
CHAPTER 2

2.1
IF x < 10 THEN
 IF x < 5 THEN
 x = 5
 ELSE
 PRINT x
 END IF
ELSE
 DO
 IF x < 50 EXIT
 x = x - 5
 END DO
END IF

2.2
Step 1: Start
Step 2: Initialize sum and count to zero
Step 3: Examine top card.
Step 4: If it says “end of data” proceed to step 9; otherwise, proceed to next step.
Step 5: Add value from top card to sum.
Step 6: Increase count by 1.
Step 7: Discard top card
Step 8: Return to Step 3.
Step 9: Is the count greater than zero?

If yes, proceed to step 10.
If no, proceed to step 11.

Step 10: Calculate average = sum/count
Step 11: End

2.3
start

sum = 0
count = 0

INPUT
value

value =
“end of data”

value =
“end of data”

sum = sum + value
count = count + 1

T

F

count > 0

average = sum/count

end

T

F

2.4
Students could implement the subprogram in any number of languages. The following
Fortran 90 program is one example. It should be noted that the availability of complex
variables in Fortran 90, would allow this subroutine to be made even more concise.
However, we did not exploit this feature, in order to make the code more compatible with
Visual BASIC, MATLAB, etc.

PROGRAM Rootfind
IMPLICIT NONE
INTEGER::ier
REAL::a, b, c, r1, i1, r2, i2
DATA a,b,c/1.,5.,2./
CALL Roots(a, b, c, ier, r1, i1, r2, i2)
IF (ier .EQ. 0) THEN
 PRINT *, r1,i1," i"
 PRINT *, r2,i2," i"
ELSE
 PRINT *, "No roots"
END IF
END
SUBROUTINE Roots(a, b, c, ier, r1, i1, r2, i2)
IMPLICIT NONE
INTEGER::ier
REAL::a, b, c, d, r1, i1, r2, i2
r1=0.
r2=0.
i1=0.
i2=0.
IF (a .EQ. 0.) THEN
 IF (b <> 0) THEN
 r1 = -c/b
 ELSE
 ier = 1
 END IF
ELSE
 d = b**2 - 4.*a*c
 IF (d >= 0) THEN
 r1 = (-b + SQRT(d))/(2*a)
 r2 = (-b - SQRT(d))/(2*a)
 ELSE
 r1 = -b/(2*a)
 r2 = r1
 i1 = SQRT(ABS(d))/(2*a)
 i2 = -i1
 END IF
END IF
END

The answers for the 3 test cases are: (a) −0.438, -4.56; (b) 0.5; (c) −1.25 + 2.33i; −1.25 −
2.33i.

Several features of this subroutine bear mention:
• The subroutine does not involve input or output. Rather, information is passed in and out

via the arguments. This is often the preferred style, because the I/O is left to the
discretion of the programmer within the calling program.

• Note that an error code is passed (IER = 1) for the case where no roots are possible.

2.5 The development of the algorithm hinges on recognizing that the series approximation of the
sine can be represented concisely by the summation,

x
i

i

i

n 2 1

1 2 1

−

= −∑ ()!

where i = the order of the approximation. The following algorithm implements this
summation:

Step 1: Start
Step 2: Input value to be evaluated x and maximum order n
Step 3: Set order (i) equal to one
Step 4: Set accumulator for approximation (approx) to zero
Step 5: Set accumulator for factorial product (fact) equal to one
Step 6: Calculate true value of sin(x)
Step 7: If order is greater than n then proceed to step 13
 Otherwise, proceed to next step
Step 8: Calculate the approximation with the formula

approx approx (1) x
factor

i-1
2i-1

= + −

Step 9: Determine the error

100%
true

approxtrue%error −=

Step 10: Increment the order by one
Step 11: Determine the factorial for the next iteration

factor factor (2 i 2) (2 i 1)= • • − • • −
Step 12: Return to step 7
Step 13: End

2.6
start

INPUT
x, n

i > n

end

i = 1
true = sin(x)
approx = 0
factor = 1

approx approx x
factor

i
i -

= + -(1) - 1
2 1

error true approx
true

100= − %

OUTPUT
i,approx,error

i = i + 1

F

T

factor=factor(2i-2)(2i-1)

Pseudocode:

SUBROUTINE Sincomp(n,x)
i = 1
true = SIN(x)
approx = 0
factor = 1
DO
 IF i > n EXIT
 approx = approx + (-1)i-1•x2•i-1 / factor
 error = Abs(true - approx) / true) * 100
 PRINT i, true, approx, error
 i = i + 1
 factor = factor•(2•i-2)•(2•i-1)
END DO
END

2.7 The following Fortran 90 code was developed based on the pseudocode from Prob. 2.6:

PROGRAM Series
IMPLICIT NONE
INTEGER::n
REAL::x
n = 15
x = 1.5
CALL Sincomp(n,x)
END

SUBROUTINE Sincomp(n,x)
IMPLICIT NONE
INTEGER::n,i,fac
REAL::x,tru,approx,er
i = 1
tru = SIN(x)
approx = 0.
fac = 1
PRINT *, " order true approx error"
DO
 IF (i > n) EXIT
 approx = approx + (-1) ** (i-1) * x ** (2*i - 1) / fac
 er = ABS(tru - approx) / tru) * 100
 PRINT *, i, tru, approx, er
 i = i + 1
 fac = fac * (2*i-2) * (2*i-1)
END DO
END

OUTPUT:
 order true approx error
 1 0.9974950 1.500000 -50.37669
 2 0.9974950 0.9375000 6.014566
 3 0.9974950 1.000781 -0.3294555
 4 0.9974950 0.9973912 1.0403229E-02
 5 0.9974950 0.9974971 -2.1511559E-04
 6 0.9974950 0.9974950 0.0000000E+00
 7 0.9974950 0.9974951 -1.1950866E-05
 8 0.9974950 0.9974949 1.1950866E-05
 9 0.9974950 0.9974915 3.5255053E-04
 10 0.9974950 0.9974713 2.3782223E-03
 11 0.9974950 0.9974671 2.7965026E-03
 12 0.9974950 0.9974541 4.0991469E-03
 13 0.9974950 0.9974663 2.8801586E-03
 14 0.9974950 0.9974280 6.7163869E-03
 15 0.9974950 0.9973251 1.7035959E-02
Press any key to continue

The errors can be plotted versus the number of terms:

1.E-05

1.E-04

1.E-03

1.E-02
1.E-01

1.E+00

1.E+01

1.E+02

0 5 10 15

error

Interpretation: The absolute percent relative error drops until at n = 6, it actually yields a
perfect result (pure luck!). Beyond, n = 8, the errors starts to grow. This occurs because of
round-off error, which will be discussed in Chap. 3.

2.8 AQ = 442/5 = 88.4
AH = 548/6 = 91.33

without final

AG =
30(88.4) + 30(91.33)

30 + 30
= 89 8667.

with final

AG =
30(88.4) + 30(91.33) + 40(91)

30 + 30
= 90 32.

The following pseudocode provides an algorithm to program this problem. Notice that the
input of the quizzes and homeworks is done with logical loops that terminate when the user
enters a negative grade:

INPUT number, name
INPUT WQ, WH, WF
nq = 0
sumq = 0
DO
 INPUT quiz (enter negative to signal end of quizzes)
 IF quiz < 0 EXIT
 nq = nq + 1
 sumq = sumq + quiz
END DO
AQ = sumq / nq
PRINT AQ
nh = 0
sumh = 0
PRINT "homeworks"
DO
 INPUT homework (enter negative to signal end of homeworks)
 IF homework < 0 EXIT
 nh = nh + 1
 sumh = sumh + homework
END DO
AH = sumh / nh
PRINT "Is there a final grade (y or n)"
INPUT answer
IF answer = "y" THEN
 INPUT FE
 AG = (WQ * AQ + WH * AH + WF * FE) / (WQ + WH + WF)
ELSE
 AG = (WQ * AQ + WH * AH) / (WQ + WH)
END IF
PRINT number, name$, AG
END

2.9

n F
0 $100,000.00
1 $108,000.00
2 $116,640.00
3 $125,971.20
4 $136,048.90
5 $146,932.81

24 $634,118.07
25 $684,847.52

2.10 Programs vary, but results are

Bismarck = −10.842 t = 0 to 59
Yuma = 33.040 t = 180 to 242

2.11
n A
1 40,250.00
2 21,529.07
3 15,329.19
4 12,259.29
5 10,441.04

2.12

Step v(12) εt (%)
2 49.96 -5.2
1 48.70 -2.6
0.5 48.09 -1.3

Error is halved when step is halved

2.13

Fortran 90 VBA

Subroutine BubbleFor(n, b)
Implicit None
!sorts an array in ascending
!order using the bubble sort
Integer(4)::m, i, n
Logical::switch
Real::a(n),b(n),dum
m = n - 1
Do
 switch = .False.
 Do i = 1, m
 If (b(i) > b(i + 1)) Then
 dum = b(i)
 b(i) = b(i + 1)
 b(i + 1) = dum
 switch = .True.
 End If
 End Do
 If (switch == .False.) Exit
 m = m - 1
End Do
End

Option Explicit
Sub Bubble(n, b)
'sorts an array in ascending
'order using the bubble sort
Dim m As Integer, i As Integer
Dim switch As Boolean
Dim dum As Single
m = n - 1
Do
 switch = False
 For i = 1 To m
 If b(i) > b(i + 1) Then
 dum = b(i)
 b(i) = b(i + 1)
 b(i + 1) = dum
 switch = True
 End If
 Next i
 If switch = False Then Exit Do
 m = m - 1
Loop

End Sub

2.14 Here is a flowchart for the algorithm:

Function Vol(R, d)

pi = 3.141593

d < R

d < 3 * R

V1 = pi * R^3 / 3

V2 = pi * R^2 (d – R)

Vol = V1 + V2

Vol =
“Overtop”

End Function

Vol = pi * d^3 / 3

Here is a program in VBA:

Option Explicit

Function Vol(R, d)

Dim V1 As Single, v2 As Single, pi As Single

pi = 4 * Atn(1)

If d < R Then
 Vol = pi * d ^ 3 / 3
ElseIf d <= 3 * R Then
 V1 = pi * R ^ 3 / 3
 v2 = pi * R ^ 2 * (d - R)
 Vol = V1 + v2
Else
 Vol = "overtop"
End If

End Function

The results are

R d Volume
1 0.3 0.028274
1 0.8 0.536165
1 1 1.047198
1 2.2 4.817109
1 3 7.330383
1 3.1 overtop

2.15 Here is a flowchart for the algorithm:

Function Polar(x, y)

22 yxr +=

x < 0

y > 0y > 0

πθ +




= −

x
y1tan

πθ −




= −

x
y1tan πθ −





= −

x
y1tanθ = 0

2
πθ −=

y < 0
2
πθ =

θ = π

y < 0

π
θ 180=Polar

π
θ 180=Polar

End Polar

π = 3.141593

T

T

T

T

T

F

F

F

F

And here is a VBA function procedure to implement it:

Option Explicit

Function Polar(x, y)

Dim th As Single, r As Single
Const pi As Single = 3.141593

r = Sqr(x ^ 2 + y ^ 2)

If x < 0 Then
 If y > 0 Then
 th = Atn(y / x) + pi
 ElseIf y < 0 Then
 th = Atn(y / x) - pi
 Else
 th = pi
 End If
Else
 If y > 0 Then
 th = pi / 2
 ElseIf y < 0 Then
 th = -pi / 2
 Else
 th = 0
 End If
End If

Polar = th * 180 / pi

End Function

The results are:

x y θ
1 1 90
1 -1 -90
1 0 0
-1 1 135
-1 -1 -135
-1 0 180
0 1 90
0 -1 -90
0 0 0

4.18 f(x) = x-1-1/2*sin(x)
f '(x) = 1-1/2*cos(x)
f ''(x) = 1/2*sin(x)
f '''(x) = 1/2*cos(x)
f IV(x) = -1/2*sin(x)

Using the Taylor Series Expansion (Equation 4.5 in the book), we obtain the following
1st, 2nd, 3rd, and 4th Order Taylor Series functions shown below in the Matlab program-
f1, f2, f4. Note the 2nd and 3rd Order Taylor Series functions are the same.

From the plots below, we see that the answer is the 4 th Order Taylor Series expansion .

x=0:0.001:3.2;
f=x-1-0.5*sin(x);
subplot(2,2,1);
plot(x,f);grid;title('f(x)=x-1-0.5*sin(x)');hold on

f1=x-1.5;
e1=abs(f-f1); %Calculates the absolute value of the
difference/error
subplot(2,2,2);
plot(x,e1);grid;title('1st Order Taylor Series Error');

f2=x-1.5+0.25.*((x-0.5*pi).^2);
e2=abs(f-f2);
subplot(2,2,3);
plot(x,e2);grid;title('2nd/3rd Order Taylor Series Error');

f4=x-1.5+0.25.*((x-0.5*pi).^2)-(1/48)*((x-0.5*pi).^4);
e4=abs(f4-f);
subplot(2,2,4);
plot(x,e4);grid;title('4th Order Taylor Series Error');hold off

0 1 2 3 4
-1

0

1

2

3

f(x)=x -1-0.5*s in(x)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1s t Order Tay lor S eries E rror

0 1 2 3 4
0

0.05

0.1

0.15

0.2

2nd/3rd Order Tay lor S eries E rror

0 1 2 3 4
0

0.005

0.01

0.015

4th Order Tay lor S eries E rror

4.19 EXCEL WORKSHEET AND PLOTS

First Derivative Approximations Compared to Theoretical

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

x-values

f'(
x)

Theoretical
Backward
Centered
Forward

Approximations of the 2nd Derivative

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

x-values

f''
(x

)

f''(x)-Theory
f''(x)-Backward
f''(x)-Centered
f''(x)-Forward

x f(x) f(x-1) f(x+1) f(x-2) f(x+2) f''(x)-
Theory

f''(x)-
Back

f''(x)-Cent f''(x)-
Forw

-2.000 0.000 -2.891 2.141 3.625 3.625 -12.000 150.500 -12.000 -10.500
-1.750 2.141 0.000 3.625 -2.891 4.547 -10.500 -12.000 -10.500 -9.000
-1.500 3.625 2.141 4.547 0.000 5.000 -9.000 -10.500 -9.000 -7.500
-1.250 4.547 3.625 5.000 2.141 5.078 -7.500 -9.000 -7.500 -6.000
-1.000 5.000 4.547 5.078 3.625 4.875 -6.000 -7.500 -6.000 -4.500
-0.750 5.078 5.000 4.875 4.547 4.484 -4.500 -6.000 -4.500 -3.000
-0.500 4.875 5.078 4.484 5.000 4.000 -3.000 -4.500 -3.000 -1.500
-0.250 4.484 4.875 4.000 5.078 3.516 -1.500 -3.000 -1.500 0.000
0.000 4.000 4.484 3.516 4.875 3.125 0.000 -1.500 0.000 1.500
0.250 3.516 4.000 3.125 4.484 2.922 1.500 0.000 1.500 3.000
0.500 3.125 3.516 2.922 4.000 3.000 3.000 1.500 3.000 4.500
0.750 2.922 3.125 3.000 3.516 3.453 4.500 3.000 4.500 6.000
1.000 3.000 2.922 3.453 3.125 4.375 6.000 4.500 6.000 7.500
1.250 3.453 3.000 4.375 2.922 5.859 7.500 6.000 7.500 9.000
1.500 4.375 3.453 5.859 3.000 8.000 9.000 7.500 9.000 10.500
1.750 5.859 4.375 8.000 3.453 10.891 10.500 9.000 10.500 12.000
2.000 8.000 5.859 10.891 4.375 14.625 12.000 10.500 12.000 13.500

x f(x) f(x-1) f(x+1) f'(x)-Theory f'(x)-Back f'(x)-Cent f'(x)-Forw
-2.000 0.000 -2.891 2.141 10.000 11.563 10.063 8.563
-1.750 2.141 0.000 3.625 7.188 8.563 7.250 5.938
-1.500 3.625 2.141 4.547 4.750 5.938 4.813 3.688
-1.250 4.547 3.625 5.000 2.688 3.688 2.750 1.813
-1.000 5.000 4.547 5.078 1.000 1.813 1.063 0.313
-0.750 5.078 5.000 4.875 -0.313 0.313 -0.250 -0.813
-0.500 4.875 5.078 4.484 -1.250 -0.813 -1.188 -1.563
-0.250 4.484 4.875 4.000 -1.813 -1.563 -1.750 -1.938
0.000 4.000 4.484 3.516 -2.000 -1.938 -1.938 -1.938
0.250 3.516 4.000 3.125 -1.813 -1.938 -1.750 -1.563
0.500 3.125 3.516 2.922 -1.250 -1.563 -1.188 -0.813
0.750 2.922 3.125 3.000 -0.313 -0.813 -0.250 0.313
1.000 3.000 2.922 3.453 1.000 0.313 1.063 1.813
1.250 3.453 3.000 4.375 2.688 1.813 2.750 3.688
1.500 4.375 3.453 5.859 4.750 3.688 4.813 5.938
1.750 5.859 4.375 8.000 7.188 5.938 7.250 8.563
2.000 8.000 5.859 10.891 10.000 8.563 10.063 11.563

8.11 Substituting the parameter values yields

75.1
1000
1150

1
10

3
+−=

−
ε

ε
ε

This can be rearranged and expressed as a roots problem

0
1

1075.1)1(15.0)(
3

=
−

−+−=
ε

εεεf

A plot of the function suggests a root at about 0.45.

-3

-2

-1

0

1

2

3

0 0.2 0.4 0.6

But suppose that we do not have a plot. How do we come up with a good initial guess. The void
fraction (the fraction of the volume that is not solid; i.e. consists of voids) varies between 0 and 1. As
can be seen, a value of 1 (which is physically unrealistic) causes a division by zero. Therefore, two
physically-based initial guesses can be chosen as 0 and 0.99. Note that the zero is not physically
realistic either, but since it does not cause any mathematical difficulties, it is OK. Applying bisection
yields a result of ε = 0.461857 in 15 iterations with an absolute approximate relative error of 6.5×10−3

%

8.12
The total pressure is equal to the partial pressures of the components:

tb PPP +=

According to Antoine’s equation

b

b
b CT

BA

b eP +
−

= t

t
t CT

BA

t eP +
−

=

Combining the equations yields

0)(=−+= +
−

+
−

PeeTf t

t
t

b

b
b CT

BA
CT
BA

The root of this equation can be evaluated to yield T = 350.5.

8.13 There are a variety of ways to solve this system of 5 equations

][CO
]][HCO[H

2

3
1

−+
=K (1)

][HCO
]][CO[H

3

2
3

2 −

−+
=K (2)

]][OH[H= + −
wK (3)

][CO][HCO][CO= 2
332

−− ++Tc (4)

][H][OH+][CO2][HCO=Alk +2
33 −+ −−− (5)

One way is to combine the equations to produce a single polynomial. Equations 1 and 2 can be solved
for

1

3
32

]][HCO[H]CO[H *

K

−+

=
][HCO

][H][CO
3

22
3 −

+
− = K

These results can be substituted into Eq. 4, which can be solved for

TcF032]CO[H * = TcF13][HCO =−
TcF2

2
3][CO =−

where F0, F1, and F2 are the fractions of the total inorganic carbon in carbon dioxide, bicarbonate and
carbonate, respectively, where

211
2

2

0][H][H
][H=

KKK
F

++ ++

+

211

2
1

1][H][H
][H=

KKK
KF

++ ++

+

211

2
21

2][H][H
=

KKK
KKF

++ ++

Now these equations, along with the Eq. 3 can be substituted into Eq. 5 to give

Alk][H][H+2=0 ++
21 −−+ wTT KcFcF

Although it might not be apparent, this result is a fourth-order polynomial in [H+].

() () 2+
1121

3+
1

4+]H[Alk]H[Alk]H[Tw cKKKKKK −−++++
() 0]H[2Alk 21

+
21121 =−−−+ wTw KKKcKKKKKK

Substituting parameter values gives

010512.2]H[10055.1]H[10012.5]H[10001.2]H[31+192+103+34+ =×−×−×−×+ −−−−

This equation can be solved for [H+] = 2.51x10-7 (pH = 6.6). This value can then be used to compute

8
7

14
1098.3

1051.2
10][OH −

−

−
− ×=

×
=

()
() () () 001.010333304.0103

1010102.5110102.51

102.51
=]COH[33

3.103.67-3.627-

27-

32
* =×=×

+×+×

× −−
−−−

()
() () () 002.0103666562.0103

1010102.5110102.51

102.5110=]HCO[33
3.103.67-3.627-

-73.6

3 =×=×
+×+×

× −−
−−−

−
−

() () () M433
3.103.67-3.627-

3.103.6
2
3 1033.1103000133.0103

1010102.5110102.51

1010=]CO[−−−
−−−

−−
− ×=×=×

+×+×
8.14 The integral can be evaluated as












−+








−=+− ∫ inout

in

out

maxmaxmax
ln11out

in

CC
C
CK

k
dc

kCk
KC

C

Therefore, the problem amounts to finding the root of












−+








+= inout

in

out

max
out ln1)(CC

C
C

K
kF

VCf

Excel solver can be used to find the root:

8.24
%Region from x=8 to x=10
x1=[8:.1:10];
y1=20*(x1-(x1-5))-15-57;
figure (1)
plot(x1,y1)
grid

%Region from x=7 to x=8
x2=[7:.1:8];
y2=20*(x2-(x2-5))-57;
figure (2)
plot(x2,y2)
grid

%Region from x=5 to x=7
x3=[5:.1:7];
y3=20*(x3-(x3-5))-57;
figure (3)
plot(x3,y3)
grid

%Region from x=0 to x=5
x4=[0:.1:5];
y4=20*x4-57;
figure (4)
plot(x4,y4)
grid

%Region from x=0 to x=10
figure (5)
plot(x1,y1,x2,y2,x3,y3,x4,y4)
grid
title('shear diagram')

a=[20 -57]
roots(a)

a =
 20 -57

ans =
 2.8500

0 1 2 3 4 5 6 7 8 9 10
-60

-40

-20

0

20

40

60
s hear diagram

8.25
%Region from x=7 to x=8
x2=[7:.1:8];
y2=-10*(x2.^2-(x2-5).^2)+150+57*x2;
figure (2)
plot(x2,y2)
grid

%Region from x=5 to x=7
x3=[5:.1:7];
y3=-10*(x3.^2-(x3-5).^2)+57*x3;
figure (3)
plot(x3,y3)
grid

%Region from x=0 to x=5
x4=[0:.1:5];
y4=-10*(x4.^2)+57*x4;
figure (4)
plot(x4,y4)
grid

%Region from x=0 to x=10
figure (5)
plot(x1,y1,x2,y2,x3,y3,x4,y4)
grid
title('moment diagram')

a=[-43 250]
roots(a)

a =
 -43 250

ans =
 5.8140

0 1 2 3 4 5 6 7 8 9 10
-60

-40

-20

0

20

40

60

80

100
m om ent diagram

8.26 A Matlab script can be used to determine that the slope equals zero at x = 3.94 m.

%Region from x=8 to x=10
x1=[8:.1:10];
y1=((-10/3)*(x1.^3-(x1-5).^3))+7.5*(x1-8).^2+150*(x1-7)+(57/2)*x1.^2-
238.25;
figure (1)
plot(x1,y1)
grid
%Region from x=7 to x=8
x2=[7:.1:8];
y2=((-10/3)*(x2.^3-(x2-5).^3))+150*(x2-7)+(57/2)*x2.^2-238.25;
figure (2)
plot(x2,y2)
grid
%Region from x=5 to x=7
x3=[5:.1:7];
y3=((-10/3)*(x3.^3-(x3-5).^3))+(57/2)*x3.^2-238.25;
figure (3)
plot(x3,y3)
grid
%Region from x=0 to x=5
x4=[0:.1:5];
y4=((-10/3)*(x4.^3))+(57/2)*x4.^2-238.25;
figure (4)
plot(x4,y4)
grid
%Region from x=0 to x=10
figure (5)
plot(x1,y1,x2,y2,x3,y3,x4,y4)
grid
title('slope diagram')
a=[-10/3 57/2 0 -238.25]
roots(a)

a =
 -3.3333 28.5000 0 -238.2500
ans =
 7.1531
 3.9357
 -2.5388

0 1 2 3 4 5 6 7 8 9 10
-250

-200

-150

-100

-50

0

50

100

150

200
s lope diagram

8.27

%Region from x=8 to x=10
x1=[8:.1:10];
y1=(-5/6)*(x1.^4-(x1-5).^4)+(15/6)*(x1-8).^3+75*(x1-7).^2+(57/6)*x1.^3-
238.25*x1;
figure (1)
plot(x1,y1)
grid
%Region from x=7 to x=8
x2=[7:.1:8];
y2=(-5/6)*(x2.^4-(x2-5).^4)+75*(x2-7).^2+(57/6)*x2.^3-238.25*x2;
figure (2)
plot(x2,y2)
grid
%Region from x=5 to x=7
x3=[5:.1:7];
y3=(-5/6)*(x3.^4-(x3-5).^4)+(57/6)*x3.^3-238.25*x3;
figure (3)
plot(x3,y3)
grid
%Region from x=0 to x=5
x4=[0:.1:5];
y4=(-5/6)*(x4.^4)+(57/6)*x4.^3-238.25*x4;
figure (4)
plot(x4,y4)
grid
%Region from x=0 to x=10
figure (5)
plot(x1,y1,x2,y2,x3,y3,x4,y4)
grid
title('displacement curve')

a =
 -3.3333 28.5000 0 -238.2500
ans =
 7.1531
 3.9357
 -2.5388

Therefore, other than the end supports, there are no points of zero displacement along the beam.

0 1 2 3 4 5 6 7 8 9 10
-600

-500

-400

-300

-200

-100

0
dis plac em ent c urve

8.39 Excel Solver solution:

8.40 The problem reduces to finding the value of n that drives the second part of the equation to
1. In other words, finding the root of

() 011
1

)(/)1(=−−
−

= − nn
cRn

nnf

Inspection of the equation indicates that singularities occur at x = 0 and 1. A plot indicates that
otherwise, the function is smooth.

-1

-0.5

0

0.5

0 0.5 1 1.5

A tool such as the Excel Solver can be used to locate the root at n = 0.8518.

8.41 The sequence of calculation need to compute the pressure drop in each pipe is

2)2/(DA π=

A
Q

v =

µ
ρvD=Re

()











−−=

f
ff

1
4.0Relog0.4root

D
vfP

2

2ρ=∆

The six balance equations can then be solved for the 6 unknowns.

The root location can be solved with a technique like the modified false position method. A bracketing
method is advisable since initial guesses that bound the normal range of friction factors can be readily
determined. The following VBA function procedure is designed to do this

Option Explicit
Function FalsePos(Re)
Dim iter As Integer, imax As Integer
Dim il As Integer, iu As Integer
Dim xrold As Single, fl As Single, fu As Single, fr As Single
Dim xl As Single, xu As Single, es As Single
Dim xr As Single, ea As Single
xl = 0.00001
xu = 1

es = 0.01
imax = 40
iter = 0
fl = f(xl, Re)
fu = f(xu, Re)
Do
 xrold = xr
 xr = xu - fu * (xl - xu) / (fl - fu)
 fr = f(xr, Re)
 iter = iter + 1
 If xr <> 0 Then
 ea = Abs((xr - xrold) / xr) * 100
 End If
 If fl * fr < 0 Then
 xu = xr
 fu = f(xu, Re)
 iu = 0
 il = il + 1
 If il >= 2 Then fl = fl / 2
 ElseIf fl * fr > 0 Then
 xl = xr
 fl = f(xl, Re)
 il = 0
 iu = iu + 1
 If iu >= 2 Then fu = fu / 2
 Else
 ea = 0#
 End If
 If ea < es Or iter >= imax Then Exit Do
Loop
FalsePos = xr
End Function
Function f(x, Re)
f = 4 * Log(Re * Sqr(x)) / Log(10) - 0.4 - 1 / Sqr(x)
End Function

The following Excel spreadsheet can be set up to solve the problem. Note that the function call,
=falsepos(F8), is entered into cell G8 and then copied down to G9:G14. This invokes the
function procedure so that the friction factor is determined at each iteration.

The resulting final solution is

8.42 The following application of Excel Solver can be set up:

The solution is:

8.43 The results are

0
20
40
60
80

100
120

1 2 3

8.44
 % Shuttle Liftoff Engine Angle

 % Newton-Raphson Method of iteratively finding a single root
 format long
 % Constants

 LGB = 4.0; LGS = 24.0; LTS = 38.0;
 WS = 0.230E6; WB = 1.663E6;
 TB = 5.3E6; TS = 1.125E6;
 es = 0.5E-7; nmax = 200;

 % Initial estimate in radians
 x = 0.25

 %Calculation loop
 for i=1:nmax

 fx = LGB*WB-LGB*TB-LGS*WS+LGS*TS*cos(x)-LTS*TS*sin(x);
 dfx = -LGS*TS*sin(x)-LTS*TS*cos(x);
 xn=x-fx/dfx;

 %convergence check
 ea=abs((xn-x)/xn);
 if (ea<=es)

 fprintf('convergence: Root = %f radians \n',xn)
 theta = (180/pi)*x;
 fprintf('Engine Angle = %f degrees \n',theta)
 break

 end
 x=xn;

x
 end

 % Shuttle Liftoff Engine Angle
 % Newton-Raphson Method of iteratively finding a single root
 % Plot of Resultant Moment vs Engine Anale
 format long
 % Constants

 LGB = 4.0; LGS = 24.0; LTS = 38.0;
 WS = 0.195E6; WB = 1.663E6;
 TB = 5.3E6; TS = 1.125E6;
 x=-5:0.1:5;
 fx = LGB*WB-LGB*TB-LGS*WS+LGS*TS*cos(x)-LTS*TS*sin(x);
 plot(x,fx)
 grid
 axis([-6 6 -8e7 4e7])
 title('Space Shuttle Resultant Moment vs Engine Angle')
 xlabel('Engine angle ~ radians')
 ylabel('Resultant Moment ~ lb-ft')

x =
 0.25000000000000
x =
 0.15678173034564
x =
 0.15518504730788
x =
 0.15518449747125

convergence: Root = 0.155184 radians
Engine Angle = 8.891417 degrees

-6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4
x 10

7 S pace S hutt le Res ultant M om ent vs E ngine A ngle

E ngine angle ~ radians

R
e

s
u

lt
a

n
t

M
o

m
e

n
t

~
 l

b
-f

t

8.45 This problem was solved using the roots command in Matlab.

c =
 1 -33 -704 -1859

roots(c)

ans =

 48.3543
 -12.2041
 -3.1502

Therefore,

1σ = 48.4 Mpa 2σ = -3.15 MPa 3σ = -12.20 MPa

T t
1 100 20
2 88.31493 30.1157
3 80.9082 36.53126

CHAPTER 3

3.1 Here is a VBA implementation of the algorithm:

Option Explicit

Sub GetEps()
Dim epsilon As Single
epsilon = 1
Do
 If epsilon + 1 <= 1 Then Exit Do
 epsilon = epsilon / 2
Loop
epsilon = 2 * epsilon
MsgBox epsilon
End Sub

It yields a result of 1.19209×10−7 on my desktop PC.

3.2 Here is a VBA implementation of the algorithm:

Option Explicit

Sub GetMin()
Dim x As Single, xmin As Single
x = 1
Do
 If x <= 0 Then Exit Do
 xmin = x
 x = x / 2
Loop
MsgBox xmin
End Sub

It yields a result of 1.4013×10−45 on my desktop PC.

3.3 The maximum negative value of the exponent for a computer that uses e bits to store the
exponent is

)12(1
min −−= −ee

Because of normalization, the minimum mantissa is 1/b = 2−1 = 0.5. Therefore, the minimum
number is

11 2)12(1
min 222

−− −−−− ==
ee

x

For example, for an 8-bit exponent

391282
min 10939.222

18 −−− ×===
−

x

This result contradicts the value from Prob. 3.2 (1.4013×10−45). This amounts to an additional
21 divisions (i.e., 21 orders of magnitude lower in base 2). I do not know the reason for the
discrepancy. However, the problem illustrates the value of determining such quantities via a
program rather than relying on theoretical values.

3.4 VBA Program to compute in ascending order

Option Explicit
Sub Series()
Dim i As Integer, n As Integer
Dim sum As Single, pi As Single
pi = 4 * Atn(1)
sum = 0
n = 10000
For i = 1 To n
 sum = sum + 1 / i ^ 2
Next i
MsgBox sum
'Display true percent relatve error
MsgBox Abs(sum - pi ^ 2 / 6) / (pi ^ 2 / 6)
End Sub

This yields a result of 1.644725 with a true relative error of 6.086×10−5.

VBA Program to compute in descending order:

Option Explicit
Sub Series()
Dim i As Integer, n As Integer
Dim sum As Single, pi As Single
pi = 4 * Atn(1)
sum = 0
n = 10000
For i = n To 1 Step -1
 sum = sum + 1 / i ^ 2
Next i
MsgBox sum
'Display true percent relatve error
MsgBox Abs(sum - pi ^ 2 / 6) / (pi ^ 2 / 6)
End Sub

This yields a result of 1.644725 with a true relative error of 1.270×10−4

The latter version yields a superior result because summing in descending order mitigates the
roundoff error that occurs when adding a large and small number.

3.5 Remember that the machine epsilon is related to the number of significant digits by Eq. 3.11

tb −= 1ξ

which can be solved for base 10 and for a machine epsilon of 1.19209×10−7 for

92.7)10(1.19209log1)(log1 -7
1010 =×−=−= ξt

To be conservative, assume that 7 significant figures is good enough. Recall that Eq. 3.7 can
then be used to estimate a stopping criterion,

)%105.0(2 n
s

−×=ε

Thus, for 7 significant digits, the result would be

%105)%105.0(672 −− ×=×=sε

The total calculation can be expressed in one formula as

)%105.0())(log1(Int2 10 ξε −−×=s

It should be noted that iterating to the machine precision is often overkill. Consequently,
many applications use the old engineering rule of thumb that you should iterate to 3
significant digits or better.

As an application, I used Excel to evaluate the second series from Prob. 3.6. The results are:

Notice how after summing 27 terms, the result is correct to 7 significant figures. At this
point, both the true and the approximate percent relative errors are at 6.16×10−6 %. At this

point, the process would repeat one more time so that the error estimates would fall below
the precalculated stopping criterion of 5×10−6 %.

3.6 For the first series, after 25 terms are summed, the result is

The results are oscillating. If carried out further to n = 39, the series will eventually converge
to within 7 significant digits.

In contrast the second series converges faster. It attains 7 significant digits at n = 28.

3.9 Solution:

21 x 21 x 120 = 52920 words @ 64 bits/word = 8 bytes/word
52920 words @ 8 bytes/word = 423360 bytes
423360 bytes / 1024 bytes/kilobyte = 413.4 kilobytes = 0.41 M bytes

3.10 Solution:

% Given: Taylor Series Approximation for cos(x) = 1 - x^2/2! + x^4/4! - ...
% Find: number of terms needed to represent cos(x) to 8 significant
% figures at the point where: x=0.2 pi

x=0.2*pi;
es=0.5e-08;

%approximation
cos=1;
j=1;
% j=terms counter
fprintf('j= %2.0f cos(x)= %0.10f\n', j,cos)
fact=1;
for i=2:2:100
 j=j+1;
 fact=fact*i*(i-1);
 cosn=cos+((-1)^(j+1))*((x)^i)/fact;
 ea=abs((cosn-cos)/cosn);
 if ea<es
 fprintf('j= %2.0f cos(x)= %0.10f ea = %0.1e CONVERGENCE

es= %0.1e',j,cosn,ea,es)
break

 end
 fprintf('j= %2.0f cos(x)= %0.10f ea = %0.1e\n',j,cosn,ea)
 cos=cosn;
end

j= 1 cos(x)= 1.0000000000
j= 2 cos(x)= 0.8026079120 ea = 2.5e-001
j= 3 cos(x)= 0.8091018514 ea = 8.0e-003
j= 4 cos(x)= 0.8090163946 ea = 1.1e-004
j= 5 cos(x)= 0.8090169970 ea = 7.4e-007
j= 6 cos(x)= 0.8090169944 ea = 3.3e-009 CONVERGENCE es = 5.0e-009»

4.18 f(x) = x-1-1/2*sin(x)
f '(x) = 1-1/2*cos(x)
f ''(x) = 1/2*sin(x)
f '''(x) = 1/2*cos(x)
f IV(x) = -1/2*sin(x)

Using the Taylor Series Expansion (Equation 4.5 in the book), we obtain the following 1st,
2nd, 3rd, and 4th Order Taylor Series functions shown below in the Matlab program-f1, f2,
f4. Note the 2nd and 3rd Order Taylor Series functions are the same.

From the plots below, we see that the answer is the 4 th Order Taylor Series expansion .

x=0:0.001:3.2;
f=x-1-0.5*sin(x);
subplot(2,2,1);
plot(x,f);grid;title('f(x)=x-1-0.5*sin(x)');hold on

f1=x-1.5;
e1=abs(f-f1); %Calculates the absolute value of the difference/error
subplot(2,2,2);
plot(x,e1);grid;title('1st Order Taylor Series Error');

f2=x-1.5+0.25.*((x-0.5*pi).^2);
e2=abs(f-f2);
subplot(2,2,3);
plot(x,e2);grid;title('2nd/3rd Order Taylor Series Error');

f4=x-1.5+0.25.*((x-0.5*pi).^2)-(1/48)*((x-0.5*pi).^4);
e4=abs(f4-f);
subplot(2,2,4);
plot(x,e4);grid;title('4th Order Taylor Series Error');hold off

0 1 2 3 4
-1

0

1

2

3

f(x)=x -1-0.5*s in(x)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1s t Order Tay lor S eries E rror

0 1 2 3 4
0

0.05

0.1

0.15

0.2

2nd/3rd Order Tay lor S eries E rror

0 1 2 3 4
0

0.005

0.01

0.015

4th Order Tay lor S eries E rror

4.19 EXCEL WORKSHEET AND PLOTS

x f(x) f(x-1) f(x+1) f'(x)-Theory f'(x)-Back f'(x)-Cent f'(x)-Forw
-2.000 0.000 -2.891 2.141 10.000 11.563 10.063 8.563
-1.750 2.141 0.000 3.625 7.188 8.563 7.250 5.938
-1.500 3.625 2.141 4.547 4.750 5.938 4.813 3.688
-1.250 4.547 3.625 5.000 2.688 3.688 2.750 1.813
-1.000 5.000 4.547 5.078 1.000 1.813 1.063 0.313
-0.750 5.078 5.000 4.875 -0.313 0.313 -0.250 -0.813
-0.500 4.875 5.078 4.484 -1.250 -0.813 -1.188 -1.563
-0.250 4.484 4.875 4.000 -1.813 -1.563 -1.750 -1.938
0.000 4.000 4.484 3.516 -2.000 -1.938 -1.938 -1.938
0.250 3.516 4.000 3.125 -1.813 -1.938 -1.750 -1.563
0.500 3.125 3.516 2.922 -1.250 -1.563 -1.188 -0.813
0.750 2.922 3.125 3.000 -0.313 -0.813 -0.250 0.313
1.000 3.000 2.922 3.453 1.000 0.313 1.063 1.813
1.250 3.453 3.000 4.375 2.688 1.813 2.750 3.688
1.500 4.375 3.453 5.859 4.750 3.688 4.813 5.938
1.750 5.859 4.375 8.000 7.188 5.938 7.250 8.563
2.000 8.000 5.859 10.891 10.000 8.563 10.063 11.563

First Derivative Approximations Compared to Theoretical

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

x-values

f'(
x)

Theoretical
Backward
Centered
Forward

x f(x) f(x-1) f(x+1) f(x-2) f(x+2) f''(x)-
Theory

f''(x)-
Back

f''(x)-Cent f''(x)-
Forw

-2.000 0.000 -2.891 2.141 3.625 3.625 -12.000 150.500 -12.000 -10.500
-1.750 2.141 0.000 3.625 -2.891 4.547 -10.500 -12.000 -10.500 -9.000
-1.500 3.625 2.141 4.547 0.000 5.000 -9.000 -10.500 -9.000 -7.500
-1.250 4.547 3.625 5.000 2.141 5.078 -7.500 -9.000 -7.500 -6.000
-1.000 5.000 4.547 5.078 3.625 4.875 -6.000 -7.500 -6.000 -4.500
-0.750 5.078 5.000 4.875 4.547 4.484 -4.500 -6.000 -4.500 -3.000
-0.500 4.875 5.078 4.484 5.000 4.000 -3.000 -4.500 -3.000 -1.500
-0.250 4.484 4.875 4.000 5.078 3.516 -1.500 -3.000 -1.500 0.000
0.000 4.000 4.484 3.516 4.875 3.125 0.000 -1.500 0.000 1.500
0.250 3.516 4.000 3.125 4.484 2.922 1.500 0.000 1.500 3.000
0.500 3.125 3.516 2.922 4.000 3.000 3.000 1.500 3.000 4.500
0.750 2.922 3.125 3.000 3.516 3.453 4.500 3.000 4.500 6.000
1.000 3.000 2.922 3.453 3.125 4.375 6.000 4.500 6.000 7.500
1.250 3.453 3.000 4.375 2.922 5.859 7.500 6.000 7.500 9.000
1.500 4.375 3.453 5.859 3.000 8.000 9.000 7.500 9.000 10.500
1.750 5.859 4.375 8.000 3.453 10.891 10.500 9.000 10.500 12.000
2.000 8.000 5.859 10.891 4.375 14.625 12.000 10.500 12.000 13.500

Approximations of the 2nd Derivative

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

x-values

f''
(x

)

f''(x)-Theory
f''(x)-Backward
f''(x)-Centered
f''(x)-Forward

5.13 (a)

iterations 10or 45.9
)2log(

)05./35log(==n

(b)

iteration xr
1 17.5
2 26.25
3 30.625
4 28.4375
5 27.34375
6 26.79688
7 26.52344
8 26.66016
9 26.72852
10 26.76270

for os = 8 mg/L, T = 26.7627 oC
for os = 10 mg/L, T = 15.41504 oC
for os = 14mg/L, T = 1.538086 oC

5.14
Here is a VBA program to implement the Bisection function (Fig. 5.10) in a user-friendly
program:

Option Explicit

Sub TestBisect()
Dim imax As Integer, iter As Integer
Dim x As Single, xl As Single, xu As Single
Dim es As Single, ea As Single, xr As Single
Dim root As Single

Sheets("Sheet1").Select
Range("b4").Select
xl = ActiveCell.Value
ActiveCell.Offset(1, 0).Select
xu = ActiveCell.Value
ActiveCell.Offset(1, 0).Select
es = ActiveCell.Value
ActiveCell.Offset(1, 0).Select
imax = ActiveCell.Value
Range("b4").Select

If f(xl) * f(xu) < 0 Then
 root = Bisect(xl, xu, es, imax, xr, iter, ea)
 MsgBox "The root is: " & root
 MsgBox "Iterations:" & iter
 MsgBox "Estimated error: " & ea
 MsgBox "f(xr) = " & f(xr)
Else
 MsgBox "No sign change between initial guesses"
End If

End Sub

Function Bisect(xl, xu, es, imax, xr, iter, ea)
Dim xrold As Single, test As Single
iter = 0
Do
 xrold = xr
 xr = (xl + xu) / 2
 iter = iter + 1
 If xr <> 0 Then
 ea = Abs((xr - xrold) / xr) * 100
 End If
 test = f(xl) * f(xr)
 If test < 0 Then
 xu = xr
 ElseIf test > 0 Then
 xl = xr
 Else
 ea = 0
 End If
 If ea < es Or iter >= imax Then Exit Do
Loop
Bisect = xr
End Function

Function f(c)
f = 9.8 * 68.1 / c * (1 - Exp(-(c / 68.1) * 10)) - 40
End Function

For Example 5.3, the Excel worksheet used for input looks like:

The program yields a root of 14.78027 after 12 iterations. The approximate error at this point
is 6.63×10−3 %. These results are all displayed as message boxes. For example, the solution
check is displayed as

5.15 See solutions to Probs. 5.1 through 5.6 for results.

5.16 Errata in Problem statement: Test the program by duplicating Example 5.5.

Here is a VBA Sub procedure to implement the modified false position method. It is set up to
evaluate Example 5.5.

Option Explicit
Sub TestFP()
Dim imax As Integer, iter As Integer
Dim f As Single, FalseP As Single, x As Single, xl As Single
Dim xu As Single, es As Single, ea As Single, xr As Single
xl = 0
xu = 1.3
es = 0.01
imax = 20
MsgBox "The root is: " & FalsePos(xl, xu, es, imax, xr, iter, ea)
MsgBox "Iterations: " & iter
MsgBox "Estimated error: " & ea
End Sub
Function FalsePos(xl, xu, es, imax, xr, iter, ea)
Dim il As Integer, iu As Integer
Dim xrold As Single, fl As Single, fu As Single, fr As Single
iter = 0
fl = f(xl)
fu = f(xu)
Do
 xrold = xr
 xr = xu - fu * (xl - xu) / (fl - fu)
 fr = f(xr)
 iter = iter + 1
 If xr <> 0 Then
 ea = Abs((xr - xrold) / xr) * 100
 End If
 If fl * fr < 0 Then
 xu = xr
 fu = f(xu)
 iu = 0
 il = il + 1
 If il >= 2 Then fl = fl / 2
 ElseIf fl * fr > 0 Then
 xl = xr
 fl = f(xl)
 il = 0
 iu = iu + 1
 If iu >= 2 Then fu = fu / 2
 Else
 ea = 0#
 End If
 If ea < es Or iter >= imax Then Exit Do
Loop
FalsePos = xr
End Function
Function f(x)
f = x ^ 10 - 1
End Function

When the program is run for Example 5.5, it yields:

root = 14.7802
iterations = 5
error = 3.9×10−5 %

5.17 Errata in Problem statement: Use the subprogram you developed in Prob. 5.16 to
duplicate the computation from Example 5.6.

The results are plotted as

0.001

0.01

0.1

1

10

100

1000

0 4 8 12

ea%
et,%
es,%

Interpretation: At first, the method manifests slow convergence. However, as it approaches
the root, it approaches quadratic convergence. Note also that after the first few iterations, the
approximate error estimate has the nice property that εa > εt.

5.18 Here is a VBA Sub procedure to implement the false position method with minimal
function evaluations set up to evaluate Example 5.6.

Option Explicit
Sub TestFP()
Dim imax As Integer, iter As Integer, i As Integer
Dim xl As Single, xu As Single, es As Single, ea As Single, xr As
Single, fct As Single
MsgBox "The root is: " & FPMinFctEval(xl, xu, es, imax, xr, iter, ea)
MsgBox "Iterations: " & iter
MsgBox "Estimated error: " & ea
End Sub
Function FPMinFctEval(xl, xu, es, imax, xr, iter, ea)
Dim xrold, test, fl, fu, fr
iter = 0
xl = 0#
xu = 1.3
es = 0.01
imax = 50
fl = f(xl)
fu = f(xu)
xr = (xl + xu) / 2
Do
 xrold = xr
 xr = xu - fu * (xl - xu) / (fl - fu)
 fr = f(xr)

 iter = iter + 1
 If (xr <> 0) Then
 ea = Abs((xr - xrold) / xr) * 100#
 End If
 test = fl * fr
 If (test < 0) Then
 xu = xr
 fu = fr
 ElseIf (test > 0) Then
 xl = xr
 fl = fr
 Else
 ea = 0#
 End If
 If ea < es Or iter >= imax Then Exit Do
Loop
FPMinFctEval = xr
End Function
Function f(x)
f = x ^ 10 - 1
End Function

The program yields a root of 0.9996887 after 39 iterations. The approximate error at this
point is 9.5×10−3 %. These results are all displayed as message boxes. For example, the
solution check is displayed as

The number of function evaluations for this version is 2n+2. This is much smaller than the
number of function evaluations in the standard false position method (5n).

5.19 Solve for the reactions:

R1=265 lbs. R2= 285 lbs.

Write beam equations:

0<x<3
3

2

55.5265)1(

0265
3

)667.16(

xM

xxxM

−=

=−+

3<x<6
15041550)2(

0265))3(
3
2(150)

2
3)(3(100

2 −+−=

=−−+−−+

xxM

xxxxM

6<x<10
1650185)3(

265)5.4(300))3(
3
2(150

+−=

−−+−=

xM

xxxM

10<x<12
1200100)4(
0)12(100

−=
=−+
xM
xM

Combining Equations:

Because the curve crosses the axis between 6 and 10, use (3).

