0 < # < 1, since 4 — 3¢ >
0. For the sum of the coefficients, use (15) with the first term expanded: 1 — 3¢ + 61> — 1°.
The 1 here plus the 4 and 1 in the coefficients of p; and p,, respectively, sum to 6, while the
other terms sum to 0. This explains the 1/6 in the formula for x(f), which makes the
coefficients sum to 1. Thus, x(¢) is a convex combination of the control points for 0 << 1.

Since the coefficients inside the brackets in equation (14) sum to 6, it follows that

b=1[6b]= %[(1 —0’b+@B =62 + Db+ (=32 +3t> +3t+ Db + z3b} and hence x(7) + b

may be written in a similar form, with p; replaced by p; + b for each i. This shows that
x(1) + b is a cubic B-spline with control points p; + b fori =0, ..., 3.

x'(1) = (=3 + 6t = 3t)py + (3 =121 + 92)p; + (61 — 9P, + 317ps, 50 x'(0) = =3py + 3p1=3(P1 — Po),
and x'(1) = -3p, + 3p; = 3(p; — p»)- This shows that the tangent vector x'(0) points in the
direction from py to p; and is three times the length of p; — py. Likewise, x'(1) points in the
direction from p, to p; and is three times the length of p; — p,. In particular, x'(1) = 0 if and only

if p; = p..

x"(£) = (6 — 60)po + (—12 + 18£)p; + (6 — 181)p, + 6tps, so that
x"(0) = 6po — 12p; + 6p2 = 6(Po — P1) + 6(P2 - P1)

and x"(1) = 6p; — 12p, + 6p; = 6(p1 — P2) + 6(P; — P2)

For a picture of x"'(0), construct a coordinate system with the origin at p;, temporarily, label py
as po — p1, and label p, as p, — p;. Finally, construct a line from this new origin through the sum
of po — p1 and p, — pi, extended out a bit. That line points in the direction of x"'(0).

0=p,

P2—P:

W = (pg =P+ (P2 —py) = ¢X(0)

Po—P: W

x'(f) =%[(—3t2 +6t—3)p0 +(9t2 —12t)p1 +(—9t2 +6t+3)p2 +3t2p3J

x'(0)= 3(p, —Po) and x'(1)= 3(p5—p;)
(Verify that, in the first part of Fig. 10, a line drawn through p, and p, is parallel to the
tangent line at the beginning of the B-spline.)

When x'(0) and x'(1) are both zero, the figure collapses and the convex hull of the set of
control points is the line segment between py and ps, in which case x(¢) is a straight line.
Where does x(¢) start? In this case,

x(1) = %[(—49 +61% +2)pg + (4 =6 + 4)p3}

x(0)=1py+2Zp; and x(1)=2p,+1p;
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The curve begins closer to p; and finishes closer to py. Could it turn around during its travel?
Since x'(f) = 2¢(1 — 1)(po — P3), the curve travels in the direction py — p3, so when x'(0) = x'(1)
= 0, the curve always moves away from p; toward pofor 0 <t < 1.

b. x"()) =0 -0po+ (-2 +3)p, + (1 = 30)p> + 1p3
x"(0) =po—2p:1 + p>=(po—Pp1) + (P> —p1)
and  x"(1)=p;-2p.+p;=P1—p2) + (P3—P2)

For a picture of x"(0), construct a coordinate system with the origin at p,, temporarily, label py as
Po — P1, and label p, as p, — p;. Finally, construct a line from this new origin to the sum of py — p;
and p, — p;. That segment represents x"'(0).

For a picture of x" (1), construct a coordinate system with the origin at p,, temporarily, label p; as
P1 — P>, and label p; as p; — p,. Finally, construct a line from this new origin to the sum of
p: — p> and p; — po. That segment represents x"'(1).

Pi—Pp
1= P2 pa=0

w = (p,—py)+(P3—py) =x"()
w P;— P2

5. a. From Exercise 3(a) or equation (9) in the text,

x'(1) =3(ps — p2)
Use the formula for x'(0), with the control points from y(#), and obtain

y'(0) =-3ps + 3ps = 3(ps — P3)
For C! continuity, 3(p; — p2) = 3(p4 — P3), SO P = (P4 + P2)/2, and ps is the midpoint of the
line segment from P, to py.

b. If x'(1) =y'(0) = 0, then p, = p; and p; = ps. Thus, the “line segment” from p, to p; is just
the point p;. [Note: In this case, the combined curve is still C' continuous, by definition.
However, some choices of the other control points, py, pi, pPs, and ps can produce a curve
with a visible “corner” at p;, in which case the curve is not G' continuous at ps.]