(3) 1650185 +−= xM

Set 10;6 == UL xx

200)(
540)(L

−=
=

UxM
xM

8
2

=
+

= UL
r

xxx

LR xreplacesxM →= 170)(

200)(
170)(L

−=
=

UxM
xM

9
2
108

=
+

=rx

UR xreplacesxM →−= 15)(

15)(
170)(L

−=
=

UxM
xM

5.8
2

98 =+=rx

LR xreplacesxM →= 5.77)(

15)(
5.77)(L

−=
=

UxM
xM

75.8
2

95.8
=

+
=rx

LR xreplacesxM →= 25.31)(

15)(
25.31)(L

−=
=

UxM
xM

875.8
2

975.8 =+=rx

LR xreplacesxM →= 125.8)(

15)(
125.8)(L

−=
=

UxM
xM

9375.8
2

9875.8
=

+
=rx

UR xreplacesxM →−= 4375.3)(

4375.3)(
125.8)(L

−=
=

UxM
xM

90625.8
2

9375.8875.8 =+=rx

LR xreplacesxM →= 34375.2)(

4375.3)(
34375.2)(L

−=
=

UxM
xM

921875.8
2

9375.890625.8
=

+
=rx

UR xreplacesxM →−= 546875.0)(

546875.0)(
34375.2)(L

−=
=

UxM
xM

9140625.8
2

921875.890625.8 =+=rx

8984.0)(R =xM Therefore, feetx 91.8=

5.20 1650185 +−= xM

Set 10;6 == UL xx

200)(
540)(L

−=
=

UxM
xM

0102)(

9189.8
)200(540
)106(20010

)()(
))((

7 ≅×−=

=
−−
−−−=

−
−−=

−
R

R

UL

ULU
oR

xM

x

xMxM
xxxMxx

Only one iteration was necessary.

Therefore, .9189.8 feetx =

6.16
Here is a VBA program to implement the Newton-Raphson algorithm and solve Example
6.3.

Option Explicit
Sub NewtRaph()
Dim imax As Integer, iter As Integer
Dim x0 As Single, es As Single, ea As Single
x0 = 0#
es = 0.01
imax = 20
MsgBox "Root: " & NewtR(x0, es, imax, iter, ea)
MsgBox "Iterations: " & iter
MsgBox "Estimated error: " & ea
End Sub
Function df(x)
df = -Exp(-x) - 1#
End Function
Function f(x)
f = Exp(-x) - x
End Function
Function NewtR(x0, es, imax, iter, ea)
Dim xr As Single, xrold As Single
xr = x0
iter = 0
Do

 xrold = xr
 xr = xr - f(xr) / df(xr)
 iter = iter + 1
 If (xr <> 0) Then
 ea = Abs((xr - xrold) / xr) * 100
 End If
 If ea < es Or iter >= imax Then Exit Do
Loop
NewtR = xr
End Function

It’s application yields a root of 0.5671433 after 4 iterations. The approximate error at this
point is 2.1×10−5 %.

6.17
Here is a VBA program to implement the secant algorithm and solve Example 6.6.

Option Explicit
Sub SecMain()
Dim imax As Integer, iter As Integer
Dim x0 As Single, x1 As Single, xr As Single
Dim es As Single, ea As Single
x0 = 0
x1 = 1
es = 0.01
imax = 20
MsgBox "Root: " & Secant(x0, x1, xr, es, imax, iter, ea)
MsgBox "Iterations: " & iter
MsgBox "Estimated error: " & ea
End Sub
Function f(x)
f = Exp(-x) - x
End Function
Function Secant(x0, x1, xr, es, imax, iter, ea)
xr = x1
iter = 0
Do
 xr = x1 - f(x1) * (x0 - x1) / (f(x0) - f(x1))
 iter = iter + 1
 If (xr <> 0) Then
 ea = Abs((xr - x1) / xr) * 100
 End If
 If ea < es Or iter >= imax Then Exit Do
 x0 = x1
 x1 = xr
Loop
Secant = xr
End Function

It’s application yields a root of 0.5671433 after 4 iterations. The approximate error at this
point is 4.77×10−3 %.

6.18

Here is a VBA program to implement the modified secant algorithm and solve Example 6.8.

Option Explicit
Sub SecMod()
Dim imax As Integer, iter As Integer
Dim x As Single, es As Single, ea As Single
x = 1
es = 0.01
imax = 20
MsgBox "Root: " & ModSecant(x, es, imax, iter, ea)
MsgBox "Iterations: " & iter
MsgBox "Estimated error: " & ea
End Sub
Function f(x)
f = Exp(-x) - x
End Function
Function ModSecant(x, es, imax, iter, ea)
Dim xr As Single, xrold As Single, fr As Single
Const del As Single = 0.01
xr = x
iter = 0
Do
 xrold = xr
 fr = f(xr)
 xr = xr - fr * del * xr / (f(xr + del * xr) - fr)
 iter = iter + 1
 If (xr <> 0) Then
 ea = Abs((xr - xrold) / xr) * 100
 End If
 If ea < es Or iter >= imax Then Exit Do
Loop
ModSecant = xr
End Function

It’s application yields a root of 0.5671433 after 4 iterations. The approximate error at this
point is 3.15×10−5 %.

6.19
Here is a VBA program to implement the 2 equation Newton-Raphson method and solve
Example 6.10.

Option Explicit
Sub NewtRaphSyst()
Dim imax As Integer, iter As Integer
Dim x0 As Single, y0 As Single
Dim xr As Single, yr As Single
Dim es As Single, ea As Single
x0 = 1.5
y0 = 3.5
es = 0.01
imax = 20

Call NR2Eqs(x0, y0, xr, yr, es, imax, iter, ea)
MsgBox "x, y = " & xr & ", " & yr
MsgBox "Iterations: " & iter
MsgBox "Estimated error: " & ea
End Sub
Sub NR2Eqs(x0, y0, xr, yr, es, imax, iter, ea)
Dim J As Single, eay As Single
iter = 0
Do
 J = dudx(x0, y0) * dvdy(x0, y0) - dudy(x0, y0) * dvdx(x0, y0)
 xr = x0 - (u(x0, y0) * dvdy(x0, y0) - v(x0, y0) * dudy(x0, y0)) / J
 yr = y0 - (v(x0, y0) * dudx(x0, y0) - u(x0, y0) * dvdx(x0, y0)) / J
 iter = iter + 1
 If (xr <> 0) Then
 ea = Abs((xr - x0) / xr) * 100
 End If
 If (xr <> 0) Then
 eay = Abs((yr - y0) / yr) * 100
 End If
 If eay > ea Then ea = eay
 If ea < es Or iter >= imax Then Exit Do
 x0 = xr
 y0 = yr
Loop
End Sub
Function u(x, y)
u = x ^ 2 + x * y - 10
End Function
Function v(x, y)
v = y + 3 * x * y ^ 2 - 57
End Function
Function dudx(x, y)
dudx = 2 * x + y
End Function
Function dudy(x, y)
dudy = x
End Function
Function dvdx(x, y)
dvdx = 3 * y ^ 2
End Function
Function dvdy(x, y)
dvdy = 1 + 6 * x * y
End Function

It’s application yields roots of x = 2 and y = 3 after 4 iterations. The approximate error at this
point is 1.59×10−5 %.

6.20
The program from Prob. 6.19 can be set up to solve Prob. 6.11, by changing the functions to

Function u(x, y)
u = y + x ^ 2 - 0.5 - x
End Function
Function v(x, y)
v = x ^ 2 - 5 * x * y - y
End Function
Function dudx(x, y)
dudx = 2 * x - 1
End Function
Function dudy(x, y)
dudy = 1
End Function
Function dvdx(x, y)
dvdx = 2 * x ^ 2 - 5 * y
End Function
Function dvdy(x, y)
dvdy = -5 * x
End Function

Using a stopping criterion of 0.01%, the program yields x = 1.233318 and y = 0.212245 after
7 iterations with an approximate error of 2.2×10−4.

The program from Prob. 6.19 can be set up to solve Prob. 6.12, by changing the functions to

Function u(x, y)
u = (x - 4) ^ 2 + (y - 4) ^ 2 - 4
End Function
Function v(x, y)
v = x ^ 2 + y ^ 2 - 16
End Function
Function dudx(x, y)
dudx = 2 * (x - 4)
End Function
Function dudy(x, y)
dudy = 2 * (y - 4)
End Function
Function dvdx(x, y)
dvdx = 2 * x
End Function
Function dvdy(x, y)
dvdy = 2 * y
End Function

Using a stopping criterion of 0.01% and initial guesses of 2 and 3.5, the program yields x =
2.0888542 and y = 3.411438 after 3 iterations with an approximate error of 9.8×10−4.

Using a stopping criterion of 0.01% and initial guesses of 3.5 and 2, the program yields x =
3.411438 and y = 2.0888542 after 3 iterations with an approximate error of 9.8×10−4.

6.21
ax =

ax =2

0)(2 =−= axxf

xxf 2)(' =

Substitute into Newton Raphson formula (Eq. 6.6),

x
axxx

2

2 −
−=

Combining terms gives

2
/

2
)(2 22 xaxaxxxx +

=
+−

=

6.22
SOLUTION:

() ()
() ()[]()

1.3
29sech'

9tanh
22

2

=
−=

−=

ox
xxxf

xxf

()
()xf
xfxx ii '1 −=+

iteration xi+1

1 2.9753
2 3.2267
3 2.5774
4 7.9865

The solution diverges from its real root of x = 3. Due to the concavity of the slope, the next iteration
will always diverge. The sketch should resemble figure 6.6(a).

6.23
SOLUTION:

183.1271.6852.00296.0)(

5183.12355.3284.00074.0)(
23'

234

−+−=

+−+−=

xxxxf

xxxxxf

)(
)(

'1
i

i
ii xf

xfxx −=+

i xi+1

1 9.0767
2 -4.01014
3 -3.2726

The solution converged on another root. The partial solutions for each iteration intersected the x-axis
along its tangent path beyond a different root, resulting in convergence elsewhere.

6.24
SOLUTION:

f(x) = 2)1(16 2 ++−± x

)()(
))((

1

1
1

ii

iii
ii xfxf

xxxf
xx

−
−

−=
−

−
+

1st iteration
708.1)(5.0 11 −=⇒= −− ii xfx

2)(3 =⇒= ii xfx

6516.1
)2708.1(

)35.0(2
31 =

−−
−

−=+ix

2nd iteration
9948.0)(6516.1 −=⇒= ii xfx

46.1)(5.0 11 −=⇒= −− ii xfx

1142.4
)9948.046.1(

)6516.15.0(9948.0
6516.11 =

−−−
−−

−=+ix

The solution diverges because the secant created by the two x-values yields a solution outside the
functions domain.

7.6 Errata in Fig. 7.4; 6th line from the bottom of the algorithm: the > should be changed to >=

IF (dxr < eps*xr OR iter >= maxit) EXIT

Here is a VBA program to implement the Müller algorithm and solve Example 7.2.

Option Explicit

Sub TestMull()

Dim maxit As Integer, iter As Integer
Dim h As Single, xr As Single, eps As Single

h = 0.1
xr = 5
eps = 0.001
maxit = 20

Call Muller(xr, h, eps, maxit, iter)

MsgBox "root = " & xr
MsgBox "Iterations: " & iter

End Sub

Sub Muller(xr, h, eps, maxit, iter)

Dim x0 As Single, x1 As Single, x2 As Single
Dim h0 As Single, h1 As Single, d0 As Single, d1 As Single
Dim a As Single, b As Single, c As Single
Dim den As Single, rad As Single, dxr As Single

x2 = xr
x1 = xr + h * xr
x0 = xr - h * xr
Do
 iter = iter + 1
 h0 = x1 - x0
 h1 = x2 - x1
 d0 = (f(x1) - f(x0)) / h0
 d1 = (f(x2) - f(x1)) / h1
 a = (d1 - d0) / (h1 + h0)
 b = a * h1 + d1
 c = f(x2)
 rad = Sqr(b * b - 4 * a * c)
 If Abs(b + rad) > Abs(b - rad) Then
 den = b + rad
 Else
 den = b - rad
 End If
 dxr = -2 * c / den
 xr = x2 + dxr
 If Abs(dxr) < eps * xr Or iter >= maxit Then Exit Do
 x0 = x1
 x1 = x2
 x2 = xr
Loop
End Sub

Function f(x)
f = x ^ 3 - 13 * x - 12
End Function

7.7 The plot suggests a root at 1

-6

-4

-2

0

2

4

6

-1 0 1 2

Using an initial guess of 1.5 with h = 0.1 and eps = 0.001 yields the correct result of 1 in 4
iterations.

7.8 Here is a VBA program to implement the Bairstow algorithm and solve Example 7.3.

Option Explicit
Sub PolyRoot()
Dim n As Integer, maxit As Integer, ier As Integer, i As Integer
Dim a(10) As Single, re(10) As Single, im(10) As Single
Dim r As Single, s As Single, es As Single
n = 5
a(0) = 1.25: a(1) = -3.875: a(2) = 2.125: a(3) = 2.75: a(4) = -3.5: a(5) = 1
maxit = 20
es = 0.01
r = -1
s = -1
Call Bairstow(a(), n, es, r, s, maxit, re(), im(), ier)
For i = 1 To n
 If im(i) >= 0 Then
 MsgBox re(i) & " + " & im(i) & "i"
 Else
 MsgBox re(i) & " - " & Abs(im(i)) & "i"
 End If
Next i
End Sub
Sub Bairstow(a, nn, es, rr, ss, maxit, re, im, ier)
Dim iter As Integer, n As Integer, i As Integer
Dim r As Single, s As Single, ea1 As Single, ea2 As Single
Dim det As Single, dr As Single, ds As Single
Dim r1 As Single, i1 As Single, r2 As Single, i2 As Single
Dim b(10) As Single, c(10) As Single
r = rr
s = ss
n = nn
ier = 0
ea1 = 1
ea2 = 1
Do
 If n < 3 Or iter >= maxit Then Exit Do
 iter = 0
 Do
 iter = iter + 1
 b(n) = a(n)
 b(n - 1) = a(n - 1) + r * b(n)
 c(n) = b(n)
 c(n - 1) = b(n - 1) + r * c(n)
 For i = n - 2 To 0 Step -1

 b(i) = a(i) + r * b(i + 1) + s * b(i + 2)
 c(i) = b(i) + r * c(i + 1) + s * c(i + 2)
 Next i
 det = c(2) * c(2) - c(3) * c(1)
 If det <> 0 Then
 dr = (-b(1) * c(2) + b(0) * c(3)) / det
 ds = (-b(0) * c(2) + b(1) * c(1)) / det
 r = r + dr
 s = s + ds
 If r <> 0 Then ea1 = Abs(dr / r) * 100
 If s <> 0 Then ea2 = Abs(ds / s) * 100
 Else
 r = r + 1
 s = s + 1
 iter = 0
 End If
 If ea1 <= es And ea2 <= es Or iter >= maxit Then Exit Do
 Loop
 Call Quadroot(r, s, r1, i1, r2, i2)
 re(n) = r1
 im(n) = i1
 re(n - 1) = r2
 im(n - 1) = i2
 n = n - 2
 For i = 0 To n
 a(i) = b(i + 2)
 Next i
Loop
If iter < maxit Then
 If n = 2 Then
 r = -a(1) / a(2)
 s = -a(0) / a(2)
 Call Quadroot(r, s, r1, i1, r2, i2)
 re(n) = r1
 im(n) = i1
 re(n - 1) = r2
 im(n - 1) = i2
 Else
 re(n) = -a(0) / a(1)
 im(n) = 0
 End If
Else
 ier = 1
End If
End Sub
Sub Quadroot(r, s, r1, i1, r2, i2)
Dim disc
disc = r ^ 2 + 4 * s
If disc > 0 Then
 r1 = (r + Sqr(disc)) / 2
 r2 = (r - Sqr(disc)) / 2
 i1 = 0
 i2 = 0
Else
 r1 = r / 2
 r2 = r1
 i1 = Sqr(Abs(disc)) / 2
 i2 = -i1
End If
End Sub

7.9 See solutions to Prob. 7.5

7.10 The goal seek set up is

The result is

7.11 The goal seek set up is shown below. Notice that we have named the cells containing the
parameter values with the labels in column A.

The result is 63.649 kg as shown here:

7.12 The Solver set up is shown below using initial guesses of x = y = 1. Notice that we have
rearranged the two functions so that the correct values will drive them both to zero. We then
drive the sum of their squared values to zero by varying x and y. This is done because a
straight sum would be zero if f1(x,y) = -f2(x,y).

The result is

7.13 A plot of the functions indicates two real roots at about (−1.5, 1.5) and (−1.5, 1.5).

-3

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3

The Solver set up is shown below using initial guesses of (−1.5, 1.5). Notice that we have
rearranged the two functions so that the correct values will drive them both to zero. We then
drive the sum of their squared values to zero by varying x and y. This is done because a
straight sum would be zero if f1(x,y) = -f2(x,y).

The result is

For guesses of (1.5, 1.5) the result is (1.6004829, 1.561556).

>> roots (d)

with the expected result that the remaining roots of the original polynomial are found

ans =
 8.0000
-4.0000
 1.0000

We can now multiply d by b to come up with the original polynomial,

>> conv(d,b)
ans =
1 -9 -20 204 208 -384

Finally, we can determine all the roots of the original polynomial by

>> r=roots(a)
r =

 8.0000
 6.0000
-4.0000
-2.0000
 1.0000

7.15
p=[0.7 -4 6.2 -2];
roots(p)

ans =

 3.2786
 2.0000
 0.4357

p=[-3.704 16.3 -21.97 9.34];
roots(p)

ans =

 2.2947
 1.1525
 0.9535

p=[1 -2 6 -2 5];
roots(p)

ans =

 1.0000 + 2.0000i
 1.0000 - 2.0000i
 -0.0000 + 1.0000i
 -0.0000 - 1.0000i

7.16 Here is a program written in Compaq Visual Fortran 90,

PROGRAM Root

Use IMSL !This establishes the link to the IMSL libraries

Implicit None !forces declaration of all variables
Integer::nroot
Parameter(nroot=1)
Integer::itmax=50
Real::errabs=0.,errrel=1.E-5,eps=0.,eta=0.
Real::f,x0(nroot) ,x(nroot)
External f
Integer::info(nroot)

Print *, "Enter initial guess"
Read *, x0
Call ZReal(f,errabs,errrel,eps,eta,nroot,itmax,x0,x,info)
Print *, "root = ", x
Print *, "iterations = ", info

End

Function f(x)
Implicit None
Real::f,x
f = x**3-x**2+2*x-2
End

The output for Prob. 7.4a would look like

Enter initial guess
.5
 root = 1.000000
 iterations = 7
Press any key to continue

7.17
ho = 0.55 – 0.53 = 0.02
h1 = 0.54 – 0.55 = -0.01
δo = 58 – 19 = 1950
 0.55 – 0.53

δ1 = 44 – 58 = 1400
 0.54 – 0.55

a = δ 1– δ o = -55000
 h1 + ho

b = a h1 + δ1 = 1950
c = 44

acb 42 − = 3671.85

s 524.0
85.36711950

)44(254.0to =
+

−+=

Therefore, the pressure was zero at 0.524 seconds.

7.18
I) Graphically:

EDU»C=[1 3.6 0 -36.4];roots(C)
ans = -3.0262+ 2.3843i
 -3.0262- 2.3843i
 2.4524

The answer is 2.4524 considering it is the only real root.

II) Using the Roots Function:

EDU» x=-1:0.001:2.5;f=x.^3+3.6.*x.^2-36.4;plot(x,f);grid;zoom

By zooming in the plot at the desired location, we get the same answer of 2.4524.

2.4523 2.45232.4524 2.4524 2.4524 2.4524 2.45242.4524 2.4524 2.4524 2.4524

-6

-4

-2

0

2

4

x 10
-4

7.19
Excel Solver Solution: The 3 functions can be set up as roots problems:

02),,(

02),,(
03),,(

2
3

2

222
1

=−−=

=−+=
=+−=

uaavuaf

vuvuaf
vuavuaf

Symbolic Manipulator Solution:

>>syms a u v
>>S=solve(u^2-3*v^2-a^2,u+v-2,a^2-2*a-u)
>>double (S.a)

ans = 2.9270 + 0.3050i
2.9270 – 0.3050i
-0.5190
-1.3350

>>double (S.u)
ans = 2.6203 + 1.1753i

2.6203 – 1.1753i
1.3073
4.4522

>>double (S.v)
ans = -0.6203 + 1.1753i

-0.6203 – 1.1753i
0.6297
-2.4522

Therefore, we see that the two real-valued solutions for a, u, and v are
(-0.5190,1.3073,0.6927) and (-1.3350,4.4522,-2.4522).

7.20 The roots of the numerator are: s = -2, s = -3, and s = -4.
The roots of the denominator are: s = -1, s = -3, s = -5, and s = -6.

)6)(5)(3)(1(
)4)(3)(2()(
++++

+++=
ssss

ssssG

9.14
Here is a VBA program to implement matrix multiplication and solve Prob. 9.3 for the case
of [X]×[Y].

Option Explicit

Sub Mult()

Dim i As Integer, j As Integer
Dim l As Integer, m As Integer, n As Integer
Dim x(10, 10) As Single, y(10, 10) As Single
Dim w(10, 10) As Single

l = 2
m = 2
n = 3
x(1, 1) = 1: x(1, 2) = 6
x(2, 1) = 3: x(2, 2) = 10
x(3, 1) = 7: x(3, 2) = 4
y(1, 1) = 6: y(2, 1) = 0
y(2, 1) = 1: y(2, 2) = 4
Call Mmult(x(), y(), w(), m, n, l)

For i = 1 To n
 For j = 1 To l
 MsgBox w(i, j)
 Next j
Next i

End Sub

Sub Mmult(y, z, x, n, m, p)

Dim i As Integer, j As Integer, k As Integer
Dim sum As Single

For i = 1 To m
 For j = 1 To p
 sum = 0
 For k = 1 To n
 sum = sum + y(i, k) * z(k, j)
 Next k
 x(i, j) = sum
 Next j
Next i

End Sub

9.15
Here is a VBA program to implement the matrix transpose and solve Prob. 9.3 for the case of
[X]T.

Option Explicit

Sub Mult()

Dim i As Integer, j As Integer
Dim m As Integer, n As Integer
Dim x(10, 10) As Single, y(10, 10) As Single

n = 3
m = 2
x(1, 1) = 1: x(1, 2) = 6
x(2, 1) = 3: x(2, 2) = 10

x(3, 1) = 7: x(3, 2) = 4
Call MTrans(x(), y(), n, m)
For i = 1 To m
 For j = 1 To n
 MsgBox y(i, j)
 Next j
Next i

End Sub

Sub MTrans(a, b, n, m)

Dim i As Integer, j As Integer

For i = 1 To m
 For j = 1 To n
 b(i, j) = a(j, i)
 Next j
Next i

End Sub

9.16
Here is a VBA program to implement the Gauss elimination algorithm and solve the test case
in Prob. 9.16.

Option Explicit

Sub GaussElim()

Dim n As Integer, er As Integer, i As Integer
Dim a(10, 10) As Single, b(10) As Single, x(10) As Single

Range("a1").Select
n = 3
a(1, 1) = 1: a(1, 2) = 1: a(1, 3) = -1
a(2, 1) = 6: a(2, 2) = 2: a(2, 3) = 2
a(3, 1) = -3: a(3, 2) = 4: a(3, 3) = 1
b(1) = 1: b(2) = 10: b(3) = 2

Call Gauss(a(), b(), n, x(), er)
If er = 0 Then
 For i = 1 To n
 MsgBox "x(" & i & ") = " & x(i)
 Next i
Else
 MsgBox "ill-conditioned system"
End If

End Sub

Sub Gauss(a, b, n, x, er)

Dim i As Integer, j As Integer
Dim s(10) As Single
Const tol As Single = 0.000001
er = 0
For i = 1 To n
 s(i) = Abs(a(i, 1))
 For j = 2 To n
 If Abs(a(i, j)) > s(i) Then s(i) = Abs(a(i, j))
 Next j
Next i
Call Eliminate(a, s(), n, b, tol, er)
If er <> -1 Then

 Call Substitute(a, n, b, x)
End If
End Sub

Sub Pivot(a, b, s, n, k)
Dim p As Integer, ii As Integer, jj As Integer
Dim factor As Single, big As Single, dummy As Single
p = k
big = Abs(a(k, k) / s(k))
For ii = k + 1 To n
 dummy = Abs(a(ii, k) / s(ii))
 If dummy > big Then
 big = dummy
 p = ii
 End If
Next ii
If p <> k Then
 For jj = k To n
 dummy = a(p, jj)
 a(p, jj) = a(k, jj)
 a(k, jj) = dummy
 Next jj
 dummy = b(p)
 b(p) = b(k)
 b(k) = dummy
 dummy = s(p)
 s(p) = s(k)
 s(k) = dummy
End If
End Sub

Sub Substitute(a, n, b, x)
Dim i As Integer, j As Integer
Dim sum As Single
x(n) = b(n) / a(n, n)
For i = n - 1 To 1 Step -1
 sum = 0
 For j = i + 1 To n
 sum = sum + a(i, j) * x(j)
 Next j
 x(i) = (b(i) - sum) / a(i, i)
Next i
End Sub

Sub Eliminate(a, s, n, b, tol, er)

Dim i As Integer, j As Integer, k As Integer
Dim factor As Single
For k = 1 To n - 1
 Call Pivot(a, b, s, n, k)
 If Abs(a(k, k) / s(k)) < tol Then
 er = -1
 Exit For
 End If
 For i = k + 1 To n
 factor = a(i, k) / a(k, k)
 For j = k + 1 To n
 a(i, j) = a(i, j) - factor * a(k, j)
 Next j
 b(i) = b(i) - factor * b(k)
 Next i
Next k
If Abs(a(k, k) / s(k)) < tol Then er = -1
End Sub

It’s application yields a solution of (1, 1, 1).

10.14

Option Explicit

Sub LUDTest()
Dim n As Integer, er As Integer, i As Integer, j As Integer
Dim a(3, 3) As Single, b(3) As Single, x(3) As Single
Dim tol As Single

n = 3
a(1, 1) = 3: a(1, 2) = -0.1: a(1, 3) = -0.2
a(2, 1) = 0.1: a(2, 2) = 7: a(2, 3) = -0.3
a(3, 1) = 0.3: a(3, 2) = -0.2: a(3, 3) = 10
b(1) = 7.85: b(2) = -19.3: b(3) = 71.4
tol = 0.000001

Call LUD(a(), b(), n, x(), tol, er)

'output results to worksheet
Sheets("Sheet1").Select
Range("a3").Select
For i = 1 To n
 ActiveCell.Value = x(i)
 ActiveCell.Offset(1, 0).Select

Next i
Range("a3").Select

End Sub

Sub LUD(a, b, n, x, tol, er)
Dim i As Integer, j As Integer
Dim o(3) As Single, s(3) As Single
Call Decompose(a, n, tol, o(), s(), er)
If er = 0 Then
 Call Substitute(a, o(), n, b, x)
Else
 MsgBox "ill-conditioned system"
 End
End If
End Sub

Sub Decompose(a, n, tol, o, s, er)
Dim i As Integer, j As Integer, k As Integer
Dim factor As Single
For i = 1 To n
 o(i) = i
 s(i) = Abs(a(i, 1))
 For j = 2 To n
 If Abs(a(i, j)) > s(i) Then s(i) = Abs(a(i, j))
 Next j
Next i
For k = 1 To n - 1
 Call Pivot(a, o, s, n, k)
 If Abs(a(o(k), k) / s(o(k))) < tol Then
 er = -1
 Exit For
 End If
 For i = k + 1 To n
 factor = a(o(i), k) / a(o(k), k)
 a(o(i), k) = factor
 For j = k + 1 To n
 a(o(i), j) = a(o(i), j) - factor * a(o(k), j)
 Next j
 Next i
Next k
If (Abs(a(o(k), k) / s(o(k))) < tol) Then er = -1
End Sub

Sub Pivot(a, o, s, n, k)
Dim ii As Integer, p As Integer
Dim big As Single, dummy As Single
p = k
big = Abs(a(o(k), k) / s(o(k)))
For ii = k + 1 To n
 dummy = Abs(a(o(ii), k) / s(o(ii)))
 If dummy > big Then
 big = dummy
 p = ii
 End If
Next ii
dummy = o(p)
o(p) = o(k)
o(k) = dummy
End Sub

Sub Substitute(a, o, n, b, x)
Dim k As Integer, i As Integer, j As Integer
Dim sum As Single, factor As Single
For k = 1 To n - 1
 For i = k + 1 To n
 factor = a(o(i), k)

 b(o(i)) = b(o(i)) - factor * b(o(k))
 Next i
Next k
x(n) = b(o(n)) / a(o(n), n)
For i = n - 1 To 1 Step -1
 sum = 0
 For j = i + 1 To n
 sum = sum + a(o(i), j) * x(j)
 Next j
 x(i) = (b(o(i)) - sum) / a(o(i), i)
Next i
End Sub

10.15

Option Explicit

Sub LUGaussTest()
Dim n As Integer, er As Integer, i As Integer, j As Integer
Dim a(3, 3) As Single, b(3) As Single, x(3) As Single
Dim tol As Single, ai(3, 3) As Single
n = 3
a(1, 1) = 3: a(1, 2) = -0.1: a(1, 3) = -0.2
a(2, 1) = 0.1: a(2, 2) = 7: a(2, 3) = -0.3
a(3, 1) = 0.3: a(3, 2) = -0.2: a(3, 3) = 10
tol = 0.000001
Call LUDminv(a(), b(), n, x(), tol, er, ai())
If er = 0 Then
 Range("a1").Select
 For i = 1 To n
 For j = 1 To n
 ActiveCell.Value = ai(i, j)
 ActiveCell.Offset(0, 1).Select
 Next j
 ActiveCell.Offset(1, -n).Select
 Next i
 Range("a1").Select
Else
 MsgBox "ill-conditioned system"
End If
End Sub

Sub LUDminv(a, b, n, x, tol, er, ai)
Dim i As Integer, j As Integer
Dim o(3) As Single, s(3) As Single
Call Decompose(a, n, tol, o(), s(), er)
If er = 0 Then
 For i = 1 To n
 For j = 1 To n
 If i = j Then
 b(j) = 1
 Else
 b(j) = 0
 End If
 Next j
 Call Substitute(a, o, n, b, x)
 For j = 1 To n
 ai(j, i) = x(j)
 Next j
 Next i
End If
End Sub

Sub Decompose(a, n, tol, o, s, er)
Dim i As Integer, j As Integer, k As Integer

Dim factor As Single
For i = 1 To n
 o(i) = i
 s(i) = Abs(a(i, 1))
 For j = 2 To n
 If Abs(a(i, j)) > s(i) Then s(i) = Abs(a(i, j))
 Next j
Next i
For k = 1 To n - 1
 Call Pivot(a, o, s, n, k)
 If Abs(a(o(k), k) / s(o(k))) < tol Then
 er = -1
 Exit For
 End If
 For i = k + 1 To n
 factor = a(o(i), k) / a(o(k), k)
 a(o(i), k) = factor
 For j = k + 1 To n
 a(o(i), j) = a(o(i), j) - factor * a(o(k), j)
 Next j
 Next i
Next k
If (Abs(a(o(k), k) / s(o(k))) < tol) Then er = -1
End Sub

Sub Pivot(a, o, s, n, k)
Dim ii As Integer, p As Integer
Dim big As Single, dummy As Single
p = k
big = Abs(a(o(k), k) / s(o(k)))
For ii = k + 1 To n
 dummy = Abs(a(o(ii), k) / s(o(ii)))
 If dummy > big Then
 big = dummy
 p = ii
 End If
Next ii
dummy = o(p)
o(p) = o(k)
o(k) = dummy
End Sub

Sub Substitute(a, o, n, b, x)
Dim k As Integer, i As Integer, j As Integer
Dim sum As Single, factor As Single
For k = 1 To n - 1
 For i = k + 1 To n
 factor = a(o(i), k)
 b(o(i)) = b(o(i)) - factor * b(o(k))
 Next i
Next k
x(n) = b(o(n)) / a(o(n), n)
For i = n - 1 To 1 Step -1
 sum = 0
 For j = i + 1 To n
 sum = sum + a(o(i), j) * x(j)
 Next j
 x(i) = (b(o(i)) - sum) / a(o(i), i)
Next i
End Sub

10.17

()31032

)2(6320

)1(3240

=+⇒=⋅

−=−⇒=⋅

=+−⇒=⋅

cbCB
caCA

baBA







Solve the three equations using Matlab:

>> A=[-4 2 0; 2 0 –3; 0 3 1]
b=[3; -6; 10]
x=inv(A)*b
x = 0.525
 2.550
 2.350

Therefore, a = 0.525, b = 2.550, and c = 2.350.

10.18

kbajcaicbc
k

ba
ji

BA





)2()24()4(

412
)(+++−−−−=

−−
=×

kbajcaicbc
k

ba
ji

CA





)3()2()32(

231
)(++−−−==×

kbajcaicbCABA


)4()2()42()()(+++−−−−=×+×

Therefore,
kcjbiarbajcaicb


)14()23()65()4()2()42(+−+−++=++−−+−−

We get the following set of equations ⇒
64256542 =−−−⇒+=−− cbaacb (1)
232232 −=−−⇒−=− cbabca (2)

144144 =−+⇒+−=+ cbacba (3)

In Matlab:

A=[-5 -5 -4 ; 2 -3 -1 ; 4 1 -4]
B=[6 ; -2 ; 1] ; x = inv (A) * b

Answer ⇒ x = -3.6522
 -3.3478

 4.7391

a = -3.6522, b = -3.3478, c = 4.7391

10.19

(I) 11)0(1)0(=⇒=+⇒= bbaf
121)2(1)2(=+⇒=+⇒= dcdcf

(II) If f is continuous, then at x = 1

0)1()1(=−−+⇒+=+⇒+=+ dcbadcbadcxbax

(III) 4=+ ba



















=





































−−
4
0
1
1

0011
1111
2200
0010

d
c
b
a

Solve using Matlab ⇒

10.20 MATLAB provides a handy way to solve this problem.

a = 3
b = 1
c = -3
d = 7

(a)
>> a=hilb(3)

a =
 1.0000 0.5000 0.3333
 0.5000 0.3333 0.2500
 0.3333 0.2500 0.2000

>> b=[1 1 1]'

b =
 1
 1
 1

>> c=a*b

c =
 1.8333
 1.0833
 0.7833

>> format long e

>> x=a\b

>> x =

 9.999999999999991e-001
 1.000000000000007e+000
 9.999999999999926e-001

(b)
>> a=hilb(7);
>> b=[1 1 1 1 1 1 1]';
>> c=a*b;
>> x=a\b
x =

 9.999999999914417e-001
 1.000000000344746e+000
 9.999999966568566e-001
 1.000000013060454e+000
 9.999999759661609e-001
 1.000000020830062e+000
 9.999999931438059e-001

(c)
>> a=hilb(10);
>> b=[1 1 1 1 1 1 1 1 1 1]';
>> c=a*b;
>> x=a\b

x =
 9.999999987546324e-001
 1.000000107466305e+000
 9.999977129981819e-001
 1.000020777695979e+000
 9.999009454847158e-001
 1.000272183037448e+000
 9.995535966572223e-001
 1.000431255894815e+000
 9.997736605804316e-001
 1.000049762292970e+000

Matlab solution to Prob. 11.11 (ii):

a=[1 4 9 16;4 9 16 25;9 16 25 36;16 25 36 49]
a =
 1 4 9 16
 4 9 16 25
 9 16 25 36
 16 25 36 49
b=[30 54 86 126]
b =
 30 54 86 126
b=b'
b =
 30
 54
 86
 126
x=a\b
Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = 2.092682e-018.
x =
 1.1053
 0.6842
 1.3158
 0.8947
x=inv(a)*b
Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = 2.092682e-018.
x =
 0
 0
 0
 0
cond(a)
ans =
 4.0221e+017

11.12

Program Linsimp
Use IMSL
Implicit None
Integer::ipath,lda,n,ldfac
Parameter(ipath=1,lda=3,ldfac=3,n=3)
Integer::ipvt(n),i,j
Real::A(lda,lda),Rcond,Res(n)
Real::Rj(n),B(n),X(n)
Data A/1.0,0.5,0.3333333,0.5,0.3333333,0.25,0.3333333,0.25,0.2/
Data B/1.833333,1.083333,0.783333/

Call linsol(n,A,B,X,Rcond)
Print *, 'Condition number = ', 1.0E0/Rcond
Print *
Print *, 'Solution:'
Do I = 1,n
 Print *, X(i)
End Do
End Program

Subroutine linsol(n,A,B,X,Rcond)
Implicit none
Integer::n, ipvt(3)
Real::A(n,n), fac(n,n), Rcond, res(n)
Real::B(n), X(n)
Call lfcrg(n,A,3,fac,3,ipvt,Rcond)
Call lfirg(n,A,3,fac,3,ipvt,B,1,X,res)
End

11.13

Option Explicit

Sub TestChol()

Dim i As Integer, j As Integer
Dim n As Integer
Dim a(10, 10) As Single

n = 3
a(1, 1) = 6: a(1, 2) = 15: a(1, 3) = 55
a(2, 1) = 15: a(2, 2) = 55: a(2, 3) = 225
a(3, 1) = 55: a(3, 2) = 225: a(3, 3) = 979

Call Cholesky(a(), n)

'output results to worksheet
Sheets("Sheet1").Select
Range("a3").Select
For i = 1 To n
 For j = 1 To n
 ActiveCell.Value = a(i, j)
 ActiveCell.Offset(0, 1).Select
 Next j
 ActiveCell.Offset(1, -n).Select
Next i
Range("a3").Select

End Sub
Sub Cholesky(a, n)

Dim i As Integer, j As Integer, k As Integer
Dim sum As Single

For k = 1 To n
 For i = 1 To k - 1
 sum = 0
 For j = 1 To i - 1
 sum = sum + a(i, j) * a(k, j)
 Next j
 a(k, i) = (a(k, i) - sum) / a(i, i)
 Next i
 sum = 0
 For j = 1 To k - 1
 sum = sum + a(k, j) ^ 2
 Next j
 a(k, k) = Sqr(a(k, k) - sum)
Next k

End Sub

11.14

Option Explicit

Sub Gausseid()
Dim n As Integer, imax As Integer, i As Integer
Dim a(3, 3) As Single, b(3) As Single, x(3) As Single
Dim es As Single, lambda As Single
n = 3
a(1, 1) = 3: a(1, 2) = -0.1: a(1, 3) = -0.2
a(2, 1) = 0.1: a(2, 2) = 7: a(2, 3) = -0.3
a(3, 1) = 0.3: a(3, 2) = -0.2: a(3, 3) = 10
b(1) = 7.85: b(2) = -19.3: b(3) = 71.4
es = 0.1
imax = 20
lambda = 1#
Call Gseid(a(), b(), n, x(), imax, es, lambda)
For i = 1 To n
 MsgBox x(i)
Next i
End Sub

Sub Gseid(a, b, n, x, imax, es, lambda)
Dim i As Integer, j As Integer, iter As Integer, sentinel As Integer
Dim dummy As Single, sum As Single, ea As Single, old As Single
For i = 1 To n
 dummy = a(i, i)
 For j = 1 To n
 a(i, j) = a(i, j) / dummy
 Next j
 b(i) = b(i) / dummy
Next i
For i = 1 To n
 sum = b(i)
 For j = 1 To n
 If i <> j Then sum = sum - a(i, j) * x(j)
 Next j
 x(i) = sum
Next i
iter = 1
Do
 sentinel = 1
 For i = 1 To n
 old = x(i)
 sum = b(i)
 For j = 1 To n
 If i <> j Then sum = sum - a(i, j) * x(j)
 Next j

 x(i) = lambda * sum + (1# - lambda) * old
 If sentinel = 1 And x(i) <> 0 Then
 ea = Abs((x(i) - old) / x(i)) * 100
 If ea > es Then sentinel = 0
 End If
 Next i
 iter = iter + 1
 If sentinel = 1 Or iter >= imax Then Exit Do
Loop
End Sub

11.15 As shown, there are 4 roots, one in each quadrant.

-8

-4

0

4

8

-4 -2 0 2

f

g

(−2, −4)

(−0.618,3.236)

(1, 2)

(1.618, −1.236)

It might be expected that if an initial guess was within a quadrant, the result wouls be the
root in the quadrant. However a sample of initial guesses spanning the range yield the
following roots:

6 (-2, -4) (-0.618,3.236) (-0.618,3.236) (1,2) (-0.618,3.236)
3 (-0.618,3.236) (-0.618,3.236) (-0.618,3.236) (1,2) (-0.618,3.236)
0 (1,2) (1.618, -1.236) (1.618, -1.236) (1.618, -1.236) (1.618, -1.236)
-3 (-2, -4) (-2, -4) (1.618, -1.236) (1.618, -1.236) (1.618, -1.236)
-6 (-2, -4) (-2, -4) (-2, -4) (1.618, -1.236) (-2, -4)

-6 -3 0 3 6

We have highlighted the guesses that converge to the roots in their quadrants. Although
some follow the pattern, others jump to roots that are far away. For example, the guess of
(-6, 0) jumps to the root in the first quadrant.

This underscores the notion that root location techniques are highly sensitive to initial
guesses and that open methods like the Solver can locate roots that are not in the vicinity of
the initial guesses.

11.16

x = transistors
y = resistors
z = computer chips

System equations: 810233 =++ zyx
4102 =++ zyx
49022 =++ zyx

Let A =
















212
121
233

 and B =
















490
410
810

Plug into Excel and use two functions- minverse mmult

Apply Ax = B
 x = A-1 * B

Answer: x = 100, y = 110, z = 90

11.17 As ordered, none of the sets will converge. However, if Set 1 and 3 are reordered so that
they are diagonally dominant, they will converge on the solution of (1, 1, 1).

Set 1: 8x + 3y + z = 12
 2x + 4y – z = 5
−6x +7z = 1

Set 3: 3x + y − z = 3
 x + 4y – z = 4
 x + y +5z =7

At face value, because it is not diagonally dominant, Set 2 would seem to be divergent.
However, since it is close to being diagonally dominant, a solution can be obtained by the
following ordering:

Set 3: −2x + 2y − 3z = −3
 2y – z = 1
 −x + 4y + 5z = 8

11.18

Option Explicit

Sub TriDiag()
Dim i As Integer, n As Integer
Dim e(10) As Single, f(10) As Single, g(10) As Single
Dim r(10) As Single, x(10) As Single
n = 4
e(2) = -1.2: e(3) = -1.2: e(4) = -1.2
f(1) = 2.04: f(2) = 2.04: f(3) = 2.04: f(4) = 2.04
g(1) = -1: g(2) = -1: g(3) = -1
r(1) = 40.8: r(2) = 0.8: r(3) = 0.8: r(4) = 200.8
Call Thomas(e(), f(), g(), r(), n, x())
For i = 1 To n
 MsgBox x(i)
Next i
End Sub

Sub Thomas(e, f, g, r, n, x)
Call Decomp(e, f, g, n)
Call Substitute(e, f, g, r, n, x)
End Sub

Sub Decomp(e, f, g, n)
Dim k As Integer
For k = 2 To n
 e(k) = e(k) / f(k - 1)
 f(k) = f(k) - e(k) * g(k - 1)
Next k
End Sub

Sub Substitute(e, f, g, r, n, x)
Dim k As Integer
For k = 2 To n
 r(k) = r(k) - e(k) * r(k - 1)
Next k
x(n) = r(n) / f(n)
For k = n - 1 To 1 Step -1
 x(k) = (r(k) - g(k) * x(k + 1)) / f(k)
Next k
End Sub

11.19 The multiplies and divides are noted below

Sub Decomp(e, f, g, n)
Dim k As Integer
For k = 2 To n
 e(k) = e(k) / f(k - 1) '(n – 1)
 f(k) = f(k) - e(k) * g(k - 1) '(n – 1)
Next k
End Sub

Sub Substitute(e, f, g, r, n, x)
Dim k As Integer
For k = 2 To n
 r(k) = r(k) - e(k) * r(k - 1) '(n – 1)
Next k
x(n) = r(n) / f(n) ' 1
For k = n - 1 To 1 Step -1
 x(k) = (r(k) - g(k) * x(k + 1)) / f(k) '2(n – 1)
Next k
End Sub

Sum = 5(n-1) + 1

They can be summed to yield 5(n – 1) + 1 as opposed to n3/3 for naive Gauss elimination.
Therefore, a tridiagonal solver is well worth using.

1

10

100

1000

10000

100000

1000000

1 10 100

Tridiagonal
Naive Gauss

12.9

)2(0383.03665.0

080sin37sin5.21sin:0

)1(09723.093042.0

080cos37cos5.21cos:0

=−

=−+=+↑

=−

=−−=+→

∑

∑

MP
MMPF

MP
MMPF

y

x





Use any method to solve equations (1) and (2):








=













−
+−

=

0
0

)80sin37(sin5.21sin
)80cos37(cos5.21cos

B

A




Apply Ax = B where x = 







M
P

Use Matlab or calculator for results

P = 314 lb
M = 300 lb

12.10 Mass balances can be written for each reactor as

1,111,inin,in 0 AAA cVkcQcQ −−=

1,111,in 0 AB cVkcQ +=

2,222,32in3,321,in)(0 AAAA cVkcQQcQcQ −+−+=

2,222,32in3,321,in)(0 ABBB cVkcQQcQcQ ++−+=

3,333,43in4,432,32in)()(0 AAAA cVkcQQcQcQQ −+−++=

3,333,43in4,432,32in)()(0 ABBB cVkcQQcQcQQ ++−++=

4,444,43in3,43in)()(0 AAA cVkcQQcQQ −+−+=

4,444,43in3,43in)()(0 ABB cVkcQQcQQ ++−+=

Collecting terms, the system can be expresses in matrix form as

[A]{C} = {B}

where

[A] =

























−−
−

−−−
−−

−−−
−−

−

135.21300000
05.150130000
30185015000

0306801500
0050155.7100
000505.22010
0000001025.1
000000025.11

[B]T = [10 0 0 0 0 0 0 0 0 0] [C]T = [cA,1 cB,1 cA,2 cB,2 cA,3 cB,3 cA,4 cB,4]

The system can be solved for [C]T = [0.889 0.111 0.416 0.584 0.095 0.905 0.080
0.920].

A

B

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

12.11 Assuming a unit flow for Q1, the simultaneous equations can be written in matrix form
as





















=















































−−
−−

−
−

−

0
0
1
0
0
0

111000
001110
000011
310000
012100
000121

7
6
5
4
3
2

Q
Q
Q
Q
Q
Q

These equations can be solved to give [Q]T = [0.7321 0.2679 0.1964 0.0714 0.0536
0.0178].

12.20 Find the unit vectors:

kjikjiB

kjikjiA

ˆ873.0ˆ218.0ˆ436.0
421

ˆ4ˆ1ˆ2

ˆ873.0ˆ436.0ˆ218.0
421

ˆ4ˆ2ˆ1

222

222

−+=






++
−+

−−=






++

−−

Sum moments about the origin:

0)4(218.0)4(436.0

0)4(218.0)4(436.0)2(50

=−=

=−−=

∑

∑

BAM

ABM

oy

ox

Solve for A & B using equations 9.10 and 9.11:

In the form
2222221

1212111

bxaxa
bxaxa

=+
=+

0872.0744.1
100744.1872.0

=−+
−=−+−

BA
BA

Plug into equations 9.10 and 9.11:

N
aaaa
babax

N
aaaa
babax

87.45
80192.3

4.174

94.22
80192.3

2.87

21122211

121211
2

21122211

212122
1

==
−
−

=

==
−
−=

12.21

kjikjiT ˆ549.0ˆ824.0ˆ1374.0
461

ˆ4ˆ6ˆ1
222

−+=










++

−+

0)1(549.0)1(5 =−+−=∑ TM y

kNT 107.9=

kNTkNTkNT zyx 5 , 50.7 , 251.1 −===∴

0)3()3(5)4(5.7)3(5 =+−+−+−=∑ zx BM kNBz 20=
0)3()3(251.1)3(5.7 =++=∑ xz BM

kNBx 751.3−=
02055 =++−+−=∑ zz AF

kNAz 10−=
0251.1751.3 =+−+=∑ xx AF kNAx 5.2=

050.7 =+=∑ yy AF kNAy 5.7−=

12.22 This problem was solved using Matlab.

A = [1 0 0 0 0 0 0 0 1 0
 0 0 1 0 0 0 0 1 0 0
 0 1 0 3/5 0 0 0 0 0 0
 -1 0 0 -4/5 0 0 0 0 0 0
 0 -1 0 0 0 0 3/5 0 0 0
 0 0 0 0 -1 0 -4/5 0 0 0
 0 0 -1 -3/5 0 1 0 0 0 0
 0 0 0 4/5 1 0 0 0 0 0
 0 0 0 0 0 -1 -3/5 0 0 0
 0 0 0 0 0 0 4/5 0 0 1];
b = [0 0 –54 0 0 24 0 0 0 0];
x=inv(A)*b
x =

 24.0000
 -36.0000
 54.0000
 -30.0000
 24.0000
 36.0000
 -60.0000
 -54.0000
 -24.0000
 48.0000

Therefore, in kN

AB = 24 BC = −36 AD = 54 BD = −30 CD = 24
DE = 36 CE = −60 Ax = −54 Ay = −24 Ey = 48

12.27 This problem can be solved directly on a calculator capable of doing matrix operations
or on Matlab.

a=[60 -40 0
 -40 150 -100
 0 -100 130];
b=[200
 0
 230];
x=inv(a)*b
x =
 7.7901
 6.6851
 6.9116

Therefore,

I1 = 7.79 A
I2 = 6.69 A
I3 = 6.91 A

12.28 This problem can be solved directly on a calculator capable of doing matrix operations
or on Matlab.

a=[17 -8 -3

 -2 6 -3
 -1 -4 13];
b=[480
 0
 0];
x=inv(a)*b
x =
 37.3585
 16.4151
 7.9245

Therefore,

V1 = 37.4 V
V2 = 16.42 V
V3 = 7.92 V

12.29 This problem can be solved directly on a calculator capable of doing matrix operations
or on Matlab.

a=[6 0 -4 1
 0 8 -8 -1
 -4 -8 18 0
 -1 1 0 0];
b=[0
 -20
 0
 10];
x=inv(a)*b
x =
 -7.7778
 2.2222
 -0.7407
 43.7037

Therefore,

I1 = -7.77 A
I2 = 2.22 A
I3 = -.741 A
Vs = 43.7 V

12.30 This problem can be solved directly on a calculator capable of doing matrix operations
or on Matlab.

a=[55 0 -25
 0 37 -4
 -25 -4 29];
b=[-200
 -250
 100];
x=inv(a)*b

x =
 -4.1103
 -6.8695
 -1.0426

Therefore,

I1 = -4.11 A
I3 = -6.87 A

I4 = -1.043 A

12.37

%massspring34.m

k1=10;
k2=40;
k3=40;
k4=10;
m1=1;
m2=1;
m3=1;
km=[(1/m1)*(k2+k1), -(k2/m1),0; -(k2/m2), (1/m2)*(k2+k3), -(k3/m2);
0, -(k3/m3),(1/m3)*(k3+k4)];
X=[0.05;0.04;0.03];
kmx=km*X
kmx =
0.9000
0.0000
-0.1000

Therefore, 1x = -0.9, 2x = 0 , and 3x = 0.1 m/s2.

CHAPTER 16

16.4 (a) The total LP formulation is given by

Maximize C X Y Z= + +015 0 025 0 05. . . {Maximize profit}

subject to

X Y Z+ + ≥ 6 {Material constraint}
X Y+ < 3 {Time constraint}
X Y− ≥ 0 {Storage constraint}

Z Y− ≥0 5 0. {Positivity constraints}

(b) The simplex tableau for the problem can be set up and solved as

(c) An Excel spreadsheet can be set up to solve the problem as

The Solver can be called and set up as

The resulting solution is

In addition, a sensitivity report can be generated as

(d) The high shadow price for storage from the sensitivity analysis from (c) suggests that
increasing storage will result in the best increase in profit.

16.5 An LP formulation for this problem can be set up as

Maximize C X Y Z= + +015 0 025 0 05. . . {Maximize profit}

subject to

X Y Z+ + ≥ 6 {X material constraint}
X Y+ < 3 {Y material constraint}
X Y− ≥ 0 {Waste constraint}

Z Y− ≥0 5 0. {Positivity constraints}

(b) An Excel spreadsheet can be set up to solve the problem as

The Solver can be called and set up as

The resulting solution is

This is an interesting result which might seem counterintuitive at first. Notice that we
create some of the unprofitable z2 while producing none of the profitable z3. This occurred
because we used up all of Y in producing the highly profitable z1. Thus, there was none left
to produce z3.

16.6 Substitute xB = 1 – xT into the pressure equation,

PPxPx
TB satTsatT =+−)1(

and solve for xT,

BT

B

satsat

sat
T PP

PP
x

−
−

= (1)

where the partial pressures are computed as








+
−

= 221
1211905.6

10 T
satB
P








+
−

= 219
1344953.6

10 T
satB

P

The solution then consists of maximizing Eq. 1 by varying T subject to the constraint that 0
≤ xT ≤ 1. The Excel solver can be used to obtain the solution of T = 111.04.

16.7 This is a straightforward problem of varying xA in order to minimize

6.06.0

2
15

)1(
1)(








+






−
=

AA
A xx

xf

(a) The function can be plotted versus xA

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

(b) The result indicates a minimum between 0.5 and 0.6. Using Golden Section search or a
package like Excel or MATLAB yields a minimum of 0.564807.

16.8 This is a case of constrained nonlinear optimization. The conversion factors range between 0 and 1. In
addition, the cost function can not be evaluated for certain combinations of XA1 and XA2. The
problem is the second term,

()

6.0

2
2

2

1

1

1



















−

−

A

A

A

x
x
x

If xA1 > xA2, the numerator will be negative and the term cannot be evaluated.

Excel Solver can be used to solve the problem:

The result is

16.9 Errata: Change B0 to 100.

This problem can be set up on Excel and the answer generated with Solver:

The solution is

16.10 The problem can be set up in Excel Solver.

The solution is

16.11

w

d
θ

e

s
A

The following formulas can be developed:

2
we = (1)

e
d1tan −=θ (2)

22 eds += (3)

sP 2= (4)

2
wdA =

(5)

Then the following Excel worksheet and Solver application can be set up:

Note that we have named the cells with the labels in the adjacent left columns. Our goal is
to minimize the wetted perimeter by varying the depth and width. We apply positivity
constraints along with the constraint that the computed area must equal the desired area.
The result is

Thus, this specific application indicates that a 45o angle yields the minimum wetted
perimeter.

The verification of whether this result is universal can be attained inductively or
deductively. The inductive approach involves trying several different desired areas in
conjunction with our solver solution. As long as the desired area is greater than 0, the
result for the optimal design will be 45o.

The deductive verification involves calculus. The minimum wetted perimeter should occur
when the derivative of the perimeter with respect to one of the primary dimensions (i.e., w
or d) flattens out. That is, the slope is zero. In the case of the width, this would be
expressed by:

0=
dw
dP

If the second derivative at this point is positive, the value of w is at a minimum. To
formulate P in terms of w, substitute Eqs. 1 and 5 into 3 to yield

22)2/()/2(wwAs +=
(6)

Substitute this into Eq. 4 to give

22)2/()/2(2 wwAP +=
(7)

Differentiating Eq. 7 yields

0
)2/()/2(

2//8
22

32
=

+

+−=
wwA

wwA
dw
dP

(8)

Therefore, at the minimum

02//8 32 =+− wwA
(9)

which can be solved for

Aw 2=
(10)

This can be substituted back into Eq. 5 to give

Ad =
(11)

Thus, we arrive at the general conclusion that the optimal channel occurs when w = 2d.
Inspection of Eq. 2 indicates that this corresponds to θ = 45o.

The development of the second derivative is tedious, but results in

22
4

2

2

2
)2/()/2(32 wwA

w
A

dw
Pd +=

(12)

Since A and w are by definition positive, the second derivative will always be positive.

16.12

w

d
θ

b e

sA

The following formulas can be developed:

θtan
de =

(1)

ewb 2−= (2)

22 eds += (3)

bsP += 2 (4)

dbwA
2
+= (5)

Then the following Excel worksheet and Solver application can be set up:

Note that we have named the cells with the labels in the adjacent left columns. Our goal is
to minimize the wetted perimeter by varying the depth, width and theta (the angle). We
apply positivity constraints along with the constraint that the computed area must equal the
desired area. We also constrain e that it cannot be greater than w/2. The result is

Thus, this specific application indicates that a 60o angle yields the minimum wetted
perimeter.

16.13
22 rAends π=

rhAside π2=

sideendstotal AAA +=

hrVcomputed
22π=

operateoperatesidesideendsends AFAFAFCost ++=

Then the following Excel worksheet and Solver application can be set up:

which results in the following solution:

16.14 Excel Solver gives: x = 0.5, y = 0.8 and fmin = -0.85.

16.19

2

43

4
)29(100

L
rπ= Lr235 π=

432)29(.4 rL π= 2
35
r

L
π

=

2499.1 rL =

mL
mr

08.4
65.1

=
=

16.20 I1 = 4 I2 = 2 I3 = 2 I4 = 0 I5 = 2 P = 80

16.22
Total cost is

2102 21 ++= ppC

Total power delivered is

21 4.06.0 ppP +=

Using the Excel Solver:

which yields the solution

16.23 This is a trick question. Because of the presence of (1 – s) in the denominator, the function will
experience a division by zero at the maximum. This can be rectified by merely canceling the (1 – s)
terms in the numerator and denominator to give

434
15

2 +−
=

ss
sT

Any of the optimizers described in this section can then be used to determine that the maximum of T
= 3 occurs at s = 1.

16.27 An LP formulation for this problem can be set up as

Maximize C X Y Z= + +015 0 025 0 05. . . {Minimize cost}

subject to

X Y Z+ + ≥ 6 {Performance constraint}
X Y+ < 3 {Safety constraint}
X Y− ≥ 0 {X-Y Relationship constraint}
Z Y− ≥0 5 0. {Y-Z Relationship constraint}

(b) An Excel spreadsheet can be set up to solve the problem as

The Solver can be called and set up as

The resulting solution is

16.28

)(2

50020000000 44
io

o

rr
r

J
Tc

−
=⇒=

π
τ

4 54 10x 5915.1 ooi rrr −−=

()449

2
10 x 77

)5(500
180

5.2
io rrJG

TL

−







=





⇒=

π
π

φ

4 74 10 x 8422.2 −−= oi rr

mm76.29=or
mm61.23=ir but mm8≥− io rr

mm76.21,mm76.29 ==∴ io rr

16.29

567.0
Re

==
V

L
ρ

µ

0779.2
2 ==
bVC

Fh
Dρ

567.0== Lh cm

A B C D E F
1 X Y Z Total Constraint
2 Amount 1.5 1.5 3
3 Performance 1 1 1 6 6
4 Safety 1 1 0 3 3
5 X-Y 1 -1 0 0 0
6 Z-Y 0 -0.5 1 2.25 0
7 Cost 0.15 0.025 0.05 0.4125

Set target cell: E7
Equal to ❍ max ● min ❍ value of 0
By changing cells
B2:D2
Subject to constraints:
E3≥F3
E4≤F4
E5≥F5
E6≥F6

A B C D E F

1 X Y Z Total Constraint
2 Amount 0 0 0
3 Performance 1 1 1 0 6
4 Safety 1 1 0 0 3
5 X-Y 1 -1 0 0 0
6 Z-Y 0 -0.5 1 0 0
7 Cost 0.15 0.025 0.05 0

A B C D E F G
1 Z1 Z2 Z3 W total constraint
2 amount 4000 3500 0 500
3 amount X 1 1 0 0 7500 7500
4 amount Y 2.5 0 1 0 10000 10000
5 amount W 1 -1 -1 -1 0 0
6 profit 2500 -50 200 -300 9675000

Set target cell: F6
Equal to ● max ❍ min ❍ value of 0
By changing cells
B2:E2
Subject to constraints:
B2≥0
C2≥0
F3≤G3
F4≤G4
F5=G5

A B C D E F G
1 Z1 Z2 Z3 W total constraint
2 amount 0 0 0 0
3 amount X 1 1 0 0 0 7500
4 amount Y 2.5 0 1 0 0 10000
5 amount W 1 -1 -1 -1 0 0
6 profit 2500 -50 200 -300 0

Microsoft Excel 5.0c Sensitivity Report
Worksheet: [PROB1605.XLS]Sheet3
Report Created: 12/12/97 9:47

Changing Cells
Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease
B2 amount Product 1 150 0 30 0.833333333 2.5
C2 amount Product 2 125 0 30 1.666666667 1
D2 amount Product 3 175 0 35 35 5

Constraints
Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease
E3 material total 3000 0.625 3000 1E+30 1E+30
E4 time total 55 12.5 55 1E+30 1E+30
E5 storage total 450 26.25 450 1E+30 1E+30

A B C D E F
1 Product 1 Product 2 Product 3 total constraint
2 amount 150 125 175
3 material 5 4 10 3000 3000

4 time 0.05 0.1 0.2 55 55
5 storage 1 1 1 450 450
6 profit 30 30 35 14375

Set target cell: E6
Equal to ● max ❍ min ❍ value of 0
By changing cells
B2:D2
Subject to constraints:
E3≤F3
E4≤F4
E5≤F5

A B C D E F
1 Product 1 Product 2 Product 3 total constraint
2 amount 0 0 0
3 material 5 4 10 0 3000
4 time 0.05 0.1 0.2 0 55
5 storage 1 1 1 0 450
6 profit 30 30 35 0

Basis P x1 x2 x3 S1 S2 S3 Solution Intercept
P 1 -30 -30 -35 0 0 0 0

S1 0 5 4 10 1 0 0 3000 300
S2 0 0.05 0.1 0.2 0 1 0 55 275
S3 0 1 1 1 0 0 1 450 450

Basis P x1 x2 x3 S1 S2 S3 Solution Intercept
P 1 -21.25 -12.5 0 0 175 0 9625

S1 0 2.5 -1 0 1 -50 0 250 100
x3 0 0.25 0.5 1 0 5 0 275 1100
S3 0 0.75 0.5 0 0 -5 1 175 233.3333

Basis P x1 x2 x3 S1 S2 S3 Solution Intercept
P 1 0 -21 0 8.5 -250 0 11750
x1 0 1 -0.4 0 0.4 -20 0 100 -250
x3 0 0 0.6 1 -0.1 10 0 250 416.6667
S3 0 0 0.8 0 -0.3 10 1 100 125

Basis P x1 x2 x3 S1 S2 S3 Solution
P 1 0 0 0 0.625 12.5 26.25 14375
x1 0 1 0 0 0.25 -15 0.5 150
x3 0 0 0 1 0.125 2.5 -0.75 175
x2 0 0 1 0 -0.375 12.5 1.25 125

A VBA code to do this with the computer is

Sub Splines()
Dim i As Integer, n As Integer
Dim x(100) As Single, y(100) As Single, xu As Single, yu As Single
Dim xint(100) As Single
Dim dy As Single, d2y As Single
Sheets("Sheet1").Select
Range("a5").Select
n = ActiveCell.Row
Selection.End(xlDown).Select
n = ActiveCell.Row - n
Range("a5").Select
For i = 0 To n
 x(i) = ActiveCell.Value
 ActiveCell.Offset(0, 1).Select
 y(i) = ActiveCell.Value
 ActiveCell.Offset(1, -1).Select
Next i
Range("d5").Select
nint = ActiveCell.Row
Selection.End(xlDown).Select
nint = ActiveCell.Row - nint
Range("d5").Select
For i = 0 To nint
 xint(i) = ActiveCell.Value
 ActiveCell.Offset(1, 0).Select
Next i
Range("e5").Select
For i = 0 To nint
 Call Spline(x(), y(), n, xint(i), yu, dy, d2y)
 ActiveCell.Value = yu
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = dy
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = d2y
 ActiveCell.Offset(1, -2).Select
Next i
Range("a5").Select
End Sub
Sub Spline(x, y, n, xu, yu, dy, d2y)
Dim e(10) As Single, f(10) As Single, g(10) As Single, r(10) As Single, d2x(10) As Single
Call Tridiag(x, y, n, e, f, g, r)
Call Decomp(e(), f(), g(), n - 1)
Call Substit(e(), f(), g(), r(), n - 1, d2x())
Call Interpol(x, y, n, d2x(), xu, yu, dy, d2y)
End Sub
Sub Tridiag(x, y, n, e, f, g, r)
Dim i As Integer
f(1) = 2 * (x(2) - x(0))
g(1) = x(2) - x(1)
r(1) = 6 / (x(2) - x(1)) * (y(2) - y(1))
r(1) = r(1) + 6 / (x(1) - x(0)) * (y(0) - y(1))
For i = 2 To n - 2
 e(i) = x(i) - x(i - 1)
 f(i) = 2 * (x(i + 1) - x(i - 1))
 g(i) = x(i + 1) - x(i)
 r(i) = 6 / (x(i + 1) - x(i)) * (y(i + 1) - y(i))
 r(i) = r(i) + 6 / (x(i) - x(i - 1)) * (y(i - 1) - y(i))
Next i
e(n - 1) = x(n - 1) - x(n - 2)
f(n - 1) = 2 * (x(n) - x(n - 2))
r(n - 1) = 6 / (x(n) - x(n - 1)) * (y(n) - y(n - 1))
r(n - 1) = r(n - 1) + 6 / (x(n - 1) - x(n - 2)) * (y(n - 2) - y(n - 1))
End Sub
Sub Interpol(x, y, n, d2x, xu, yu, dy, d2y)
Dim i As Integer, flag As Integer
Dim c1 As Single, c2 As Single, c3 As Single, c4 As Single
Dim t1 As Single, t2 As Single, t3 As Single, t4 As Single
flag = 0
i = 1
Do
 If xu >= x(i - 1) And xu <= x(i) Then

 c1 = d2x(i - 1) / 6 / (x(i) - x(i - 1))
 c2 = d2x(i) / 6 / (x(i) - x(i - 1))
 c3 = y(i - 1) / (x(i) - x(i - 1)) - d2x(i - 1) * (x(i) - x(i - 1)) / 6
 c4 = y(i) / (x(i) - x(i - 1)) - d2x(i) * (x(i) - x(i - 1)) / 6
 t1 = c1 * (x(i) - xu) ^ 3
 t2 = c2 * (xu - x(i - 1)) ^ 3
 t3 = c3 * (x(i) - xu)
 t4 = c4 * (xu - x(i - 1))
 yu = t1 + t2 + t3 + t4
 t1 = -3 * c1 * (x(i) - xu) ^ 2
 t2 = 3 * c2 * (xu - x(i - 1)) ^ 2
 t3 = -c3
 t4 = c4
 dy = t1 + t2 + t3 + t4
 t1 = 6 * c1 * (x(i) - xu)
 t2 = 6 * c2 * (xu - x(i - 1))
 d2y = t1 + t2
 flag = 1
 Else
 i = i + 1
 End If
 If i = n + 1 Or flag = 1 Then Exit Do
Loop
If flag = 0 Then
 MsgBox "outside range"
 End
End If
End Sub
Sub Decomp(e, f, g, n)
Dim k As Integer
For k = 2 To n
 e(k) = e(k) / f(k - 1)
 f(k) = f(k) - e(k) * g(k - 1)
Next k
End Sub
Sub Substit(e, f, g, r, n, x)
Dim k As Integer
For k = 2 To n
 r(k) = r(k) - e(k) * r(k - 1)
Next k
x(n) = r(n) / f(n)
For k = n - 1 To 1 Step -1
 x(k) = (r(k) - g(k) * x(k + 1)) / f(k)
Next k
End Sub

20.11 The best fit equation can be determined by nonlinear regression as

][8766.0
][84.98][
F

FB
+

=

0

20

40

60

80

100

120

0 10 20 30 40 50 60

Disregarding the point (0, 0), The r2 can be computed as

St = 9902.274
Sr = 23.36405

9976.0
274.9902

364.23274.99022 =−=r

20.12 The Excel Solver can be used to develop a nonlinear regression to fit the parameters. The
result (along with a plot of –dA/dt calculated with the model versus the data estimates) are
shown below. Note that the 1:1 line is also displayed on the plot.

20.13 The Excel Solver can be used to develop a nonlinear regression to fit the parameters. The
result (along with a plot of the model versus the data estimates) are shown below. Note that
the 1:1 line is also displayed on the plot.

20.14 The standard errors can be computed via Eq. 17.9

2/ −
=

n
Ss r

xy

Thus, Model C seems best because its standard error is lower.

20.15 A plot of the natural log of cells versus time indicates two straight lines with a sharp break
at 2. Trendline can be used to fit each range separately with the exponential model as
shown in the second plot.

-3
-2
-1
0
1
2

0 2 4 6

y = 0.1000e1.2000x

R2 = 1.0000

y = 0.4953e0.4000x

R2 = 1.0000

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7

20.16 (This problem was designed by Theresa Good of Texas A&M.) The problem can be solved
with Microsoft Excel:

20.17
Plot the data using Excel:

+

Surface Area vs Weight

y = 0.4149x0.3799

R2 = 0.9711

2.05

2.1

2.15

2.2

2.25

2.3

2.35

60 70 80 90 100

Weight, kg

Su
rf

ac
e

A
re

a,
 s

qu
ar

ed
 m

et
er

s

A = 0.4149W0.3799 with R-squared = 0.9711. Therefore, a = 0.4149 and b = 0.3799. The
predicted surface area for a 95 kg human is approximately: A = 0.4149 (95) 0.3799 = 2.34 m2

20.18 The Excel Trend Line tool can be used to fit a power law to the data:

y = 65.768x0.7497

R2 = 0.9935

0

1000

2000

3000

4000

5000

6000

0 100 200 300

The logarithmic slope relating the mass and metabolism is 0.75.

20.19

20.20

20.21 The problem is set up as the following Excel Solver application. Notice that we have
assumed that the model consists of a constant plus two bell-shaped curves:

ππ

)(
2

)(
1

2
2
21

2
1

)(
axkaxk ekekcxf

−−−−
++=

The resulting solution is

Thus, the retina thickness is estimated as 0.31 – 0.25 = 0.06.

20.29 Clearly the linear model is not adequate. The second model can be fit with the Excel
Solver:

Notice that we have reexpressed the initial rates by multiplying them by 1×105. We did this
so that the sum of the squares of the residuals would not be miniscule. Sometimes this will
lead the Solver to conclude that it is at the minimum, even though the fit is poor. The
solution is:

Although the fit might appear to be OK, it is biased in that it underestimates the low values
and overestimates the high ones. The poorness of the fit is really obvious if we display the
results as a log-log plot:

Notice that this view illustrates that the model actually overpredicts the very lowest values.

The third and fourth models provide a means to rectify this problem. Because they raise [S]
to powers, they have more degrees of freedom to follow the underlying pattern of the data.
For example, the third model gives:

Finally, the cubic model results in a perfect fit:

Thus, the best fit is

][4.0

][104311.2 5

0 S
Sv

+
×=

−

20.49 This problem was solved using an Excel spreadsheet.

y = 4E-06x2.6363

R2 = 0.9997

0.0001

0.001

0.01
1 10 100

stress

cr
ee

p
ra

te

Series1
Power (Series1)

20.50 This problem was solved using an Excel spreadsheet.

y = 0.685x + 2.779
R2 = 0.9771

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6

s he a r s t ra i n ra t e

µ = 0.685
τy = 2.779 N/m2

r2 = 0.9771

20.51 This problem was solved using an Excel spreadsheet.

y = 0.7276x0.543

R2 = 0.9891

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140
s he ar s t rai n rat e

µ = 0.7276
n = 0.543

n 15
Model A Model B Model C

Sr 135 90 72
Number of model
parameters fit 2 3 4
sy/x 3.222517 2.738613 2.558409

CHAPTER 13

13.13 Because of multiple local minima and maxima, there is no really simple means to test
whether a single maximum occurs within an interval without actually performing a search.
However, if we assume that the function has one maximum and no minima within the
interval, a check can be included. Here is a VBA program to implement the Golden
section search algorithm for maximization and solve Example 13.1.

Option Explicit

Sub GoldMax()
Dim ier As Integer
Dim xlow As Double, xhigh As Double
Dim xopt As Double, fopt As Double
xlow = 0
xhigh = 4
Call GoldMx(xlow, xhigh, xopt, fopt, ier)
If ier = 0 Then
 MsgBox "xopt = " & xopt
 MsgBox "f(xopt) = " & fopt
Else
 MsgBox "Does not appear to be maximum in [xl, xu]"
End If
End Sub

Sub GoldMx(xlow, xhigh, xopt, fopt, ier)
Dim iter As Integer, maxit As Integer, ea As Double, es As Double
Dim xL As Double, xU As Double, d As Double, x1 As Double
Dim x2 As Double, f1 As Double, f2 As Double
Const R As Double = (5 ^ 0.5 - 1) / 2

ier = 0
maxit = 50
es = 0.001
xL = xlow
xU = xhigh
iter = 1
d = R * (xU - xL)
x1 = xL + d
x2 = xU - d
f1 = f(x1)
f2 = f(x2)
If f1 > f2 Then
 xopt = x1
 fopt = f1
Else
 xopt = x2
 fopt = f2
End If
If fopt > f(xL) And fopt > f(xU) Then
 Do
 d = R * d
 If f1 > f2 Then
 xL = x2
 x2 = x1
 x1 = xL + d
 f2 = f1
 f1 = f(x1)
 Else
 xU = x1
 x1 = x2
 x2 = xU - d
 f1 = f2
 f2 = f(x2)
 End If
 iter = iter + 1
 If f1 > f2 Then

 xopt = x1
 fopt = f1
 Else
 xopt = x2
 fopt = f2
 End If
 If xopt <> 0 Then ea = (1 - R) * Abs((xU - xL) / xopt) * 100
 If ea <= es Or iter >= maxit Then Exit Do
 Loop
Else
 ier = 1
End If

End Sub

Function f(x)
f = -(2 * Sin(x) - x ^ 2 / 10)
End Function

13.14 The easiest way to set up a maximization algorithm so that it can do minimization is the
realize that minimizing a function is the same as maximizing its negative. Therefore, the
following algorithm minimizes or maximizes depending on the value of a user input
variable, ind, where ind = -1 and 1 correspond to minimization and maximization,
respectively.

Option Explicit

Sub GoldMinMax()
Dim ind As Integer 'Minimization (ind = -1); Maximization (ind = 1)
Dim xlow As Double, xhigh As Double
Dim xopt As Double, fopt As Double
xlow = 0
xhigh = 4
Call GoldMnMx(xlow, xhigh, -1, xopt, fopt)
MsgBox "xopt = " & xopt
MsgBox "f(xopt) = " & fopt
End Sub

Sub GoldMnMx(xlow, xhigh, ind, xopt, fopt)
Dim iter As Integer, maxit As Integer, ea As Double, es As Double
Dim xL As Double, xU As Double, d As Double, x1 As Double
Dim x2 As Double, f1 As Double, f2 As Double
Const R As Double = (5 ^ 0.5 - 1) / 2

maxit = 50
es = 0.001
xL = xlow
xU = xhigh
iter = 1
d = R * (xU - xL)
x1 = xL + d
x2 = xU - d
f1 = f(ind, x1)
f2 = f(ind, x2)
If f1 > f2 Then
 xopt = x1
 fopt = f1
Else
 xopt = x2
 fopt = f2
End If

Do
 d = R * d
 If f1 > f2 Then

 xL = x2
 x2 = x1
 x1 = xL + d
 f2 = f1
 f1 = f(ind, x1)
 Else
 xU = x1
 x1 = x2
 x2 = xU - d
 f1 = f2
 f2 = f(ind, x2)
 End If
 iter = iter + 1
 If f1 > f2 Then
 xopt = x1
 fopt = f1
 Else
 xopt = x2
 fopt = f2
 End If
 If xopt <> 0 Then ea = (1 - R) * Abs((xU - xL) / xopt) * 100
 If ea <= es Or iter >= maxit Then Exit Do
Loop
fopt = ind * fopt
End Sub

Function f(ind, x)
f = ind * (1.1333 * x ^ 2 - 6.2667 * x + 1)
End Function

13.15 Because of multiple local minima and maxima, there is no really simple means to test
whether a single maximum occurs within an interval without actually performing a search.
However, if we assume that the function has one maximum and no minima within the
interval, a check can be included. Here is a VBA program to implement the Quadratic
Interpolation algorithm for maximization and solve Example 13.2.

Option Explicit

Sub QuadMax()
Dim ier As Integer
Dim xlow As Double, xhigh As Double
Dim xopt As Double, fopt As Double
xlow = 0
xhigh = 4
Call QuadMx(xlow, xhigh, xopt, fopt, ier)
If ier = 0 Then
 MsgBox "xopt = " & xopt
 MsgBox "f(xopt) = " & fopt
Else
 MsgBox "Does not appear to be maximum in [xl, xu]"
End If
End Sub

Sub QuadMx(xlow, xhigh, xopt, fopt, ier)
Dim iter As Integer, maxit As Integer, ea As Double, es As Double
Dim x0 As Double, x1 As Double, x2 As Double
Dim f0 As Double, f1 As Double, f2 As Double
Dim xoptOld As Double

ier = 0
maxit = 50
es = 0.01
x0 = xlow
x2 = xhigh
x1 = (x0 + x2) / 2

f0 = f(x0)
f1 = f(x1)
f2 = f(x2)
If f1 > f0 Or f1 > f2 Then
 xoptOld = x1
 Do
 xopt = f0 * (x1^2 - x2^2) + f1 * (x2^2 - x0^2) + f2 * (x0^2 - x1^2)
 xopt = xopt / (2*f0 * (x1 - x2) + 2*f1 * (x2 - x0) + 2*f2 * (x0 - x1))
 fopt = f(xopt)
 iter = iter + 1
 If xopt > x1 Then
 x0 = x1
 f0 = f1
 x1 = xopt
 f1 = fopt
 Else
 x2 = x1
 f2 = f1
 x1 = xopt
 f1 = fopt
 End If
 If xopt <> 0 Then ea = Abs((xopt - xoptOld) / xopt) * 100
 xoptOld = xopt
 If ea <= es Or iter >= maxit Then Exit Do
 Loop
Else
 ier = 1
End If
End Sub

Function f(x)
f = -(2 * Sin(x) - x ^ 2 / 10)
End Function

13.16 Here is a VBA program to implement the Newton-Raphson method for maximization.

Option Explicit

Sub NRMax()
Dim xguess As Double
Dim xopt As Double, fopt As Double
xguess = 2.5
Call NRMx(xguess, xopt, fopt)
MsgBox "xopt = " & xopt
MsgBox "f(xopt) = " & fopt
End Sub

Sub NRMx(xguess, xopt, fopt)
Dim iter As Integer, maxit As Integer, ea As Double, es As Double
Dim x0 As Double, x1 As Double, x2 As Double
Dim f0 As Double, f1 As Double, f2 As Double
Dim xoptOld As Double

maxit = 50
es = 0.01
Do
 xopt = xguess - df(xguess) / d2f(xguess)
 fopt = f(xopt)
 If xopt <> 0 Then ea = Abs((xopt - xguess) / xopt) * 100
 xguess = xopt
 If ea <= es Or iter >= maxit Then Exit Do
Loop
End Sub

Function f(x)
f = -(2 * Sin(x) - x ^ 2 / 10)

End Function

Function df(x)
df = 2 * Cos(x) - x / 5
End Function

Function d2f(x)
d2f = -2 * Sin(x) - 1 / 5
End Function

13.17 Here is a VBA program to implement the Newton-Raphson method for maximization.

() 23606.124
2

15
1 =−









 −=d

23606.32 11 =+= dx
76394.24 12 =−= dx

69808.4)(1 −=xf
55333.5)(2 −=xf

Uxnewisxxfxf 112)()(⇒<

() 763927.0223606.3
2

15
2 =−









 −=d

7639.22 21 =+= dx
472133.223606.3 22 =−= dx

55331.5)(1 −=xf
82656.4)(2 −=xf

221)()(xxfxf ⇒< is new Lx

() 4721.0472133.223606.3
2

15
3 =−









 −=d

9442.2472133.2 31 =+= dx
7639.223606.3 32 =−= dx

9353.4)(1 −=xf
55331.5)(2 −=xf

112)()(xxfxf ⇒< is new Ux

() 29175.0472133.29442.2
2

15
4 =−









 −=d

7638.2472133.2 41 =+= dx
6524.29442.2 42 =−= dx

55331.5)(1 −=xf
4082.5)(2 −=xf

∴ at time 76.2=t , minimum pressure is –5.55331

CHAPTER 14

14.8 Errata: p. 357; The initial value of the variable maxf must be set to some ridiculously
small value before the iterations are begun. Add the following line to the beginning of
the VBA code:

maxf = -999E9

The following code implements the random search algorithm in VBA:

Option Explicit
Sub RandSearch()

Dim n As Long
Dim xmin As Single, xmax As Single, ymin As Single, ymax As Single
Dim maxf As Single, maxx As Single, maxy As Single

xmin = -2
xmax = 2
ymin = -2
ymax = 2

n = InputBox("n=")
Call RndSrch(n, xmin, xmax, ymin, ymax, maxy, maxx, maxf)

MsgBox maxf
MsgBox maxx
MsgBox maxy

End Sub
Sub RndSrch(n, xmin, xmax, ymin, ymax, maxy, maxx, maxf)
Dim j As Long
Dim x As Single, y As Single, fn As Single
maxf = -999E9
For j = 1 To n
 x = xmin + (xmax - xmin) * Rnd
 y = ymin + (ymax - ymin) * Rnd
 fn = f(x, y)
 If fn > maxf Then
 maxf = fn
 maxx = x
 maxy = y
 End If
Next j
End Sub

Function f(x, y)
f = 3.5 * x + 2 * y + x ^ 2 - x ^ 4 - 2 * x * y - y ^ 2
End Function

14.9 The following code implements the grid search algorithm in VBA:

Option Explicit
Sub GridSearch()

Dim nx As Long, ny As Long
Dim xmin As Single, xmax As Single, ymin As Single, ymax As Single
Dim maxf As Single, maxx As Single, maxy As Single

xmin = -2
xmax = 2
ymin = -2
ymax = 2
nx = 1000
ny = 1000

Call GridSrch(nx, ny, xmin, xmax, ymin, ymax, maxy, maxx, maxf)

MsgBox maxf
MsgBox maxx
MsgBox maxy

End Sub
Sub GridSrch(nx, ny, xmin, xmax, ymin, ymax, maxy, maxx, maxf)
Dim i As Long, j As Long
Dim x As Single, y As Single, fn As Single
Dim xinc As Single, yinc As Single
xinc = (xmax - xmin) / nx
yinc = (ymax - ymin) / ny
maxf = -999000000000#
x = xmin
For i = 0 To nx
 y = ymin
 For j = 0 To ny
 fn = f(x, y)
 If fn > maxf Then
 maxf = fn
 maxx = x
 maxy = y
 End If
 y = y + yinc
 Next j
 x = x + xinc
Next i
End Sub

Function f(x, y)
f = y - x - 2 * x ^ 2 - 2 * x * y - y ^ 2
End Function

14.10

222 785),(xyyxyxf −−=

24)4(14)4)(2(101410 =−⇒−=
∂
∂ xxy
x
f

48)2(16)4(5165 22 =−⇒−=
∂
∂ yx
y
f

jif ˆ48ˆ24 +=∇

)482,244(, hhfh
y
fyh

x
fxf oo ++=








∂
∂+

∂
∂+

 = 222)244(7)482(8)482()244(5 hhhh +−+−++

16288029376138240)(23 +++= hhhxg

14.11

yxyxyxyxf 462),(223 ++−=

2)1(2)1(6)1)(1(6266 22 =+−⇒+−=
∂
∂ xyyx
x
f

24)1(6)1)(1(4464 3 =+−⇒+−=
∂
∂ yyx
x
f

jif ˆ2ˆ2 +=∇

)21,21()
2
2,

2
2(hhfh

y
fyh

x
fxf oo ++=++

)21(4)21()21)(21(6)21()21(2 223 hhhhhh ++++++−++=

186016016064)(2345 +++++= hhhhhxg

CHAPTER 15

15.1 (Note: Although it is not really clear from the problem statement, it should be assumed that each
unit of product is equivalent to a kg.)

(a) Define xa = amount of product A produced, and xb = amount of product B produced.
The objective function is to maximize profit,

P x xa b= +45 30

Subject to the following constraints

20 5 10000x xa b+ ≤ {raw materials}
0 05 015 40. .x xa b+ ≤ {production time}
x xa b+ ≤ 550 {storage}
x xa b, ≥ 0 {positivity}

(b) To solve graphically, the constraints can be reformulated as the following straight lines

x xb a= −2000 4 {raw materials}
x xb a= −266 667 0 3333. . {production time}
x xb a= −550 {storage}

The objective function can be reformulated as

x P xb a= −(/) .1 30 15

The constraint lines can be plotted on the xb-xa plane to define the feasible space. Then the
objective function line can be superimposed for various values of P until it reaches the
boundary. The result is P ≅ 23700 with xa ≅ 483 and xb ≅ 67. Notice also that material and
storage are the binding constraints and that there is some slack in the time constraint.

0

100

200

300

0 200 400 600

P = 15000

P = 5000

P = 23700

xb

xa

time

storage

m
aterial

optimum

(c) The simplex tableau for the problem can be set up and solved as

Basis P xa xb S1 S2 S3 Solution Intercept
P 1 -45 -30 0 0 0 0

material S1 0 20 5 1 0 0 10000 500
time S2 0 0.05 0.15 0 1 0 40 800
storage S3 0 1 1 0 0 1 550 550

Basis P xa xb S1 S2 S3 Solution Intercept
P 1 0 -18.75 2.25 0 0 22500

xa xa 0 1 0.25 0.05 0 0 500 2000
time S2 0 0 0.1375 -0 1 0 15 109.0909
storage S3 0 0 0.75 -0.05 0 1 50 66.66667

Basis P xa xb S1 S2 S3 Solution Intercept
P 1 0 0 1 0 25 23750

xa xa 0 1 0 0.067 0 -0.333 483.33333
time S2 0 0 0 0.007 1 -0.183 5.8333333
xb xb 0 0 1 -0.07 0 1.333 66.666667

(d) An Excel spreadsheet can be set up to solve the problem as

A B C D E
1 xA xB total constraint
2 amount 0 0
3 time 0.05 0.15 0 40
4 storage 1 1 0 550
5 raw material 20 5 0 10000
6 profit 45 30 0

The Solver can be called and set up as

Set target cell: D6
Equal to ● max ❍ min ❍ value of 0

By changing cells
B2:C2
Subject to constraints:
D3≤E3
D4≤E4
D5≤E5

The resulting solution is

A B C D E
1 xA xB total constraint
2 amount 483.3333 66.66667
3 time 0.05 0.15 34.16667 40
4 storage 1 1 550 550
5 raw material 20 5 10000 10000
6 profit 45 30 23750

In addition, a sensitivity report can be generated as

Microsoft Excel 5.0c Sensitivity Report
Worksheet: [PROB1501.XLS]Sheet2
Report Created: 12/8/97 17:06

Changing Cells
Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease
B2 amount xA 483.3333333 0 45 75 15
C2 amount xB 66.66666667 0 30 15 18.75

Constraints
Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease
D3 time 34.16666667 0 40 1E+30 5.833333333
D4 storage 550 25 550 31.81818182 1E+30
D5 raw material 10000 1 10000 1E+30 875

(e) The high shadow price for storage from the sensitivity analysis from (d) suggests that
increasing storage will result in the best increase in profit.

15.2 (a) The total LP formulation is given by

Maximize Z x x x= + +150 175 2501 2 3 {Maximize profit}

subject to

7 11 15 1541 2 3x x x+ + ≤ {Material constraint}
10 8 12 801 2 3x x x+ + ≤ {Time constraint}
x1 9≤ {“Regular” storage constraint}
x2 6≤ {“Premium” storage constraint}
x2 5≤ {“Supreme” storage constraint}

x x x1 2 3 0, , ≥ {Positivity constraints}

(b) The simplex tableau for the problem can be set up and solved as

Basis P x1 x2 x3 S1 S2 S3 S4 S5 Solution Intercept
P 1 -150 -175 -250 0 0 0 0 0 0
S1 0 7 11 15 1 0 0 0 0 154 10.2667
S2 0 10 8 12 0 1 0 0 0 80 6.66667
S3 0 1 0 0 0 0 1 0 0 9 ∞
S4 0 0 1 0 0 0 0 1 0 6 ∞
S5 0 0 0 1 0 0 0 0 1 5 5

Basis P x1 x2 x3 S1 S2 S3 S4 S5 Solution Intercept
P 1 -150 -175 0 0 0 0 0 250 1250
S1 0 7 11 0 1 0 0 0 -15 79 7.18182
S2 0 10 8 0 0 1 0 0 -12 20 2.5
S3 0 1 0 0 0 0 1 0 0 9 ∞
S4 0 0 1 0 0 0 0 1 0 6 6
x3 0 0 0 1 0 0 0 0 1 5 ∞

Basis P x1 x2 x3 S1 S2 S3 S4 S5 Solution Intercept
P 1 68.75 0 0 0 21.88 0 0 -12.5 1687.5
S1 0 -6.75 0 0 1 -1.375 0 0 1.5 51.5 34.3333
x2 0 1.25 1 0 0 0.125 0 0 -1.5 2.5 -1.66667
S3 0 1 0 0 0 0 1 0 0 9 ∞
S4 0 -1.25 0 0 0 -0.125 0 1 1.5 3.5 2.33333
x3 0 0 0 1 0 0 0 0 1 5 5

Basis P x1 x2 x3 S1 S2 S3 S4 S5 Solution
P 1 58.3333 0 0 0 20.83 0 8.33 0 1716.7
S1 0 -5.5 0 0 1 -1.25 0 -1 0 48
x2 0 0 1 0 0 0 0 1 0 6
S3 0 1 0 0 0 0 1 0 0 9
S5 0 -0.8333 0 0 0 -0.083 0 0.67 1 2.3333
x3 0 0.83333 0 1 0 0.083 0 -0.67 0 2.6667

(c) An Excel spreadsheet can be set up to solve the problem as

A B C D E F
1 regular premium supreme total constraint
2 amount 0 0 0
3 material 7 11 15 0 154
4 time 10 8 12 0 80
5 reg stor 1 0 0 0 9
6 prem stor 0 1 0 0 6
7 sup stor 0 0 1 0 5
8 profit 150 175 250 0

The Solver can be called and set up as

Set target cell: E8
Equal to ● max ❍ min ❍ value of 0

By changing cells
B2:D2
Subject to constraints:
E3≤F3
E4≤F4
E5≤F5
E6≤F6
E7≤F7
B2≥0
C2≥0
D2≥0

The resulting solution is

A B C D E F
1 regular premium supreme total constraint
2 amount 0 6 2.666667
3 material 7 11 15 106 154
4 time 10 8 12 80 80
5 reg stor 1 0 0 0 9
6 prem stor 0 1 0 6 6
7 sup stor 0 0 1 2.666667 5
8 profit 150 175 250 1716.667

In addition, a sensitivity report can be generated as

Microsoft Excel 5.0c Sensitivity Report
Worksheet: [PROB1502.XLS]Sheet4
Report Created: 12/12/97 9:53

Changing Cells
Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease
B2 amount regular 0 -58.33333333 150 58.33333333 1E+30
C2 amount premium 6 0 175 1E+30 8.333333333
D2 amount supreme 2.666666667 0 250 12.5 70

Constraints
Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease
E3 material total 106 0 154 1E+30 48
E4 time total 80 20.83333333 80 28 32
E5 reg stor total 0 0 9 1E+30 9
E6 prem stor total 6 8.333333333 6 4 3.5
E7 sup stor total 2.666666667 0 5 1E+30 2.333333333

(d) The high shadow price for time from the sensitivity analysis from (c) suggests that
increasing time will result in the best increase in profit.

(c) Using the Excel Solver

(c) Using the Excel Solver

15.11

Total surface area = 









+

4
2

2DDH ππ

Minimize
2

),(
2DDHHDf ππ +=

Constraints:

102
103

320
4

2

≤≤
≤≤

≥

H
D

HDπ

2
43.407

2

D
H

D
D
AH

=

−=
π

6.96cmD
8.41cmH

cm260when 2

=
=
≈A

15.12

Profit: 21 000,15000,13 xxz +=
Constraints: 1. 8000215.17 21 ≤+ xx

2. 240000500680 21 ≤+ xx
3. 4001 ≤x
4. 3502 ≤x
5,6. 0, 21 ≤xx

$5,810,000z

cars1.188x
cars2.224

1

2

=

=
=x

17.19 Here’s VBA code to implement linear regression:

Option Explicit
Sub Regres()
Dim n As Integer
Dim x(20) As Single, y(20) As Single, a1 As Single, a0 As Single
Dim syx As Single, r2 As Single
n = 7
x(1) = 1: x(2) = 2: x(3) = 3: x(4) = 4: x(5) = 5
x(6) = 6: x(7) = 7
y(1) = 0.5: y(2) = 2.5: y(3) = 2: y(4) = 4: y(5) = 3.5
y(6) = 6: y(7) = 5.5
Call Linreg(x(), y(), n, a1, a0, syx, r2)
MsgBox "slope= " & a1
MsgBox "intercept= " & a0
MsgBox "standard error= " & syx
MsgBox "coefficient of determination= " & r2
MsgBox "correlation coefficient= " & Sqr(r2)
End Sub
Sub Linreg(x, y, n, a1, a0, syx, r2)
Dim i As Integer
Dim sumx As Single, sumy As Single, sumxy As Single
Dim sumx2 As Single, st As Single, sr As Single
Dim xm As Single, ym As Single
sumx = 0
sumy = 0
sumxy = 0
sumx2 = 0
st = 0
sr = 0
For i = 1 To n
 sumx = sumx + x(i)
 sumy = sumy + y(i)
 sumxy = sumxy + x(i) * y(i)
 sumx2 = sumx2 + x(i) ^ 2
Next i
xm = sumx / n
ym = sumy / n
a1 = (n * sumxy - sumx * sumy) / (n * sumx2 - sumx * sumx)
a0 = ym - a1 * xm
For i = 1 To n
 st = st + (y(i) - ym) ^ 2
 sr = sr + (y(i) - a1 * x(i) - a0) ^ 2
Next i
syx = (sr / (n - 2)) ^ 0.5
r2 = (st - sr) / st
End Sub

17.20

log N log Stress
0 3.053463
1 3.024486
2 2.996949
3 2.903633
4 2.813581
5 2.749736
6 2.630428

n =7

∑ = 514.58ii yx

∑ = 912
ix

∑ = 21ix

∑ = 17228.20iy

8817.2

3

=

=

y

x

07153.0
)21()91(7

)17228.20)(21()514.58(7
)(2221 −=

−
−=

−

−
=

∑ ∑
∑∑

ii

iiii

xxn

yxyxn
a

09629.3)3)(07153.0(8817.21 =−−=−= xayao

Therefore, 0963.307153.0 +−= xy . Excel spreadsheet solution:

least squares fit

y = -0.0715x + 3.0963
R2 = 0.9617

2.6

2.7

2.8

2.9

3

3.1

3.2

0 1 2 3 4 5 6 7

log cycles

lo
g

st
re

ss

Series1
Linear (Series1)

17.21 This problem was solved using an Excel spreadsheet and TrendLine. Linear regression
gives

y = 0.0454x + 0.1077
R2 = 0.999

0

0.2

0.4

0.6

0 2 4 6 8 10

Forcing a zero intercept yields

y = 0.061x
R2 = 0.8387

0

0.2

0.4

0.6

0 2 4 6 8 10

One alternative that would force a zero intercept is a power fit

y = 0.1827x0.4069

R2 = 0.9024

0

0.2

0.4

0.6

0 2 4 6 8 10

However, this seems to represent a poor compromise since it misses the linear trend in the data.
An alternative approach would to assume that the physically-unrealistic non-zero intercept is an
artifact of the measurement method. Therefore, if the linear slope is valid, we might try y =
0.0454x.

17.22 This problem was solved using an Excel spreadsheet.

y = -3.7409x + 7.3503
R2 = 0.9908

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2 2.5 3

l o g t e mp

17.23 Using Excel, plot a linear fit which results in R2 = 0.9949. Using an exponential fit results
in R2 = 1, which implies a perfect fit. Therefore, use the exponential solution.