6. a. With x(¢) as in Exercise 2,
x(0) = (po + 4p1 + p2)/6 and x(1) = (p; + 4p, + P3)/6
Use the formula for x(0), but with the shifted control points for y(¢), and obtain

y(0) = (p1 +4p2 + p3)/6
This equals x(1), so the B-spline is G’ continuous at the join point.
b. From Exercise 4(a),

x'(1)=(ps—p/2 and x'(0) = (p>—po)/2
Use the formula for x'(0) with the control points for y(¢), and obtain

y'(0) = (ps —p)/2=x'(1)
Thus the B-spline is C' continuous at the join point.

7. From Exercise 3(b),
x'"(0) = 6(po— p1) + 6(p2—p1) and x"(1)=6(p; —p2) + 6(ps — P2)
Use x"/(0) with the control points for y(?), to get

y"(0) = 6(p3 — ps) + 6(Ps — P4)
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Set x"(1) =y"”(0) and divide by 6, to get

(P1 —P2) + (P3 = P2) = (P3 — Pa) + (Ps — P4) (*)
Since the curve is C' continuous at ps, the point p; is the midpoint of the segment from p, to ps, by

Exercise 5(a). Thus p; = %(pz +Pp4), which leads to ps — p; = p3 — p2. Substituting into (*) gives
(P1—pP2) +(P3=P2)= ~(P3—P2) + P5— P4

(P1—P2) +2(P3—P2) + Pa = Ps
Finally, again from C' continuity, p; = ps + ps — p,. Thus,

Ps =P+ (P1 —P2) + 3(P3 - p2)
So p; and ps are uniquely determined by p;, p,, and ps. Only ps can be chosen arbitrarily.

8. From Exercise 4(b), x"'(0) = po — 2p; + p> and x"(1) = p; — 2p, + p3. Use the formula for x''(0), with
the shifted control points for y(7), to get
y"(0)= pi—2p>+2ps =x"(1)
Thus the curve has C* continuity at x(1).

9. Write a vector of the polynomial weights for x(7), expand the polynomial weights and factor the
vector as Mpu(r):

-div6 -4+t 4 6 4 11 14 6 4 1]
dr-120+120 -4t | |0 4 —12 12 4! 0 4 -12 12 —4
62 —128+6:4 |=|0 0 6 -12 6|, Mzg=|0 0 6 -12 6
43 — 4 0 0 0 4 4|/ 0 0 0 4 —4

4 0o 0 0o 0 1), 0o 0 o0 o0 1]

10. Write a vector of the polynomial weights for x(), expand the polynomial weights, taking care to
write the terms in ascending powers of ¢, and factor the vector as Mgu(?):

R el I N S Sy 1 -3 3 -1
1| 4-6r2+3° 114 0 -6 3¢ 1|4 -6 3
6l1asaa? 3| 6|1 3 3 || TN M= 0 5

e 0 0 0 12 0 0 0 1

11. a. True. See equation (2).

False. Example 1 shows that the tangent vector x'(7) at p, is two times the directed line segment
from pg to p;.

c. True. See Example 2.

12. a. False. The essential properties are preserved under translations as well as linear transformations.
See the comment after Figure 1.

b. True. This is the definition of G° continuity at a point.

c. False. The Bézier basis matrix is a matrix of the polynomial coefficients of the control points.
See the definition before equation (4).