The amount of bacteria after 30 days:

6

0257.0

1067.145)30(

382.67

×=

=

y

ey x

Amount of Bacteria Present over a Specified Number of Days

y = 2.2529x + 65.721
R2 = 0.9949

0

20

40

60

80

100

120

0 5 10 15 20 25

Days

A
m

ou
nt

Amount of Bacteria Present over a Specified Number of Days

y = 67.382e0.0257x

R2 = 1

0

20

40

60

80

100

120

0 5 10 15 20 25

Days

A
m

ou
nt

18.14 Here is a VBA program to implement Newton interpolation. It is set up to solve Example
18.5:

Option Explicit

Sub Newt()

Dim n As Integer, i As Integer
Dim yint(10) As Single, x(10) As Single, y(10) As Single
Dim ea(10) As Single, xi As Single

Range("a5").Select
n = ActiveCell.Row
Selection.End(xlDown).Select
n = ActiveCell.Row - n
Range("a5").Select
For i = 0 To n
 x(i) = ActiveCell.Value
 ActiveCell.Offset(0, 1).Select
 y(i) = ActiveCell.Value
 ActiveCell.Offset(1, -1).Select
Next i
Range("e3").Select
xi = ActiveCell.Value

Call Newtint(x(), y(), n, xi, yint, ea)

Sheets("Sheet1").Select
Range("d5:f25").ClearContents
Range("d5").Select
For i = 0 To n
 ActiveCell.Value = i
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = yint(i)
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = ea(i)
 ActiveCell.Offset(1, -2).Select
Next i
Range("a5").Select

End Sub

Sub Newtint(x, y, n, xi, yint, ea)

Dim i As Integer, j As Integer, order As Integer
Dim fdd(10, 10) As Single, xterm As Single
Dim yint2 As Single

For i = 0 To n
 fdd(i, 0) = y(i)
Next i
For j = 1 To n
 For i = 0 To n - j
 fdd(i, j) = (fdd(i + 1, j - 1) - fdd(i, j - 1)) / (x(i + j) - x(i))
 Next i
Next j
xterm = 1#
yint(0) = fdd(0, 0)
For order = 1 To n
 xterm = xterm * (xi - x(order - 1))
 yint2 = yint(order - 1) + fdd(0, order) * xterm
 ea(order - 1) = yint2 - yint(order - 1)
 yint(order) = yint2
Next order

End Sub

18.15 Here is the solution when the program from Prob. 18.14 is run.

18.16 See solutions for Probs. 18.1 through 18.3.

18.17 A plot of the error can easily be added to the Excel application. The following shows the
solution for Prob. 18.4:

The following shows the solution for Prob. 18.5:

18.18
Option Explicit

Sub LagrInt()

Dim n As Integer, i As Integer, order As Integer
Dim x(10) As Single, y(10) As Single, xi As Single

Range("a5").Select
n = ActiveCell.Row
Selection.End(xlDown).Select
n = ActiveCell.Row - n
Range("a5").Select
For i = 0 To n
 x(i) = ActiveCell.Value
 ActiveCell.Offset(0, 1).Select
 y(i) = ActiveCell.Value
 ActiveCell.Offset(1, -1).Select
Next i
Range("e3").Select
order = ActiveCell.Value
ActiveCell.Offset(1, 0).Select
xi = ActiveCell.Value

ActiveCell.Offset(2, 0).Select
ActiveCell.Value = Lagrange(x(), y(), order, xi)

End Sub

Function Lagrange(x, y, order, xi)

Dim i As Integer, j As Integer
Dim sum As Single, prod As Single

sum = 0#
For i = 0 To order
 prod = y(i)
 For j = 0 To order
 If i <> j Then
 prod = prod * (xi - x(j)) / (x(i) - x(j))
 End If
 Next j
 sum = sum + prod
Next i
Lagrange = sum

End Function

Application to Example 18.7:

18.19 The following VBA program uses cubic interpolation for all intervals:

Option Explicit

Sub Newt()

Dim n As Integer, i As Integer
Dim yint(10) As Single, x(10) As Single, y(10) As Single
Dim ea(10) As Single, xi As Single

Range("a5").Select
n = ActiveCell.Row
Selection.End(xlDown).Select
n = ActiveCell.Row - n
Range("a5").Select
For i = 0 To n
 x(i) = ActiveCell.Value
 ActiveCell.Offset(0, 1).Select
 y(i) = ActiveCell.Value
 ActiveCell.Offset(1, -1).Select
Next i
Range("e4").Select
xi = ActiveCell.Value

ActiveCell.Offset(2, 0).Select
ActiveCell.Value = Interp(x(), y(), n, xi)
Range("a5").Select

End Sub

Function Interp(x, y, n, xx)

Dim ii As Integer

If xx < x(0) Or xx > x(n) Then
 Interp = "out of range"
Else
 If xx <= x(ii + 1) Then
 Interp = Lagrange(x, y, 0, 3, xx)
 ElseIf xx <= x(n - 1) Then
 For ii = 0 To n - 2
 If xx >= x(ii) And xx <= x(ii + 1) Then
 Interp = Lagrange(x, y, ii - 1, 3, xx)
 Exit For
 End If
 Next ii
 Else
 Interp = Lagrange(x, y, n - 3, 3, xx)
 End If
End If
End Function

Function Lagrange(x, y, i0, order, xi)

Dim i As Integer, j As Integer
Dim sum As Single, prod As Single

sum = 0#
For i = i0 To i0 + order
 prod = y(i)
 For j = i0 To i0 + order
 If i <> j Then
 prod = prod * (xi - x(j)) / (x(i) - x(j))
 End If
 Next j
 sum = sum + prod
Next i
Lagrange = sum

End Function

Application to evaluate ln(2.5):

18.20
Sub Splines()
Dim i As Integer, n As Integer

Dim x(7) As Single, y(7) As Single, xu As Single, yu As Single
Dim dy As Single, d2y As Single

Range("a5").Select
n = ActiveCell.Row
Selection.End(xlDown).Select
n = ActiveCell.Row - n
Range("a5").Select
For i = 0 To n
 x(i) = ActiveCell.Value
 ActiveCell.Offset(0, 1).Select
 y(i) = ActiveCell.Value
 ActiveCell.Offset(1, -1).Select
Next i
Range("e4").Select
xu = ActiveCell.Value

Call Spline(x(), y(), n, xu, yu, dy, d2y)

ActiveCell.Offset(2, 0).Select
ActiveCell.Value = yu

End Sub

Sub Spline(x, y, n, xu, yu, dy, d2y)
Dim e(10) As Single, f(10) As Single, g(10) As Single, r(10) As Single,
d2x(10) As Single

Call Tridiag(x, y, n, e, f, g, r)
Call Decomp(e(), f(), g(), n - 1)
Call Substit(e(), f(), g(), r(), n - 1, d2x())
Call Interpol(x, y, n, d2x(), xu, yu, dy, d2y)

End Sub

Sub Tridiag(x, y, n, e, f, g, r)
Dim i As Integer

f(1) = 2 * (x(2) - x(0))
g(1) = x(2) - x(1)
r(1) = 6 / (x(2) - x(1)) * (y(2) - y(1))
r(1) = r(1) + 6 / (x(1) - x(0)) * (y(0) - y(1))
For i = 2 To n - 2
 e(i) = x(i) - x(i - 1)
 f(i) = 2 * (x(i + 1) - x(i - 1))
 g(i) = x(i + 1) - x(i)
 r(i) = 6 / (x(i + 1) - x(i)) * (y(i + 1) - y(i))
 r(i) = r(i) + 6 / (x(i) - x(i - 1)) * (y(i - 1) - y(i))
Next i
e(n - 1) = x(n - 1) - x(n - 2)
f(n - 1) = 2 * (x(n) - x(n - 2))
r(n - 1) = 6 / (x(n) - x(n - 1)) * (y(n) - y(n - 1))
r(n - 1) = r(n - 1) + 6 / (x(n - 1) - x(n - 2)) * (y(n - 2) - y(n - 1))

End Sub

Sub Interpol(x, y, n, d2x, xu, yu, dy, d2y)
Dim i As Integer, flag As Integer
Dim c1 As Single, c2 As Single, c3 As Single, c4 As Single
Dim t1 As Single, t2 As Single, t3 As Single, t4 As Single

flag = 0
i = 1
Do
 If xu >= x(i - 1) And xu <= x(i) Then
 c1 = d2x(i - 1) / 6 / (x(i) - x(i - 1))
 c2 = d2x(i) / 6 / (x(i) - x(i - 1))

 c3 = y(i - 1) / (x(i) - x(i - 1)) - d2x(i - 1) * (x(i) - x(i - 1)) / 6
 c4 = y(i) / (x(i) - x(i - 1)) - d2x(i) * (x(i) - x(i - 1)) / 6
 t1 = c1 * (x(i) - xu) ^ 3
 t2 = c2 * (xu - x(i - 1)) ^ 3
 t3 = c3 * (x(i) - xu)
 t4 = c4 * (xu - x(i - 1))
 yu = t1 + t2 + t3 + t4
 t1 = -3 * c1 * (x(i) - xu) ^ 2
 t2 = 3 * c2 * (xu - x(i - 1)) ^ 2
 t3 = -c3
 t4 = c4
 dy = t1 + t2 + t3 + t4
 t1 = 6 * c1 * (x(i) - xu)
 t2 = 6 * c2 * (xu - x(i - 1))
 d2y = t1 + t2
 flag = 1
 Else
 i = i + 1
 End If
 If i = n + 1 Or flag = 1 Then Exit Do
Loop
If flag = 0 Then
 MsgBox "outside range"
 End
End If
End Sub

Sub Decomp(e, f, g, n)

Dim k As Integer
For k = 2 To n
 e(k) = e(k) / f(k - 1)
 f(k) = f(k) - e(k) * g(k - 1)
Next k

End Sub

Sub Substit(e, f, g, r, n, x)
Dim k As Integer

For k = 2 To n
 r(k) = r(k) - e(k) * r(k - 1)
Next k
x(n) = r(n) / f(n)
For k = n - 1 To 1 Step -1
 x(k) = (r(k) - g(k) * x(k + 1)) / f(k)
Next k

End Sub

18.21 The following shows the solution for Prob. 18.4:

The following shows the solution for Prob. 18.5:

18.22

Kkg
kJ

s

xfx

xxf

xxf

xx
xx
xfxfxfxf o

o

o
o


6487.6

6487.6)(,118.0

579.15789107.4)(

)11144.0(
11144.012547.0
5453.67664.65453.6)(

)()()()()(

1

1

1

1

1
1

=

==

+=

−







−
−+=

−
−
−+=

CHAPTER 19

19.1 The normal equations can be derived as

11 2 416183 2 018098
2 416183 6 004565 0 017037
2 018098 0 017037 4 995435

83 9
1543934
1081054

0

1

1

. .
. . .
. . .

.
.
.
























=













A
A
B

which can be solved for

A0 = 7.957538
A1 = -0.6278
B1 = -1.04853

The mean is 7.958 and the amplitude and the phase shift can be computed as

C1
2 2

1

0 6278 104853 1222

104853
0 6278

2 11 8 06

= − + − =

= −
−







+ = × =−

(.) (.) .

tan .
.

. .θ π
π

 radians 12 hrs hr

Thus, the final model is

f t t() . . cos (.)= + +





7 958 1222
2
24

8 06
π

The data and the fit are displayed below:

6

8

10

0 12 24

Note that the peak occurs at 24 − 8.06 = 15.96 hrs.

19.2 The normal equations can be derived as

1890 127 279 568187
0 5 1
0 1 5

350 265
381864

156 281

0

1

1

. . ,
.

.

−
−

−
























= −













A
A
B

which can be solved for

A0 = 195.2491
A1 = -73.0433
B1 = 16.64745

The mean is 195.25 and the amplitude and the phase shift can be computed as

C1
2 2

1

73 0433 16 6475 74 916

16 6475
730433

3366 192 8

= − + =

=
− −







+ = × =−

(.) (.) .

tan .
.

. .θ π
π

 radians 180 d d

Thus, the final model is

f t t() . . cos (.)= + +





195 25 74 916
2
360

192 8
π

The data and the fit are displayed below:

0

100

200

300

0 90 180 270 360

19.3 In the following equations, ω0 = 2π/T

() ()[] ()
sin cos

cos cos
ω ω ω ω

π
0

0 0 0 0 0 2 0 0
t dt

T

t

T T

T T∫ =
−

=
−

− =

() ()[] ()
cos sin

sin sin
ω ω ω ω

π
0

0 0 0 0 0 2 0 0
t dt

T

t

T T

T T∫ = = − =

()
()

sin
sin sin

2
0

0

0

0 0 0
2

2
4 2

4
4

0 0
1
2

ω
ω

ω
π

ωt dt

T

t t

T

T

T

T

T

∫ =

−












=
− − +

=

()
()

cos
sin sin

2
0

0

0

0 0 0
2

2
4 2

4
4

0 0
1
2

ω
ω

ω
π

ωt dt

T

t t

T

T

T

T

T

∫ =

+












=
+ − −

=

() () ()cos sin sin sinω ω ω

ω
π

ω

0 0
0

2
0

0 0

2

02
2

2
0 0

t t dt

T

t

T T

T T∫ =












= − =

19.4 a0 = 0

()

()
() ()

a
T

t k t dt

T k
k t t

k
k t

k T

T

T

T

= −

= − +












−∫
2

2 1

02

2

0
2 0

0
0

2

2

cos

cos sin

/

/

/

/

ω

ω
ω

ω
ω

()

()
() ()

b
T

t k t dt

T k
k t t

k
k t

k T

T

T

T

= −

= − −












−∫
2

2 1

02

2

0
2 0

0
0

2

2

sin

sin cos

/

/

/

/

ω

ω
ω

ω
ω

On the basis of these, all a’s = 0. For k = odd,

b
kk = 2
π

For k = even,

b
kk = − 2
π

Therefore, the series is

() () () ()f t t t t t() sin sin sin sin= − + − + + ⋅ ⋅ ⋅2 1 2 2
3

3 1
2

40 0 0 0π
ω

π
ω

π
ω

π
ω

The first 4 terms are plotted below along with the summation:

-1

0

1

-2 0 2

19.5 a0 = 0.5

() ()

()
()

() ()
()

()

a t k t dt t k t dt

k t

k

t k t

k

k t

k

t k t

k

k = − +





= − −












+ +




























−

−

∫ ∫2
2

1

1

0

0

1

2

1

0

2

0

1

cos cos

cos sin cos sin

π π

π

π

π

π

π

π

π

π

()
() = 2

k
k

π
π

2
1cos −

bk = 0

Substituting these coefficients into Eq. (19.17) gives

() () ()f t t t t() cos cos cos= − − − + ⋅ ⋅⋅1
2

12 12
9

3 12
25

5
2 2 2π

π
π

π
π

π

This function for the first 4 terms is displayed below:

-0.5

0

0.5

1

-2 -1 0 1 2

19.6

2 4

-0.7

0

0.7

2 4

π

19.7

-1.4

-0.7

0

0.7

2 4

2 4

π

19.8

-0.6

0

0.6

1.2

0 5 10

19.9

-0.4

0

0.4

4

4

π

19.10 Here’s a Fortran 90 code that implements the DFT. It is set up to solve Prob. 19.11.

 PROGRAM DFourier
 IMPLICIT NONE
 INTEGER i,N
 REAL f(0:127),re(0:127),im(0:127),omega,pi,t,Tp,dt
 pi=4.*atan(1.)
 N=32
 omega=2.*pi/N
 t=0.
 Tp=2.*pi
 dt=4.*Tp/N
 DO i=0,N-1
 f(i)=sin(t)
 if (f(i).LT.0.) f(i)=0.
 t=t+dt
 END DO
 CALL DFT(f,N,re,im,omega)
 OPEN (UNIT=1,FILE='Prob1911.dat',STATUS='unknown')
 DO i=0,N-1
 WRITE(1,*) i,f(i),re(i),im(i)
 END DO
 CLOSE(1)
 END

 SUBROUTINE DFT(f,N,re,im,omega)
 IMPLICIT NONE
 INTEGER k,nn,N
 REAL f(0:127),re(0:127),im(0:127),angle,omega
 DO k=0,N-1
 DO nn=0,N-1
 angle=k*omega*nn
 re(k)=re(k)+f(nn)*cos(angle)/N
 im(k)=im(k)-f(nn)*sin(angle)/N
 END DO
 END DO
 END

19.11 The results for the n = 32 case are displayed below:

index f(t) real imaginary
0 0 0.3018 0
1 0.7071 0 0
2 1 0 0
3 0.7071 0 0
4 0 0 -0.25
5 0 0 0
6 0 0 0
7 0 0 0
8 0 -0.125 0
9 0.7071 0 0

10 1 0 0
11 0.7071 0 0
12 0 0 0
13 0 0 0
14 0 0 0
15 0 0 0
16 0 -0.0518 0
17 0.7071 0 0
18 1 0 0
19 0.7071 0 0
20 0 0 0

21 0 0 0
22 0 0 0
23 0 0 0
24 0 -0.125 0
25 0.7071 0 0
26 1 0 0
27 0.7071 0 0
28 0 0 0.25
29 0 0 0
30 0 0 0
31 0 0 0

The runs for N = 32, 64 and 128 were performed with the following results obtained. (Note
that even though we used a slow PC, we had to call the function numerous times to obtain
measurable times. These times were then divided by the number of function calls to
determine the time per call shown below)

N time (s)
32 0.09
64 0.37
128 1.48

A power (log-log) model was fit (see plot below) to this data to yield log(time) = −4.08 +
2.02 log(N). Thus, the result verifies that the execution time ∝ N2.

0.01

0.1

1

10

10 100 1000

time

N

19.12 Here’s a Fortran 90 code that implements the FFT. It is set up to solve Prob. 19.13.

PROGRAM FFourier
IMPLICIT NONE
INTEGER i,N
REAL f(0:127),re(0:127),im(0:127),omega,pi,t,Tp,dt
pi=4.*ATAN(1.)
N=32
t=0.
Tp=2.*pi
dt=4.*Tp/N
DO i=0,N-1
 re(i)=sin(t)
 if (re(i).LT.0.) re(i)=0.
 f(i)=re(i)
 t=t+dt
END DO
CALL FFT(N,re,im)
DO i=0,N-1

 PRINT *, i,f(i),re(i),im(i)
END DO
CLOSE(1)
END

SUBROUTINE FFT (N, x, y)
IMPLICIT NONE
INTEGER :: i,j,N,m,N2,N1,k,l
REAL :: f(0:127),re(0:127),im(0:127),omega,pi,t,Tp,dt,xN,angle
REAL :: arg,c,s,xt,x(0:n),y(0:n),yt
xN=N
m = INT(LOG(xN) / LOG(2.))
pi = 4. * ATAN(1.)
N2 = N
DO k = 1, m
 N1 = N2
 N2 = N2 / 2
 angle = 0.
 arg = 2 * pi / N1
 DO j = 0, N2 - 1
 c = COS(angle)
 s = -SIN(angle)
 DO i = j, N - 1, N1
 l = i + N2
 xt = x(i) - x(l)
 x(i) = x(i) + x(l)
 yt = y(i) - y(l)
 y(i) = y(i) + y(l)
 x(l) = xt * c - yt * s
 y(l) = yt * c + xt * s
 END DO
 angle = (j + 1) * arg
 END DO
END DO
j = 0
DO i = 0, N - 2
 IF (i.LT.j) THEN
 xt = x(j)
 x(j) = x(i)
 x(i) = xt
 yt = y(j)
 y(j) = y(i)
 y(i) = yt
 END IF
 k = N / 2
 DO
 IF (k.GE.j+1) EXIT
 j = j - k
 k = k / 2
 END DO
 j = j + k
END DO
DO i = 0, N - 1
 x(i) = x(i) / N
 y(i) = y(i) / N
END DO
END

19.13 Note that the results for the n = 32 case should be the same as for the DFT as in the first
part of the solution of Prob. 19.11 as shown above. The runs for N = 32, 64 and 128 were
performed with the following results obtained. (Note that even though we used a slow PC,
we had to call the function numerous times to obtain measurable times. These times were
then divided by the number of function calls to determine the time per call shown below)

N time (s)

32 0.0135
64 0.031
128 0.068

A plot of time versus N log2N yielded a straight line (see plot below). Thus, the result
verifies that the execution time ∝ N log2N.

time

0

0.05

0 500 1000
N log2N

19.14 Using a similar approach to that described in Example 19.3, the Excel Chart Wizard and
the Trendline tool can be used to create the following fit:

y = 10.051x-0.5304

R2 = 0.9515

0

4

8

0 10 20

19.15 Using a similar approach to Example 19.4, the following spreadsheet can be set up:

T T^2 T^3 T^4 o
0 0 0 0 14.621
8 64 512 4096 11.843

16 256 4096 65536 9.87
24 576 13824 331776 8.418
32 1024 32768 1048576 7.305
40 1600 64000 2560000 6.413

The Data Analysis Toolpack can then be used to generate

SUMMARY OUTPUT
Regression Statistics

Multiple R 0.99999994

R Square 0.99999988
Adjusted R Square 0.99999939
Standard Error 0.00239377
Observations 6

ANOVA
df SS MS F Significance F

Regression 4 47.0093523 11.75234 2050962 0.0005237
Residual 1 5.7302E-06 5.73E-06
Total 5 47.009358

Coefficients Std Error t Stat P-value Lower 95% Upper 95%
Intercept 14.6208492 0.00238902 6120.018 0.000104 14.59049395 14.6512
X Variable 1 -0.4113267 0.0011012 -373.527 0.001704 -0.425318685 -0.39733
X Variable 2 0.0090115 0.00013149 68.53234 0.009289 0.007340736 0.010682
X Variable 3 -0.0001302 5.1867E-06 -25.1078 0.025342 -0.000196129 -6.4E-05
X Variable 4 8.4432E-07 6.4426E-08 13.10526 0.048483 2.57132E-08 1.66E-06

The polynomial along with the data can be plotted as

5

10

15

0 10 20 30 40

19.16 Linear regression can be implemented with the Data Analysis Toolpack in a fashion
similar to Example 19.4. After setting the data ranges, the confidence interval box should
be checked an set to 90% in order to generate 90% confidence intervals for the
coefficients. The result is

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.98465
R Square 0.969535

Adjusted R
Square

0.963442

Standard
Error

1.625489

Observations 7

ANOVA
df SS MS F Significance F

Regression 1 420.4375 420.4375 159.1232 5.56E-05

Residual 5 13.21107 2.642214
Total 6 433.6486

Coefficients Standard
Error

t Stat P-value Lower 95% Upper 95% Lower
90.0%

Upper
90.0%

Intercept 0.714286 1.373789 0.519938 0.625298 -2.81715 4.245717 -2.05397 3.482538
X Variable 1 1.9375 0.153594 12.6144 5.56E-05 1.542674 2.332326 1.628 2.247

The 90% confidence interval for the intercept is from -2.05 to 3.48, which encompasses
zero. The regression can be performed again, but with the “Constant is Zero” box checked
on the regression dialogue box. The result is

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.983813
R Square 0.967888

Adjusted R
Square

0.801221

Standard
Error

1.523448

Observations 7

ANOVA
df SS MS F Significance F

Regression 1 419.7232 419.7232 180.8456 4.07E-05
Residual 6 13.92536 2.320893

Total 7 433.6486

Coefficients Standard
Error

t Stat P-value Lower 95% Upper 95% Lower
90.0%

Upper
90.0%

Intercept 0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A
X Variable 1 2.008929 0.064377 31.20549 7.19E-08 1.851403 2.166455 1.883832 2.134026

The data along with both fits is shown below:

0

10

20

30

0 8 16

19.17 Using MATLAB:

>> x=[0 2 4 7 10 12];
>> y=[20 20 12 7 6 5.6];

>> xi=0:.25:12;
>> yi=spline(x,y,xi);
>> plot(x,y,'o',xi,yi)

>> spline(x,y,3)

ans =
 16.0669

19.18 Using Mathcad

i 0 63..

xi cos32. π. i
63
. sin102. π. i

63
. rnd1() .5

xi

2 π. i
63

.

0 5

0

c fft x()
j 0 20..

cj

j

0 10 20
0

2

4

19.19 As in Example 19.5, the data can be entered as

>> x=[0 2 4 7 10 12];
>> y=[20 20 12 7 6 5.6];

Then, a set of x values can be generated and the interp1 function used to generate the
linear interpolation

>> xi=0:.25:12;
>> yi=interp1(x,y,xi);

These points can then be plotted with

>> plot(x,y,'o',xi,yi)

0 2 4 6 8 10 12
5

10

15

20

The 5th-order interpolating polynomial and plot can be generated with

>> p=polyfit(x,y,5)
p =
 0.0021 -0.0712 0.8909 -4.5982 6.1695 20.0000
>> yi=polyval(p,xi);
>> plot(x,y,'o',xi,yi)

0 2 4 6 8 10 12
4

6

8

10

12

14

16

18

20

22

24

The cubic spline and plot can be generated with

>> yi=spline(x,y,xi);
>> plot(x,y,'o',xi,yi)

0 2 4 6 8 10 12
4

6

8

10

12

14

16

18

20

22

19.20 The following MATLAB session develops the fft along with a plot of the power spectral
density versus frequency.

>> t=0:63;
>> y=cos(3*2*pi*t/63)+sin(10*2*pi*t/63)+randn(size(t));
>> Y=fft(y,64);
>> Pyy=Y.*conj(Y)/64;
>> f=1000*(0:31)/64;
>> plot(f,Pyy(1:32))

0 100 200 300 400 500
0

5

10

15

20

25

19.21
PROGRAM Fitpoly
Use IMSL
Implicit NONE
Integer::ndeg,nobs,i,j
Parameter (ndeg=4, nobs=6)
Real:: b (ndeg + 1), sspoly(ndeg + 1), stat(10), X(nobs), y(nobs), ycalc
(nobs)
Data x/0,8,16,24,32,40/
Data y/14.621,11.843,9.870,8.418,7.305,6.413/
Call Rcurv(nobs, X, y, ndeg, b, sspoly, stat)
Print *, 'Fitted polynomial is'
Do i = 1,ndeg+1
 Print 10, i - 1, b(i)
End Do
Print *
Print 20, stat(5)
Print *
Print *, ' No. X Y YCALC'
Do i = 1,nobs
 ycalc = 0
 Do j = 1,ndeg+1
 ycalc(i) = ycalc(i) + b(j)*x(i)**(j-1)
 End Do
 Print 30, i, X(i), y(i), ycalc(i)
End Do
10 Format(1X, 'X^',I1,' TERM: ',F8.4)
20 Format(1X,'R^2: ',F8.3,'%')
30 Format(1X,I8,3(5X,F8.4))
End

Output:

Fitted polynomial is
 X^0 TERM: 14.6208
 X^1 TERM: -0.4113
 X^2 TERM: 0.0090
 X^3 TERM: -0.0001
 X^4 TERM: 0.0000

 R^2: 100.000%

 No. X Y YCALC
 1 0.0000 14.6210 14.6208
 2 8.0000 11.8430 11.8438
 3 16.0000 9.8700 9.8685
 4 24.0000 8.4180 8.4195
 5 32.0000 7.3050 7.3042

 6 40.0000 6.4130 6.4132

19.22 Using Excel, plot the data and use the trend line function to fit a polynomial of specific
order. Obtain the R – squared value to determine the goodness of fit.

Dye Concentraion vs. Time

y = 0.0008x3 - 0.0642x2 + 1.1609x - 2.6606
R2 = 0.8947

-1

0

1

2

3

4

5

0 5 10 15 20 25 30

Seconds after injection

D
ye

 C
on

ce
nt

ra
tio

n

Dye Concentraion vs. Time

y = 0.0003x4 - 0.0151x3 + 0.2092x2 - 0.5741x + 0.3917
R2 = 0.9838

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30

Seconds after injection

D
ye

 C
on

ce
nt

ra
tio

n

Use the 4th order polynomial:

3917.05741.02092.00151.00003.0 234 +−+−= ttttC

Integrate to find the area under the curve:

Area under curve:
33.225 mg sec/L

Cardiac output = min/9sec/15049.0
sec/225.33

5 LL
Lmg

mg ==

Cardiac output ≅ 9 L/min

19.23 Plug in 1=oA and ⇒= 4
1T

()
()







 −









−

= ∑
∞

= T
tn

n
Atf

n

o 122sin
12

4)(
1

π
π

Make table and plot in Excel ⇒
Shown on the following pages

225.333917.05741.02092.00151.00003.0
24

2

234 =+−+−∫ dttttt

time-> 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
n

1 0 0.317 0.613 0.872 1.075 1.211 1.271 1.251 1.152 0.981 0.748 0.469 0.160 -0.160 -0.469 -0.748 -0.981 -1.152 -1.251 -1.271 -1.211
2 0 0.291 0.424 0.327 0.053 -0.249 -0.417 -0.358 -0.106 0.204 0.404 0.384 0.156 -0.156 -0.384 -0.404 -0.204 0.106 0.358 0.417 0.249
3 0 0.242 0.150 -0.150 -0.242 0.000 0.242 0.150 -0.150 -0.242 0.000 0.242 0.150 -0.150 -0.242 0.000 0.242 0.150 -0.150 -0.242 0.000
4 0 0.179 -0.067 -0.154 0.125 0.107 -0.165 -0.045 0.182 -0.023 -0.173 0.088 0.140 -0.140 -0.088 0.173 0.023 -0.182 0.045 0.165 -0.107
5 0 0.109 -0.139 0.068 0.052 -0.135 0.119 -0.018 -0.097 0.141 -0.083 -0.035 0.128 -0.128 0.035 0.083 -0.141 0.097 0.018 -0.119 0.135
6 0 0.043 -0.079 0.105 -0.116 0.110 -0.089 0.056 -0.015 -0.029 0.068 -0.098 0.114 -0.114 0.098 -0.068 0.029 0.015 -0.056 0.089 -0.110

Sum 0 1.180 0.901 1.068 0.947 1.044 0.962 1.035 0.967 1.033 0.964 1.050 0.847 -0.847 -1.050 -0.964 -1.033 -0.967 -1.035 -0.962 -1.044

Sum of the First Six Terms of the Fourier Series

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time, t

f(
t)

21.22 Here is a VBA code to implement the multi-segment trapezoidal rule for equally-spaced
segments:

Option Explicit

Sub TestTrapm()

Dim n As Integer, i As Integer, ind As Integer
Dim label As String
Dim a As Single, b As Single, h As Single
Dim x(100) As Single, f(100) As Single

'Enter data and integration parameters
ind = InputBox("Functional (1) or Tabulated (2) data?")
a = InputBox("Lower bound = ")
b = InputBox("Upper bound = ")
n = InputBox("Number of segments = ")
h = (b - a) / n
If ind = 1 Then
 'generate data from function
 x(0) = a
 f(0) = fx(a)
 For i = 1 To n
 x(i) = x(i - 1) + h
 f(i) = fx(x(i))
 Next i
Else
 'user input table of data
 x(0) = a
 label = "f(" & x(0) & ") = "
 f(i) = Val(InputBox(label))
 For i = 1 To n
 x(i) = x(i - 1) + h
 label = "f(" & x(i) & ") = "
 f(i) = InputBox(label)
 Next i
End If

'invoke function to determine and display integral
MsgBox "The integral is " & Trapm(h, n, f())

End Sub

Function Trapm(h, n, f)
Dim i As Integer
Dim sum As Single
sum = f(0)
For i = 1 To n - 1
 sum = sum + 2 * f(i)
Next i
sum = sum + f(n)
Trapm = h * sum / 2
End Function

Function fx(x)
fx = 0.2 + 25 * x - 200 * x ^ 2 + 675 * x ^ 3 - 900 * x ^ 4 + 400 * x ^ 5
End Function

21.23 Here is a VBA code to implement the multi-segment Simpson’s 1/3 rule algorithm from
Fig. 21.13c:

Option Explicit

Sub TestSimpm()

Dim n As Integer, i As Integer
Dim label As String
Dim a As Single, b As Single, h As Single
Dim x(100) As Single, f(100) As Single

'Enter data and integration parameters
a = InputBox("Lower bound = ")
b = InputBox("Upper bound = ")
n = InputBox("Number of segments = ")
h = (b - a) / n

'generate data from function fx
x(0) = a
f(0) = fx(a)
For i = 1 To n
 x(i) = x(i - 1) + h
 f(i) = fx(x(i))
Next i

'invoke function Simp13m to determine and display integral
MsgBox "The integral is " & Simp13m(h, n, f())

End Sub

Function Simp13m(h, n, f)
Dim i As Integer
Dim sum As Single
sum = f(0)
For i = 1 To n - 2 Step 2
 sum = sum + 4 * f(i) + 2 * f(i + 1)
Next i
sum = sum + 4 * f(n - 1) + f(n)
Simp13m = h * sum / 3
End Function

Function fx(x)
fx = 0.2 + 25 * x - 200 * x ^ 2 + 675 * x ^ 3 - 900 * x ^ 4 + 400 * x ^ 5
End Function

21.24
Option Explicit

Sub TestUneven()

Dim n As Integer, i As Integer
Dim label As String
Dim a As Single, b As Single, h As Single
Dim x(100) As Single, f(100) As Single

'Enter data
Range("a6").Select
n = ActiveCell.Row
Selection.End(xlDown).Select
n = ActiveCell.Row - n

'Input data from sheet
Range("a6").Select

For i = 0 To n
 x(i) = ActiveCell.Value
 ActiveCell.Offset(0, 1).Select
 f(i) = ActiveCell.Value
 ActiveCell.Offset(1, -1).Select
Next i

'invoke function to determine and display integral

MsgBox "The integral is " & Uneven(n, x(), f())

End Sub

Function Uneven(n, x, f)
Dim k As Integer, j As Integer
Dim h As Single, sum As Single, hf As Single
h = x(1) - x(0)
k = 1
sum = 0#
For j = 1 To n
 hf = x(j + 1) - x(j)
 If Abs(h - hf) < 0.000001 Then
 If k = 3 Then
 sum = sum + Simp13(h, f(j - 3), f(j - 2), f(j - 1))
 k = k - 1
 Else
 k = k + 1
 End If
 Else
 If k = 1 Then
 sum = sum + Trap(h, f(j - 1), f(j))
 Else
 If k = 2 Then
 sum = sum + Simp13(h, f(j - 2), f(j - 1), f(j))
 Else
 sum = sum + Simp38(h, f(j - 3), f(j - 2), f(j - 1), f(j))
 End If
 k = 1
 End If
 End If
 h = hf
Next j
Uneven = sum
End Function

Function Trap(h, f0, f1)
Trap = h * (f0 + f1) / 2
End Function

Function Simp13(h, f0, f1, f2)
Simp13 = 2 * h * (f0 + 4 * f1 + f2) / 6
End Function

Function Simp38(h, f0, f1, f2, f3)
Simp38 = 3 * h * (f0 + 3 * (f1 + f2) + f3) / 8
End Function

Function fx(x)
fx = 0.2 + 25 * x - 200 * x ^ 2 + 675 * x ^ 3 - 900 * x ^ 4 + 400 * x ^ 5
End Function

21.25 (a)

]
2

)()(2)(
)[(

1
1
n

xfxfxf
abM

n
i nio ∑ −

=
++

−=

ft-lb 110.825

)11(2

15.22)1915.166.1335.114.975.74.635.56.415.4(24)011(

=








 +++++++++++−=M

(b) The 1/3 rule can only be applied to the first 10 panels. The trapezoidal rule can be
applied to the 11th

ft-lb 825.110
2

15.2219)1112(

]
)10(3

19)6.134.94.66.4(2)15.1635.1175.735.515.4(44
)[010(

=+−+

++++++++++
−=M

(c) The 3/8 rule can only be applied to the first 9 panels and the 1/3 rule applied to the last
2:

ft-lb 55.110]
6

15.22)19(415.16
)[911(]

8
15.16)6.1335.11(34.9

)[69(

]
8

4.9)75.74.6(335.5
)[36(]

8
35.5)6.415.4(34

)[03(

=
++

−+
+++

−+

+++
−+

+++
−=M

This result is exact because we’re integrating a quadratic. The results of (a) and (b) are not
exact because they include trapezoidal rule evaluations.

21.26
Divide the curve into sections according to dV changes and use appropriate rules.

583.2421

5.224)
2

207242
(1

75.930)242)312(3)326(3326(
8
3

33.675)326)333(4368(
3
1

591)
2

368420
(5.1

4321

4

3

2

1

=+++=

=
+

=

=+++=

=++=

=
+

=

IIIIW

I

I

I

I

Therefore, the work done is 2420 kJ.

21.27 (a) The trapezoidal rule yields 60.425.

(b) A parabola can be fit to the data to give

y = -0.11829x2 + 1.40701x + 3.36800
R2 = 0.60901

4

5

6

7

8

9

10

0 2 4 6 8 10 12

The parabola can be integrated and evaluated from 1 to 10 to give 60.565.

(c) A cubic can be fit to the data to give

y = -0.01672x3 + 0.16015x2 + 0.10764x + 4.81478
R2 = 0.67487

4

5

6

7

8

9

10

0 2 4 6 8 10 12

The cubic can be integrated and evaluated from 1 to 10 to give 60.195.

Although it’s not asked in the problem statement, the algorithm from Fig. 21.15b can also
be applied (see Solution to Prob. 20.24 for code) to yield 60.258.

21.28 (a) The following 2 equations must hold:

raQeaf =)((1)
rbQebf =)((2)

Take the natural log of Eq. 1 and solve for

raafQ −=)(lnln (3)

or

raeafQ −=)((4)

Substituting (3) into the natural log of Eq. 2 gives

rbraafbf +−=)(ln)(ln (5)

and solve for

()
ba
bfafr

−
=)(/)(ln (6)

These results can be verified for the case where Q = 3 and r = −0.5. If a = 2 and b = 4, f(a)
= 1.1036 and f(b) = 0.406. Substituting these values into Eqs. 6 and 4 gives

5.0
42

)406.0/0136.1ln(−=
−

=r

31036.1 2)5.0()2)(5.0()1036.1ln(=== −−−− eeQ

(b)

()rarbb

a
rx ee

r
QdxQeI −== ∫

Substituting Eq. 4

() ()1)()()(−=−= −
−

abrrarb
ra

e
r
afee

r
eafI

Substituting Eq. 6

()
()













−

−

=
−

− 1
)(/)(ln

)()()(/)(ln ab
ba

bfaf

e

ba
bfaf

afI

Simplifying

()
())(/)(ln

)()()(
afbf
afbfabI −−=

This result can be verified for the case where Q = 3 and r = −0.5. If a = 2 and b = 4, f(a) =
1.1036 and f(b) = 0.406. Substituting these values into the integral equation gives

()
() 9353.1

1036.1/406.0ln
1036.1406.0)24(=−−=I

which matches the analytical integral

() 9353.1
5.0

3)2(5.0)4(5.0 =−
−

== −− eeI

22.11
Option Explicit

Sub RhombTest()
Dim maxit As Integer
Dim a As Single, b As Single, es As Single
a = 0
b = 0.8
maxit = 3
es = 0.001
MsgBox Rhomberg(a, b, maxit, es)
End Sub

Function Rhomberg(a, b, maxit, es)
Dim n As Integer, j As Integer, k As Integer, iter As Integer
Dim i(10, 10) As Single, ea As Single
n = 1
i(1, 1) = TrapEq(n, a, b)
iter = 0
Do
 iter = iter + 1
 n = 2 ^ iter
 i(iter + 1, 1) = TrapEq(n, a, b)
 For k = 2 To iter + 1
 j = 2 + iter - k
 i(j, k) = (4 ^ (k - 1) * i(j + 1, k - 1) - i(j, k - 1)) / (4 ^ (k - 1)
- 1)
 Next k
 ea = Abs((i(1, iter + 1) - i(1, iter)) / i(1, iter + 1)) * 100
 If (iter >= maxit Or ea <= es) Then Exit Do
Loop
Rhomberg = i(1, iter + 1)
End Function

Function TrapEq(n, a, b)
Dim i As Integer
Dim h As Single, x As Single, sum As Single
h = (b - a) / n
x = a
sum = f(x)
For i = 1 To n - 1
 x = x + h
 sum = sum + 2 * f(x)
Next i
sum = sum + f(b)

TrapEq = (b - a) * sum / (2 * n)
End Function

Function f(x)
f = 0.2 + 25 * x - 200 * x ^ 2 + 675 * x ^ 3 - 900 * x ^ 4 + 400 * x ^ 5
End Function

22.12
Option Explicit

Sub GaussQuadTest()
Dim i As Integer, j As Integer, k As Integer
Dim a As Single, b As Single, a0 As Single, a1 As Single, sum As Single
Dim c(11) As Single, x(11) As Single, j0(5) As Single, j1(5) As Single

'set constants
c(1) = 1#: c(2) = 0.888888889: c(3) = 0.555555556: c(4) = 0.652145155
c(5) = 0.347854845: c(6) = 0.568888889: c(7) = 0.478628671: c(8) =
0.236926885
c(9) = 0.467913935: c(10) = 0.360761573: c(11) = 0.171324492
x(1) = 0.577350269: x(2) = 0: x(3) = 0.774596669: x(4) = 0.339981044
x(5) = 0.861136312: x(6) = 0: x(7) = 0.53846931: x(8) = 0.906179846
x(9) = 0.238619186: x(10) = 0.661209386: x(11) = 0.932469514
j0(1) = 1: j0(2) = 3: j0(3) = 4: j0(4) = 7: j0(5) = 9
j1(1) = 1: j1(2) = 3: j1(3) = 5: j1(4) = 8: j1(5) = 11

a = 0
b = 0.8
Sheets("Sheet1").Select
Range("a1").Select
For i = 1 To 5
 ActiveCell.Value = GaussQuad(i, a, b, c(), x(), j0(), j1())
 ActiveCell.Offset(1, 0).Select
Next i
End Sub

Function GaussQuad(n, a, b, c, x, j0, j1)

Dim k As Integer, j As Integer
Dim a0 As Single, a1 As Single
Dim sum As Single

a0 = (b + a) / 2
a1 = (b - a) / 2
sum = 0
If Int(n / 2) - n / 2# = 0 Then
 k = (n - 1) * 2
 sum = sum + c(k) * a1 * f(fc(x(k), a0, a1))
End If
For j = j0(n) To j1(n)
 sum = sum + c(j) * a1 * f(fc(-x(j), a0, a1))
 sum = sum + c(j) * a1 * f(fc(x(j), a0, a1))
Next j
GaussQuad = sum
End Function

Function fc(xd, a0, a1)
fc = a0 + a1 * xd
End Function

Function f(x)
f = 0.2 + 25 * x - 200 * x ^ 2 + 675 * x ^ 3 - 900 * x ^ 4 + 400 * x ^ 5
End Function

22.13
See solutions for Probs. 22.1, 22.2 and 22.3 for answers

22.14
See solutions for Probs. 22.4, 22.5 and 22.6 for answers

22.15
Option Explicit

Sub TestMidPoint()

Dim i As Integer, j As Integer, d As Integer
Dim a As Single, b As Single, h As Single, x As Single
Dim sum As Single, ea As Single, es As Single
Dim integral As Single, integralold As Single

a = -0.5
b = 0
es = 0.01

Range("a5").Select
Sheets("Sheet1").Range("a5:d25").ClearContents
Do
 integralold = integral
 d = 3 ^ i
 h = (b - a) / d
 x = a - h / 2
 sum = 0
 ActiveCell.Value = d
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = h
 ActiveCell.Offset(0, 1).Select
 For j = 1 To d
 x = x + h
 sum = sum + f(x)
 Next j
 integral = sum * h
 i = i + 1
 ActiveCell.Value = integral
 ActiveCell.Offset(0, 1).Select
 ea = Abs((integral - integralold) / integral) * 100
 ActiveCell.Value = ea
 ActiveCell.Offset(1, -3).Select
 If ea < es Then Exit Do
Loop

End Sub

Function f(x)
f = 1 / x ^ 2 * Exp(-1 / (2 * x ^ 2))
End Function

23.10
Option Explicit

Sub RhombTest()
Dim maxit As Integer
Dim a As Single, b As Single, es As Single
Dim x As Single
x = 0.5
maxit = 3
es = 0.001
MsgBox RhomDiff(x, maxit, es)
End Sub

Function RhomDiff(x, maxit, es)
Dim n As Integer, j As Integer, k As Integer, iter As Integer
Dim i(10, 10) As Single, ea As Single, del As Single, a As Single, b As Single
n = 1
i(1, 1) = DyDx(x, n)
iter = 0

Do
 iter = iter + 1
 n = 2 ^ iter
 i(iter + 1, 1) = DyDx(x, n)
 For k = 2 To iter + 1
 j = 2 + iter - k
 i(j, k) = (4 ^ (k - 1) * i(j + 1, k - 1) - i(j, k - 1)) / (4 ^ (k - 1) - 1)
 Next k
 ea = Abs((i(1, iter + 1) - i(1, iter)) / i(1, iter + 1)) * 100
 If (iter >= maxit Or ea <= es) Then Exit Do
Loop
RhomDiff = i(1, iter + 1)
End Function

Function DyDx(x, n)
Dim a As Single, b As Single
a = x - x / n
b = x + x / n
DyDx = (f(b) - f(a)) / (b - a)
End Function

Function f(x)
f = -0.1 * x ^ 4 - 0.15 * x ^ 3 - 0.5 * x ^ 2 - 0.25 * x + 1.2
End Function

23.11 The following program implements Eq. 23.9.

Option Explicit
Sub TestDerivUnequal()
Dim n As Integer, i As Integer
Dim x(100) As Single, y(100) As Single, dy(100) As Single
Range("a5").Select
n = ActiveCell.Row
Selection.End(xlDown).Select
n = ActiveCell.Row - n
Range("a5").Select
For i = 0 To n
 x(i) = ActiveCell.Value
 ActiveCell.Offset(0, 1).Select
 y(i) = ActiveCell.Value

 ActiveCell.Offset(1, -1).Select
Next i
For i = 0 To n
 dy(i) = DerivUnequal(x(), y(), n, x(i))
Next i

Range("c5").Select
For i = 0 To n
 ActiveCell.Value = dy(i)
 ActiveCell.Offset(1, 0).Select
Next i
End Sub
Function DerivUnequal(x, y, n, xx)
Dim ii As Integer
If xx < x(0) Or xx > x(n) Then
 DerivUnequal = "out of range"
Else
 If xx < x(1) Then
 DerivUnequal = DyDx(xx, x(0), x(1), x(2), y(0), y(1), y(2))
 ElseIf xx > x(n - 1) Then
 DerivUnequal = DyDx(xx, x(n - 2), x(n - 1), x(n), y(n - 2), y(n - 1),
y(n))
 Else
 For ii = 1 To n - 2
 If xx >= x(ii) And xx <= x(ii + 1) Then
 If xx - x(ii - 1) < x(ii) - xx Then
 'If the unknown is closer to the lower end of the range,
 'x(ii) will be chosen as the middle point
 DerivUnequal = DyDx(xx, x(ii - 1), x(ii), x(ii + 1), y(ii - 1),
y(ii), y(ii + 1))
 Else
 'Otherwise, if the unknown is closer to the upper end,
 'x(ii+1) will be chosen as the middle point
 DerivUnequal = DyDx(xx, x(ii), x(ii + 1), x(ii + 2), y(ii), y(ii
+ 1), y(ii + 2))
 End If
 Exit For
 End If
 Next ii
 End If
End If
End Function
Function DyDx(x, x0, x1, x2, y0, y1, y2)
DyDx = y0 * (2 * x - x1 - x2) / (x0 - x1) / (x0 - x2) _
 + y1 * (2 * x - x0 - x2) / (x1 - x0) / (x1 - x2) _
 + y2 * (2 * x - x0 - x1) / (x2 - x0) / (x2 - x1)
End Function

The result is

An even more elegant approach is to put cubic splines through the data (recall Sec. 20.2
and the solution for Prob. 20.10) to evaluate the derivatives.

23.12
(a) Create the following M function:

function y=f(x)
y=9.8*68.1/12.5*(1-exp(-12.5/68.1*x));

Then implement the following MATLAB session:

>> Q=quad('f',0,10)
Q =
 289.4351

(b)

()∫ −−=
t tmc dte

c
gmtd

0
)/(1)(

t
tmce

c
m

t
c
gm

td
0

)/()(



 += −

4351.289
5.12
1.68

0
5.12
1.68

10
5.12

)1.68(8.9
)(

10

0

10)1.68/5.12(=



 −−+= −etd

(c) Create the following M function:

>> function y=f(x)

>> y=9.8*68.1/12.5*(1-exp(-12.5/68.1*x));

Then implement the following MATLAB session:

>> x=[9.99 10.01]
>> y=f(x)
>> d=diff(y)./diff(x)
d =
 1.5634

(d)

()tmce
dt
d

c
gmta)/(1)(−−=

tmcgeta)/()(−=

56337.18.9)(10)1.68/5.12(−== −eta

23.13 (a) Create the following M function:

function y=fn(x)
y=1/sqrt(2*pi)*exp(-(x.^2)/2);

Then implement the following MATLAB session:

>> x=-2:.1:2;
>> y=fn(x);
>> Q=quad('fn',-1,1)
Q =
 0.6827
>> Q=quad('fn',-2,2)
Q =
 0.9545

Thus, about 68.3% of the area under the curve falls between –1 and 1 and about 95.45%
falls between –2 and 2.

(b)

>> x=-2:.1:2
>> y=fn(x)
>> d=diff(y)./diff(x)
>> x=-1.95:.1:1.95
>> d2=diff(d)./diff(x)
>> x=-1.9:.1:1.9
>> plot(x,d2,'o')

Thus, inflection points (d2y/dx2 = 0) occur at –1 and 1.

23.14 (a) Create the following M function:

function y=fn(x)
y=1/sqrt(2*pi)*exp(-(x.^2)/2);

Then implement the following MATLAB session:

>> x=-2:.5:2;
>> y=fn(x);
>> Q=quad('fn',-1,1)
Q =
 0.6827
>> Q=quad('fn',-2,2)
Q =
 0.9545

Thus, about 68.3% of the area under the curve falls between –1 and 1 and about 95.45%
falls between –2 and 2.

(b)

>> d=diff(y)./diff(x);
>> x=-1.75:.5:1.75;
>> d2=diff(d)./diff(x);
>> x=-1.5:.5:1.5;
>> plot(x,d2,'o')

Thus, inflection points (d2y/dx2 = 0) occur at –1 and 1.

23.15
Program Integrate
Use imsl
Implicit None
Integer::irule=1
Real::a=-1.,b=1,errabs=0.0,errrel=0.001
Real::errest,res,f
External f
Call QDAG(f,a,b,errabs,errrel,irule,res,errest)
Print '('' Computed = '',F8.4)',res
Print '('' Error estimate ='',1PE10.3)',errest
End Program
Function f(x)
Implicit None
Real:: x , f
Real::pi
Parameter(pi=3.1415927)
f=1/sqrt(2*pi)*exp(-x**2/2)
End Function
Answers:
x = -1 to 1: Computed = 0.6827 Error estimate = 4.069E-06
x = -2 to 2: Computed = 0.9545 Error estimate = 7.975E-06
x = -3 to 3: Computed = 0.9973 Error estimate = 5.944E-06

23.16 MATLAB Script:

% Prob2316 Integration program
a=0;
b=pi/2;
integral=quad('ff',a,b)
end

function y=ff(x);
y=sin(sin(x));
>> prob2316
integral =
 0.8932

23.17 MATLAB Script:

%Numerical Integration of sin(t)/t = function sint(t)
%Limits: a=0, b=2pi
%Using the "quad" and "quadl" function for numerical integration
%Plot of function
t=0.01:0.01:2*pi;
y=ff2(t);
plot(t,y); grid
%Integration
format long
a=0.01;
b=2*pi;
Iquad=quad('ff2',a,b)
Iquadl=quadl('ff2',a,b)
function y=ff2(t);
y=sin(t)./t;

MATLAB execution:

>> prob2317
Iquad =
 1.40815164305082

Iquadl =
 1.40815163168846

23.18
%Centered Finite Difference First & Second Derivatives of Order O(dx^2)
%Using diff(y)

dx=0.5;
y=[1.4 2.1 3.3 4.7 7.1 6.4 8.8 7.2 8.9 10.7 9.8];
dyf=diff(y);

% First Derivative Centered FD using diff
n=length(y);
for i=1:n-2

dydxc(i)=(dyf(i+1)+dyf(i))/(2*dx);
end

%Second Derivative Centered FD using diff
dy2dx2c=diff(dyf)/(dx*dx);

fprintf('first derivative \n'); fprintf('%f\n', dydxc)
fprintf('second derivative \n'); fprintf('%f\n', dy2dx2c)

first derivative
1.900000
2.600000
3.800000
1.700000
1.700000
0.800000
0.100000
3.500000
0.900000
second derivative
2.000000
0.800000
4.000000
-12.400000
12.400000
-16.000000
13.200000
0.400000
-10.800000

23.19
% Finite Difference Approximation of slope
% For f(x)=exp(-x)-x
% f'(x)=-exp(-x)-1
% Centered diff. df/dx=(f(i+1)-f(i-1))/2dx + O(dx^2)
% Fwd. diff. df/dx=(-f(i+2)+4f(i+1)-3f(i))/2dx + O(dx^2)
% Bkwd. diff. df/dx=(3f(i)-4f(i-1)+f(i-2))/2dx + O(dx^2)

x=2;
fx=exp(-x)-x;
dfdx2=-exp(-x)-1;

%approximation
dx=0.5:-0.01:.01;
for i=1:length(dx)

%x-values at i+-dx and +-2dx
xp(i)=x+dx(i);
x2p(i)=x+2*dx(i);
xn(i)=x-dx(i);
x2n(i)=x-2*dx(i);

%f(x)-values at i+-dx and +-2dx
fp(i)=exp(-xp(i))-xp(i);
f2p(i)=exp(-x2p(i))-x2p(i);
fn(i)=exp(-xn(i))-xn(i);
f2n(i)=exp(-x2n(i))-x2n(i);

%Finite Diff. Approximations
Cdfdx(i)=(fp(i)-fn(i))/(2*dx(i));

 Fdfdx(i)=(-f2p(i)+4*fp(i)-3*fx)/(2*dx(i));
Bdfdx(i)=(3*fx-4*fn(i)+f2n(i))/(2*dx(i));

end
dx0=0;
plot(dx,Fdfdx,'--',dx,Bdfdx,'-.',dx,Cdfdx,'-',dx0,dfdx2,'*')

 grid
title('Forward, Backward, and Centered Finite Difference approximation - 2nd

Order Correct')
xlabel('Delta x')
ylabel('df/dx')
gtext('Centered'); gtext('Forward'); gtext('Backward')

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-1.145

-1.14

-1.135

-1.13

-1.125

-1.12

-1.115

-1.11
Forward, B ac kward, and Centered F inite Difference approx im ation - 2nd Order Correc t

Delta x

d
f/

d
x

Centered

Forward

B ac kward

23.20

23.21
a)

2
22

11
2

2

11

/6.0
1

1.5)5.6(23.7)()(2)(
)(

/1.1
2

1.53.7
2

)()()(

sm
h

txtxtx
tx

dt
xda

sm
h
txtxtx

dt
dxv

iii
i

ii
i

−=+−=
+−

=′′==

=−=−=′==

−+

−+

b)

2
22

123

12

/3.0
1

)3.6(2)3.7(5)8(44.8)(2)(5)(4)(

/85.0
2

)5.6(3)3.7(48
2

)(3)(4)(

sm
h

txtxtxtxa

sm
h

txtxtxv

iiii

iii

−=
+−+−

=
+−+−

=

=−+−=−+−=

+++

++

c)

2
22

321

21

/7.0
1

8.1)4.3(4)1.5(5)5.6(2)()(4)(5)(2

/25.1
2

4.3)1.5(4)5.6(3
2

)()(4)(3

sm
h

txtxtxtx
a

sm
h

txtxtxv

iiii

iii

−=
−+−

=
−+−

=

=+−=+−=

−−−

−−

23.22

015.0
2

70.067.0
2

)()(11 −=−=−== −+
h
tt

dt
d ii θθθθ rad/s

235
2

55606030
2

)()(11 =−=−== −+
h
trtr

dt
drr ii ft/s

01.0
)1(

70.0)68.0(267.0)()(2)(
22

11
2

2
=+−=+−== −+

h
ttt

dt
d iii θθθθθ rad/s2

10
)1(

5560)5800(26030)()(2)(
22

11
2

2
−=+−=+−== −+

h
trtrtr

dt
rdr iii ft/s2

θeev r
 87235 −=

θeea r
 95.50695.8 +−=

23.23 Use the same program as was developed in the solution of Prob. 23.11

23.24

24.9

24.10
Time After Injection (sec) Semilog Dye Concentration Constant Product

9 0.11 1 0.11
9.5 0.14 2 0.28
10 0.18 2 0.36

10.5 0.25 2 0.5
11 0.4 2 0.8

11.5 0.7 2 1.4
12 1.4 2 2.8

12.5 2.4 2 4.8
13 4 2 8

13.5 5.5 2 11
14 6.85 2 13.7

14.5 8 2 16

15 9 2 18
15.5 9.35 2 18.7
16 9.2 2 18.4

16.5 8.7 2 17.4
17 7.95 2 15.9

17.5 7 2 14
18 5.95 2 11.9

18.5 4.85 2 9.7
19 4.1 2 8.2

19.5 3.5 2 7
20 3 2 6

20.5 2.55 2 5.1
21 2.2 2 4.4

21.5 1.8 2 3.6
22 1.5 2 3

22.5 1.3 2 2.6
23 1.1 2 2.2

23.5 0.9 2 1.8
24 0.8 2 1.6

24.5 0.64 2 1.28
25 0.55 2 1.1

25.5 0.47 2 0.94
26 0.4 2 0.8

26.5 0.34 2 0.68
27 0.29 2 0.58

27.5 0.24 2 0.48
28 0.2 2 0.4

28.5 0.16 2 0.32
29 0.14 2 0.28

29.5 0.125 2 0.25
30 0.1 1 0.1

Sum of Products = 236.46
Trapezoidal Approximation = 59.115

Cardiac Output = [56 mg/59.115 mg*sec/L]*60 = 5.68 L/min

24.11 The following Excel Solver application can be used to estimate: k = 0.09915 and A
=6.98301.

24.12 The following Excel spreadsheet is set up to use (left) a combination of the trapezoidal and
Simpsons rules and (right) just the trapezoidal rule:

24.13

The extremes for both cases are at 16 and 92

24.43

y = -0.0005x2 - 0.3154x + 472.24
R2 = 0.9957

y = 7E-05x2 - 0.3918x + 372.41
R2 = 0.9921

y = -0.0004x2 - 0.0947x + 286.21
R2 = 0.9645

y = -0.0003x2 - 0.0404x + 256.9
R2 = 0.9463

y = -0.0003x2 - 0.0491x + 238.62
R2 = 0.99

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450

mean stress

st
re

ss
 a

m
pl

itu
de

10^4 cycles
10^5 cycles
10^6 cycles
10^7 cycles
10^8 cycles
Poly. (10^4 cycles)
Poly. (10^5 cycles)
Poly. (10^6 cycles)
Poly. (10^7 cycles)
Poly. (10^8 cycles)

Finding roots in Matlab:

a=[-0.0005 -0.3154 472.24];
roots(a)

b=[7E-05 -0.3918 372.41];
roots(b)

c=[-0.0004 -0.0947 286.21];
roots(c)

d=[-0.0003 -0.0404 256.9];
roots(d)

e=[-0.0003 -0.0491 238.62];
roots(e)

Roots: 706.3, 1213.7, 735.75, 860.5, 813.77

Using the AVERAGE command in Excel, the ultimate strength, uσ , was 866 MPa.

Plot with σµ included:

y = -0.0005x2 - 0.3307x + 472.76
R2 = 0.9992
10^4 cycles

y = 7E-05x2 - 0.3894x + 372.32
R2 = 0.9988
10^5 cycles

y = -0.0004x2 - 0.0746x + 285.51
R2 = 0.996
10^6 cycles

y = -0.0003x2 - 0.0389x + 256.84
R2 = 0.9969
10^7 cycles

y = -0.0003x2 - 0.0474x + 238.56
R2 = 0.9993
10^8 cycles

-100

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200

mean stress

st
re

ss
 a

m
pl

itu
de

10^4 cycles
10^5 cycles
10^6 cycles
10^7 cycles
10^8 cycles
Poly. (10^4 cycles)
Poly. (10^5 cycles)
Poly. (10^6 cycles)
Poly. (10^7 cycles)
Poly. (10^8 cycles)

It can be seen from the higher R2 values that the polynomial fit including the ultimate
stress, uσ , is more accurate than the fit without including uσ .

24.44
This problem was solved using Excel.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 2 4 6 8 10 12

t i me , mi n

The
following values were calculated beginning with the ninth data point of the series.

Mean = 0.045305
Standard Deviation = 0.003716

24.45 This problem was solved using Excel.

a) Find the equation for velocity using Excel.

y = -0.0499x2 + 0.0271x + 2.9699
R2 = 0.9976

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9

ra d i us , r

∫=
R

drurQ
0

2π

Integrate according to the equation above, using R = 8 in.

Q = 2.12 ft3/s

b)

8*3
0*8)4.1*636.2*478.2*2(2)67.0*778.1*561.2*392.2*1(43*0

)8(*2

3

)()(2)(4)(

)(

2

6,4,2

1

5,3,1
0

++++++++
≅

+++

−≅
∑∑

−

=

−

=

πI

n

xfxfxfxf

abI
n

n

j
j

n

i
i

I ≅ 2.097 ft3/s

c) % error = %10.1100*
12.2

12.2097.2
=

−

24.46 a) Find the equation for velocity using Excel.

y = -0.1914x2 + 0.3666x + 4.754
R2 = 0.9835

0

1

2

3

4

5

6

0 1 2 3 4 5 6rad ius , r

∫=
2

1

2
r

r

drurQ π

To find the volume flow rate in the region around the plug, integrate according to the
equation above, using r1=1 in. and r2 = 6 in.

Q1 = 2.073 ft3/s

To find the volume flow rate of the plug, use cc AuQ =2

Q2 = 0.1091 ft3/s

Q = Q1 + Q2 = 2.182 ft3/s

Q = 2.182 ft3/s

b) Integral for the outer region:

5*3
6*0)69.1*501.4*3(2)42.3*462.4*2(45*1

)5(*2

3

)()(2)(4)(

)(

2

6,4,2

1

5,3,1
0

+++++
≅

+++

−≅
∑∑

−

=

−

=

πI

n

xfxfxfxf

abI
n

n

j
j

n

i
i

I ≅ 2.002 ft3/s

Inner region Q2 = 0.1091 ft3/s remains the same.

Therefore, the volume flow rate Q = 2.111 ft3/s.

c) % error = %36.3
111.2

182.2111.2
=

−

24.47 The following Excel worksheet solves the problem. Note that the derivative is calculated
with a centered difference,

K
VV

dT
dV KK

100
350450 −

=

24.48 A single application of the trapezoidal rule yields:

1.133
2

11.12.12
)222(=

+
−=I

A 2-segment trapezoidal rule gives

95.86
4

11.1)04.2(22.12
)222(=

++
−=I

A 4-segment trapezoidal rule gives

125.68
8

11.1)44.104.249.3(22.12
)222(=

++++
−=I

Because we do not know the true value, it it would seem impossible to estimate the error.
However, we can try to fit different order polynomials to see if we can get a decent fit to
the data. This yields the surprising result that a 4th-order polynomial results in almost a
perfect fit. For example, using the Excel trend line gives:

y = 3.88667E-04x4 - 2.33160E-02x3 +
5.10851E-01x2 - 4.96288E+00x +

2.02627E+01
R2 = 1.00000E+00

0

4

8

12

0 6 12 18 24

This can be integrated analytically to give 61.20365. Note that the same result would result
from using Boole’s rule, Rhomberg integration or Gauss quadrature.1

Therefore, we can estimate the errors as

%47.117%100
61.20365

1.13361.20365
=×

−
=I

%07.42%100
61.20365

95.8661.20365
=×

−
=I

%31.11%100
61.20365

125.6861.20365
=×

−
=I

The ratio of these is 117.47:42.07:11.31 = 10.4:3.7:1. Thus it approximates the quartering
of the error that we would expect according to Eq. 21.13.

24.49 (b) This problem can be solved in a number of ways. One approach is to set up Excel with
a series of equally-spaced x values from 0 to 100. Then one of the formulas described in
this Part of the book can be used to numerically compute the derivative. For example, I
used x values with an interval of 1 and Eq. 23.9. The resulting plot of the function and its
derivative is

1 There might be a slight discrepancy due to roundoff.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
0

0.01

0.02

0.03

(b) Inspection of this plot indicates that the maximum derivative occurs at about a diameter
of 13.3.

(c) The function to be integrated looks like

f(x)/x

0

0.004

0.008

0.012

0 20 40 60 80 100

This can be integrated from 1 to a high number using any of the methods provided in this
book. For example, the Trapezoidal rule can be used to integrate from 1 to 100, 1 to 200
and 1 to 300 using h = 1. The results are:

h I
100 0.073599883
200 0.073632607
300 0.073632609

Thus, the integral seems to be converging to a value of 0.073633. Sm can be computed as
6×0.073633 = 0.4418.

CHAPTER 28

28.1 The solution with the 2nd-order RK (Heun without corrector) can be laid out as

For the 4th-order RK, the solution is

A plot of both solutions along with the analytical result is displayed below:

0

25

50

0 20 40

Analytical
RK-4
RK-2

28.2 The mass-balance equations can be written as

dc
dt

c c1
1 3014 0 04= − +. .

dc
dt

c c2
1 20 2 0 2= −. .

dc
dt

c c3
2 30 025 0 275= −. .

dc
dt

c c c4
3 4 501125 0175 0 025= − +. . .

dc
dt

c c c5
1 2 50 03 0 03 0 06= + −. . .

Selected solution results (Euler’s method) are displayed below, along with a plot of the results.

0

10

20

0 20 40 60 80
c1 c2 c3 c4 c5

Finally, MATLAB can be used to determine the eigenvalues and eigenvectors:

>> a=[.14 -.04 0 0 0;-.2 .2 0 0 0;0 -.025 .275 0 0;0 0 -.1125 .175 -.025;-.03
-.03 0 0 .06]

a =
 0.1400 -0.0400 0 0 0
 -0.2000 0.2000 0 0 0
 0 -0.0250 0.2750 0 0
 0 0 -0.1125 0.1750 -0.0250
 -0.0300 -0.0300 0 0 0.0600

>> [v,d]=eig(a)

v =
 0 0 0 -0.1836 0.0826
 0 0 0 -0.2954 -0.2567
 0 0.6644 0 -0.0370 -0.6021
 1.0000 -0.7474 0.2124 0.1890 0.7510
 0 0 0.9772 0.9176 0.0256

d =
 0.1750 0 0 0 0
 0 0.2750 0 0 0
 0 0 0.0600 0 0
 0 0 0 0.0757 0
 0 0 0 0 0.2643

28.3 Substituting the parameters into the differential equation gives

21.01.020 cc
dt
dc

−−=

The mid-point method can be applied with the result:

The results are approaching a value of 13.6351

Challenge question:

The steady state form (i.e., dc/dt = 0) of the equation is 22000 cc −−= , which can be solved
for 13.65097141 and -14.65097141. Thus, there is a negative root.

If we put in the initial y value as −14.650971 (or higher precision, the solution will stay at the
negative root. However, if we pick a value that is slightly higher (a per machine precision), it
will gravitate towards the positive root. For example if we use −14.65097

-20
-15
-10

-5
0
5

10
15

0 5 10

Conversely, if we use a slightly lower value, it will go unstable

-40

-30

-20

-10

0
0 5 10

28.4 The first steps of the solution are shown below along with a plot. Notice that the a value of the
inflow concentration at the end of the interval (cin-end) is required to calculate the k2’s correctly.

0

50

0 50 100

28.5 The system is as depicted below:

qin = 10 kg/min qout = 10 kg/min

sin = 8 g/kg

s0 = 8 g/kg
M0 = 1000 kg

qevap = 0.5 kg/min

(a) The mass of water in the tank can be modeled with a simple mass balance

dM
dt

q q q= − − = − − = −in out evap 10 10 05 0 5. .

With the initial condition that M = 1000 at t = 0, this equation can be integrated to yield,

M t= −1000 0 5.

Thus, the time to empty the tank (M = 0) can be calculated as t = 1000/0.5 = 2000 minutes.

(b) The concentration in the tank over this period can be computed in several ways. The simplest
is to compute the mass of salt in the tank over time by solving the following differential
equation:

dm
dt

q s q s= −in in out

where m = the mass of salt in the tank. The salt concentration in the tank, s, is the ratio of the
mass of salt to the mass of water

s m
M

m
t

= =
−1000 05.

The first few steps of the solution of this ODE with Euler’s method is tabulated below. In
addition, a graph of the entire solution is also displayed.

8

8.2

8.4

8.6

0 500 1000 1500 2000

Recognize that a singularity occurs at t = 2000, because the tank would be totally empty at this
point.

28.6 A heat balance for the sphere can be written as

dH
dt

hA T Ta= −()

The heat gain can be transformed into a volume loss by considering the latent heat of fusion.
Thus,

dV
dt

hA
L

T T
f

a= − −
ρ

() (1)

where ρ = density ≅ 1 kg/m3 and Lf = latent heat of fusion ≅ 333 kJ/kg. The volume and area of a
sphere are computed by

V r A r=
4
3

43 2π π =

(2)

These can be combined with (1) to yield,

dV
dt

h V

L
T T

f
a=







−
4

3
4

2 3

π
π

ρ

/

()

This equation can be integrated along with the initial condition,

V0
34

3
0 05= π (.) = 0.000524 m 3

to yield the resulting volume as a function of time.

V

t (s)
0

0.0003

0.0006

0 100000 200000 300000

This result can be converted into diameter using (2)

d

t (s)
0

0.05

0.1

0 100000 200000 300000

28.7 The system for this problem is stiff. Thus, the use of a simple explicit Runge-Kutta scheme
would involve using a very small time step in order to maintain a stable solution. A solver
designed for stiff systems was used to generate the solution shown below. Two views of the
solution are given. The first is for the entire solution domain.

0

200

400

0 10 20 30

cb

ca

cc

In addition, we can enlarge the initial part of the solution to illustrate the fast transients that
occur as the solution moves from its initial conditions to its dominant trajectories.

0

200

400

0 0.005 0.01 0.015 0.02

cb

cc

ca

28.8 Several methods could be used to obtain a solution for this problem (e.g., finite-difference,
shooting method, finite-element). The finite-difference approach is straightforward:

D
A A A

x
kAi i i

i
− +− +

− =1 1
2

2
0

∆

Substituting parameter values and collecting terms gives

− × + × + × − × =−
−

− − −
+1 10 2 10 4 10 1 10 06

1
6 6 2 6

1A x Ai i()∆

Using a ∆x = 0.2 cm this equation can be written for all the interior nodes. The resulting linear
system can be solved with an approach like the Gauss-Seidel method. The following table and
graph summarize the results.

0

0.05

0.1

0 1 2 3 4

28.9 The ODE to be solved is

a
tAP

a
b

dt
dP ωsin

+−=

Substituting the parameters, it becomes

Pt
dt
dP −= sin

The following Matlab script uses Euler’s method to solve the problem.

dt=0.05;
max=5;
n=max/dt+1;
t=zeros(1,n);
p=zeros(1,n);
t(1)=0;
p(1)=90;
for i=1:n
 p(i+1)=p(i)+dydt(t(i),p(i))*dt;
 t(i+1)=t(i)+dt;
end

plot(t,p)
grid
xlabel('Time-sec')
ylabel('Pressure-mmHg')
title('Pressure vs Time')
zoom

function s=dydt(t,p);
A=1;
w=1;
s=A*sin(w*t)-p;

0 1 2 3 4 5 6
-10

0

10

20

30

40

50

60

70

80

90

Tim e-sec

P
re

s
s

u
re

-m
m

H
g

P ressure vs Tim e

28.10 Excel can be used to compute the basic results. As can be seen, the person died 1.13 hrs prior to
being discovered. The non-self-starting Heun yielded the following time series of temperature:

60

80

100

120

0 1 2 3 4

28.11 The classical 4th order RK method yields

28.12 The classical 4th order RK method yields

28.13 (a) The first few steps of Euler’s method are shown in the following table

A plot of the entire simulation is shown below:

0

4

8

0 5 10 15 20

Notice that because the Euler method is lower order, the peaks are increasing, rather than
repeating in a stable manner as time progresses. This result is reinforced when a state-space plot
of the calculation is displayed.

0

3

6

0 5 10

(b) The first few steps of the Heun method is shown in the following table

A plot of the entire simulation is shown below:

0

4

8

0 5 10 15 20

Notice that in contrast to the Euler method, the peaks are stable manner as time progresses. This
result is also reinforced when a state-space plot of the calculation is displayed.

0

2

4

0 5

(c) The first few steps of the 4th-order RK method is shown in the following table

The results are quite close to those obtained with the Heun method in part (b). In fact, both the
time series and state-space plots are indistinguishable from each other.

28.14 Using the step size of 0.1, (a) and (b) both give unstable results. The 4th-order RK method
yields a stable solution. The first few values are shown in the following table. A plot of the
result for x is also shown below. Notice how after about t = 6, this solution diverges from the
double precision version in Fig. 28.9.

-30
-20
-10

0
10
20
30

0 5 10 15 20

28.15 The second-order equation can be reexpressed as a pair of first-order equations,

dy
dz

w

dw
dz

f
EI

L z

=

= −
2

2()

We used Euler’s method with h = 1 to obtain the solution:

10

20

30

-0.5 0 0.5 1

z

y

28.16 The second-order equation can be reexpressed as a pair of first-order equations,

2
30/2

)(
2)5(

200 zL
EIz

ze
dz
dww

dz
dy z

−
+

==
−

We used Euler’s method with h = 1 to obtain the solution:

z

y

10

20

30

-0.5 0 0.5 1

28.17 This problem was solved using the Excel spreadsheet in a fashion similar to the last example in
Sec. 28.1. We set up Euler’s method to solve the 3 ODEs using guesses for the diffusion
coefficients. Then we formed a column containing the squared residuals between our
predictions and the measured values. Adjusting the diffusion coefficients with the Solver tool
minimized the sum of the squares. At first, we assumed that the diffusion coefficients were
zero. For this case the Solver did not converge on a credible answer. We then made guesses of
1×107 for both. This magnitude was based on the fact that the volumes were of this order of
magnitude. The resulting simulation did not fit the data very well, but was much better than
when we had guessed zero. When we used Solver, it converged on E12 = 9.22×105 and E13 =
2.19×106 which corresponded to a sum of the squares of residuals of 2.007. Some of the Euler
calculations are displayed below along with a plot of the fit.

0

50

100

0 5 10 15 20

It should be noted that we made up the “measurements” for this problem using the 4th-order RK
method with values for diffusive mixing of E12 = 1×106 and E13 = 2×106. We then used a random
number generator to add some error to this “data.”

28.18 The Heun method can be used to compute

The results can be plotted. In addition, linear regression can be used to fit a straight line to lnp
versus t to give lnp = 8.52 + 0.07t. Thus, as would be expected from a first-order model, the
slope is equal to the growth rate of the population.

8.4

8.8

9.2

9.6

10

0 10 20
0

5000

10000

15000

20000

0 10 20

p ln p

28.19 The Heun method can be used to compute

The results can be plotted.

0

5000

10000

15000

20000

0 10 20

The curve is s-shaped. This shape occurs because initially the population is increasing
exponentially since p is much less than pmax. However, as p approaches pmax, the growth rate
decreases and the population levels off.

28.20 (a) Nonlinear regression (e.g., using the Excel solver option) can be used to minimize the sum
of the squares of the residuals between the data and the simulation. The resulting estimates are: a
= 0.32823, b = 0.01231, c = 0.22445, and d = 0.00029. The fit is:

0

400

800

1200

1960 1990 2020

moose

wolves

(b) The results in state space are,

W
ol

ve
s

0

100

200

300

0 500 1000 1500
Moose

(c)

0

400

800

1200

1960 1990 2020

W
ol

ve
s

Moose

0

100

200

300

0 500 1000 1500

(d)

0

400

800

1200

1960 1990 2020

W
ol

ve
s

Moose

0

100

200

300

0 500 1000 1500

28.21 Main Program:

% Hanging static cable - w=w(x)
% Parabolic solution w=w(x)
% CUS Units (lb,ft,s)
% w = wo(1+sin(pi/2*x/l)

 es=0.5e-7
% Independent Variable x, xs=start x, xf=end x xs=0; xf=200;
%initial conditions [y(1)=cable y-coordinate, y(2)=cable slope];

 ic=[0 0];

global wToP

wToP=0.0025;
[x,y]=ode45('slp',xs,xf,ic,.5e-7);
yf(1)=y(length(x));
wTo(1)=wToP;
ea(1)=1;

wToP=0.002;
[x,y]=ode45('slp',xs,xf,ic,.5e-7);
yf(2)=y(length(x));
wTo(2)=wToP;
ea(2)=abs((yf(2)-yf(1))/yf(2));

for k=3:10
 wTo(k)=wTo(k-1)+(wTo(k-1)-wTo(k-2))/(yf(k-1)-yf(k-2))*(50-yf(k-1));
 wToP=wTo(k);
 [x,y]=ode45('slp',xs,xf,ic,.5e-7);
 yf(k)=y(length(x));
 ea(k)=abs((yf(k)-yf(k-1))/yf(k));
 if (ea(k)<=es)

 %Analytic Solution with constant w (for Comparison)
 xa=xs:.01:xf;
 ya=(0.00125)*(xa.*xa);
 plot(x,y(:,1),xa,ya,'--'); grid;
 xlabel('x-coordinate - ft'); ylabel('y-coordinate - ft');
 title('Cable - w=wo(1+sin(pi/2*x/l))');
 fprintf('wTo %f\n', wTo)
 fprintf('yf %f\n', yf)
 fprintf('ea %f\n', ea)

break
 end
end

Function ‘slp’:

function dxy=slp(x,y)
global wToP
dxy=[y(2);(wToP)*(1+sin(pi/2*x/200))]

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

x-c oordinate - ft

y
-c

o
o

rd
in

a
te

 -
 f

t

Cable - w= wo(1+s in(pi/2*x / l))

28.22

28.23 The second-order equation can be reexpressed as a pair of first-order equations,

dq
dt

i

di
dz

i q t

=

= − − +0 05 4 18708. sin .

The parameters can be substituted and the system solved with the 4th-order RK method in
double-precision with h = 0.1. A table showing the first few steps and a graph of the entire
solution are shown below.

-4

-2

0

2

4

0 20 40 60 80 100

28.24 The second-order equation can be reexpressed as a pair of first-order equations,

dq
dt

i

di
dt

R
L

i
q

CL

=

= − −

The parameters can be substituted and the system solved with the 4th-order RK method with h =
0.005. A table showing the first few steps and a graph of the entire solution are shown below.

i

-6

-4

-2

0

2

4

0 0.1 0.2 0.3 0.4 0.5

q

-0.08

-0.04

0

0.04

0.08

0 0.1 0.2 0.3 0.4 0.5

28.25 The equation can be solved analytically as

di
dt

R
L

i

di
i

R
L

dt

i R L t C
C

i e t

= −

= −

= − +
=

= −

ln (/)
.

.

0 001

0 001 2

The numerical solution can be obtained by expressing the equation as

di
dt

i= −2

and using Euler’s method with h = 0.05 to solve for the current. Some selected values are
shown, along with a plot of both the analytical and numerical result. A better match would be
obtained by using a smaller step or a higher-order method.

0.0

0.2

0.4

0.6

0 0.5 1

analytical

Euler

28.26 The numerical solution can be obtained by expressing the equation as

di
dt

i i= − − +()3 2

and using Euler’s method with h = 0.05 to solve for the current. Some selected values are
shown, along with a plot of the numerical result. Note that the table and plot also show the
analytical solution for the linear case computed in Prob. 28.19.

0.0

0.2

0.4

0.6

0 0.5 1

analytical

Euler

28.27 Using an approach similar to Sec. 28.3, the system can be expressed in matrix form as

1 1
1 2 01

2

− −
− −














=λ
λ

i
i { }

A package like MATLAB can be used to evaluate the eigenvalues and eigenvectors as in

>> a=[1 -1;-1 2];
>> [v,d]=eig(a)
v =
 0.8507 -0.5257
 0.5257 0.8507
d =
 0.3820 0
 0 2.6180

Thus, we can see that the eigenvalues are λ = 0.382 and 2.618 or natural frequencies of ω =
0.618/ LC and 1.618/ LC . The eigenvectors tell us that these correspond to oscillations that
coincide (0.8507 0.5257) and which run counter to each other (−0.5257 0.8507).

28.28 The differential equations to be solved are

linear: nonlinear:

d
dt

v d
dt

v

dv
dt

dv
dt

θ θ

θ θ

= =

= − = −32 2
4

32 2
4

. . sin

A few steps for the 4th-order RK solution of the nonlinear system are contained in the following
table and a plot of both solutions is shown below.

-3

0

3

6

0 2 4 6

lin-theta
lin-v
nonlin-theta
nonlin-v

28.29 The differential equations to be solved are

dx
dt

v

dv
dt

c
m

v
k
m

v

=

= − −

A few steps for the 2nd-order RK solution (Heun without iteration) are shown in the following
table and a plot of displacement is shown below.

-0.2

0

0.2

0 0.1 0.2 0.3 0.4

28.30 The differential equation to be solved is

dT
dt

T= −0 2 40. ()

A few steps for the 2nd-order RK solution (Heun without iteration) are shown in the following
table and a plot of temperature versus time is shown below. The temperature will drop 95% of
the way to the new temperature in 3/0.2 = 15 minutes.

0

50

100

0 5 10 15 20 25

28.31 The differential equation to be solved is

dQ
dt

t
t

= − −
−

0 4 10 100 20 2 5 20
100 2 5

. () (.)()
.

A few steps for the 2nd-order RK solution (Heun without iteration) are shown in the following
table and a plot of heat flow versus time is shown below.

0

10000

20000

0 5 10 15 20 25

28.32 The differential equations to be solved are

nonlinear:

dv
dt

v= −9 8 0 235
68 1

2. .
.

linear:

dv
dt

v= −9 8 12 5
68 1

. .
.

A few steps for the solution (Euler) are shown in the following table, which also includes the
analytical solution from Example 1.1. A plot of the result is also shown below. Note, the
nonlinear solution is the bolder line.

0

20

40

60

0 10 20 30

28.33 The differential equations to be solved are

t < 15 s: dv
dt

v= −9 8 12 5
68 1

. .
.

t ≥ 15 s: dv
dt

v= −9 8 50
681

.
.

The first few steps for the solution (Euler) are shown in the following table, along with the
steps when the parachute opens. A plot of the result is also shown below.

0

20

40

60

0 10 20 30

28.34
%Damped spring mass system
%mass: m=1 kg
%damping, nonlinear: a sgn(dx/dt) (dx/dt)^2, a=2 N/(m/s)^2
%spring, nonlinear: bx^3, b=5 N/m^3
% MATLAB 5 version

%Independent Variable t, tspan=[tstart tstop]
%initial conditions [x(1)=velocity, x(2)=displacement];

t0=0;
tf=8;
tspan=[0 8]; ic=[1 0.5];

% a) linear solution
[t,x]=ode45('kc',tspan,ic);
subplot(221)
plot(t,x); grid; xlabel('time - sec.');
ylabel('displacement - m; velocity - m/s');
title('d2x/dt2+2(dx/dt)+5x=0')
subplot(222)
%Phase-plane portrait
plot(x(:,2),x(:,1)); grid;
xlabel('displacement - m'); ylabel('velocity - m/s');
title('d2x/dt2+2(dx/dt)+5x=0');

% b) nonlinear spring
[t,x]=ode45('nlk',tspan,ic);
subplot(223)
plot(t,x); grid;
xlabel('time - sec.'); ylabel('displacement - m; velocity - m/s');
title('d2x/dt2+2(dx/dt)+5x^3=0')
%Phase-plane portrait
subplot(224)
plot(x(:,2),x(:,1)); grid;
xlabel('displacement - m'); ylabel('velocity - m/s');
title('d2x/dt2+2(dx/dt)+5x=0');
pause

% c) nonlinear damping
[t,x]=ode45('nlc',tspan,ic);
subplot(221)
plot(t,x); grid;
xlabel('time - sec.'); ylabel('displacement - m; velocity - m/s');
title('d2x/dt2+2sign(dx/dt)(dx/dt)^2+5x=0')
%Phase-plane portrait
subplot(222)
plot(x(:,2),x(:,1)); grid;
xlabel('displacement - m'); ylabel('velocity - m/s');
title('d2x/dt2+2sign(dx/dt)(dx/dt)^2+5x=0');

% d) nonlinear damping and spring
[t,x]=ode45('nlck',tspan,ic);
subplot(223)
plot(t,x); grid;
xlabel('time - sec.'); ylabel('displacement - m; velocity - m/s');
title('d2x/dt2+2sign(dx/dt)(dx/dt)^2+5x^3=0')
%Phase-plane portrait
subplot(224)
plot(x(:,2),x(:,1)); grid;
xlabel('displacement - m'); ylabel('velocity - m/s');
title('d2x/dt2+2sign(dx/dt)(dx/dt)^2+5x^3=0');

Functions:

%Damped spring mass system - m d2x/dt2 + c dx/dt + k x =0
%mass: m=1 kg
% linear- c=2 N/(m/s)
% linear- k=5 N/m
%x(1)=velocity, x(2)=displacement

function dx=kc(t,x);
dx=[-2*x(1)-5*x(2); x(1)]

%Damped spring mass system - m d2x/dt2 + c dx/dt + k x =0
%mass: m=1 kg
%damping: linear- c=2 N/(m/s)
%spring: nonlinear- kx=bx^3, b=5 N/m^3

function dx=nlk(t,x);
dx=[-2*x(1)-5*x(2).*x(2).*x(2); x(1)]

%Damped spring mass system - m d2x/dt2 + c dx/dt + k x =0
%mass: m=1 kg
%damping: nonlinear- c dx/dt = a sgn(dx/dt) (dx/dt)^2, a=2 N/(m/s)^2
%spring: linear- kx=5x
%x(1)=velocity, x(2)=dispacement

function dx=nlc(t,x);
dx(1)=-2*sign(x(1))*x(1)*x(1)-5*x(2);
dx(2)= x(1);

%Damped spring mass system - m d2x/dt2 + c dx/dt + k x =0
%mass: m=1 kg
%damping: nonlinear- c dx/dt = a sgn(dx/dt) (dx/dt)^2, a=2 N/(m/s)^2
%spring: nonlinear- k x = bx^3, b=5 N/m^3
%x(1)=velocity, x(2)=dispacement

function dx=nlck(t,x);
dx=[-2*sign(x(1)).*x(1).*x(1)-5*x(2).*x(2).*x(2); x(1)]

0 2 4 6 8
-1

-0.5

0

0.5

1

tim e - s ec .d
is

p
la

c
e

m
e

n
t

-
m

;
ve

lo
c

it
y

 -
 m

/s
d2x /dt2+2(dx /dt)+5x =0

-0.5 0 0.5 1
-1

-0.5

0

0.5

1

displacem ent - m

ve
lo

c
it

y
 -

 m
/s

d2x /dt2+2(dx /dt)+ 5x=0

0 2 4 6 8
-0.5

0

0.5

1

tim e - s ec .d
is

p
la

c
e

m
e

n
t

-
m

;
ve

lo
c

it
y

 -
 m

/s

d2x /dt2+ 2(dx /dt)+ 5x 3= 0

0 0.2 0.4 0.6 0.8
-0.5

0

0.5

1

displacem ent - m

ve
lo

c
it

y
 -

 m
/s

d2x /dt2+2(dx /dt)+ 5x=0

0 2 4 6 8
-1

-0.5

0

0.5

1

tim e - sec .d
is

p
la

c
e

m
e

n
t

-
m

;
ve

lo
c

it
y

 -
 m

/s

d2x /dt2+2s ign(dx /dt)(dx /dt)2+ 5x=0

-0.5 0 0.5 1
-1

-0.5

0

0.5

1

displacem ent - m

ve
lo

c
it

y
 -

 m
/s

d2x /dt2+2s ign(dx /dt)(dx /dt)2+5x= 0

0 2 4 6 8
-1

-0.5

0

0.5

1

tim e - sec .d
is

p
la

c
e

m
e

n
t

-
m

;
ve

lo
c

it
y

 -
 m

/s

d2x /dt2+ 2s ign(dx /dt)(dx /dt)2+ 5x3=0

-0.5 0 0.5 1
-1

-0.5

0

0.5

1

displacem ent - m

ve
lo

c
it

y
 -

 m
/s

d2x /dt2+2s ign(dx /dt)(dx /dt)2+5x 3= 0

28.35
%Forced damped spring-mass system w/ material damping
%mass: m=2 kg
%damping, nonlinear material: b sgn(dx/dt) abs(x), b=1 N/m
%spring, linear: kx = 6x
%forcing function: F=Fo(sin(wt)), Fo=2 N, w=0.5 rad/s

% MATLAB 5 version
%Independent Variable t, tspan=[tstart tstop]
%initial conditions [x(1)=velocity, x(2)=displacement];

tspan=[0 15]; ic=[0 1];
[t,x]=ode45('nlF',tspan,ic);

ts=0:.01:15;
Sin=2*sin(0.5*ts);
plot(t,x,ts,Sin,'--'); grid; xlabel('time - sec.');

ylabel('displacement - m; velocity - m/s; force - N');
title('non-linear, forced,damped spring-mass system, time response')

Function ‘n1F’:
%Forced damped spring-mass system w/ material damping
%mass: m=2 kg
%damping, nonlinear air: b sgn(dx/dt) (dx/dt)^2, b=1 N/m
%spring, linear: kx = 6x
%forcing function: F=Fo(sin(wt), Fo=2 N, w=0.5 rad/s
% x(1)= velocity, x(2)= displacement

function dx=nlF(t,x);
dx=[-0.5*sign(x(1)).*x(1).*x(1)-3*x(2)+sin(0.5*t); x(1)]

0 5 10 15
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

tim e - sec .

d
is

p
la

c
e

m
e

n
t

-
m

;
ve

lo
c

it
y

 -
 m

/s
;

fo
rc

e
 -

 N

non-linear, forced,dam ped spring-m ass sys tem , tim e respons e

28.36
% ODE Boundary Value Problem
% Tapered conical cooling fin
% u[xx]+(2/x)(u[x]-pu)=0
% BC. u(x=0)=0 u(x=1)=1
% i=spatial index, from 1 to R
% numbering for points is i=1 to i=R for (R-1) dx spaces
% u(i=1)=0 and u(i=R)=1

R=21;
%Constants
dx=1/(R-1);
dx2=dx*dx;
%Parameters
p(1)=10; p(2)=20; p(3)=50; p(4)=100;
%sizing matrices
u=zeros(1,R); x=zeros(1,R);
a=zeros(1,R); b=zeros(1,R); c=zeros(1,R); d=zeros(1,R);
ba=zeros(1,R); ga=zeros(1,R);
%Independent Variable
x=0:dx:1;
%Boundary Conditions
u(1)=0; u(R)=1;

for k=1:4;
 %/Coefficients
 b(2)=-2-2*p(k)*dx2/dx;
 c(2)=2;
 for i=3:R-2,
 a(i)=1-dx/(dx*(i-1));
 b(i)=-2-2*p(k)*dx2/(dx*(i-1));
 c(i)=1+1/(i-1);
 end
 a(R-1)=1-dx/(dx*(R-2));
 b(R-1)=-2-2*p(k)*dx2/(dx*(R-2));
 d(R-1)=-(1+1/(R-2));
%Solution by Thomas Algorithm

 ba(2)=b(2);
 ga(2)=d(2)/b(2);
 for i=3:R-1,
 ba(i)=b(i)-a(i)*c(i-1)/ba(i-1);
 ga(i)=(d(i)-a(i)*ga(i-1))/ba(i);
 end
 %back substitution step
 u(R-1)=ga(R-1);
 for i=R-2:-1:2,
 u(i)=ga(i)-c(i)*u(i+1)/ba(i);
 end
 %Plot
 plot(x,u)
 title('u[xx]+(2/x)(u[x]-pu)=0; u(x=0)=0, u(x=1)=1')
 xlabel('x -ND Length')
 ylabel('u - ND Temperature')
 hold on
end
grid
hold off
gtext('p=10');gtext('p=20');gtext('p=50');gtext('p=100');

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u[xx]+ (2/x)(u[x]-pu)=0; u(x= 0)= 0, u(x=1)= 1

x -ND Length

u
 -

 N
D

 T
e

m
p

e
ra

tu
re

p=10

p= 20

p=50
p=100

t v dvdt
0 0 9.8

0.1 0.98 9.620117
0.2 1.942012 9.443537
0.3 2.886365 9.270197
0.4 3.813385 9.100039
0.5 4.723389 8.933005

•
•
•

14.9 50.01245 0.620036
15 50.07445 -26.9654

15.1 47.37791 -24.9855
15.2 44.87936 -23.1511
15.3 42.56425 -21.4513
15.4 40.41912 -19.8763
15.5 38.43149 -18.417

linear nonlinear analytical
t v dvdt v dvdt
0 0 9.8 0 9.8 0

0.1 0.98 9.620117 0.98 9.796686 0.971061
0.2 1.942012 9.443537 1.959669 9.786748 1.92446
0.3 2.886365 9.270197 2.938343 9.770206 2.860518
0.4 3.813385 9.100039 3.915364 9.747099 3.779552
0.5 4.723389 8.933005 4.890074 9.717481 4.681871

t T k11 T-end k21 phi1
0 0 1598 159.8 1602.005 1600.003

0.1 160.0003 1593.995 319.3997 1598 1595.997
0.2 319.6 1589.97 478.597 1593.975 1591.972
0.3 478.7972 1585.924 637.3897 1589.929 1587.927
0.4 637.5899 1581.859 795.7758 1585.863 1583.861
0.5 795.976 1577.772 953.7532 1581.777 1579.774

t T k11 T-end k21 phi1
0 90 -10 89 -9.8 -9.9

0.1 89.01 -9.802 88.0298 -9.60596 -9.70398
0.2 88.0396 -9.60792 87.07881 -9.41576 -9.51184
0.3 87.08842 -9.41768 86.14665 -9.22933 -9.32351
0.4 86.15607 -9.23121 85.23295 -9.04659 -9.1389
0.5 85.24218 -9.04844 84.33733 -8.86747 -8.95795

x v k11 k12 x v k21 k22 phi1 phi2
0.3 0 0 -312.5 0.3 -0.3125 -0.3125 -308.854 -0.15625 -310.677

0.299844 -0.31068 -0.31068 -308.713 0.299533 -0.61939 -0.61939 -304.787 -0.46503 -306.75
0.299379 -0.61743 -0.61743 -304.65 0.298761 -0.92208 -0.92208 -300.452 -0.76975 -302.551
0.298609 -0.91998 -0.91998 -300.318 0.297689 -1.2203 -1.2203 -295.856 -1.07014 -298.087
0.297539 -1.21806 -1.21806 -295.726 0.296321 -1.51379 -1.51379 -291.007 -1.36593 -293.366

t thet v k11 k12 thet v k21 k22 thet v k31 k32 thet v k41 k42 phi1 phi2
0 0.785 0.000 0.000 -5.692 0.785 -0.028 -0.028 -5.692 0.785 -0.028 -0.028 -5.691 0.785 -0.057 -0.057 -5.691 -0.028 -5.692

0.01 0.785 -0.057 -0.057 -5.691 0.785 -0.085 -0.085 -5.689 0.785 -0.085 -0.085 -5.688 0.784 -0.114 -0.114 -5.686 -0.085 -5.688
0.02 0.784 -0.114 -0.114 -5.686 0.784 -0.142 -0.142 -5.682 0.784 -0.142 -0.142 -5.682 0.783 -0.171 -0.171 -5.678 -0.142 -5.682
0.03 0.783 -0.171 -0.171 -5.678 0.782 -0.199 -0.199 -5.673 0.782 -0.199 -0.199 -5.672 0.781 -0.227 -0.227 -5.666 -0.199 -5.672
0.04 0.781 -0.227 -0.227 -5.666 0.780 -0.256 -0.256 -5.660 0.780 -0.256 -0.256 -5.659 0.778 -0.284 -0.284 -5.652 -0.256 -5.659

t (analytical) (Euler) didt
0 0.600000 0.600000 -0.768000

0.05 0.542902 0.561600 -0.768949
0.1 0.491238 0.523153 -0.759943

0.15 0.444491 0.485155 -0.741923
0.2 0.402192 0.448059 -0.716216

0.25 0.363918 0.412248 -0.684375

t (analytical) (Euler) didt
0 0.600000 0.600000 -1.200000

0.05 0.542902 0.540000 -1.080000
0.1 0.491238 0.486000 -0.972000

0.15 0.444491 0.437400 -0.874800
0.2 0.402192 0.393660 -0.787320

0.25 0.363918 0.354294 -0.708588

t i q k11 k12 imid qmid k21 k22 imid qmid k31 k32 iend qend k41 k42 phi1 phi2
0 -3.282 0.100 -134.37 -3.282 -3.617 0.092 -111.24 -3.617 -3.560 0.091 -110.7 -3.560 -3.835 0.082 -87.70 -3.835 -111.0 -3.578

0.005 -3.837 0.082 -87.485 -3.837 -4.055 0.073 -63.93 -4.055 -3.996 0.072 -64.01 -3.996 -4.157 0.062 -41.12 -4.157 -64.08 -4.016
0.01 -4.157 0.062 -40.917 -4.157 -4.259 0.052 -18.09 -4.259 -4.202 0.051 -18.72 -4.202 -4.251 0.041 2.976 -4.251 -18.59 -4.222

0.015 -4.250 0.041 3.159 -4.250 -4.242 0.030 24.25 -4.242 -4.189 0.030 23.16 -4.189 -4.134 0.020 42.736 -4.134 23.45
2

-4.208

0.02 -4.133 0.020 42.892 -4.133 -4.025 0.010 61.41 -4.025 -3.979 0.010 59.95 -3.979 -3.833 0.000 76.688 -3.833 60.38
3

-3.996

t i q k11 k12 imid qmid k21 k22 imid qmid k31 k32 iend qend k41 k42 phi1 phi2
0 0.000

0
0.000

0
0.000

0
0.000

0
0.000

0
0.000

0
0.093

4
0.000

0
0.004

7
0.000

0
0.093

2
0.004

7
0.009

3
0.000

5
0.183

7
0.009

3
0.092

8
0.0031

0.1 0.009
3

0.000
3

0.184
3

0.009
3

0.018
5

0.000
8

0.272
9

0.018
5

0.022
9

0.001
2

0.270
9

0.022
9

0.036
4

0.002
6

0.353
3

0.036
4

0.270
9

0.0214

0.2 0.036
4

0.002
5

0.353
9

0.036
4

0.054
1

0.004
3

0.431
1

0.054
1

0.057
9

0.005
2

0.427
3

0.057
9

0.079
1

0.008
2

0.495
3

0.079
1

0.427
7

0.0566

0.3 0.079
1

0.008
1

0.495
8

0.079
1

0.103
9

0.012
1

0.555
5

0.103
9

0.106
9

0.013
3

0.550
4

0.106
9

0.134
2

0.018
8

0.598
5

0.134
2

0.551
0

0.1058

0.4 0.134
2

0.018
7

0.598
9

0.134
2

0.164
2

0.025
4

0.636
1

0.164
2

0.166
0

0.026
9

0.630
0

0.166
0

0.197
2

0.035
3

0.653
8

0.197
2

0.630
8

0.1653

t p k1 pend k2 phi
0 5000 750 5375 786.0938 768.0469

0.5 5384.023 786.9276 5777.487 821.7039 804.3157
1 5786.181 822.4373 6197.4 855.4023 838.9198

1.5 6205.641 856.0284 6633.655 886.6772 871.3528
•
•
•

18 18480.96 280.733 18621.33 256.7271 268.7301
18.5 18615.33 257.7616 18744.21 235.3885 246.575

19 18738.61 236.3663 18856.8 215.5715 225.9689
19.5 18851.6 216.4921 18959.84 197.2119 206.852