13. a. From (12), q, —q =1(p, —po) =1p, -1 po- Since qy =py. q; =1 (p, +py)-

b. From (13), 8(qs — q2) =—Ppo—P1 + P2+ P3. S0 8qs + Po + P1 — P2 — P3 = 8q».
c. Use (8) to substitute for 8qs, and obtain
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82 = (Po+3p1+3p2+P3) + Po+Pr—P2—Ps = 2po +4p1 + 2p2
Then divide by 8, regroup the terms, and use part (a) to obtain
Q2 =5 Po +5P; +5P2 = (GPo + P+ (GPr +5P2) =54 + (P +P2)
=1(q; +3(P; +P2))
14. a. 3(r; —r;) =z/(1), by (9) with z'(1) and r; in place of x/(1) and p;.
z'(1) = .5x'(1), by (11) with r = 1.
S5x/(1) = (.5)3(ps — p2). by (9).
b. From part (a), 6(r; —r2) = 3(ps = P2), 13 -1, =3P; — 3Py, and r; —Tp;+ 4P, =1;.
Since r; = ps, this equation becomes r, = %(p3 +p,).
c. 3(r;—rp) =12'(0), by (9) with z'(0) and r; in place of x(0) and p;.
z'(0) = .5x'(.5), by (11) with £ = 0.
d. Part (c) and (10) show that 3(r; — ry) = %(—po —p; + p2> + p3). Multiply by % and rearrange to
obtain 8r; =—py— p: + p2 + p; + 8ro.

e. From (8), 8rp = po + 3p; + 3p> + p;- Substitute into the equation from part (d), and obtain
8r; = 2p; + 4p, + 2p;. Divide by 8 and use part (b) to obtain

=3P +3Pr+4P3 =GP+ 4P+ (P2 +P3) =35 +P) t 51,

Interchange the terms on the right, and obtain r; = 1[r, + (p, + p,)]-
15. a. From (11),y'(1) =.5x'(.5) = z'(0).

b. Observe that y(1) = 3(q3 — q»). This follows from (9), with y(#) and its control points in
place of x(¢) and its control points. Similarly, for z(z) and its control points, z'(0) = 3(r; — ry).
By part (a) 3(q; — q») = 3(r; — ry). Replace rj by q3, and obtain q; — q, = r; — q3, and hence
q; = (q2+1)/2.

c. Setqo=poandr;=p;. Compute q; = (po+ p1)/2 and r, = (p, + p3)/2. Compute m = (p; + p,)/2.
Compute ¢, = (q; + m)/2 and r; = (m + ry)/2. Compute q; =(q, +r;)/2 and setr,=qs.

16. A Bézier curve is completely determined by its four control points. Two are given directly: py =
x(0) and p; = x(1). From equation (9), x'(0) = 3(p; — po) and x'(1) = 3(p; — p»). Solving gives

P1=Po+ %X’(O) and P>= ps— %X/(l)

17. a. The quadratic curve is w(¢) = (1 — 1) 2 po + 2t(1 — H)p; + ? p.- From Example 1, the tangent
vectors at the endpoints are w'(0) = 2p; — 2py and w/(1) = 2p, — 2p;.  Denote the control
points of x(#) by ro, ry, ry, and r;. Then
ro=x(0)=w(0)=po and r;=x(1)=w(l)=p,

From equation (9) or Exercise 3(a) (using r; in place of p;) and Example 1,
=3rp + 3r; =x'(0) = w'(0) = 2p; — 2po

SO —po+r;= M and

3
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b.

18.

+2 i

r = Po 5 P (i)
Similarly, using the tangent data at ¢ = 1, along with equation (9) and Example 1, yields

—31’2 + 31’3 = X,(l) = W,(l) = 2p2 — 2p1,

2p, =2 2p, —2
= P2 — Py =Py P2~ ~Py . and
3 3

e R "
Write the standard formula (7) in this section, with r; in place of p; for i = 1, ..., 4, and then
replace ry and r; by p, and p,, respectively:

x(7) = (1 = 31+ 3 — )po + (3t — 6 + 3)r, + (3 = 3t7)r, + £°p» (iii)

Use the formulas (i) and (i) for r; and r, to examine the second and third terms in (iii):
(3t =617 +367)r, =L (3t — 61" + 37 )py + 2 (3t — 61> +31°)p,
=(t =22 +1)py + (2t — 4> +217)p,
(3t* =30, =2 (3> =3)p, + 131> = 31)p,
=21* =26%)p, + (1* = *)p,
When these two results are substituted in (iii), the coefficient of py is
(1=-3t+32 -+ (-2t +1)=1-2t + > = (1 — 1)?
The coefficient of p; is
2t — 42+ 26%) + 212 = 26%) = 21 — 22 = 24(1 — 1)
The coefficient of p, is (1> — °) + 1> = 2. So x(¢) = (1 — 1)’po + 21(1 — H)p; + £°p,, which
shows that x(¢) is the quadratic Bézier curve w(z).

Po
—3p, +3p;
3py —6p; +3p,
—Po +3p; =3P, + 3
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