20 18955.02 198.0754 19054.06 180.2397 189.1575

t p k1 pend k2 phi
0 5000 350 5175 362.25 356.125

0.5 5178.063 362.4644 5359.295 375.1506 368.8075
1 5362.466 375.3726 5550.153 388.5107 381.9417

1.5 5553.437 388.7406 5747.807 402.3465 395.5436
2 5751.209 402.5846 5952.501 416.6751 409.6299
•
•
•

18 17622.69 1233.588 18239.48 1276.764 1255.176
18.5 18250.28 1277.52 18889.04 1322.233 1299.876

19 18900.22 1323.015 19561.72 1369.321 1346.168
19.5 19573.3 1370.131 20258.37 1418.086 1394.108

20 20270.36 1418.925 20979.82 1468.587 1443.756

t c1 c2 c3 dc1/dt dc2/dt dc3/dt
0 0 0 100 21.93515 0 -43.8703

0.1 2.193515 0 95.61297 19.41211 0.252723 -40.9834

0.2 4.134726 0.025272 91.51463 17.13425 0.473465 -38.3338
0.3 5.848151 0.072619 87.68125 15.07861 0.66542 -35.9004
0.4 7.356012 0.139161 84.09121 13.22439 0.83148 -33.664
0.5 8.678451 0.222309 80.72481 11.55268 0.974263 -31.607

z y w dydz dwdz
0 0 0 0 0.0036
1 0 0.0036 0.0036 0.003364
2 0.0036 0.006964 0.006964 0.003136
3 0.010564 0.0101 0.0101 0.002916
4 0.020664 0.013016 0.013016 0.002704
5 0.03368 0.01572 0.01572 0.0025
•
•
•

26 0.676 0.0377 0.0377 0.000064
27 0.7137 0.037764 0.037764 0.000036
28 0.751464 0.0378 0.0378 0.000016
29 0.789264 0.037816 0.037816 0.000004
30 0.82708 0.03782 0.03782 0

z f(z) y w dydz dwdz
0 0 0 0 0 0
1 31.18357 0 0 0 0.002098
2 50.0099 0 0.002098 0.002098 0.003137
3 61.40481 0.002098 0.005235 0.005235 0.003581
4 68.08252 0.007333 0.008816 0.008816 0.003682
5 71.65313 0.016148 0.012498 0.012498 0.003583
•
•
•

26 29.63907 0.700979 0.040713 0.040713 3.79E-05
27 27.89419 0.741693 0.040751 0.040751 2.01E-05
28 26.24164 0.782444 0.040771 0.040771 8.4E-06
29 24.67818 0.823216 0.04078 0.04078 1.97E-06
30 23.20033 0.863995 0.040782 0.040782 0

z y w dydz dwdz
0 0 0 0 0.0036
1 0 0.0036 0.0036 0.003364
2 0.0036 0.006964 0.006964 0.003136
3 0.010564 0.0101 0.0101 0.002916
4 0.020664 0.013016 0.013016 0.002704
5 0.03368 0.01572 0.01572 0.0025
•
•
•

26 0.676 0.0377 0.0377 0.000064
27 0.7137 0.037764 0.037764 0.000036
28 0.751464 0.0378 0.0378 0.000016
29 0.789264 0.037816 0.037816 0.000004
30 0.82708 0.03782 0.03782 0

t x y Z
0 5 5 5

0.1 9.78147 17.07946 10.43947
0.2 17.70297 20.8741 35.89688

0.3 10.81088 -2.52924 39.30744
0.4 0.549577 -5.54419 28.07461
0.5 -3.16461 -5.84129 22.36888
0.6 -5.57588 -8.42037 19.92312
0.7 -8.88719 -12.6789 22.14149
0.8 -11.9142 -13.43 29.80001
0.9 -10.6668 -7.21784 33.39903

1 -6.84678 -3.43018 29.30716

0 2 3
0.1 1.887095 2.935517
0.2 1.787897 2.863301
0.3 1.701588 2.785107
0.4 1.627287 2.702536
0.5 1.564109 2.617016

0 2 3
0.1 1.886984 2.935308
0.2 1.787729 2.862899
0.3 1.701406 2.784535
0.4 1.627125 2.701821
0.5 1.56399 2.616185

t x y
0 2 3

0.1 1.88 2.94
0.2 1.773968 2.870616
0.3 1.681301 2.793738
0.4 1.601231 2.711153
0.5 1.532907 2.624496

t C Te
0 1 25

0.0625 0.941218 66.18648
0.125 0.885749 85.80247

0.1875 0.833497 93.93385
0.25 0.784309 96.02265

0.3125 0.738024 94.99472
0.375 0.694475 92.41801

0.4375 0.653506 89.12894
0.5 0.614963 85.57041

0.5625 0.578703 81.97385
0.625 0.54459 78.45733

0.6875 0.512497 75.07829
0.75 0.482304 71.86194

0.8125 0.453896 68.81648
0.875 0.427168 65.9413

0.9375 0.40202 63.23134
1 0.378358 60.67946
•
•
•

x A x A x A x A
0 0.1

0.2 0.067208 1.2 0.009215 2.2 0.001263 3.2 0.000166
0.4 0.045169 1.4 0.006193 2.4 0.000848 3.4 0.000106

0.6 0.030357 1.6 0.004162 2.6 0.000569 3.6 6.23E-05
0.8 0.020402 1.8 0.002797 2.8 0.00038 3.8 2.88E-05

1 0.013712 2 0.00188 3 0.000253 4 0

t M m s dmdt
0 1000 8000 8 0
5 997.5 8000 8.02005 -0.2005
10 995 7998.997 8.039193 -0.39193
15 992.5 7997.038 8.057469 -0.57469
20 990 7994.164 8.074914 -0.74914
25 987.5 7990.419 8.091563 -0.91563

t cin c k1 cend cin-end k2 phi
0 0 10 -0.5 9 9.063462 0.003173 -0.24841
2 9.063462 9.503173 -0.02199 9.459202 16.484 0.35124 0.164627
4 16.484 9.832427 0.332579 10.49758 22.55942 0.603092 0.467835
6 22.55942 10.7681 0.589566 11.94723 27.53355 0.779316 0.684441
8 27.53355 12.13698 0.769829 13.67664 31.60603 0.89647 0.833149

10 31.60603 13.80328 0.890138 15.58355 34.94029 0.967837 0.928987

t c1 c2 c3 c4 c5 dc1dt dc2dt dc3dt dc4dt dc5dt
0 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 5.0000 0.0000 0.0000
1 1.0000 0.0000 5.0000 0.0000 0.0000 0.8600 0.2000 3.6250 0.5625 0.0300
2 1.8600 0.2000 8.6250 0.5625 0.0300 0.7396 0.3320 2.6331 0.8726 0.0600
3 2.5996 0.5320 11.2581 1.4351 0.0900 0.6361 0.4135 1.9173 1.0176 0.0885
4 3.2357 0.9455 13.1754 2.4528 0.1785 0.5470 0.4580 1.4004 1.0575 0.1147
5 3.7827 1.4035 14.5758 3.5102 0.2933 0.4704 0.4758 1.0267 1.0328 0.1380
•
•
•

76 7.1428 7.1426 18.8311 13.0962 7.0053 0.0000 0.0000 0.0000 0.0018 0.0082
77 7.1428 7.1426 18.8311 13.0980 7.0135 0.0000 0.0000 0.0000 0.0017 0.0078
78 7.1428 7.1427 18.8311 13.0997 7.0213 0.0000 0.0000 0.0000 0.0016 0.0073
79 7.1428 7.1427 18.8311 13.1013 7.0286 0.0000 0.0000 0.0000 0.0015 0.0069
80 7.1428 7.1427 18.8311 13.1028 7.0354 0.0000 0.0000 0.0000 0.0014 0.0064

t c k1 cmid k2 cmid k3 cend k4 phi
0 10 2 20 1.5 17.5 1.625 26.25 1.1875 1.572917

10 25.72917 1.213542 31.79688 0.910156 30.27995 0.986003 35.58919 0.72054 0.9544
20 35.27317 0.736342 38.95487 0.552256 38.03445 0.598278 41.25594 0.437203 0.579102
30 41.06419 0.446791 43.29814 0.335093 42.73965 0.363017 44.69436 0.265282 0.351382
40 44.57801 0.2711 45.93351 0.203325 45.59463 0.220268 46.78069 0.160965 0.213208
50 46.71009 0.164495 47.53257 0.123371 47.32695 0.133652 48.04662 0.097669 0.129369

t c k1 c k2 phi
0 10 2 30 1 1.5

10 25 1.25 37.5 0.625 0.9375
20 34.375 0.78125 42.1875 0.390625 0.585938
30 40.23438 0.488281 45.11719 0.244141 0.366211
40 43.89648 0.305176 46.94824 0.152588 0.228882
50 46.1853 0.190735 48.09265 0.095367 0.143051

CHAPTER 32

32.1 First equation

6 075 3 2 262 50 1. . .c c− =

Middle equations (i = 1 to 8)

− + − =− +2 1 3 45 11 01 1. . .c c ci i i

Last equation

− + =3 2 3 45 08 9. .c c

The solution is

32.2 Element equation: (See solution for Prob. 31.4 for derivation of element equation.)

a a
a a

c
c

b
b

11 12

21 22

1

2

1

2


















=








a11
2

2 5
1
2

0 2
2

2 5 055= − + =
.

.
(.) . a12

2
2 5

1
2

0 3=
−

+ = −
.

.

a 21
2

2 5
1
2

1 3=
−

− = −
.

. a 22
2

2 5
1
2

0 2
2

2 5 155= + + =
.

.
(.) .

b
dc
dx

x1 12= − () b
dc
dx

x2 22= ()

Assembly:

0 55 0 3
13 2 1 0 3

1 3 2 1 0 3
1 3 2 1 0 3

1 3 155

0
0
0

0

1

2

3

4

1

2

. .
. . .

. . .
. . .

. .

()

()

−
− −

− −
− −

−

















































=

−



























c
c
c
c
c

dc
dx

x

dc
dx

x

Boundary conditions:

Inlet:

Uc Uc D
dc
dx

dc
dx

Uc Uc
D

in

in

= −

=
−

0

0

0

0

()

()

Substitute into first equation

0 55 0 3 100
155 0 3 100

0 1 0

0 1

. .
. .

c c c
c c

− = −
− =

Outlet:

dc
dx

()10 0=

Solution:

c0 = 74.4 c1 = 51.08 c2 = 35.15 c3 = 24.72 c2 = 20.74

32.3 According to Fick’s first law, the diffusive flux is

J x D
dc
dx

x() ()= −

where J(x) = flux at position x. If c has units of g/m3, D has units of m2/d and x is measured
in m, flux has units of g/m2/d. In addition, there will be an advective flux which can be
calculated as

J x Uc x() ()=

Finite divided differences can be used to approximate the derivatives. For example, for the
point at the beginning of the tank, a forward difference can be used to calculate

dc
dx

()
. .

.
.0

52 47 76 44
2 5

0 9588≅
−

= −
g / m

m

3

Thus, the flux at the head of the tank is

J x() (.) (.) . . .= − − + = + =2 0 9588 1 76 44 19 176 76 44 95 616
g / m

m

3

The remasinder of the values can be calculated in a similar fashion using centered (middle
nodes) and backward differences (the end node):

32.4 Segmentation scheme:

4 0

4 0

4 0
1 0 0 1 0 0 1 0 0

1 , 0 2 , 0 3 , 0

1 , 2 2 , 2 3 , 2 4 , 2 5 , 2 6 , 2

1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1

d c /d y = 0

d c /d y = 0

dc
/d

x
=

0

Nodes 1,1 through 5,1

0 4
2

5
0 4

2

5
0 21 1

2
1 1

2
. . ., , , , , ,

,

c c c c c c
ci j i j i j i j i j i j

i j
+ − + +− +

+
− +

−

Collecting terms gives

0 264 0 016 0 016 0 016 0 016 01 1 1 1., , , , ,c c c c ci j i j i j i j i j− − − − =+ − + +

Node 6,1 would be modified to reflect the no flow condition in x and the Dirichlet condition
at 6,0:

0 264 0 032 0 016 0 016 100 06 1 5 1 6 2. . . . (), , ,c c c− − − =

The nodes along the upper edge (1,2 through 5,2) would be generally written to reflect the
no-flow condition in y as

0 264 0 016 0 016 0 032 01 1 1. . . ., , , ,c c c ci j i j i j i j− − − =+ − +

The node at the upper right edge (6,2) would be generally written to reflect the no-flow
condition in x and y as

0 264 0 032 0 032 06 2 5 2 6 1. . ., , ,c c c− − =

Finally, the nodes along the lower edge (1,0 through 3,0) would be generally written to
reflect the no-flow condition in y as

0 264 0 016 0 016 0 032 01 1 1. . . ., , , ,c c c ci j i j i j i j− − − =+ − +

These equations can be solved for

32.5 For simplicity, we will use a very coarse grid to solve this problem. Thus, we place nodes as
in the following diagram.

oil

water

v10o

v8o

v6o v6w

v4w

v2w

v0w

x

0

A simple explicit solution can be developed by substituting finite-differences for the second
derivative terms in the motion equations. This is done for the three non-boundary nodes,

dv
dt

v v v
x

w
w

w w w2 0 2 4
2

2
=

− +
µ

∆

dv
dt

v v v
x

w
w

w w w4 2 4 6
2

2
=

− +
µ

∆

dv
dt

v v v
x

o
o

o o o8 6 8 10
2

2
=

− +
µ

∆

These three equations have 7 unknowns (v0w, v2w, v4w, v6w, v6o, v8o, v10o). The boundary
conditions at the plates effectively specify v0w = 0 and v10o = 7. The former is called a “no
slip” condition because it specifies that the velocity at the lower plate is zero.

The relationships at the oil-water interface can be used to used to eliminate two of the
remaining unknowns. The first condition states that

v6o = v6w (i)

The second can be rearrange to yield

v
v v

w
o o w w

o w
6

8 4=
+
+

µ µ
µ µ

(ii)

These, along with the wall boundary conditions can be substituted into the differential
equations

dv
dt

v v
x

w
w

w w2 2 4
2

2
=

− +
µ

∆

dv
dt

v v

x
w

w

w w
o o w w

o w4
2 4

8 4

2

2
=

− +
+
+

µ

µ ν µ ν
µ µ

∆

dv
dt

v

x
o

o

o o w w

o w
o

8

8 4
8

2

2 7
=

+
+

− +
µ

µ ν µ ν
µ µ

∆

These equations can now be integrated to determine the velocities as a function of time.
Equations (i) and (ii) can be used to determine v6o and v6w. The results are plotted below:

0

4

8

0 2 4 6 8 10

t = 1.5 s

t = 0.5 s

t = 1.0 s

32.6 Using a similar approach to Sec. 32.2, the following nodal equation can be developed for
node 11:

4 121954 121954 0 78049 0 78049 0 35786611 12 10 12 01u u u u u− − − − =.

Similar equations can be written for the other nodes and the resulting equations solved for

A graphical comparison of the results from Sec. 32.2 can be made with these results by
developing a plot along the y dimension in the middle of the plate:

-0.6

-0.3

0
0 0.5 1 1.5 2

These results can then be used as input to the right-hand side of Eq. 32.14 and the resulting
simultaneous equations solved for

Again the comparison is good

0

0.04

0.08

0.12

0 0.5 1 1.5 2

32.7 Grid scheme

0, 2 1, 2 2, 2 3, 2

0, 1 1, 1 2, 1 3, 1

0, 0 1, 0 2, 0

All nodes in the above scheme can be modeled with the following general difference
equation

h h h

x

h h h

y
i j i j i j i j i j i j+ − + −− +

+
− +

=1 1
2

1 1
2

2 2
0, , , , , ,

∆ ∆

Node 0,0:

h h h
x

h h h
y

1 0 0 0 1 0
2

0 1 0 0 0 1
2

2 2
0, , , , , ,− +

+
− +

=− −

∆ ∆

The external nodes can be approximated with finite differences

dh
dy

h h
y

h h y dh
dy

h

=
−

= − =

−

−

0 1 0 1

0 1 0 1 0 1

2

2

, ,

, , ,

∆

∆

dh
dx

h h
x

h h x
dh
dx

h h

=
−

= − = − = −

−

−

1 0 1 0

1 0 1 0 1 0 1 0

2

2 2 1 1 2

, ,

, , , ,()()

∆

∆

which can be substituted into the difference equation to give

2 2 2 2 2
0

4 2 2 2

1 0 0 0
2

0 1 0 0
2

0 0 1 0 0 1

h h

x

h h

y
h h h

, , , ,

, , ,

− −
+

−
=

− − = −
∆ ∆

Node 1,0:

4 2 01 0 1 1 0 0 2 0h h h h, , , ,− − − =

Node 2,0:

4 2 2 02 0 1 0 2 1h h h, , ,− − =

Node 0,1:

4 2 20 1 1 1 0 0 0 2h h h h, , , ,− − − = −

Node 1,1:

4 01 1 1 0 0 1 1 2 2 1h h h h h, , , , ,− − − − =

Node 2,1:

4 02 1 1 1 2 2 3 1 2 0h h h h h, , , , ,− − − − =

Node 0,2:

4 2 2 20 2 0 1 1 2h h h, , ,− − = −

Node 1,2:

4 2 01 2 0 2 2 2 1 1h h h h, , , ,− − − =

Node 2,2:

4 2 202 2 1 2 2 1h h h, , ,− − =

The equations can be solved simultaneously for

More refined results can be obtained by using a finer grid spacing.

32.8 The fluxes can be determined using finite divided differences as

32.9 Because of the equi-spaced grid, the domain can be modeled with simple Laplacians. The
resulting solution is

32.10 A convenient segmentation scheme can be developed as

Simple Laplacians reflecting the boundary conditions can be developed and solved for

32.11 The system to be solved is

2 7 2
2 2 75 0 75

0 75 2 25 15
15 15

0
0
0
2

1

2

3

4

.
. .
. . .

. .

−
− −

− −
−







































=





















x
x
x
x

which can be solved for x1 = 2.857, x2 = 3.857, x3 = 6.5238, and x4 = 7.857.

32.12 The system to be solved is

0 6 0 4
0 4 18 14

14 2 1 0 7
0 7 16 0 9

0 9 0 9

0
0
0
0
1

1

2

3

4

5

. .
. . .

. . .
. . .

. .

−
− −

− −
− −

−

















































=



























x
x
x
x
x

which can be solved for x1 = 5, x2 = 7.5, x3 = 8.214286, x4 = 9.64286, and x5 = 10.75397.

32.13 Substituting the Crank-Nicolson finite difference analogues to the derivatives

t
uu

t
u

x

uuu

x

uuu

x
u

nini

nininininini

∆
−

=
∂
∂










∆

+−
+

∆

+−
=

∂
∂

+

−++−+++

,1,

2
,1,,1

2
1,11,1,1

2

2

2
1

into the governing equations gives the following finite difference equations:

[] []

[] [] 1
2
12222

2
1

0221221

,1,

2

,11,11,

2

1,1

,1,

2

,11,11,

2

1,1

≤≤−











∆

∆−+−=+











∆

∆−−+

≤≤−











∆

∆
−+−=+












∆

∆
−−+

+−++++−

+−++++−

xruu
t

xrruuru
t

xrur

xuu
t

x
uuu

t
x

u

nininininini

nininininini

Substitute for the end point boundary conditions to get the end point finite difference equations.
Substitute the first order Crank Nicolson analogues to the derivatives









∆
−

+
∆
−

=
∂
∂ −++−++

r
uu

r
uu

r
u nininini

222
1 ,1,11,11,1 into the midpoint boundary condition and get

)()(,11,1,11,1,11,1,11,1 nLnLnLnLnL
b

nL
b

nL
a

nL
a uuruuuuruu +++=+−++++++ +++=+++

where au and bu are fictitious points located in the opposite side of the midpoint from their
half. Write out the two finite difference equations from above for the point i = L (the midpoint)
then combine these two equations with the midpoint boundary condition to obtain the midpoint
finite difference equation:

[] [] nLnLnLnLnLnL uru
t

x
ruuu

t
x

ru ,1,

2

,11,11,

2

1,1)1(4)1(2224)1(22 +−++++− +−











∆

∆
−++−=+












∆

∆
−+−+

%PDE Parabolic Problem - Transient Heat conduction in a composite rod
% u[xx]=u[t] 0<x<0.5
% r(u[xx])=u[t] 0.5<x<1
% BC u(0,t)=1 u(1,t)=1
% u[x]=r(u[x]) x=0.5
% IC u(x,0)=0 0<x<1
% i=spatial index, from 1 to imax
% R = no. of x points (R=21 for 20 dx spaces)
% n=time index from 1 to N
% N = no. of time steps,
% Crank-Nicolson Formulation
R=41; %(imax must be odd for point L to be correct)
N=69; % last time step = nmax+1
L=(R-1)/2+1; % L = midpoint of point no. (for R=41, L=21)

% Constants

r=0.01;
dx=1/(R-1);

 dx2=dx*dx;
dt=dx2; % Setting dt to dx2 for good stabilility and results

% Independent space variable
x=0:dx:1;

% Sizing matrices

u=zeros(R,N+1); t=zeros(1,N+1);
a=zeros(1,R); b=zeros(1,R);

 c=zeros(1,R); d=zeros(1,R);
ba=zeros(1,R); ga=zeros(1,R);
up=zeros(1,R);

% Boundary Conditions at t=0
 u(1,1)=1;
 u(R,1)=1;
% Time step loop
% n=1 represents 0 time, next time = n+1

t(1)=0;
for n=1:N

 t(n+1)=t(n)+dt;
% Boundary conditions & Constants

u(1,n+1)=1;
u(R,n+1)=1;
dx2dt=dx2/dt;

% coefficients
 b(2)=-2-2*dx2dt;
 c(2)=1;
 d(2)=(2-2*dx2dt)*u(2,n)-u(3,n)-2;
 for i=3:L-1
 a(i)=1;
 b(i)=-2-2*dx2dt;
 c(i)=1;
 d(i)=-u(i-1,n)+(2-2*dx2dt)*u(i,n)-u(i+1,n);
 end

a(L)=2;
b(L)=-2*(1+r)-4*dx2dt;
c(L)=2*r;

 d(L)=-2*u(L-1,n)+(2*(1+r)-4*dx2dt)*u(L,n)-2*r*u(L+1,n);
 for i=L+1:R-2
 a(i)=r;
 b(i)=-2*r-2*dx2dt;
 c(i)=r;
 d(i)=-r*u(i-1,n)+(2*r-2*dx2dt)*u(i,n)-r*u(i+1,n);
 end
 a(R-1)=r;
 b(R-1)=-2*r-2*dx2dt;
 d(R-1)=-r*u(R-2,n)+(2*r-2*dx2dt)*u(R-1,n)-2*r;
% Solution by Thomas Algorithm
 ba(2)=b(2);
 ga(2)=d(2)/b(2);
 for i=3:R-1
 ba(i)=b(i)-a(i)*c(i-1)/ba(i-1);
 ga(i)=(d(i)-a(i)*ga(i-1))/ba(i);
 end
% Back substitution step
 u(R-1,n+1)=ga(R-1);
 for i=R-2:-1:2
 u(i,n+1)=ga(i)-c(i)*u(i+1,n+1)/ba(i);
 end
 dt=1.1*dt;
end
% end of time step loop

% Plot
% Storing plot value of u as up, at every 5 time steps
% j=time index
% i=space index
for j=5:5:N+1
for i=1:R

 up(i)=u(i,j);
end
plot(x,up)
hold on

end
grid
title('u[xx]=u[t] 0<x<0.5; r(u[xx])=u[t] 0.5<x<1; u(0,t)=1, u(1,t)=1,
u(x,0)=0; u[x]=r(u[x]) x=0.5')
xlabel('x - ND Space')
ylabel('u - ND Temperature')
hold off
gtext('r=0.01')

% Storing times for temp. profiles
% These can be saved in a data file or examined in the command file

tp=zeros(1,(N-1)/5);
i=1;
tp(1)=0;
for k=5:5:N+1

i=i+1;
tp(i)=t(k);

end
tp

tp =
 Columns 1 through 7
 0 0.0029 0.0085 0.0175 0.0320 0.0553 0.0929
 Columns 8 through 14
 0.1534 0.2509 0.4079 0.6607 1.0679 1.7238 2.7799
 Column 15
 4.4809

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
u[xx]= u[t] 0<x< 0.5; r(u[xx])= u[t] 0.5< x<1; u(0,t)=1, u(1,t)= 1, u(x ,0)= 0; u[x]= r(u[x]) x= 0.5

x - ND S pace

u
 -

 N
D

 T
e

m
p

e
ra

tu
re

r=1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
u[xx]= u[t] 0<x < 0.5; r(u[xx])= u[t] 0.5< x< 1; u(0,t)= 1, u(1,t)= 1, u(x ,0)= 0; u[x]= r(u[x]) x = 0.5

x - ND S pac e

u
 -

 N
D

 T
e

m
p

e
ra

tu
re

r= 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u[xx]= u[t] 0<x < 0.5; r(u[xx])= u[t] 0.5< x< 1; u(0,t)= 1, u(1,t)= 1, u(x ,0)= 0; u[x]= r(u[x]) x = 0.5

x - ND S pac e

u
 -

 N
D

 T
e

m
p

e
ra

tu
re

r= 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u[xx]= u[t] 0<x < 0.5; r(u[xx])= u[t] 0.5< x< 1; u(0,t)= 1, u(1,t)= 1, u(x ,0)= 0; u[x]= r(u[x]) x = 0.5

x - ND S pac e

u
 -

 N
D

 T
e

m
p

e
ra

tu
re

r= 0.001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
u[xx]= u[t] 0<x < 0.5; r(u[xx])= u[t] 0.5< x< 1; u(0,t)= 1, u(1,t)= 1, u(x ,0)= 0; u[x]= r(u[x]) x = 0.5

x - ND S pac e

u
 -

 N
D

 T
e

m
p

e
ra

tu
re r= 0

32.14

99.27296 99.15714 98.55306 96.07795 85.75874 69.00866 50
99.38879 99.40126 99.48858 100 88.97417 70.13795 50
99.47967 99.57055 100 100 100 72.56898 50
99.38879 99.40126 99.48858 100 88.97417 70.13795 50
99.27296 99.15714 98.55306 96.07795 85.75874 69.00866 50

25 40 40 30
10 21.87149 24.04033 20 15
10 13.44564 14.28983 12.63401 10 7.5
10 7.62124 7.039322 6.246222 5.311556 5
5 0 0 0 0 2.5

dh/dx
1.040287 1.106512 1.311258 1.449779
1.014349 1.057395 1.344371 1.5883
0.931015 0.778698 0.62638

dh/dy
0.040287 0.066225 0.138521 0
0.054636 0.109272 0.38245 0
0.068985 0.152318 0.62638

dh/dn
1.041067 1.108492 1.318555 1.449779
1.015819 1.063026 1.397713 1.5883
0.933568 0.793455 0.885835

θ (radians)
0.038707 0.059779 0.105249 0
0.053811 0.102975 0.277161 0
0.073961 0.193167 0.785398

θ (degrees)
2.217773 3.425088 6.030345 0
3.083137 5.90002 15.88014 0
4.237646 11.06765 45

16.3372 17.37748 18.55022 20
16.29691 17.31126 18.4117 20
16.22792 17.15894 17.78532

0 0 0 0 0
0 0.052697 0.072156 0.052697 0
0 0.082316 0.113101 0.082316 0
0 0.082316 0.113101 0.082316 0
0 0.052697 0.072156 0.052697 0
0 0 0 0 0

0 0 0 0 0
0 -0.27719 -0.35074 -0.27719 0
0 -0.39124 -0.50218 -0.39124 0
0 -0.39124 -0.50218 -0.39124 0
0 -0.27719 -0.35074 -0.27719 0
0 0 0 0 0

20 1.387741 0.113952 0.155496 0.864874 0.951623 0.958962
20 1.391891 0.168488 0.793428 6.581653 6.938975 6.959813
20 1.409973 0.48078 6.185917 100 100 100

c dcdx J-diff J-adv J
76.44 -9.588 19.176 76.44 95.616
52.47 -8.076 16.152 52.47 68.622
36.06 -5.484 10.968 36.06 47.028
25.05 -3.394 6.788 25.05 31.838
19.09 -2.384 4.768 19.09 23.858

c0 76.53 c5 29.61
c1 63.25 c6 24.62
c2 52.28 c7 20.69
c3 43.22 c8 17.88
c4 35.75 c9 16.58

CHAPTER 25

25.1 The analytical solution can be derived by separation of variables

dy
y

x dx∫ ∫= −2 12.

ln .y x x C= − +
3

3
12

Substituting the initial conditions yields C = 0. Taking the exponential give the final result

y e
x

x
=

−
3

3
1.2

The result can be plotted as

0

1

2

0 1 2

25.2 Euler’s method with h = 0.5

x y dy/dx
0 1 -1.2

0.5 0.4 -0.38
1 0.21 -0.042

1.5 0.189 0.19845
2 0.288225 0.80703

Euler’s method with h = 0.25 gives

x y dy/dx
0 1 -1.2

0.25 0.7 -0.79625
0.5 0.500938 -0.47589

0.75 0.381965 -0.2435
1 0.321089 -0.06422

1.25 0.305035 0.110575
1.5 0.332679 0.349312

1.75 0.420007 0.782262
2 0.615572 1.723602

The results can be plotted along with the analytical solution as

0

1

2

0 1 2

25.3 For Heun’s method, the value of the slope at x = 0 can be computed as −0.6 which can be used to
compute the value of y at the end of the interval as

y(.) (. ()) . .0 5 1 0 12 1 0 5 0 4= + − =

The slope at the end of the interval can be computed as

y ' (.) . (.) . (.) .0 5 0 4 0 5 12 0 4 0 382= − = −

which can be averaged with the initial slope to predict

y(.)0 5 1 0 6 0 38
2

0 5 0 605= + − − =

This formula can then be iterated to yield

j yij εa
 0 0.4
 1 0.605 33.9
 2 0.5563124 8.75
 3 0.5678757 2.036
 4 0.5651295 0.4859

The remaining steps can be implemented with the result

xi yi
0.5 0.5651295
1.0 0.4104059
1.5 0.5279021
2.0 2.181574

The results along with the analytical solution are displayed below:

0

1

2

0 1 2

25.4 The midpoint method with h = 0.5

x y dy/dx ym dy/dx-mid
0 1 -1.2 0.7 -0.79625

0.5 0.601875 -0.57178 0.45893 -0.29257
1 0.455591 -0.09112 0.432812 0.156894

1.5 0.534038 0.56074 0.674223 1.255741
2 1.161909 3.253344 1.975245 7.629383

with h = 0.25 gives

x y dy/dx ym dy/dx-mid
0 1 -1.2 0.85 -1.00672

0.25 0.74832 -0.85121 0.641919 -0.68003
0.5 0.578312 -0.5494 0.509638 -0.41249

0.75 0.47519 -0.30293 0.437323 -0.18996
1 0.4277 -0.08554 0.417007 0.027366

1.25 0.434541 0.157521 0.454231 0.313703
1.5 0.512967 0.538615 0.580294 0.835986

1.75 0.721963 1.344657 0.890046 2.061012
2 1.237216 3.464206 1.670242 5.537897

The results can be plotted along with the analytical solution as

0

1

2

0 1 2

25.5 The 4th-order RK method with h = 0.5 gives

x y k1 ym k2 ym k3 ye k4 phi
0 1 -1.2 0.7 -0.79625 0.800938 -0.91107 0.544467 -0.51724 -0.85531

0.5 0.572344 -0.54373 0.436412 -0.27821 0.50279 -0.32053 0.412079 -0.08242 -0.30394
1 0.420375 -0.08407 0.399356 0.144767 0.456567 0.165505 0.503128 0.528284 0.177459

1.5 0.509104 0.534559 0.642744 1.197111 0.808382 1.505611 1.26191 3.533348 1.578892
2 1.29855 3.635941 2.207535 8.526606 3.430202 13.24915 7.923127 40.01179 14.53321

0

1

2

0 1 2

25.6 (a) The analytical solution can be derived by separation of variables

dy
y

x dx∫ ∫= +1

2
2

2
y x x C= + +

Substituting the initial conditions yields C = 2. Substituting this value and solving for y gives the
final result

y x x= + +()2 22 4
16

The result can be plotted as

0

2

4

0 0.5 1

(b) Euler’s method with h = 0.5

x y dy/dx

0 1 1
0.5 1.5 1.837117

1 2.418559 3.110343

Euler’s method with h = 0.25 gives

x y dy/dx
0 1 1

0.25 1.25 1.397542
0.5 1.599386 1.897002

0.75 2.073636 2.520022
1 2.703642 3.288551

The results can be plotted along with the analytical solution as

0

2

4

0 0.5 1

(c) For Heun’s method, the first step along with the associated iterations is

j yij εa
0 1.500000
1 1.709279 12.243720
2 1.740273 1.780954
3 1.744698 2.536284E-01

The remaining steps can be implemented with the result

xi yi
0.00E+00 1
5.00E-01 1.744698
1 3.122586

The results along with the analytical solution are displayed below:

0

2

4

0.0 0.5 1.0

(d) The midpoint method with h = 0.5

x y dy/dx ym dy/dx-mid
0 1 1 1.25 1.397542

0.5 1.698771 1.955054 2.187535 2.588305
1 2.992924 3.460014 3.857927 4.419362

with h = 0.25 gives

x y dy/dx ym dy/dx-mid
0 1 1 1.125 1.193243

0.25 1.298311 1.424293 1.476347 1.670694
0.5 1.715984 1.964934 1.961601 2.275929

0.75 2.284966 2.645318 2.615631 3.032421
1 3.043072 3.48888 3.479182 3.96367

The results can be plotted along with the analytical solution as

0

2

4

0 0.5 1

(e) The 4th-order RK method with h = 0.5 gives

x y k1 ym k2 ym k3 ye k4 phi
0 1 1 1.25 1.397542 1.349386 1.452038 1.726019 1.970671 1.444972

0.5 1.722486 1.968653 2.214649 2.604297 2.37356 2.696114 3.070543 3.504593 2.679011
1 3.061992 3.499709 3.936919 4.464376 4.178086 4.599082 5.361533 5.788746 4.569229

0

2

4

0 0.5 1

25.7 The second-order ODE is transformed into a pair of first-order ODEs as in

dy
dx

z y =

dz
dx

x y z =

=

= −

 ()

 ()

0 2

0 0

(a) The first few steps of Euler’s method are

x y z dy/dx dz/dx
0 2 0 0 -2

0.1 2 -0.2 -0.2 -1.9
0.2 1.98 -0.39 -0.39 -1.78
0.3 1.941 -0.568 -0.568 -1.641
0.4 1.8842 -0.7321 -0.7321 -1.4842
0.5 1.81099 -0.88052 -0.88052 -1.31099

(b) For Heun (without iterating the corrector) the first few steps are

x y z dy/dx dz/dx yend zend dy/dx dz/dx ave slope
0 2 0 0 -2 2 -0.2 -0.2 -1.9 -0.1

0.1 1.99 -0.195 -0.195 -1.89 1.9705 -0.384 -0.384 -1.7705 -0.2895
0.2 1.96105 -0.37803 -0.37803 -1.76105 1.923248 -0.55413 -0.55413 -1.62325 -0.46608
0.3 1.914442 -0.54724 -0.54724 -1.61444 1.859718 -0.70868 -0.70868 -1.45972 -0.62796
0.4 1.851646 -0.70095 -0.70095 -1.45165 1.781551 -0.84611 -0.84611 -1.28155 -0.77353
0.5 1.774293 -0.83761 -0.83761 -1.27429 1.690532 -0.96504 -0.96504 -1.09053 -0.90132

Both results are plotted below:

-2

0

2

4

0 2 4

y

z

Heun

Euler

x

25.8 The second-order ODE is transformed into a pair of first-order ODEs as in

dy
dt

z y =

dz
dt

z y z =

=

= − −

 ()

 ()

0 4

05 5 0 0.

The results for the 4th-order RK method are tabulated and plotted below:

t y z k11 k12 ymid zmid k21 k22 ymid zmid k31 k32 yend zend k41 k42 phi1 phi2
0 4.0000 0.0000 0.00 -20.00 4.00 -5.00 -5.00 -17.50 2.75 -4.38 -4.38 -11.56 1.81 -1.78 -1.78 -8.17 -3.42 -14.38

0.5 2.2891 -7.1914 -7.19 -7.85 0.49 -9.15 -9.15 2.12 0.00 -6.66 -6.66 3.33 -1.04 3.95 3.95 3.23 -5.81 1.05
1 -0.6167 -6.6682 -6.67 6.42 -2.28 -5.06 -5.06 13.95 -1.88 -3.18 -3.18 11.00 -2.21 4.89 4.89 8.59 -3.05 10.82

1.5 -2.1393 -1.2584 -1.26 11.33 -2.45 1.57 1.57 11.48 -1.75 1.61 1.61 7.92 -1.33 1.82 1.82 5.75 1.16 9.32
2 -1.5614 3.3995 3.40 6.11 -0.71 4.93 4.93 1.09 -0.33 3.67 3.67 -0.19 0.28 -1.66 -1.66 -0.55 3.16 1.23

2.5 0.0172 4.0139 4.01 -2.09 1.02 3.49 3.49 -6.85 0.89 2.30 2.30 -5.60 1.17 -2.78 -2.78 -4.45 2.14 -5.24
3 1.0852 1.3939 1.39 -6.12 1.43 -0.14 -0.14 -7.10 1.05 -0.38 -0.38 -5.06 0.89 -1.45 -1.45 -3.75 -0.18 -5.70

3.5 0.9945 -1.4562 -1.46 -4.24 0.63 -2.52 -2.52 -1.89 0.37 -1.93 -1.93 -0.86 0.03 0.56 0.56 -0.43 -1.63 -1.70
4 0.1790 -2.3048 -2.30 0.26 -0.40 -2.24 -2.24 3.11 -0.38 -1.53 -1.53 2.67 -0.59 1.51 1.51 2.17 -1.39 2.33

4.5 -0.5150 -1.1399 -1.14 3.15 -0.80 -0.35 -0.35 4.18 -0.60 -0.10 -0.10 3.07 -0.56 1.02 1.02 2.31 -0.17 3.32
5 -0.6001 0.5213 0.52 2.74 -0.47 1.21 1.21 1.75 -0.30 0.96 0.96 1.01 -0.12 -0.09 -0.09 0.65 0.79 1.49

-8

-4

0

4

8

0 2 4

y

z

t

25.9 (a) The Heun method without iteration can be implemented as in the following table:

t y k1 yend k2 phi
0 1 0 1 0.009967 0.004983

0.1 1.000498 0.009972 1.001496 0.039489 0.02473
0.2 1.002971 0.039587 1.00693 0.087592 0.063589
0.3 1.00933 0.088147 1.018145 0.153062 0.120604
0.4 1.021391 0.15489 1.03688 0.234765 0.194828
0.5 1.040874 0.239244 1.064798 0.331852 0.285548

• •
• •
• •

2.9 4.527257 0.259141 4.553171 0.09016 0.17465
3 4.544722 0.090507 4.553773 0.007858 0.049183

(b) The Ralston 2nd order RK method can be implemented as in the following table:

t y k1 yint k2 phi

0 1 0 1 0.005614 0.003743
0.1 1.000374 0.00997 1.001122 0.030348 0.023555
0.2 1.00273 0.039577 1.005698 0.074158 0.062631
0.3 1.008993 0.088118 1.015602 0.136249 0.120205
0.4 1.021013 0.154833 1.032626 0.215982 0.195599
0.5 1.040573 0.239175 1.058511 0.313061 0.288432

• •
• •
• •

2.9 4.779856 0.2736 4.800376 0.131997 0.179198
3 4.797775 0.095547 4.804941 0.021276 0.046033

Both methods are displayed on the following plot along with the exact solution. The Ralston
method performs much better for this case.

0

2

4

0 1 2 3

Ralston

Heun

25.10 The solution results are as in the following table and plot:

t y k1 k2 k3 phi
0 1 -1 -0.6875 -0.5625 -0.71875

0.5 0.640625 -0.39063 0.019531 0.144531 -0.02799
1 0.626628 0.373372 0.842529 0.967529 0.78517

1.5 1.019213 1.230787 1.735591 1.860591 1.67229
2 1.855358 2.144642 2.670982 2.795982 2.604092

2.5 3.157404 3.092596 3.631947 3.756947 3.562889
3 4.938848 4.061152 4.608364 4.733364 4.537995

0

2

4

0 1 2 3

25.11 (a) Euler

x y z dy/dx dz/dx
0 2.0000 4.0000 1.00 -16.00

0.2 2.2000 0.8000 -0.31 -0.70
0.4 2.1387 0.6592 -0.93 -0.46
0.6 1.9536 0.5663 -1.16 -0.31
0.8 1.7209 0.5036 -1.20 -0.22

1 1.4819 0.4600 -1.12 -0.16

(b) 4th-order RK

x y z k11 k12 k21 k22 k31 k32 k41 k42 phi1 phi2
0 2.000 4.000 1.000 -16.000 0.324 -6.048 0.459 -11.714 -0.090 -0.123 0.413 -8.608

0.2 2.083 2.278 -0.071 -5.406 -0.447 -3.134 -0.372 -3.934 -0.665 -1.686 -0.396 -3.538
0.4 2.003 1.571 -0.655 -2.472 -0.843 -1.698 -0.806 -1.884 -0.941 -2.438 -0.816 -2.012
0.6 1.840 1.168 -0.937 -1.256 -1.010 -0.950 -0.996 -1.002 -1.036 -2.207 -0.997 -1.228
0.8 1.641 0.923 -1.035 -0.699 -1.042 -0.559 -1.040 -0.577 -1.026 -1.667 -1.038 -0.773

1 1.433 0.768 -1.027 -0.423 -0.997 -0.351 -1.003 -0.358 -0.960 -1.143 -0.998 -0.497

Both methods are plotted on the same graph below. Notice how Euler’s method (particularly for
z) is very inaccurate for this step size. The 4th-order RK is much closer to the exact solution.

0

2

4

0 0.5 1

y

z

4th-order RK Euler

25.12 dy
dx

e y
x

= −
−

−

10 0 6
2

2 0.075)

2

2
()
(.

4 th -order RK method:

One step (h = 0.5): y1 = 0.3704188
Two steps (h = 0.25): y2 = 0.3704096

∆present = −9.119×10−6

correction = ∆
15

6 08 10 7= − × −.

y2 = 0.370409

dy
dx

= −0 3.

y scale = + − =05 05 0 3 0 65. . (.) .

∆new = 0.001(0.65) = 0.00065

Since ∆present < ∆new, therefore, increase step.

hnew =
×

=
−

0 5 0 00065
9 119 10

11737
6

0.2

. .
.

.

25.13 We will look at the first step only

∆present = y2 − y1 = −0.24335

dy
dx

e= − =4 0 5 2 30 . ()

yscale = 2 + (2(3)) = 8

∆new = 0.001(8) = 0.008

Because ∆present > ∆new, decrease step.

25.14 The calculation of the k’s can be summarized in the following table:

x y f(x,y) k
k1 0 2 3 3
k2 0.25 2.75 3.510611 3.510611
k3 0.375 3.268609 3.765131 3.765131
k4 0.923077 5.636774 5.552467 5.552467
k5 1 5.878223 5.963052 5.963052
k6 0.5 3.805418 4.06459 4.06459

These can then be used to compute the 4th-order prediction

y1 2 25
216

3 1408
2565

3 765131 2197
4104

5552467 1
5

5963052 1 6193807= + + + −





=. . . .

along with a fifth-order formula:

y1 2 16
135

3 6656
12 825

3 765131 28 561
56 430

5552467 9
50

5963052 2
55

4 06459 1 6194339= + + + − +





=
,

. ,
,

. . . .

The error estimate is obtained by subtracting these two equations to give

Ea = − =6194339 6193807 0 000532. . .

25.15
Option Explicit

Sub EulerTest()
Dim i As Integer, m As Integer
Dim xi As Single, yi As Single, xf As Single, dx As Single, xout As Single
Dim xp(200) As Single, yp(200) As Single
'Assign values
yi = 1
xi = 0

xf = 4
dx = 0.5
xout = 0.5
'Perform numerical Integration of ODE
Call ODESolver(xi, yi, xf, dx, xout, xp(), yp(), m)
'Display results
Sheets("Sheet1").Select
Range("a5:b205").ClearContents
Range("a5").Select
For i = 0 To m
 ActiveCell.Value = xp(i)
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = yp(i)
 ActiveCell.Offset(1, -1).Select
Next i
Range("a5").Select
End Sub

Sub ODESolver(xi, yi, xf, dx, xout, xp, yp, m)
'Generate an array that holds the solution
Dim x As Single, y As Single, xend As Single
Dim h As Single
m = 0
xp(m) = xi
yp(m) = yi
x = xi
y = yi
Do 'Print loop
 xend = x + xout
 If (xend > xf) Then xend = xf 'Trim step if increment exceeds end
 h = dx
 Call Integrator(x, y, h, xend)
 m = m + 1
 xp(m) = x
 yp(m) = y
 If (x >= xf) Then Exit Do
Loop
End Sub

Sub Integrator(x, y, h, xend)
Dim ynew As Single
Do 'Calculation loop
 If (xend - x < h) Then h = xend - x 'Trim step if increment exceeds end
 Call Euler(x, y, h, ynew)
 y = ynew
 If (x >= xend) Then Exit Do
Loop
End Sub

Sub Euler(x, y, h, ynew)
Dim dydx As Single
'Implement Euler's method
Call Derivs(x, y, dydx)
ynew = y + dydx * h
x = x + h
End Sub

Sub Derivs(x, y, dydx)
'Define ODE
dydx = -2 * x ^ 3 + 12 * x ^ 2 - 20 * x + 8.5
End Sub

25.16 Example 25.1:

Example 25.4 (nonlinear model). Change time steps and initial conditions to

'Assign values
yi = 0
xi = 0
xf = 15
dx = 0.5
xout = 1

Change Derivs Sub to

Sub Derivs(t, v, dvdt)
'Define ODE
dvdt = 9.8 - 12.5 / 68.1 * (v + 8.3 * (v / 46) ^ 2.2)
End Sub

25.17
Option Explicit

Sub RK4Test()
Dim i As Integer, m As Integer
Dim xi As Single, yi As Single, xf As Single, dx As Single, xout As Single
Dim xp(200) As Single, yp(200) As Single

'Assign values
yi = 1
xi = 0
xf = 4
dx = 0.5
xout = 0.5

'Perform numerical Integration of ODE
Call ODESolver(xi, yi, xf, dx, xout, xp(), yp(), m)

'Display results
Sheets("Sheet1").Select
Range("a5:b205").ClearContents
Range("a5").Select
For i = 0 To m
 ActiveCell.Value = xp(i)

 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = yp(i)
 ActiveCell.Offset(1, -1).Select
Next i
Range("a5").Select
End Sub

Sub ODESolver(xi, yi, xf, dx, xout, xp, yp, m)
'Generate an array that holds the solution
Dim x As Single, y As Single, xend As Single
Dim h As Single
m = 0
xp(m) = xi
yp(m) = yi
x = xi
y = yi
Do 'Print loop
 xend = x + xout
 If (xend > xf) Then xend = xf 'Trim step if increment exceeds end
 h = dx
 Call Integrator(x, y, h, xend)
 m = m + 1
 xp(m) = x
 yp(m) = y
 If (x >= xf) Then Exit Do
Loop
End Sub

Sub Integrator(x, y, h, xend)
Dim ynew As Single
Do 'Calculation loop
 If (xend - x < h) Then h = xend - x 'Trim step if increment exceeds end
 Call RK4(x, y, h, ynew)
 y = ynew
 If (x >= xend) Then Exit Do
Loop
End Sub

Sub RK4(x, y, h, ynew)
'Implement RK4 method
Dim k1 As Single, k2 As Single, k3 As Single, k4 As Single
Dim ym As Single, ye As Single, slope As Single
Call Derivs(x, y, k1)
ym = y + k1 * h / 2
Call Derivs(x + h / 2, ym, k2)
ym = y + k2 * h / 2
Call Derivs(x + h / 2, ym, k3)
ye = y + k3 * h
Call Derivs(x + h, ye, k4)
slope = (k1 + 2 * (k2 + k3) + k4) / 6
ynew = y + slope * h
x = x + h
End Sub

Sub Derivs(x, y, dydx)
'Define ODE
dydx = -2 * x ^ 3 + 12 * x ^ 2 - 20 * x + 8.5
End Sub

25.18 Example 25.1:

Example 25.5 Change time steps and initial conditions to

'Assign values
yi = 2
xi = 0
xf = 4
dx = 1
xout = 1

Change Derivs Sub to

Sub Derivs(x, y, dydx)
'Define ODE
dydx = 4 * Exp(0.8 * x) - 0.5 * y
End Sub

25.19
Option Explicit

Sub RK4SysTest()
Dim i As Integer, m As Integer, n As Integer, j As Integer
Dim xi As Single, yi(10) As Single, xf As Single, dx As Single, xout As Single
Dim xp(200) As Single, yp(200, 10) As Single

'Assign values
n = 2
xi = 0
xf = 2
yi(1) = 4
yi(2) = 6
dx = 0.5
xout = 0.5

'Perform numerical Integration of ODE
Call ODESolver(xi, yi(), xf, dx, xout, xp(), yp(), m, n)

'Display results
Sheets("Sheet1").Select
Range("a5:n205").ClearContents
Range("a5").Select
For i = 0 To m
 ActiveCell.Value = xp(i)
 For j = 1 To n
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = yp(i, j)
 Next j
 ActiveCell.Offset(1, -n).Select
Next i
Range("a5").Select
End Sub

Sub ODESolver(xi, yi, xf, dx, xout, xp, yp, m, n)
'Generate an array that holds the solution
Dim i As Integer

Dim x As Single, y(10) As Single, xend As Single
Dim h As Single
m = 0
x = xi
'set initial conditions
For i = 1 To n
 y(i) = yi(i)
Next i
'save output values
xp(m) = x
For i = 1 To n
 yp(m, i) = y(i)
Next i
Do 'Print loop
 xend = x + xout
 If (xend > xf) Then xend = xf 'Trim step if increment exceeds end
 h = dx
 Call Integrator(x, y(), h, n, xend)
 m = m + 1
 'save output values
 xp(m) = x
 For i = 1 To n
 yp(m, i) = y(i)
 Next i
 If (x >= xf) Then Exit Do
Loop
End Sub

Sub Integrator(x, y, h, n, xend)
Dim j As Integer
Dim ynew(10) As Single
Do 'Calculation loop
 If (xend - x < h) Then h = xend - x 'Trim step if increment exceeds end
 Call RK4Sys(x, y, h, n, ynew())
 For j = 1 To n
 y(j) = ynew(j)
 Next j
 If (x >= xend) Then Exit Do
Loop
End Sub

Sub RK4Sys(x, y, h, n, ynew)
Dim j As Integer
Dim dydx(10) As Single

Dim ym(10), ye(10)
Dim k1(10), k2(10), k3(10), k4(10)
Dim slope(10)
'Implement RK4 method for systems of ODEs
Call Derivs(x, y, k1())
For j = 1 To n
 ym(j) = y(j) + k1(j) * h / 2
Next j
Call Derivs(x + h / 2, ym, k2())
For j = 1 To n
 ym(j) = y(j) + k2(j) * h / 2
Next j
Call Derivs(x + h / 2, ym, k3())
For j = 1 To n
 ye(j) = y(j) + k3(j) * h
Next j
Call Derivs(x + h, ye, k4())
For j = 1 To n
 slope(j) = (k1(j) + 2 * (k2(j) + k3(j)) + k4(j)) / 6
Next j
For j = 1 To n
 ynew(j) = y(j) + slope(j) * h
Next j
x = x + h

End Sub

Sub Derivs(x, y, dydx)
'Define ODE
dydx(1) = -0.5 * y(1)
dydx(2) = 4 - 0.3 * y(2) - 0.1 * y(1)
End Sub

Application to Example 25.10:

25.20 Main Program:

 %Damped spring mass system
 %mass: m=10 kg
 %damping: c=5,40,200 N/(m/s)
 %spring: k=40 N/m

% MATLAB 5 version
 %Independent Variable t, tspan=[tstart tstop]
 %initial conditions [x(1)=velocity, x(2)=displacement];
 tspan=[0 15]; ic=[0 1];

 global cm km
 m=10; c(1)=5; c(2)=40; c(3)=200; k=40;
 km=k/m;
 for n=1:3
 cm=c(n)/m

 [t,x]=ode45('kc',tspan,ic);
 plot(t,x(:,2)); grid;

 xlabel('time - sec.'); ylabel('displacement - m');
 title('m(d2x/dt2)+c(dx/dt)+kx=0; m=10 kg, k= 40 N/m')

 hold on
 end

 gtext('c=5');gtext('cc=40');gtext('c=200 N/(m/s)')

Function ‘kc’:

 %Damped spring mass system - m d2x/dt2 + c dx/dt + k x =0
 %mass: m=10 kg
 %damping: c=5,40,200 N/(m/s)
 %spring: k=40 N/m
 %x(1)=velocity, x(2)=dispacement
 function dx=kc(t,x);
 global cm km
 dx=[-cm*x(1)-km*x(2); x(1)];

0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t im e - s ec .

d
is

p
la

c
e

m
e

n
t

-
m

m (d2x /dt2)+ c (dx /dt)+ k x= 0; m = 10 k g, k = 40 N/m

c = 5

c c = 40

c = 200 N/(m /s)

25.21 The Matlab program on the following pages performs the Euler Method and the plots
shows the depth of the water vs. time. From the plot, we approximate that it takes about
58 minutes to drain the cylindrical tank.

%euler.m
dt=0.5;
max=60;
n=max/dt+1;
t=zeros(1,n);
y=zeros(1,n);
t(1)=0;
y(1)=9;
for i=1:n
 y(i+1)=y(i)+dydt(t(i),y(i))*dt;
 t(i+1)=t(i)+dt;
end
plot(t,y)
grid
xlabel('Time-minutes')
ylabel('Depth of the Water-ft')
title('How Long Does it Take to Drain a 9-ft high Cylindrical
Tank?')
zoom

function dy=dydt(t,y);
dy=-0.1*sqrt(y);

25.22

5.1)0)(2(
6)0)(1(

)sin()7)1(()2()1(5
)2(

)2()1(

)2(

)1(

2

2

==
==

+−−=

=

=





=

==

=

tx
tx

txxx
dt
dx

x
dt
dx

dt
xd

dt
dx

dt
d

dt
dv

x
dt
dx

v

xx

tspan=[0,15]';
x0=[6,1.5]';
[t,x]=ode45('dxdt',tspan,x0);
plot(t,x(:,1),t,x(:,2),'--')
grid
title('Displacement and Velocity Versus Time')
xlabel('Time, t')
ylabel('Displacement and Velocity')
gtext('displacement')
gtext('velocity')

function dx=dxdt(t,x)
dx=[x(2);-5*x(1)*x(2)+(x(1)+7)*sin(1*t)];

0 5 10 15
-1

0

1

2

3

4

5

6

7
Dis plac em ent and V eloc ity V ersus Tim e

Tim e, t

D
is

p
la

c
e

m
e

n
t

a
n

d
 V

e
lo

c
it

y
d is placem ent

veloc ity

CHAPTER 26

26.1 (a) h < 2/100,000 = 2×10−5.

(b) The implicit Euler can be written for this problem as

()y y y e e hi i i
x xi i

+ +
− −= + − + −+ +

1 1100 000 100 000 1 1, ,

which can be solved for

y y e h e h
hi

i
x xi i

+

− −
= + −

+

+ +

1
100 000

1 100 000

1 1,
,

The results of applying this formula for the first few steps are shown below. A plot of the entire
solution is also displayed

x y
0 0

0.1 1.904638
0.2 1.818731
0.3 1.740819
0.4 1.67032
0.5 1.606531

0

1

2

0 1 2

26.2 The implicit Euler can be written for this problem as

()y y t y t hi i i i i+ + + += + − +1 1 1 130 3(sin) cos

which can be solved for

y
y t h t h

hi
i i i

+
+ +=

+ +
+1

1 130 3
1 30

sin cos

The results of applying this formula are tabulated and graphed below.

x y x y x y x y
0 0 1.2 0.952306 2.4 0.622925 3.6 -0.50089

0.4 0.444484 1.6 0.993242 2.8 0.270163 4 -0.79745
0.8 0.760677 2 0.877341 3.2 -0.12525

-1

-0.5

0

0.5

1

0 1 2 3 4

26.3 (a) The explicit Euler can be written for this problem as

()x x x x hi i i i1 1 1 1 2999 1999, , , ,+ = + +

()x x x x hi i i i2 1 2 1 21000 2000, , , ,+ = + − −

Because the step-size is much too large for the stability requirements, the solution is unstable,

t x1 x2 dx1 dx2
0 1 1 2998 -3000

0.05 150.9 -149 -147102 147100
0.1 -7204.2 7206 7207803 -7207805

0.15 353186 -353184 -3.5E+08 3.53E+08
0.2 -1.7E+07 17305943 1.73E+10 -1.7E+10

(b) The implicit Euler can be written for this problem as

()x x x x hi i i i1 1 1 1 1 2 1999 1999, , , ,+ + += + +

()x x x x hi i i i2 1 2 1 1 2 11000 2000, , , ,+ + += + − −

or collecting terms

()
()

, , ,

, , ,

1 999 1999
1000 1 2000

1 1 2 1 1

1 1 2 1 2

− − =
+ + =

+ +

+ +

h x hx x
hx h x x

i i i

i i i

or substituting h = 0.05 and expressing in matrix format

− −












= 







+

+

48 95 99 95
50 101

1 1

2 1

1

2

. . ,

,

,

,

x
x

x
x

i

i

i

i

Thus, to solve for the first time step, we substitute the initial conditions for the right-hand side
and solve the 2x2 system of equations. The best way to do this is with LU decomposition since
we will have to solve the system repeatedly. For the present case, because its easier to display,
we will use the matrix inverse to obtain the solution. Thus, if the matrix is inverted, the solution
for the first step amounts to the matrix multiplication,

{ } { }x
x
i

i

1 1

2 1

1886088 186648
0 93371 0 9141

1
1

3752568
184781

,

,

. .
. .

.
.

+

+









= − −






= −

For the second step (from x = 0.05 to 0.1),

{ } { }x
x
i

i

1 1

2 1

1886088 186648
0 93371 0 9141

3752568
184781

362878
181472

,

,

. .
. .

.
.

.
.

+

+









= − −




 − = −

The remaining steps can be implemented in a similar fashion to give

t x1 x2
0 1 1

0.05 3.752568 -1.84781
0.1 3.62878 -1.81472

0.15 3.457057 -1.72938
0.2 3.292457 -1.64705

The results are plotted below, along with a solution with the explicit Euler using a step of 0.0005.

-2

0

2

4

0 0.1 0.2

x1

x2

26.4 First step:

Predictor:

y1
0=5.222138+[−0.5(4.143883)+e−2]1 = 3.285532

Corrector:

y e e
1

1
2 2 5

4143883 05 4143883 0 5 3285532
2

0 5 3269562= + − + − + =
− −

. . (.) . (.) . .
.

The corrector can be iterated to yield

j yi+1
j ε a ,%

1 3.269562
2 3.271558 0.061

Second step:

Predictor:

y2
0=4.143883+[−0.5(3.271558)+e−2.5]1 = 2.590189

Predictor Modifier:

y2
0 = 2.590189+4/5(3.271558-3.285532) = 2.579010

Corrector:

y e e
2

1
2 5 3

3 271558 0 5 3271558 05 2 579010
2

0 5 2 573205= + − + − + =
− −

. . (.) . (.) . .
.

The corrector can be iterated to yield

j yi+1
j ε a ,%

1 2.573205
2 2.573931 0.0282

26.5
predictor = 3.270674927
Corrector Iteration
x y ea
2.5 3.274330476 1.12E-01
2.5 3.273987768 1.05E-02
2.5 3.274019897 9.81E-04
predictor = 2.576436209
Corrector Iteration
x y ea
3 2.57830404 7.24E-02
3 2.578128931 6.79E-03
3 2.377128276 3.32E-02
3 2.377202366 3.12E-03

(b)
predictor = 0.669232229
Corrector Iteration

x y ea et
4.5 0.666462335 4.16E-01 0.030654791
4.5 0.666577747 1.73E-02 0.013342954
4.5 0.666572938 7.21E-04 0.014064281
predictor = 0.601036948
Corrector Iteration
x y ea et
5 0.599829531 2.01E-01 0.028411529
5 0.599874809 7.55E-03 0.020865171

26.8
predictor = 0.737731653
Corrector Iteration
x y ea
2 0.660789924 1.16E+01
2 0.665598782 7.22E-01
2 0.665298229 4.52E-02
2 0.665317013 0.002823406
predictor = 0.585786168
Corrector Iteration
x y ea

2.5 0.569067395 2.94E+00
2.5 0.569963043 1.57E-01
2.5 0.569915062 8.42E-03

26.9
Option Explicit

Sub SimpImplTest()
Dim i As Integer, m As Integer
Dim xi As Single, yi As Single, xf As Single, dx As Single, xout As Single
Dim xp(200) As Single, yp(200) As Single

'Assign values
yi = 0
xi = 0
xf = 0.4
dx = 0.05
xout = 0.05

'Perform numerical Integration of ODE
Call ODESolver(xi, yi, xf, dx, xout, xp(), yp(), m)

'Display results
Sheets("Sheet1").Select
Range("a5:b205").ClearContents
Range("a5").Select
For i = 0 To m
 ActiveCell.Value = xp(i)
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = yp(i)
 ActiveCell.Offset(1, -1).Select
Next i
Range("a5").Select
End Sub

Sub ODESolver(xi, yi, xf, dx, xout, xp, yp, m)
'Generate an array that holds the solution
Dim x As Single, y As Single, xend As Single
Dim h As Single
m = 0
xp(m) = xi
yp(m) = yi
x = xi
y = yi
Do 'Print loop
 xend = x + xout
 If (xend > xf) Then xend = xf 'Trim step if increment exceeds end
 h = dx
 Call Integrator(x, y, h, xend)
 m = m + 1
 xp(m) = x
 yp(m) = y
 If (x >= xf) Then Exit Do
Loop
End Sub

Sub Integrator(x, y, h, xend)
Dim ynew As Single
Do 'Calculation loop
 If (xend - x < h) Then h = xend - x 'Trim step if increment exceeds end
 Call SimpImpl(x, y, h, ynew)
 y = ynew
 If (x >= xend) Then Exit Do
Loop
End Sub

Sub SimpImpl(x, y, h, ynew)
'Implement Simple Implicit method
ynew = (y + h * FF(x)) / (1 + 1000 * h)
x = x + h
End Sub

Function FF(t)
'Define Forcing Function
FF = 3000 - 2000 * Exp(-t)
End Function

26.10 All linear systems are of the form

1212111
1 Fyaya
dt
dy ++=

2222121
2 Fyaya
dt
dy ++=

As shown in the book (p. 730), the implicit approach amounts to solving









+
+

=














−−
−−

+

+
hFy
hFy

y
y

haa
aha

i

i

i

i

2,2

1,1

1,2

1,1

2221

1211
1

1

Therefore, for Eq. 26.6: a11 = −5, a12 = 3, a21 = 100, a22 = −301, F1 =, and F2 = 0,







=















+−
−+

+

+

i

i

i

i
y
y

y
y

h
h

,2

,1

1,2

1,1
3011100
351

A VBA program written in these terms is

Option Explicit

Sub StiffSysTest()
Dim i As Integer, m As Integer, n As Integer, j As Integer
Dim xi As Single, yi(10) As Single, xf As Single, dx As Single, xout As Single
Dim xp(200) As Single, yp(200, 10) As Single

'Assign values
n = 2
xi = 0
xf = 0.4
yi(1) = 52.29
yi(2) = 83.82
dx = 0.05
xout = 0.05

'Perform numerical Integration of ODE
Call ODESolver(xi, yi(), xf, dx, xout, xp(), yp(), m, n)

'Display results
Sheets("Sheet1").Select
Range("a5:n205").ClearContents
Range("a5").Select
For i = 0 To m

 ActiveCell.Value = xp(i)
 For j = 1 To n
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = yp(i, j)
 Next j
 ActiveCell.Offset(1, -n).Select
Next i
Range("a5").Select
End Sub

Sub ODESolver(xi, yi, xf, dx, xout, xp, yp, m, n)
'Generate an array that holds the solution
Dim i As Integer
Dim x As Single, y(10) As Single, xend As Single
Dim h As Single
m = 0
x = xi
'set initial conditions
For i = 1 To n
 y(i) = yi(i)
Next i
'save output values
xp(m) = x
For i = 1 To n
 yp(m, i) = y(i)
Next i
Do 'Print loop
 xend = x + xout
 If (xend > xf) Then xend = xf 'Trim step if increment exceeds end
 h = dx
 Call Integrator(x, y(), h, n, xend)
 m = m + 1
 'save output values
 xp(m) = x
 For i = 1 To n
 yp(m, i) = y(i)
 Next i
 If (x >= xf) Then Exit Do
Loop
End Sub

Sub Integrator(x, y, h, n, xend)
Dim j As Integer
Dim ynew(10) As Single
Do 'Calculation loop
 If (xend - x < h) Then h = xend - x 'Trim step if increment exceeds end
 Call StiffSys(x, y, h, n, ynew())
 For j = 1 To n
 y(j) = ynew(j)
 Next j
 If (x >= xend) Then Exit Do
Loop
End Sub

Sub StiffSys(x, y, h, n, ynew)
Dim j As Integer
Dim FF(2) As Single, b(2, 2) As Single, c(2) As Single, den As Single
Call Force(x, FF())
'MsgBox "pause"

b(1, 1) = 1 + 5 * h
b(1, 2) = -3 * h
b(2, 1) = -100 * h
b(2, 2) = 1 + 301 * h
For j = 1 To n
 c(j) = y(j) + FF(j) * h
Next j
den = b(1, 1) * b(2, 2) - b(1, 2) * b(2, 1)
ynew(1) = (c(1) * b(2, 2) - c(2) * b(1, 2)) / den
ynew(2) = (c(2) * b(1, 1) - c(1) * b(2, 1)) / den
x = x + h
End Sub

Sub Force(t, FF)
'Define Forcing Function
FF(0) = 0
FF(1) = 0
End Sub

The result compares well with the analytical solution. If a smaller step size were used, the
solution would improve

26.11 (Errata for first printing) Last sentence of problem statement should read: Test the program
by duplicating Example 26.4. Later printings should have this correction.

Option Explicit

Sub NonSelfStartHeun()
Dim n As Integer, m As Integer, i As Integer, iter As Integer
Dim iterp(1000) As Integer
Dim xi As Single, xf As Single, yi As Single, h As Single
Dim x As Single, y As Single
Dim xp(1000) As Single, yp(1000) As Single

xi = -1
xf = 4
yi = -0.3929953
n = 5
h = (xf - xi) / n
x = xi
y = yi
m = 0
xp(m) = x
yp(m) = y

Call RK4(x, y, h)

m = m + 1
xp(m) = x
yp(m) = y
For i = 2 To n
 Call NSSHeun(xp(i - 2), yp(i - 2), xp(i - 1), yp(i - 1), x, y, h, iter)
 m = m + 1
 xp(m) = x
 yp(m) = y
 iterp(m) = iter
Next i

Sheets("NSS Heun").Select
Range("a5").Select
For i = 0 To m
 ActiveCell.Value = xp(i)
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = yp(i)
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = iterp(i)
 ActiveCell.Offset(1, -2).Select
Next i

Range("a5").Select
End Sub

Sub RK4(x, y, h)
'Implement RK4 method
Dim k1 As Single, k2 As Single, k3 As Single, k4 As Single
Dim ym As Single, ye As Single, slope As Single
Call Derivs(x, y, k1)
ym = y + k1 * h / 2
Call Derivs(x + h / 2, ym, k2)
ym = y + k2 * h / 2
Call Derivs(x + h / 2, ym, k3)
ye = y + k3 * h
Call Derivs(x + h, ye, k4)
slope = (k1 + 2 * (k2 + k3) + k4) / 6
y = y + slope * h
x = x + h
End Sub

Sub NSSHeun(x0, y0, x1, y1, x, y, h, iter)
'Implement Non Self-Starting Heun
Dim i As Integer
Dim y2 As Single
Dim slope As Single, k1 As Single, k2 As Single
Dim ea As Single
Dim y2p As Single
Static y2old As Single, y2pold As Single
Call Derivs(x1, y1, k1)
y2 = y0 + k1 * 2 * h
y2p = y2
If iter > 0 Then
 y2 = y2 + 4 * (y2old - y2pold) / 5
End If
x = x + h
iter = 0
Do
 y2old = y2
 Call Derivs(x, y2, k2)
 slope = (k1 + k2) / 2
 y2 = y1 + slope * h
 iter = iter + 1
 ea = Abs((y2 - y2old) / y2) * 100
 If ea < 0.01 Then Exit Do
Loop
y = y2 - (y2 - y2p) / 5
y2old = y2
y2pold = y2p
End Sub

Sub Derivs(x, y, dydx)
'Define ODE
dydx = 4 * Exp(0.8 * x) - 0.5 * y
End Sub

26.12

26.13 Use Matlab to solve

tspan=[0,5]';
x0=[0,0.5]';
[t,x]=ode45('dxdt',tspan,x0);
plot(t,x(:,1),t,x(:,2),'--')
grid
title('Angle Theta and Angular Velocity Versus Time')
xlabel('Time, t')
ylabel('Theta (Solid) and Angular Velocity (Dashed)')
axis([0 2 0 10])
zoom
function dx=dxdt(t,x)
dx=[x(2);(9.8/0.5)*x(1)];

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

10
A ngle Theta and A ngular V eloc ity V ersus Tim e

Tim e, t

T
h

e
ta

 (
S

o
lid

)
a

n
d

 A
n

g
u

la
r

V
e

lo
c

it
y

 (
D

a
s

h
e

d
)

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A ngle Theta and A ngular V eloc ity V ers us Tim e

Tim e, t

T
h

e
ta

 (
S

o
lid

)
a

n
d

 A
n

g
u

la
r

V
e

lo
c

it
y

 (
D

a
s

h
e

d
)

26.14 Analytic solution: tt eex −− −= 004.2004.6 500

t=[0:.01:.02];
x=6.004*exp(-500*t)-2.004*exp(-t);
plot(t,x)
grid
xlabel('t')
ylabel('x')
title('Analytic Solution:Fast Transient')
gtext('6.004e^-500t-2.004 e^-t')

t=[0.02:.01:5];
x=6.004*exp(-500*t)-2.004*exp(-t);
plot(t,x)
grid
xlabel('t')
ylabel('x')
title('Analytic Solution: Slow Transition')
gtext('6.004e^-500t-2.004 e^-t')

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-2

-1

0

1

2

3

4

t

x

Analy tic S olution: Fas t Trans ient

6.004e-500t-2.004 e- t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

t

x

A naly tic S olut ion: S low Trans ition

6.004e -500t-2.004 e- t

Numerical solution:

tspan=[0 5];
xo=[4];
[t,x]=ode23s('eqn',tspan,xo);
plot(t,x)
grid
xlabel('t')
ylabel('x')
title('Numerical Solution: Fast Transient')
axis([0 .02 -2 4])
tspan=[0 5];
xo=[4];
[t,x]=ode23s('eqn',tspan,xo);
plot(t,x)
grid
xlabel('t')
ylabel('x')
title('Numerical Solution: Slow Transition')
axis([0.02 5 -2 0])

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-2

-1

0

1

2

3

4

t

x

Num erical S olut ion: Fas t Trans ient

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

t

x

Num erical S olution: S low Trans it ion

CHAPTER 27

27.1 The solution can be assumed to be T = eλx. This, along with the second derivative T” = λ2eλx, can
be substituted into the differential equation to give

λ λ λ2 01 0e ex x− =.

which can be used to solve for

λ

λ

2 01 0

01

− =

= ±

.

.

Therefore, the general solution is

T Ae Bex x= + −0.1 0.1

The constants can be evaluated by substituting each of the boundary conditions to generate two
equations with two unknowns,

200
100 23 62434 0 042329

= +
= +
A B

A B. .

which can be solved for A = 3.881524 and B = 196.1185. The final solution is, therefore,

T e ex x= + −3881524 19611850.1 0.1. .

which can be used to generate the values below:

x T
0 200
1 148.2747
2 111.5008
3 85.97028
4 69.10864
5 59.21565
6 55.29373
7 56.94741
8 64.34346
9 78.22764

10 100

0

100

200

0 2 4 6 8 10

27.2 Reexpress the second-order equation as a pair of ODEs:

dT
dx

z

dz
dx

T

=

= 01.

The solution was then generated on the Excel spreadsheet using the Heun method (without
iteration) with a step-size of 0.01. An initial condition of z = −55 was chosen for the first shot.
The first few calculation results are shown below.

x T z k11 k12 Tend zend k21 k22 phi1 phi2
0 200.000 -55.000 -55.000 20.000 194.500 -53.000 -53.000 19.450 -54.000 19.725

0.1 194.600 -53.028 -53.028 19.460 189.297 -51.082 -51.082 18.930 -52.055 19.195
0.2 189.395 -51.108 -51.108 18.939 184.284 -49.214 -49.214 18.428 -50.161 18.684
0.3 184.378 -49.240 -49.240 18.438 179.454 -47.396 -47.396 17.945 -48.318 18.192
0.4 179.547 -47.420 -47.420 17.955 174.805 -45.625 -45.625 17.480 -46.523 17.718
0.5 174.894 -45.649 -45.649 17.489 170.330 -43.900 -43.900 17.033 -44.774 17.261

The resulting value at x = 10 was T(10) = 315.759. A second shot using an initial condition of z
(0) = −70 was attempted with the result at x = 10 of T(10) = −243.249. These values can then be
used to derive the correct initial condition,

z()
. .

(.) .0 55 70 55
243 249 315 759

100 315 759 60 79= − + − +
− −

− = −

The resulting fit, along with the two “shots” are displayed below:

-300
-200
-100

0
100
200
300
400

0 2 4 6 8 10

27.3 A centered finite difference can be substituted for the second derivative to give,

T T T
h

Ti i i
i

− +− +
− =1 1

2

2
01 0.

or for h = 1,

− + − =− +T T Ti i i1 121 0.

The first node would be

21 2001 2. T T− =

and the last node would be

− + =T T9 1021 100.

The tridiagonal system can be solved with the Thomas algorithm or Gauss-Seidel for (the
analytical solution is also included)

x T Analytical
0 200 200
1 148.4838 148.2747
2 111.816 111.5008
3 86.32978 85.97028
4 69.47655 69.10864
5 59.57097 59.21565
6 55.62249 55.29373
7 57.23625 56.94741
8 64.57365 64.34346
9 78.3684 78.22764

10 100 100

27.4 The second-order ODE can be expressed as the following pair of first-order ODEs,

dy
dx

z

dz
dx

z y x

=

=
+ −2

8

These can be solved for two guesses for the initial condition of z. For our cases we used

z(0) −1 −0.5
y(20) −6523.000507 7935.937904

Clearly, the solution is quite sensitive to the initial conditions. These values can then be used to
derive the correct initial condition,

z() .
. .

(.) .0 1 05 1
7935 937904 6523 000507

8 6523 000507 0 774154= − + − +
+

+ = −

The resulting fit is displayed below:

0

4

8

12

0 5 10 15 20

27.5 Centered finite differences can be substituted for the second and first derivatives to give,

8
2

2 01 1
2

1 1y y y
x

y y
x

y xi i i i i
i i

+ − + −− +
−

−
− + =

∆ ∆

or substituting ∆x = 2 and collecting terms yields

2 5 5 15 01 1. .y y y xi i i i+ −− + + =

This equation can be written for each node and solved with either the Gauss-Seidel method or a
tridiagonal solver to give

x T
0 5
2 4.287065
4 4.623551
6 5.600062
8 6.960955

10 8.536414
12 10.18645
14 11.72749
16 12.78088
18 12.39044
20 8

0

4

8

12

0 5 10 15 20

27.6 The second-order ODE can be expressed as the following pair of first-order ODEs,

dT
dx

z

dz
dx

T T

=

= × + − −12 10 273 5 1507 4. () ()

The solution was then generated on the Excel spreadsheet using the Heun method (without
iteration) with a step-size of 0.01. The Excel Solver was used to adjust the initial condition of z
until the value of T(0.5) = 100. Part of the resulting spreadsheet is shown below along with a
graph of the final solution.

x T z k11 k12 Tend zend k21 k22 φ1 φ2
0 200.000 -927.673 -927.673 6256.560 190.723 -865.107 -865.107 5752.643 -896.390 6004.601

0.01 191.036 -867.627 -867.627 5769.196 182.360 -809.935 -809.935 5321.210 -838.781 5545.203

0.02 182.648 -812.175 -812.175 5335.738 174.527 -758.817 -758.817 4936.083 -785.496 5135.910
0.03 174.793 -760.816 -760.816 4948.905 167.185 -711.327 -711.327 4591.217 -736.071 4770.061
0.04 167.433 -713.115 -713.115 4602.594 160.301 -667.089 -667.089 4281.522 -690.102 4442.058
0.05 160.532 -668.694 -668.694 4291.667 153.845 -625.778 -625.778 4002.685 -647.236 4147.176

0

100

200

0 0.1 0.2 0.3 0.4 0.5

27.7 The second-order ODE can be linearized as in

d T
dx

T T T T Tb b b

2

2
7 4 7 312 10 273 4 8 10 273 5 150 0− × + − × + − + − =. () . () () ()

Substituting Tb = 150 and collecting terms gives

d T
dx

T
2

2
4132974 2357 591 0− + =. .

Substituting a centered-difference approximation of the second derivative gives

− + + − =− +T x T T xi i i1
2

1
22 4132974 2357 591(.) .∆ ∆

We used the Gauss-Seidel method to solve these equations. The results for a few selected points
are:

x 0 0.1 0.2 0.3 0.4 0.5
T 200 134.2765 101.5758 87.91595 87.45616 100

A graph of the entire solution along with the nonlinear result from Prob. 27.7 is shown below:

0

100

200

0 0.1 0.2 0.3 0.4 0.5

Linear

Nonlinear

27.8 For three springs

2
0

2
0

2
0

1

1

2
1

1

1
2

1

1
1

1

1

2
2

1

1
3

1

1
2

1

1

2
3

k
m

A
k
m
A

k
m
A

k
m

A
k
m
A

k
m
A

k
m

A

−






 − =

− + −






 − =

− + −






 =

ω

ω

ω

Substituting m = 40 kg and k = 240 gives

()
()

()

12 6 0

6 12 6 0

6 12 0

2
1 2

1
2

2 3

2
2

3

− − =

− + − − =

− + − =

ω

ω

ω

A A

A A A

A A

The determinant is

− + − + =ω ω ω6 4 236 360 864 0

which can be solved for ω2 = 20.4853, 12, and 3.5147 s−2. Therefore the frequencies are ω =
4.526, 3.464, and 1.875 s−1. Substituting these values into the original equations yields for ω2 =
20.4853,

A1 = −0.707A2 = A3

for ω2 = 12

A1 = −A3, and = A2 = 0

for ω2 = 3.5147

A1 = 0.707A2 = A3

Plots:

0

4

0

4

0

4

27.9 For 5 interior points (h = 3/6 = 0.5), the result is Eq. (27.19) with 2 − 0.25p2 on the diagonal.
Dividing by 0.25 gives,

8 4
4 8 4

4 8 4
4 8 4

4 8

0

2

2

2

2

2

− −
− − −

− − −
− − −

− −





















=

p
p

p
p

p

The determinant can be expanded (e.g., with Fadeev-Leverrier or the MATLAB poly function) to
give

0 40 576 3 584 8960 6 14410 8 6 4 2= − + − + − +p p p p p, ,

The roots of this polynomial can be determined as (e.g., with Bairstow’s methods or the
MATLAB roots function) p2 = 1.072, 4, 8, 12, 14.94. The square root of these roots yields p =
1.035, 2, 2.828, 3.464, and 3.864.

27.10 Minors:

()2 3 4
4 7 2 8 4

10 7 10 8 3
10 4 10 101 183 2− −

− − − + − = − + + +λ λ
λ λ

λ λ λ λ

27.11 Although the following computation can be implemented on a pocket calculator, a spreadsheet
or with a program, we’ve used MATLAB.

>> a=[2 2 10;8 3 4;10 4 5]
a =
 2 2 10
 8 3 4
 10 4 5

>> x=[1 1 1]'
x =
 1
 1
 1

First iteration:

>> x=a*x
x =
 14
 15
 19

>> e=max(x)
e =
 19

>> x=x/e
x =
 0.7368
 0.7895
 1.0000

Second iteration:

>> x=a*x
x =
 13.0526

 12.2632
 15.5263

>> e=max(x)
e =
 15.5263

>> x=x/e
x =
 0.8407
 0.7898
 1.0000

Third iteration:

>> x=a*x
x =
 13.2610
 13.0949
 16.5661

>> e=max(x)
e =
 16.5661

>> x=x/e
x =
 0.8005
 0.7905
 1.0000

Fourth iteration:

>> x=a*x
x =
 13.1819
 12.7753
 16.1668

>> e=max(x)
e =
 16.1668

>> x=x/e
x =
 0.8154
 0.7902
 1.0000

Thus, after four iterations, the result is converging on a highest eigenvalue of 16.2741 with a
corresponding eigenvector of [0.811 0.790 1].

27.12 As in Example 27.10, the computation can be laid out as

2 2 10
[A] = 8 3 4

10 4 5

First iteration: eigenvalue eigenvector
-0.05556 1.666667 -1.22222 1 0.388889 -0.3888889

0 -5 4 1 = -1 -1 1
0.111111 0.666667 -0.55556 1 0.222222 -0.2222222

Second iteration:
-0.05556 1.666667 -1.22222 -0.38889 1.959877 -0.3328092

0 -5 4 1 = -5.88889 -5.88889 1

0.111111 0.666667 -0.55556 -0.22222 0.746914 -0.1268344

Third iteration:
-0.05556 1.666667 -1.22222 -0.33281 1.840176 -0.3341317

0 -5 4 1 = -5.50734 -5.50734 1
0.111111 0.666667 -0.55556 -0.12683 0.700151 -0.1271307

Fourth iteration:
-0.05556 1.666667 -1.22222 -0.33413 1.840611 -0.3341389

0 -5 4 1 = -5.50852 -5.50852 1
0.111111 0.666667 -0.55556 -0.12713 0.700169 -0.1271065

Thus, after four iterations, the estimate of the lowest eigenvalue is 1/(−5.5085) = −0.1815 with
an eigenvector of [−0.3341 1 -0.1271].

27.13 Here is VBA Code to implement the shooting method:

Public hp As Single, Ta As Single

Option Explicit

Sub Shoot()

Dim n As Integer, m As Integer, i As Integer, j As Integer
Dim x0 As Single, xf As Single
Dim x As Single, y(2) As Single, h As Single, dx As Single, xend As Single
Dim xp(200) As Single, yp(2, 200) As Single, xout As Single
Dim z01 As Single, z02 As Single, T01 As Single, T02 As Single
Dim T0 As Single, Tf As Single
Dim Tf1 As Single, Tf2 As Single

'set parameters
n = 2
hp = 0.01
Ta = 20
x0 = 0
T0 = 40
xf = 10
Tf = 200
dx = 2
xend = xf
xout = 2
'first shot
x = x0
y(1) = T0
y(2) = 10
Call RKsystems(x, y, n, dx, xf, xout, xp(), yp(), m)
z01 = yp(2, 0)
Tf1 = yp(1, m)
'second shot
x = x0
y(1) = T0
y(2) = 20
Call RKsystems(x, y, n, dx, xf, xout, xp(), yp(), m)
z02 = yp(2, 0)
Tf2 = yp(1, m)
'last shot
x = x0
y(1) = T0
'linear interpolation
y(2) = z01 + (z02 - z01) / (Tf2 - Tf1) * (Tf - Tf1)
Call RKsystems(x, y, n, dx, xf, xout, xp(), yp(), m)
'output results
Range("a4:C1004").ClearContents
Range("A4").Select
For j = 0 To m
 ActiveCell.Value = xp(j)

 For i = 1 To n
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = yp(i, j)
 Next i
 ActiveCell.Offset(1, -n).Select
Next j
Range("A4").Select
End Sub

Sub RKsystems(x, y, n, dx, xf, xout, xp, yp, m)
Dim i As Integer
Dim xend As Single, h As Single

m = 0
For i = 1 To n
 yp(i, m) = y(i)
Next i
Do
 xend = x + xout
 If xend > xf Then xend = xf
 h = dx
 Do
 If xend - x < h Then h = xend - x
 Call RK4(x, y, n, h)
 If x >= xend Then Exit Do
 Loop
 m = m + 1
 xp(m) = x
 For i = 1 To n
 yp(i, m) = y(i)
 Next i
 If x >= xf Then Exit Do
Loop
End Sub

Sub RK4(x, y, n, h)

Dim i
Dim ynew, dydx(10), ym(10), ye(10)
Dim k1(10), k2(10), k3(10), k4(10)
Dim slope(10)
Call Derivs(x, y, k1)
For i = 1 To n
 ym(i) = y(i) + k1(i) * h / 2
Next i
Call Derivs(x + h / 2, ym, k2)
For i = 1 To n
 ym(i) = y(i) + k2(i) * h / 2
Next i
Call Derivs(x + h / 2, ym, k3)
For i = 1 To n
 ye(i) = y(i) + k3(i) * h
Next i
Call Derivs(x + h, ye, k4)
For i = 1 To n
 slope(i) = (k1(i) + 2 * (k2(i) + k3(i)) + k4(i)) / 6
Next i
For i = 1 To n
 y(i) = y(i) + slope(i) * h
Next i
x = x + h
End Sub

Sub Derivs(x, y, dydx)

dydx(1) = y(2)
dydx(2) = hp * (y(1) - Ta)
End Sub

27.14

27.15 A general formulation that describes Example 27.3 as well as Probs. 27.3 and 27.5 is

0)(2

2

=+++ xfcy
dx
dyb

dx
yda

Finite difference approximations can be substituted for the derivatives:

0)(
2

2 11
2

11 =++
∆
−+

∆
+− −+−+

ii
iiiii xfcy
x
yyb

x
yyya

Collecting terms

() () () 2
1

2
1)(5.025.0 xxfyxbayxcayxba iiii ∆=∆+−∆++∆−− +−

The following VBA code implants this equation as applied to Example 27.3.

Public hp As Single, dx As Single
Option Explicit
Sub FDBoundaryValue()
Dim ns As Integer, i As Integer
Dim a As Single, b As Single, c As Single
Dim e(100) As Single, f(100) As Single, g(100) As Single
Dim r(100) As Single, y(100) As Single
Dim Lx As Single, xx As Single, x(100) As Single
Lx = 10
dx = 2
ns = Lx / dx
xx = 0
hp = 0.01
a = 1
b = 0
c = hp
y(0) = 40
y(ns) = 200
For i = 0 To ns
 x(i) = xx
 xx = xx + dx
Next i
f(1) = 2 * a / dx ^ 2 + c
g(1) = -(a / dx ^ 2 - b / (2 * dx))
r(1) = ff(x(1)) + (a / dx ^ 2 + b / (2 * dx)) * y(0)
For i = 2 To ns - 2
 e(i) = -(a / dx ^ 2 + b / (2 * dx))
 f(i) = 2 * a / dx ^ 2 + c
 g(i) = -(a / dx ^ 2 - b / (2 * dx))
 r(i) = ff(x(i))
Next i
e(ns - 1) = -(a / dx ^ 2 + b / (2 * dx))
f(ns - 1) = 2 * a / dx ^ 2 + c
r(ns - 1) = ff(x(ns - 1)) + (a / dx ^ 2 - b / (2 * dx)) * y(ns)
Sheets("Sheet2").Select
Range("a5:d105").ClearContents
Range("a5").Select
For i = 1 To ns - 1
 ActiveCell.Value = e(i)
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = f(i)
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = g(i)
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = r(i)
 ActiveCell.Offset(1, -3).Select
Next i
Range("a5").Select
Call Tridiag(e, f, g, r, ns - 1, y)
Sheets("Sheet1").Select
Range("a5:b105").ClearContents
Range("a5").Select
For i = 0 To ns
 ActiveCell.Value = x(i)
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = y(i)
 ActiveCell.Offset(1, -1).Select
Next i
Range("a5").Select
End Sub

Sub Tridiag(e, f, g, r, n, x)
Dim k As Integer
For k = 2 To n
 e(k) = e(k) / f(k - 1)
 f(k) = f(k) - e(k) * g(k - 1)
Next k
For k = 2 To n
 r(k) = r(k) - e(k) * r(k - 1)
Next k
x(n) = r(n) / f(n)

For k = n - 1 To 1 Step -1
 x(k) = (r(k) - g(k) * x(k + 1)) / f(k)
Next k
End Sub

Function ff(x)
ff = hp * 20
End Function

27.16

27.17
Option Explicit

Sub Power()
Dim n As Integer, i As Integer, iter As Integer
Dim aa As Single, bb As Single
Dim a(10, 10) As Single, c(10) As Single
Dim lam As Single, lamold As Single, v(10) As Single
Dim es As Single, ea As Single

es = 0.001
n = 3
aa = 2 / 0.5625
bb = -1 / 0.5625
a(1, 1) = aa
a(1, 2) = bb
For i = 2 To n - 1
 a(i, i - 1) = bb
 a(i, i) = aa
 a(i, i + 1) = bb
Next i
a(i, i - 1) = bb
a(i, i) = aa

lam = 1
For i = 1 To n
 v(i) = lam
Next i

Sheets("sheet1").Select
Range("a3:b1000").ClearContents
Range("a3").Select
Do
 iter = iter + 1
 Call Mmult(a(), (v()), v(), n, n, 1)
 lam = Abs(v(1))
 For i = 2 To n
 If Abs(v(i)) > lam Then lam = Abs(v(i))
 Next i
 ActiveCell.Value = "iteration: "
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = iter
 ActiveCell.Offset(1, -1).Select
 ActiveCell.Value = "eigenvalue: "
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = lam
 ActiveCell.Offset(1, -1).Select
 For i = 1 To n
 v(i) = v(i) / lam
 Next i
 ActiveCell.Value = "eigenvector:"
 ActiveCell.Offset(0, 1).Select
 For i = 1 To n
 ActiveCell.Value = v(i)
 ActiveCell.Offset(1, 0).Select
 Next i
 ActiveCell.Offset(1, -1).Select
 ea = Abs((lam - lamold) / lam) * 100
 lamold = lam
 If ea <= es Then Exit Do
Loop

End Sub

Sub Mmult(a, b, c, m, n, l)

Dim i As Integer, j As Integer, k As Integer
Dim sum As Single

For i = 1 To n
 sum = 0
 For k = 1 To m
 sum = sum + a(i, k) * b(k)
 Next k
 c(i) = sum
Next i

End Sub

•
•
•

27.18
Option Explicit

Sub Power()
Dim n As Integer, i As Integer, iter As Integer, j As Integer
Dim aa As Single, bb As Single
Dim a(10, 10) As Single, c(10) As Single
Dim lam As Single, lamold As Single, v(10) As Single
Dim es As Single, ea As Single
Dim x(10) As Single, ai(10, 10) As Single

es = 0.0000011
n = 3
aa = 2 / 0.5625
bb = -1 / 0.5625
a(1, 1) = aa
a(1, 2) = bb
For i = 2 To n - 1
 a(i, i - 1) = bb
 a(i, i) = aa
 a(i, i + 1) = bb
Next i
a(i, i - 1) = bb
a(i, i) = aa

Call LUDminv(a(), n, x())

lam = 1
For i = 1 To n
 v(i) = lam
Next i

Sheets("sheet1").Select
Range("a3:j1000").ClearContents
Range("a3").Select
ActiveCell.Value = "Matrix inverse:"
ActiveCell.Offset(1, 0).Select
For i = 1 To n
 For j = 1 To n
 ActiveCell.Value = a(i, j)
 ActiveCell.Offset(0, 1).Select
 Next j
 ActiveCell.Offset(1, -n).Select
Next i
ActiveCell.Offset(1, 0).Select

Do
 iter = iter + 1
 Call Mmult(a(), (v()), v(), n, n, 1)
 lam = Abs(v(1))
 For i = 2 To n
 If Abs(v(i)) > lam Then lam = Abs(v(i))
 Next i
 ActiveCell.Value = "iteration: "
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = iter
 ActiveCell.Offset(1, -1).Select
 ActiveCell.Value = "eigenvalue: "
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = lam
 ActiveCell.Offset(1, -1).Select
 For i = 1 To n
 v(i) = v(i) / lam
 Next i
 ActiveCell.Value = "eigenvector:"
 ActiveCell.Offset(0, 1).Select
 For i = 1 To n
 ActiveCell.Value = v(i)
 ActiveCell.Offset(1, 0).Select
 Next i
 ActiveCell.Offset(1, -1).Select
 ea = Abs((lam - lamold) / lam) * 100
 lamold = lam
 If ea <= es Then Exit Do
Loop

End Sub

Sub Mmult(a, b, c, m, n, l)

Dim i As Integer, j As Integer, k As Integer
Dim sum As Single

For i = 1 To n
 sum = 0
 For k = 1 To m
 sum = sum + a(i, k) * b(k)
 Next k
 c(i) = sum
Next i

End Sub

Sub LUDminv(a, n, x)
Dim i As Integer, j As Integer, er As Integer
Dim o(3) As Single, s(3) As Single, b(3) As Single
Dim ai(10, 10) As Single, tol As Single

tol = 0.00001
Call Decompose(a, n, tol, o(), s(), er)
If er = 0 Then
 For i = 1 To n
 For j = 1 To n
 If i = j Then

 b(j) = 1
 Else
 b(j) = 0
 End If
 Next j
 Call Substitute(a, o, n, b, x)
 For j = 1 To n
 ai(j, i) = x(j)
 Next j
 Next i
End If
For i = 1 To n
 For j = 1 To n
 a(i, j) = ai(i, j)
 Next j
Next i
End Sub

Sub Decompose(a, n, tol, o, s, er)
Dim i As Integer, j As Integer, k As Integer
Dim factor As Single
For i = 1 To n
 o(i) = i
 s(i) = Abs(a(i, 1))
 For j = 2 To n
 If Abs(a(i, j)) > s(i) Then s(i) = Abs(a(i, j))
 Next j
Next i
For k = 1 To n - 1
 Call Pivot(a, o, s, n, k)
 If Abs(a(o(k), k) / s(o(k))) < tol Then
 er = -1
 Exit For
 End If
 For i = k + 1 To n
 factor = a(o(i), k) / a(o(k), k)
 a(o(i), k) = factor
 For j = k + 1 To n
 a(o(i), j) = a(o(i), j) - factor * a(o(k), j)
 Next j
 Next i
Next k
If (Abs(a(o(k), k) / s(o(k))) < tol) Then er = -1
End Sub

Sub Pivot(a, o, s, n, k)
Dim ii As Integer, p As Integer
Dim big As Single, dummy As Single
p = k
big = Abs(a(o(k), k) / s(o(k)))
For ii = k + 1 To n
 dummy = Abs(a(o(ii), k) / s(o(ii)))
 If dummy > big Then
 big = dummy
 p = ii
 End If
Next ii
dummy = o(p)
o(p) = o(k)
o(k) = dummy
End Sub

Sub Substitute(a, o, n, b, x)
Dim k As Integer, i As Integer, j As Integer
Dim sum As Single, factor As Single
For k = 1 To n - 1
 For i = k + 1 To n
 factor = a(o(i), k)
 b(o(i)) = b(o(i)) - factor * b(o(k))
 Next i
Next k
x(n) = b(o(n)) / a(o(n), n)

For i = n - 1 To 1 Step -1
 sum = 0
 For j = i + 1 To n
 sum = sum + a(o(i), j) * x(j)
 Next j
 x(i) = (b(o(i)) - sum) / a(o(i), i)
Next i
End Sub

•
•
•

27.19 This problem can be solved by recognizing that the solution corresponds to driving the
differential equation to zero. To do this, a finite difference approximation can be substituted for
the second derivative to give

R T T T
x

T Ti i i
i i=

− +
− × + + −− + −1 1

2
7 42

12 10 273 5 150
()

. () ()
∆

where R = the residual, which is equal to zero when the equation is satisfied. Next, a
spreadsheet can be set up as below. Guesses for T can be entered in cells B11:B14. Then, the
residual equation can be written in cells C11:C14 and referenced to the temperatures in column
B. The square of the R’s can then be entered in column D and summed (D17). The Solver can
then be invoked to drive cell D17 to zero by varying B11:B14. The result is as shown in the
spreadsheet. A plot is also displayed below.

A B C D
1 E 1
2 sigma 1.20E-07
3 k 5
4 Ta 150
5 T0 200
6 Tn 100
7 dx 0.1
8
9 x T R R^2
10 0 200
11 0.1 133.015 4.32E-05 1.87E-09
12 0.2 97.79076 0.000185 3.42E-08
13 0.3 82.63883 -0.00076 5.8E-07
14 0.4 83.31515 0.001114 1.24E-06
15 0.5 100
16
17 SSR 1.86E-06

=(B10-2*B11+B12)/B7^2-B2*(B11+273)^4+B3*(B4-B11)

=sum(D11:D14)

0

50

100

150

200

0 0.1 0.2 0.3 0.4 0.5

27.20 First, an m-file containing the system of ODEs can be created and saved (in this case as
odesys.m),

function dy = predprey(t,y)
dy=[0.3*y(1)-1.5*y(1)*y(2);-0.1*y(2)+0.036*y(1)*y(2)];

Then, the following MATLAB session is used to generate the solution:

>> [t,y]=ode45('odesys',[0 100],[1;.05]);

A plot of the solution along with the state-space plot are generated with

>> plot(t,y)
>> plot(y(:,1),y(:,2))

These plots are displayed below

0 20 40 60 80 100
0

2

4

6

8

10

12

14

10

0.5

0
0

27.21 First, the 2nd-order ODE can be reexpressed as the following system of 1st-order ODE’s

dx
dt

z

dz
dt

z x

=

= − −8 333333 1166 667. .

Next, we create an m-file to hold the ODEs:

function dx=spring(t,y)
dx=[y(2);-8.333333*y(2)-1166.667*y(1)]

Then we enter the following commands into MATLAB

[t,y]=ode45('spring',[0 .4],[0.3;0])
plot(t,y(:,1));

The following plot results:

0 0.1 0.2 0.3 0.4
-0.4

-0.2

0

0.2

(b) The eigenvalues and eigenvectors can be determined with the following commands:

>> a=[0 -1;8.333333 1166.667];
>> format short e
>> [v,d]=eig(a)
v =
 -9.9997e-001 8.5715e-004
 7.1427e-003 -1.0000e+000

d =
 7.1429e-003 0
 0 1.1667e+003

27.22 This problem is solved in an identical fashion to that employed in Example 27.12. For part (a),
the solution is as displayed in the following plot:

0

3

6

0 10 20 30
(b) The solution for this set of equations is laid out in Sec. 28.2 (Fig. 28.9).

27.23

27.24

27.25

27.26

k=1;
kmw2=[2*k,-k,-k;-k,2*k,-k;-k,-k,2*k];
[v,d]=eig(kmw2)

v =
 0.8034 0.1456 0.5774
 -0.2757 -0.7686 0.5774
 -0.5278 0.6230 0.5774

d =
 3.0000 0 0
 0 3.0000 0
 0 0 0.0000

Therefore, the eigenvalues are 0, 3, and 3. Setting these eigenvalues equal to 2ωm , the
three frequencies can be obtained.

00 1
2

1 =⇒= ωωm (Hz) 1st mode of oscillation
30 2

2
2 =⇒= ωωm (Hz) 2nd mode

30 3
2

3 =⇒= ωωm (Hz) 3rd mode

27.7 (a) The exact solution is

08.04.025 +++= ttAey t

If the initial condition at t = 0 is 0.8, A = 0,

08.04.02 ++= tty

Note that even though the choice of the initial condition removes the positive exponential terms,
it still lurks in the background. Very tiny round off errors in the numerical solutions bring it to
the fore. Hence all of the following solutions eventually diverge from the analytical solution.

(b) 4th order RK. The plot shows the numerical solution (bold line) along with the exact solution
(fine line).

-10

-5

0

5

10

15

0 1 2 3 4

(c)
function yp=dy(t,y)
yp=5*(y-t^2);

>> tspan=[0,5];
>> y0=0.08;
>> [t,y]=ode45('dy1',tspan,y0);

(d)
>> [t,y]=ode23S('dy1',tspan,y0);

(e)
>> [t,y]=ode23TB('dy1',tspan,y0);

-30

-20

-10

0

10

20

30

0 1 2 3 4 5

RK4 Analytical ODE45
ODE23S ODE23TP

CHAPTER 29

29.1

First iteration:
 7.500000 2.250000 15.675000
 9.750000 3.600000 20.782500
 55.425000 62.707500 85.047000
Error:
 100.000000 100.000000 100.000000
 100.000000 100.000000 100.000000
 100.000000 100.000000 100.000000
Second iteration:
 9.600000 8.212501 20.563500
 26.137500 34.632000 52.916250
 68.068500 88.782750 85.500310
Error:
 21.875000 72.602740 23.772710
 62.697270 89.604990 60.725670
 18.574660 29.369720 5.301830E-01
•
•
•
Seventh iteration:
 25.013610 28.806340 33.932440
 46.216590 56.257030 56.921290
 78.575310 93.082440 87.501180
Error:
 2.954020E-01 2.531316E-02 1.679560E-02
 2.267362E-02 2.082395E-02 1.041445E-02
 2.165254E-03 3.590016E-03 1.743838E-03

29.2 The fluxes for Prob. 29.1 can be calculated as

qx=
 -9.325527E-02 -2.185114E-01 -5.192447E-01
 -7.657973E-01 -2.622653E-01 1.532972E-01
 -1.668020 -2.186839E-01 1.055520
qy=
 -1.132306 -1.378297 -1.394572
 -1.312262 -1.574765 -1.312434
 -2.542694 -2.296703 -2.280428
qn=
 1.136140 1.395511 1.488101
 1.519367 1.596454 1.321357
 3.040984 2.307091 2.512862
theta=
 -94.708180 -99.008540 -110.421900
 -120.266600 -99.455400 -83.337820
 -123.265100 -95.439100 -65.162450

29.3 The plate is redrawn below

100 oC

0 oC

75 oC 50 oC

100 oC

0 oC

75 oC 50 oC

After 15 iterations of the Liebmann method, the result is

0 100 100 100 100 100 100 100 0
50 73.6954 82.3973 86.06219 87.7991 88.54443 88.19118 85.32617 75
50 62.3814 69.8296 74.0507 76.58772 78.18341 78.8869 78.10995 75
50 55.9987 60.4898 63.72554 66.32058 68.71677 71.06672 73.23512 75
50 51.1222 52.4078 54.04625 56.25934 59.3027 63.42793 68.75568 75
50 46.0804 43.9764 43.79945 45.37425 48.80563 54.57569 63.33804 75
50 39.2206 33.6217 31.80514 32.62971 35.95756 42.71618 54.995 75
50 27.1773 19.4897 17.16646 17.3681 19.66293 25.31308 38.86852 75
0 0 0 0 0 0 0 0 0

with percent approximate errors of

0 0 0 0 0 0 0 0 0
0 0.0030 0.0040 0.0043 0.0049 0.0070 0.0114 0.0120 0
0 0.0050 0.0062 0.0057 0.0055 0.0079 0.0120 0.0109 0
0 0.0062 0.0067 0.0036 0.0007 0.0007 0.0097 0.0241 0
0 0.0076 0.0066 0.0020 0.0106 0.0067 0.0164 0.0542 0
0 0.0106 0.0079 0.0033 0.0074 0.0077 0.0400 0.1005 0
0 0.0149 0.0099 0.0119 0.0327 0.0630 0.1192 0.2343 0
0 0.0136 0.0013 0.0302 0.1259 0.2194 0.2925 0.7119 0
0 0 0 0 0 0 0 0 0

29.4 The solution is identical to Prob. 29.3, except that now the top edge must be modeled.
This means that the nodes along the top edge are simulated with equations of the form

4 2 01 1 1T T T Ti j i j i j i j, , , ,− − − =− + −

The resulting simulation (after 14 iterations) yields

50 50.38683 51.16385 52.6796 55.17802 58.7692 63.41846 68.9398 75
50 50.17211 50.76425 52.15054 54.58934 58.20129 62.96008 68.67918 75
50 49.51849 49.56564 50.58556 52.86931 56.56024 61.64839 67.93951 75
50 48.31607 47.39348 47.78093 49.79691 53.61405 59.2695 66.58047 75
50 46.33449 43.91569 43.37764 44.99165 48.94264 55.38806 64.29121 75
50 43.09381 38.56608 36.8614 37.93565 41.91332 49.21507 60.37012 75
50 37.46764 30.4051 27.61994 28.08718 31.71478 39.39338 53.1291 75
50 26.36368 17.98153 15.18654 15.20479 17.63115 23.73251 38.00928 75
0 0 0 0 0 0 0 0 0

with percent approximate errors of

0 0.0584 0.1318 0.2034 0.2606 0.2828 0.2493 0.1529 0
0 0.0722 0.1603 0.2473 0.3173 0.3424 0.2983 0.1862 0
0 0.0854 0.1883 0.2937 0.3788 0.4077 0.3438 0.2096 0
0 0.0933 0.2121 0.3441 0.4464 0.4754 0.3972 0.2247 0
0 0.0930 0.2300 0.3913 0.5097 0.5328 0.4468 0.2605 0
0 0.0873 0.2469 0.4299 0.5474 0.5611 0.4237 0.2747 0
0 0.0913 0.2827 0.4995 0.5852 0.5525 0.3157 0.0477 0
0 0.1131 0.3612 0.7054 0.9164 0.7958 0.5085 0.6345 0
0 0 0 0 0 0 0 0 0

29.5 The solution is identical to Examples 29.1 and 29.3, except that now heat balances
must be developed for the three interior nodes on the bottom edge. For example, using
the control-volume approach, node 1,0 can be modeled as

−
−

+
−

+
−

− =

− − − = −

0 49 5
10

0 49 5
10

0 49 10
10

2 10 0

4 2 8163265

10 00 20 10 11 10

10 00 20 11

. () . () . () ()

.

T T T T T T

T T T T

The resulting simulation yields (with a stopping criterion of 1% and a relaxation
coefficient of 1.5)

87.5 100 100 100 75
75 79.91669 77.76103 70.67812 50
75 66.88654 60.34068 55.39378 50
75 52.26597 40.84576 40.26148 50
75 27.12079 10.54741 14.83802 50

The fluxes for the computed nodes can be computed as

qx
-0.06765 0.226345 0.680145
0.359153 0.281573 0.253347
0.836779 0.29411 -0.22428
1.579088 0.300928 -0.96659

qy
-0.81128 -0.97165 -1.09285
-0.67744 -0.90442 -0.74521
-0.97426 -1.21994 -0.99362
-1.23211 -1.48462 -1.24575

qn
0.814095 0.997668 1.287216
0.766759 0.947241 0.787095
1.284283 1.254887 1.018614
2.002904 1.514811 1.576764

θ (radians)
-1.65398 -1.34193 -1.0141
-1.08331 -1.26898 -1.24309
-0.86117 -1.33422 -1.7928

-0.66259 -1.37081 -2.23067

θ (degrees)
-94.7663 -76.8869 -58.1036
-62.0692 -72.7072 -71.2236
-49.3412 -76.4454 -102.72
-37.9638 -78.5416 -127.808

29.6 The solution is identical to Example 29.5 and 29.3, except that now heat balances must
be developed for the interior nodes at the lower left and the upper right edges. The
balances for nodes 1,1 and 3,3 can be written as

− + + = − +

− + + = − +

4 08453 0 8453 1154701

4 0 8453 0 8453 1154701

11 21 12 01 10

33 32 23 34 43

T T T T T

T T T T T

. . . ()

. . . ()

Using the appropriate boundary conditions, simple Laplacians can be used for the
remaining interior nodes. The resulting simulation yields

75 50 50 50
100 75 63.97683 55.90731 50
100 86.02317 75 63.97683 50
100 94.09269 86.02317 75 50

100 100 100 75

29.7 The nodes to be simulated are

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

Simple Laplacians are used for all interior nodes. Balances for the edges must take
insulation into account. Fo example, node 1,0 is modeled as

4 2 01 0 0 0 2 0 1 1T T T T, , , ,− − − =

The corner node, 0,0 would be modeled as

4 2 2 00 0 1 0 0 1T T T, , ,− − =

The resulting set of equations can be solved for

0 12.5 25 37.5 50
11.94853 16.08456 22.79412 30.14706 37.5
15.625 17.09559 19.94485 22.79412 25

16.36029 16.72794 17.09559 16.08456 12.5
16.36029 16.36029 15.625 11.94853 0

The fluxes can be computed as

Jx
-0.6125 -0.6125 -0.6125 -0.6125 -0.6125
-0.20267 -0.26572 -0.34453 -0.36029 -0.36029
-0.07206 -0.10584 -0.13961 -0.12385 -0.10809
-0.01801 -0.01801 0.015763 0.112592 0.175643
-5.6E-13 0.018015 0.108088 0.382812 0.585478

Jy
0.585478 0.175643 -0.10809 -0.36029 -0.6125
0.382812 0.112592 -0.12385 -0.36029 -0.6125
0.108088 0.015763 -0.13961 -0.34453 -0.6125
0.018015 -0.01801 -0.10584 -0.26572 -0.6125

0 -0.01801 -0.07206 -0.20267 -0.6125

Jn
0.847314 0.637187 0.621964 0.710611 0.866206
0.43315 0.288587 0.366116 0.509533 0.710611
0.129906 0.107004 0.197444 0.366116 0.621964
0.025477 0.025477 0.107004 0.288587 0.637187
5.63E-13 0.025477 0.129906 0.43315 0.847314

θ (radians)
2.378747 2.862322 -2.96692 -2.60987 -2.35619
2.057696 2.740799 -2.7965 -2.35619 -2.10252
2.158799 2.993743 -2.35619 -1.91589 -1.74547
2.356194 -2.35619 -1.42295 -1.17 -1.29153
3.141593 -0.7854 -0.588 -0.4869 -0.80795

θ (degrees)
136.2922 163.999 -169.992 -149.534 -135
117.8973 157.0362 -160.228 -135 -120.466
123.6901 171.5289 -135 -109.772 -100.008

135 -135 -81.5289 -67.0362 -73.999
180 -45 -33.6901 -27.8973 -46.2922

29.8 Node 0,3:

There are two approaches for modeling this node. One would be to consider it a Dirichlet node
and not model it at all (i.e., set it’s temperature at 50oC). The second alternative is to use a heat
balance to model it as shown here

(0,3) (1,3)

(0,2)

(0,3) (1,3)

(0,2)

0 05 15 1
40

0 5 20 1
30

0 01 20 1 101 3 0 3 0 3 0 2
0 3=

−
−

−
+ −. ()() . ()() . ()()(), , , ,

,
T T T T

T

− + − =0 29752 4 0 52893 3173551 3 0 3 0 2. . ., , ,T T T

Node 2,3:

0 0 5 15 1
40

0 5 15 1
20

0 5 30 1
30

0 01 30 1 102 3 1 3 3,3 2 3 2 3 2 2
2 3= −

−
+

−
−

−
+ −. ()() . ()() . ()() . ()()(), , , , ,

,
T T T T T T

T

4 0 70588 141176 1882352 3 1 3 3,3 2 2T T T T, , ,. . .− − −

Node 2,2:

(1,2)

(2,3)

(2,2)

(3,2)

(2,1)

(1,2)

(2,3)

(2,2)

(3,2)

(2,1)

0 0 5 22 5 1
40

05 22 5 1
20

05 30 1
15

05 30 1
30

10 7 5

2 2 1 2 3,2 2 2 2 2 2 1

2 3 2 2 2

= −
−

+
−

−
−

+
−

+

. (.)() . (.)() . ()()

. ()() (.)

, , , , ,

, ,

T T T T T T

T T
 π

4 0 48 0 96 170667 085333 3015 932 2 1 2 3,2 2 1 2 3T T T T T, , , ,.− − − − =

Node 5,3:

(4,3) (5,3)

(5,2)

0 0 5 15 1
20

05 10 1
30

0 01 10 1 105,3 4 3 5,3 5,2
5,3= −

−
−

−
+ −. ()() . ()() . ()()(),T T T T

T

4 2 33766 103896 6 233775,3 4 3 5,2T T T− − =. . .,

29.9 Node 0,0:

(0,1)

(1,0)
(0,0)

0 0 01 7 5 2 20 0 7 7 5 2
40

0 7 20 2
150 0

1 0 0 0 0 1 0 0= − −
−

+
−

. (.)()() . (.)() . ()(),
, , , ,T
T T T T

4 0 46069 3 27605 5 265080 0 1 0 0 1T T T, , ,. . .− − =

Node 1,1:

(0,1)

(1,2)

(1,1)

(2,1)

(1,0)

0 0 7 22 5 2
40

05 22 5 2
20

0 7 20 2
15

0 5 10 2
15

0 7 20 2
30

05 10 2
30

1 1 0 1 2 1 1 1 1 1 1 0

1 1 1 0 1 2 1 1 1 2 1 1

= −
−

+
−

−
−

−
− − −

. (.)() . (.)() . ()()

. ()() . ()() . ()()

, , , , , ,

, , , , , ,

T T T T T T

T T T T T T
 + +

4 0 78755 177389 0 88694 055142 01 1 2 1 1 0 1 2 0 1T T T T T, , , , ,. . . .− − − − =

Node 2,1:

(1,1)

(2,2)

(2,1)

(3,1)

(2,0)

0 0 5 22 5 2
20

0 5 22 5 2
20

0 5 20 2
15

05 20 2
30

10 22 5 20

2 1 1 1 3,1 2 1 2 1 2 0

2 2 2 1

= −
−

+
−

−
−

−
−

+

. (.)() . (.)() . ()()

. ()() (.)()

, , , , ,

, ,

T T T T T T

T T

4 105882 105882 12549 0 62745 4235 292 1 1 1 3,1 2 0 2 2T T T T T, , , ,.− − − − =

29.10 The control volume is drawn as in

0, j+1

0, j-1

1, j

A flux balance around the node can be written as (note ∆x = ∆y = h)

−
−

+
−

−
−

=−kh z
T T

h
k h z

T T

h
k h z

T T

h
j j j j j j∆ ∆ ∆1 0 0 0 1 1 02 2 0, , , , , ,(/) (/)

Collecting and cancelling terms gices

T T T Tj j j j0 0 1 0 1 12 0, , , ,− − − =− +

29.11 A setup similar to Fig. 29.11, but with θ > 45o can be drawn as in

θ

1

2

3

4

56
7

∆y

∆x

8

θ

1

2

3

4

56
7

∆y

∆x

8

The normal derivative at node 3 can be approximated by the gradient between nodes 1
and 7,

∂
∂η
T T T

L3

1 7

17
=

−

When θ is greater than 45o as shown, the distance from node 5 to 7 is ∆y cotθ, and
linear interpolation can be used to estimate

T T T T y
x7 5 6 5= + −()

cot∆
∆

θ

The length L17 is equal to ∆y/sinθ. This length, along with the approximation for T7 can
be substituted into the gradient equation to give

T y T T y
x

T y
x1

3
6 5 1= 





− − −





∆ ∆
∆

∆
∆sin

cot cot
θ

∂
∂ η

θ θ

29.12 The following Fortran-90 program implements Liebmann’s method with relaxation.

 PROGRAM liebmann
 IMPLICIT NONE
 INTEGER :: nx,ny,l,i,j
 REAL :: T(0:5,0:5),ea(0:5,0:5),Told(0:5,0:5)
 REAL :: qy(0:5,0:5),qx(0:5,0:5),qn(0:5,0:5),th(0:5,0:5)
 REAL :: Trit,Tlef,Ttop,Tbot,lam,emax,es,pi
 REAL :: k,x,y,dx,dy
 nx=4
 ny=4
 pi=4.*atan(1.)
 x=40.
 y=40.
 k=0.49
 lam=1.2
 es=1.
 dx=x/nx

 dy=y/ny
 Tbot=0.
 Tlef=25.
 Trit=50.
 Ttop=150.
 DO i=1,nx-1
 T(i,0)=Tbot
 END DO
 DO i=1,nx-1
 T(i,ny)=Ttop
 END DO
 DO j=1,ny-1
 T(0,j)=Tlef
 END DO
 DO j=1,ny-1
 T(nx,j)=Trit
 END DO
 l=0
 DO
 l=l+1
 emax=0.
 DO j = 1,ny-1
 DO i = 1,nx-1
 Told(i,j)=T(i,j)
 T(i,j)=(T(i+1,j)+T(i-1,j)+T(i,j+1)+T(i,j-1))/4
 T(i,j)=lam*T(i,j)+(1-lam)*Told(i,j)
 ea(i,j)=abs((T(i,j)-Told(i,j))/T(i,j))*100.
 if(ea(i,j).GT.emax) emax=ea(i,j)
 END DO
 END DO
 PRINT *, 'iteration = ',l
 DO j = 1,ny-1
 PRINT *, (T(i,j),i=1,nx-1)
 END DO
 PRINT *
 DO j = 1,ny-1
 PRINT *, (ea(i,j),i=1,nx-1)
 END DO
 IF (emax.LE.es) EXIT
 END DO
 DO j = 1,ny-1
 DO i = 1,nx-1
 qy(i,j)=-k*(T(i,j+1)-T(i,j-1))/2/dy
 qx(i,j)=-k*(T(i+1,j)-T(i-1,j))/2/dx
 qn(i,j)=sqrt(qy(i,j)**2+qx(i,j)**2)
 th(i,j)=atan2(qy(i,j),qx(i,j))*180./pi
 END DO
 END DO
 PRINT *,'qx='
 DO j = 1,ny-1
 PRINT *, (qx(i,j),i=1,nx-1)
 END DO
 PRINT *,'qy='
 DO j = 1,ny-1
 PRINT *, (qy(i,j),i=1,nx-1)
 END DO
 PRINT *,'qn='
 DO j = 1,ny-1
 PRINT *, (qn(i,j),i=1,nx-1)
 END DO
 PRINT *,'theta='
 DO j = 1,ny-1
 PRINT *, (th(i,j),i=1,nx-1)
 END DO
 END

When the program is run, the result of the last iteration is:

iteration = 6
 42.81303 33.26489 33.93646
 63.17175 56.26600 52.46138
 78.57594 76.12081 69.64268

 0.5462000 0.1074174 2.4864437E-02
 1.1274090E-02 2.0983342E-02 4.8064217E-02
 3.1769749E-02 3.6572997E-02 2.4659829E-02
 qx=
 1.022510 0.2174759 -0.4100102
 0.4589829 0.2624041 0.1535171
 -2.7459882E-02 0.2188648 0.6399599
 qy=
 -1.547708 -1.378517 -1.285304
 -0.8761914 -1.049970 -0.8748025
 -0.9022922 -1.071483 -1.164696
 qn=
 1.854974 1.395566 1.349116
 0.9891292 1.082263 0.8881705
 0.9027100 1.093608 1.328934
 theta=
 -56.54881 -81.03486 -107.6926
 -62.35271 -75.96829 -80.04664
 -91.74317 -78.45538 -61.21275
Press any key to continue

29.13 When the program is run, the result of the last iteration is:

iteration = 7
 25.01361 28.80634 33.93244
 46.21659 56.25703 56.92129
 78.57531 93.08244 87.50118

 0.2954020 2.5313158E-02 1.6795604E-02
 2.2673620E-02 2.0823948E-02 1.0414450E-02
 2.1652540E-03 3.5900162E-03 1.7438381E-03
 qx=
 -9.3255267E-02 -0.2185114 -0.5192447
 -0.7657973 -0.2622653 0.1532972
 -1.668020 -0.2186839 1.055520
 qy=
 -1.132306 -1.378297 -1.394572
 -1.312262 -1.574765 -1.312434
 -2.542694 -2.296703 -2.280428
 qn=
 1.136140 1.395511 1.488101
 1.519367 1.596454 1.321357
 3.040984 2.307091 2.512862
 theta=
 -94.70818 -99.00854 -110.4219
 -120.2666 -99.45540 -83.33782
 -123.2651 -95.43910 -65.16245
Press any key to continue

29.14 When the program is run, the result of the last iteration is:

iteration = 19
38.490 24.764 19.044 16.783 16.696 19.176 27.028
54.430 41.832 34.955 31.682 31.041 33.110 38.976
62.710 53.570 47.660 44.291 42.924 43.388 45.799
68.165 62.478 58.219 55.234 53.215 51.848 50.854
72.761 70.301 67.841 65.489 63.051 60.034 55.780

77.795 78.373 77.594 76.027 73.595 69.522 62.233
85.175 87.944 88.261 87.530 85.843 82.249 73.624

This data can be imported into Excel and the following contour plot created:

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

80-100
60-80
40-60
20-40
0-20

29.15

29.16

CHAPTER 30

30.1 The key to approaching this problem is to recast the PDE as a system of ODEs. Thus, by
substituting the finite-difference approximation for the spatial derivative, we arrive at
the following general equation for each node

dT
dt

k
T T T

x
i i i i=

− +− +1 1
2

2
∆

By writing this equation for each node, the solution reduces to solving 4 simultaneous
ODEs with Heun’s method. The results for the first two steps along with some later
selected values are tabulated below. In addition, a plot similar to Fig. 30.4, is also shown

t x = 0 x = 2 x = 4 x = 6 x = 8 x = 10
0 100 0 0 0 0 50
0.1 100 2.04392 0.02179 0.01089 1.02196 50
0.2 100 4.00518 0.08402 0.04267 2.00259 50
•
•
•
3 100 37.54054 10.2745 6.442321 18.95732 50
6 100 53.24295 24.66054 17.46032 27.92252 50
9 100 62.39033 36.64937 27.84901 34.34692 50
12 100 68.71329 46.03496 36.5421 39.53549 50

0
20
40
60
80

100

0 5 10

t = 0
t = 3
t = 6
t = 9
t = 12

30.2 Because we now have derivative boundary conditions, the boundary nodes must be
simulated. For node 0,

T T T T Tl l l l l
0

1
0 1 0 12+

−= + − +λ() (i)

This introduces an exterior node into the solution at i = −1. The derivative boundary
condition can be used to eliminate this node,

dT
dx

T T
x0

1 1

2
=

− −

∆

which can be solved for

dx
dT

xTT 0
11 2∆−=−

which can be substituted into Eq. (i) to give











∆−−+=+

dx
dT

xTTTT
l

llll 0
010

1
0 222λ

For our case, dT0/dx = 1 and ∆x = 2, and therefore T−1 = T1 + 4. This can be substituted
into Eq. (i) to give,

)422(010
1

0 +−+=+ llll TTTT λ

A similar analysis can be used to embed the zero derivative in the equation for the fifth
node. The result is

T T T Tl l l l
5

1
5 4 52 2+ = + −λ()

Together with the equations for the interior nodes, the entire system can be iterated with
a step of 0.1 s. The results for some of the early steps along with some later selected
values are tabulated below. In addition, a plot of the later results is also shown

t x = 0 x = 2 x = 4 x = 6 x = 8 x = 10
0 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000
0.1 49.9165 50.0000 50.0000 50.0000 50.0000 49.9165
0.2 49.8365 49.9983 50.0000 50.0000 49.9983 49.8365
0.3 49.7597 49.9949 50.0000 50.0000 49.9949 49.7597
0.4 49.6861 49.9901 49.9999 49.9999 49.9901 49.6861
0.5 49.6153 49.9840 49.9997 49.9997 49.9840 49.6153
•
•
•
200 30.00022 31.80019 33.20009 34.19992 34.79981 34.99978
400 13.30043 15.10041 16.50035 17.50028 18.10024 18.30023
600 -3.40115 -1.60115 -0.20115 0.798846 1.398847 1.598847
800 -20.1055 -18.3055 -16.9055 -15.9055 -15.3055 -15.1055
1000 -36.8103 -35.0103 -33.6103 -32.6103 -32.0103 -31.8103

-40

-20

0

20

40

0 2 4 6 8 10

0
200
400
600
800
1000

Notice what’s happening. The rod never reaches a steady state, because of the heat loss
at the left end (unit gradient) and the insulated condition (zero gradient) at the right.

30.3 The solution for ∆t = 0.1 is (as computed in Example 30.1),

t x = 0 x = 2 x = 4 x = 6 x = 8 x = 10
0 100 0 0 0 0 50

0.1 100 2.0875 0 0 1.04375 50
0.2 100 4.087847 0.043577 0.021788 2.043923 50

For ∆t = 0.05, it is

t x = 0 x = 2 x = 4 x = 6 x = 8 x = 10
0 100 0 0 0 0 50

0.05 100 1.04375 0 0 0.521875 50
0.1 100 2.065712 1.09E-02 5.45E-03 1.032856 50
0.15 100 3.066454 3.23E-02 0.016228 1.533227 50
0.2 100 4.046528 6.38E-02 3.22E-02 2.023265 50

To assess the differences between the results, we performed the simulation a third time
using a more accurate approach (the Heun method) with a much smaller step size (∆t =
0.001). It was assumed that this more refined approach would yield a prediction close to
true solution. These values could then be used to assess the relative errors of the two
Euler solutions. The results are summarized as

x = 0 x = 2 x = 4 x = 6 x = 8 x = 10
Heun (h = 0.001) 100 4.006588 0.083044 0.042377 2.003302 50

Euler (h = 0.1) 100 4.087847 0.043577 0.021788 2.043923 50
Error relative to Heun 2.0% 47.5% 48.6% 2.0%

Euler (h = 0.05) 100 4.046528 0.063786 0.032229 2.023265 50
Error relative to Heun 1.0% 23.2% 23.9% 1.0%

Notice, that as would be expected for Euler’s method, halving the step size
approximately halves the global relative error.

30.4 The approach described in Example 30.2 must be modified to account for the zero
derivative at the right hand node (i = 5). To do this, Eq. (30.8) is first written for that
node as

− + + − =+ + +λ λ λT T T Tl l l l
4

1
5

1
6

1
51 2() (i)

The value outside the system (i = 6) can be eliminated by writing the finite difference
relationship for the derivative at node 5 as

dT
dx

T T
x5

6 4

2
=

−
∆

which can be solved for

T T x
dT
dx6 4

5
2= − ∆

For our case, dT/dx = 0, so T6 = T4 and Eq. (i) becomes

− + + =+ +2 1 24
1

5
1

5λ λT T Tl l l()

Thus, the simultaneous equations to be solved at the first step are

1 04175 0 020875
0 020875 1 04175 0 020875

0 020875 1 04175 0 020875
0 020875 1 04175 0 020875

0 04175 1 04175

2 0875
0
0
0
0

1
1

2
1

3
1

4
1

5
1

. .

. . .
. . .

. . .
. .

.−
− −

− −
− −

−

















































=



























T
T
T
T
T

which can be solved for

2 004645
0 040186
0 000806

162 10
6 47 10

5

7

.

.

.
.
.

×
×



























−

−

For the second step, the right-hand side is modified to reflect these computed values of
T at t = 0.1,

1 04175 0 020875
0 020875 1 04175 0 020875

0 020875 1 04175 0 020875
0 020875 1 04175 0 020875

0 04175 1 04175

4 092145
0 040186
0 000806

162 10
6 47 10

1
1

2
1

3
1

4
1

5
1

5

7

. .

. . .
. . .

. . .
. .

.

.

.
.
.

−
− −

− −
− −

−

















































=
×
×



























−

−

T
T
T
T
T

which can be solved for

3930497
0117399
0 003127

7 83 10
3 76 10

5

6

.

.

.
.
.

×
×



























−

−

30.5 The solution is identical to Example 30.3, but with 6 segments. Thus, the simultaneous
equations to be solved at the first step are

2 06012 0 03006
0 020875 2 06012 0 03006

0 03006 2 06012 0 03006
0 03006 2 06012 0 03006

0 03006 2 06012

6 012
0
0
0

3 006

1
1

2
1

3
1

4
1

5
1

. .

. . .
. . .

. . .
. .

.

.

−
− −

− −
− −

−

















































=



























T
T
T
T
T

which can be solved for

2 91890
0 04260
0 00093
0 02131
145945

.

.

.

.

.



























For the second step, the right-hand side is modified to reflect these computed values of
T at t = 0.1,

2 06012 0 03006
0 020875 2 06012 0 03006

0 03006 2 06012 0 03006
0 03006 2 06012 0 03006

0 03006 2 06012

1167559
017042
0 00373
0 08524
583780

1
1

2
1

3
1

4
1

5
1

. .

. . .
. . .

. . .
. .

.
.
.
.
.

−
− −

− −
− −

−

















































=



























T
T
T
T
T

which can be solved for

5 66986
016553
0 00543
0 08282
2 83493

.

.

.

.

.



























The solution at t = 10 for this problem (n = 6) along with the results determined for n =
5, as in Example 30.3, are displayed in the following plot:

0

50

100

0 5 10

30.6 Using the approach followed in Example 30.5, Eq. (30.20) is applied to nodes (1,1),
(1,2), and (1,3) to yield the following tridiagonal equations

2 167 0 0835
0 0835 2 167 0 0835

0 0835 2167

6 2625
6 2625

18 7875

1 1

1 2

1 3

. .

. . .
. .

.

.
.

,

,

,

−
− −

−

































=












T
T
T

which can be solved for

T T T1 1 1 2 1 33 018843 3 345301 8 798722, , ,. . .= = =

In a similar fashion, tridiagonal equations can be developed and solved for

T T T2 1 2 2 2 30130591 0 370262 6133184, , ,. . .= = =

and

T T T3,1 3,2 3,311017962 1287655 7 029137= = =. . .

For the second step to t = 10, Eq. (30.22) is applied to nodes (1,1), (2,1), and (3,1) to
yield

2 167 0 0835
0 0835 2 167 0 0835

0 0835 2167

12 07537
0 27029
4 060943

1 1

1 2

1 3

. .

. . .
. .

.
.
.

,

,

,

−
− −

−

































=












T
T
T

which can be solved for

T T T1 1 1 2 1 355883 0 412884 1889903, , ,. . .= = =

Tridiagonal equations for the other rows can be developed and solved for

T T T2 1 2 2 2 36 308761 0 902193 2 430939, , ,. . .= = =

and

T T T3,1 3,2 3,316 8241 12 1614 1325121= = =. . .

Thus, the result at the end of the first step can be summarized as

i = 0 i = 1 i = 2 i = 3 i = 4
j = 4 150 150 150
j = 3 75 16.824 12.161 13.251 25
j = 2 75 6.309 0.902 2.431 25
j = 1 75 5.588 0.413 1.89 25
j = 0 0 0 0

The computation can be repeated, and the results for t = 2000 s are below:

i = 0 i = 1 i = 2 i = 3 i = 4
j = 4 150 150 150
j = 3 75 98.214 97.768 80.357 25
j = 2 75 70.089 62.5 48.661 25
j = 1 75 44.643 33.482 26.786 25
j = 0 0 0 0

30.7 Although this problem can be modeled with the finite-difference approach (see Sec.
32.1), the control-volume method provides a more straightforward way to handle the
boundary conditions.

The boundary fluxes and the reaction term can be used to develop the discrete form of
the advection-diffusion equation for the interior volumes as

∆
∆ ∆

∆x
dc
dt

D
c c

x
D

c c
x

U
c c

U
c c

k xci
l

i
l

i
l

i
l

i
l

i
l

i
l

i
l

i
l

i
l= −

−
+

−
+

+
−

+
−− + − +1 1 1 1

2 2

or dividing both sides by ∆x,

dc
dt

D c c c
x

U c c
x

kci
l

i
l

i
l

i
l

i
l

i
l

i
l=

− +
−

+
−+ − + −1 1

2
1 12
2∆ ∆

which is precisely the form that would have resulted by substituting centered finite
difference approximations into the advection-diffusion equation.

For the first boundary node, no diffusion is allowed up the entrance pipe and advection
is handled with a backward difference,

∆
∆

∆x
dc
dt

D
c c

x
Uc U

c c
k xc

l l l
l

l l
l1 2 1

0
2 1

12
=

−
+ −

+
−

or dividing both sides by ∆x,

dc
dt

D
c c

x
c c c

x
kc

l l l l l l
l1 2 1

2
0 2 1

1
2

2
=

−
+

− −
−

∆ ∆

For the last boundary node, no diffusion is allowed through the exit pipe and advection
out of the tank is again handled with a backward difference,

∆
∆

∆x
dc
dt

D
c c

x
U

c c
Uc k xcn

l
n
l

n
l

n
l

n
l

n
l

n
l= −

−
+

+
− −− −1 1

2

or dividing both sides by ∆x,

dc
dt

D c c
x

U c c
x

kcn
l

n
l

n
l

n
l

n
l

n
l= −

−
+

−
−− −1

2
1

2∆ ∆

By writing these equations for each equally-spaced volume, the PDE is transformed into
a system of ODEs. Explicit methods like Euler’s method or other higher-order RK
methods can then be used to solve the system.

The results with and initial condition that the reactor has zero concentration with an
inflow concentration of 100 (using Euler with a step size of 0.005) for t = 100 are

x 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
c 14.2042 12.6506 11.2610 10.0385 8.9847 8.1025 7.3928 6.8583 6.5000 6.3201

The results are also plotted below:

0

4

8

12

16

0 2 4 6 8 10

30.8
Option Explicit

Sub EulerPDE()

Dim i As Integer, j As Integer, np As Integer, ns As Integer
Dim Te(20) As Single, dTe(20) As Single, tpr(20) As Single, Tepr(20, 20)
As Single
Dim k As Single, dx As Single, L As Single, tc As Single, tf As Single
Dim tp As Single, t As Single, tend As Single, h As Single

L = 10
ns = 5
dx = 2
k = 0.835
Te(0) = 100
Te(5) = 50
tc = 0.1
tf = 1
tp = 0.1
np = 0
tpr(np) = t
For i = 0 To ns
 Tepr(i, np) = Te(i)
Next i
Do
 tend = t + tp
 If tend > tf Then tend = tf
 h = tc
 Do
 If t + h > tend Then h = tend - t
 Call Derivs(Te, dTe, ns, dx, k)
 For j = 1 To ns - 1
 Te(j) = Te(j) + dTe(j) * h
 Next j
 t = t + h
 If t >= tend Then Exit Do
 Loop
 np = np + 1
 tpr(np) = t
 For j = 0 To ns
 Tepr(j, np) = Te(j)
 Next j
 If t >= tf Then Exit Do
Loop
Sheets("sheet1").Select
Range("a4").Select
For i = 0 To np
 ActiveCell.Value = tpr(i)
 For j = 0 To ns
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = Tepr(j, i)
 Next j

 ActiveCell.Offset(1, -ns - 1).Select
Next i

End Sub

Sub Derivs(Te, dTe, ns, dx, k)

Dim j As Integer
For j = 1 To ns - 1
 dTe(j) = k * (Te(j - 1) - 2 * Te(j) + Te(j + 1)) / dx ^ 2
Next j
End Sub

30.9 This program is set up to either use Dirichlet or gradient boundary conditions depending
on the values of the parameters istrt and iend.

Option Explicit

Sub EulerPDE()

Dim i As Integer, j As Integer, np As Integer, ns As Integer
Dim istrt As Integer, iend As Integer
Dim Te(20) As Single, dTe(20) As Single, tpr(200) As Single, Tepr(20,
200) As Single
Dim k As Single, dx As Single, L As Single, tc As Single, tf As Single
Dim tp As Single, t As Single, tend As Single, h As Single
Dim dTedx(20) As Single

L = 10
ns = 5
dx = 2
k = 0.835
dTedx(0) = 1
istrt = 0
dTedx(ns) = 0
iend = ns
Te(0) = 50
Te(1) = 50
Te(2) = 50
Te(3) = 50
Te(4) = 50
Te(5) = 50
tc = 0.1
tf = 1000
tp = 200
np = 0
tpr(np) = t
For i = 0 To ns
 Tepr(i, np) = Te(i)
Next i

Do
 tend = t + tp
 If tend > tf Then tend = tf
 h = tc
 Do
 If t + h > tend Then h = tend - t
 Call Derivs(Te(), dTe(), istrt, iend, ns, dx, k, dTedx())
 For j = istrt To iend
 Te(j) = Te(j) + dTe(j) * h
 Next j
 t = t + h
 If t >= tend Then Exit Do
 Loop
 np = np + 1
 tpr(np) = t
 For j = 0 To ns
 Tepr(j, np) = Te(j)
 Next j
 If t >= tf Then Exit Do
Loop

Sheets("sheet1").Select
Range("a4").Select
For i = 0 To np
 ActiveCell.Value = tpr(i)
 For j = 0 To ns
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = Tepr(j, i)
 Next j
 ActiveCell.Offset(1, -ns - 1).Select
Next i

End Sub

Sub Derivs(Te, dTe, istrt, iend, ns, dx, k, dTedx)

Dim j As Integer
If istrt = 0 Then
 dTe(0) = k * (2 * Te(1) - 2 * Te(0) - 2 * dx * dTedx(0)) / dx ^ 2
End If
For j = 1 To ns - 1
 dTe(j) = k * (Te(j - 1) - 2 * Te(j) + Te(j + 1)) / dx ^ 2
Next j
If iend = ns Then
 dTe(ns) = k * (2 * Te(ns - 1) - 2 * Te(ns) + 2 * dx * dTedx(ns)) / dx
^ 2
End If

End Sub

30.10

Option Explicit

Sub SimpImplicit()

Dim np, ns, i, j, n
Dim Te(10), dTe(10), tpr(100), Tepr(10, 100), Tei As Single
Dim k, dx, L, tc, tf, tp, t, tend, h, lambda
Dim e(10), f(10), g(10), r(10), x(10), xrod

L = 10#
ns = 5
dx = L / ns
k = 0.835
Te(0) = 100#
Te(ns) = 50#
Tei = 0
For i = 1 To ns - 1
 Te(i) = Tei
Next i
t = 0
np = 0
tpr(np) = t
For i = 0 To ns
 Tepr(i, np) = Te(i)
Next i
tc = 0.1
tp = 0.1
tf = 1

Do
 tend = t + tp
 If tend > tf Then tend = tf
 h = tc
 Do
 If t + h > tend Then h = tend - t
 lambda = k * h / dx ^ 2
 f(1) = 1 + 2 * lambda
 g(1) = -lambda
 r(1) = Te(1) + lambda * Te(0)
 For j = 2 To ns - 2
 e(j) = -lambda

 f(j) = 1 + 2 * lambda
 g(j) = -lambda
 r(j) = Te(j)
 Next j
 e(ns - 1) = -lambda
 f(ns - 1) = 1 + 2 * lambda
 r(ns - 1) = Te(ns - 1) + lambda * Te(ns)
 Call Tridiag(e(), f(), g(), r(), Te(), ns - 1)
 t = t + h
 If t >= tend Then Exit Do
 Loop
 np = np + 1
 tpr(np) = t
 For j = 0 To ns
 Tepr(j, np) = Te(j)
 Next j
 If t >= tf Then Exit Do
Loop

Range("b5").Select
xrod = 0
For j = 0 To ns
 ActiveCell.Value = xrod
 ActiveCell.Offset(0, 1).Select
 xrod = xrod + dx
Next j
Range("a6").Select
For i = 0 To np
 ActiveCell.Value = "t = " & tpr(i)
 For j = 0 To ns
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = Tepr(j, i)
 Next j
 ActiveCell.Offset(1, -ns - 1).Select
Next i
Range("a6").Select

End Sub

Sub Tridiag(e, f, g, r, x, n)

Call Decomp(e, f, g, n)
Call Substit(e, f, g, r, n, x)

End Sub

Sub Decomp(e, f, g, n)

Dim k As Integer
For k = 2 To n
 e(k) = e(k) / f(k - 1)
 f(k) = f(k) - e(k) * g(k - 1)
Next k
End Sub

Sub Substit(e, f, g, r, n, x)

Dim k As Integer
For k = 2 To n
 r(k) = r(k) - e(k) * r(k - 1)
Next k
x(n) = r(n) / f(n)
For k = n - 1 To 1 Step -1
 x(k) = (r(k) - g(k) * x(k + 1)) / f(k)
Next k
End Sub

30.11

Option Explicit

Sub CrankNic()

Dim np, ns, i, j, n
Dim Te(10), dTe(10), tpr(100), Tepr(10, 100), Tei As Single
Dim k, dx, L, tc, tf, tp, t, tend, h, lambda
Dim e(10), f(10), g(10), r(10), x(10), xrod

L = 10#
ns = 5
dx = L / ns
k = 0.835
Te(0) = 100#
Te(5) = 50#
Tei = 0
t = 0
np = 0
tpr(np) = t
For i = 0 To ns
 Tepr(i, np) = Tei
Next i
tc = 0.1
tf = 10#
tp = 1#

Do
 tend = t + tp
 If tend > tf Then tend = tf
 h = tc
 Do
 If t + h > tend Then h = tend - t
 lambda = k * h / dx ^ 2
 f(1) = 2 * (1 + lambda)
 g(1) = -lambda
 r(1) = lambda * Te(0) + 2 * (1 - lambda) * Te(1) + lambda * Te(2)
 r(1) = r(1) + lambda * Te(0)
 For j = 2 To ns - 2
 e(j) = -lambda
 f(j) = 2 * (1 + lambda)
 g(j) = -lambda
 r(j) = lambda * Te(j - 1) + 2 * (1 - lambda) * Te(j) + lambda * Te
(j + 1)
 Next j
 e(ns - 1) = -lambda
 f(ns - 1) = 2 * (1 + lambda)
 r(ns - 1) = lambda * Te(ns - 2) + 2 * (1 - lambda) * Te(ns - 1) +
lambda * Te(ns)
 r(ns - 1) = r(ns - 1) + lambda * Te(ns)
 Call Tridiag(e(), f(), g(), r(), Te(), ns - 1)
 t = t + h
 If t >= tend Then Exit Do
 Loop
 np = np + 1
 tpr(np) = t
 For j = 0 To ns
 Tepr(j, np) = Te(j)
 Next j
 If t >= tf Then Exit Do
Loop

Range("b5").Select
xrod = 0
For j = 0 To ns
 ActiveCell.Value = xrod
 ActiveCell.Offset(0, 1).Select
 xrod = xrod + dx
Next j
Range("a6").Select
For i = 0 To np
 ActiveCell.Value = "t = " & tpr(i)
 For j = 0 To ns
 ActiveCell.Offset(0, 1).Select

 ActiveCell.Value = Tepr(j, i)
 Next j
 ActiveCell.Offset(1, -ns - 1).Select
Next i
Range("a6").Select

End Sub

Sub Tridiag(e, f, g, r, x, n)

Call Decomp(e, f, g, n)
Call Substit(e, f, g, r, n, x)

End Sub

Sub Decomp(e, f, g, n)

Dim k As Integer
For k = 2 To n
 e(k) = e(k) / f(k - 1)
 f(k) = f(k) - e(k) * g(k - 1)
Next k
End Sub

Sub Substit(e, f, g, r, n, x)

Dim k As Integer
For k = 2 To n
 r(k) = r(k) - e(k) * r(k - 1)
Next k
x(n) = r(n) / f(n)
For k = n - 1 To 1 Step -1
 x(k) = (r(k) - g(k) * x(k + 1)) / f(k)
Next k
End Sub

30.12 Here is VBA code to solve this problem. The Excel output is also attached showing
values for the first two steps along with selected snapshots of the solution as it evolves
in time.

Option Explicit
Sub ADI()
Dim np As Integer, i As Integer, j As Integer
Dim nx As Integer, ny As Integer
Dim Lx As Single, dx As Single
Dim Ly As Single, dy As Single
Dim Te(10, 10) As Single, dTe(10, 10) As Single
Dim tpr(100) As Single, Tepr(10, 10, 100) As Single, Tei As Single
Dim k As Single
Dim dt As Single, ti As Single, tf As Single, tp As Single
Dim t As Single, tend As Single, h As Single
Dim lamx As Single, lamy As Single
Dim e(10) As Single, f(10) As Single, g(10) As Single, r(10) As Single, Ted(10) As

Single
'set computation parameters
Lx = 40
nx = 4
dx = Lx / nx
Ly = 40
ny = 4
dy = Ly / ny
k = 0.835
dt = 10
tf = 500
ti = 0
tp = 10
Tei = 0
'set top boundary
For i = 1 To nx - 1
 Te(i, ny) = 100
Next i
'set bottom boundary
For i = 1 To nx - 1
 Te(i, 0) = 0

Next i
'set left boundary
For j = 1 To ny - 1
 Te(0, j) = 75
Next j
'set right boundary
For j = 1 To ny - 1
 Te(nx, j) = 50
Next j
'set corners for plot
Te(0, 0) = (dy * Te(1, 0) + dx * Te(0, 1)) / (dy + dx)
Te(nx, 0) = (dy * Te(nx - 1, 0) + dx * Te(nx, 1)) / (dy + dx)
Te(0, ny) = (dy * Te(1, ny) + dx * Te(0, ny - 1)) / (dy + dx)
Te(nx, ny) = (dy * Te(nx - 1, ny) + dx * Te(nx, ny - 1)) / (dy + dx)
'set interior
For i = 1 To nx - 1
 For j = 1 To ny - 1
 Te(i, j) = Tei
 Next j
Next i
'save initial values for output
np = 0
t = ti
tpr(np) = t
For i = 0 To nx
 For j = 0 To ny
 Tepr(i, j, np) = Te(i, j)
 Next j
Next i
Do
 tend = t + tp
 If tend > tf Then tend = tf
 h = dt
 Do
 If t + h > tend Then h = tend - t
 'Sweep y
 lamx = k * h / dx ^ 2
 lamy = k * h / dy ^ 2
 For i = 1 To nx - 1
 f(1) = 2 * (1 + lamy)
 g(1) = -lamy
 r(1) = lamx * Te(i - 1, 1) + 2 * (1 - lamx) * Te(i, 1) + lamx * Te(i + 1, 1) _
 + lamy * Te(i, 0)
 For j = 2 To ny - 2
 e(j) = -lamy
 f(j) = 2 * (1 + lamy)
 g(j) = -lamy
 r(j) = lamx * Te(i - 1, j) + 2 * (1 - lamx) * Te(i, j) + lamx * Te(i + 1, j)
 Next j
 e(ny - 1) = -lamy
 f(ny - 1) = 2 * (1 + lamy)
 r(ny - 1) = lamx * Te(i - 1, ny - 1) + 2 * (1 - lamx) * Te(i, ny - 1) _
 + lamx * Te(i + 1, ny - 1) + lamy * Te(i, nx)
 Call Tridiag(e(), f(), g(), r(), Ted(), nx - 1)
 For j = 1 To ny - 1
 Te(i, j) = Ted(j)
 Next j
 Next i
 t = t + h / 2
 'Sweep x
 For j = 1 To ny - 1
 f(1) = 2 * (1 + lamx)
 g(1) = -lamx
 r(1) = lamy * Te(1, j - 1) + 2 * (1 - lamy) * Te(1, j) + lamy * Te(1, j + 1) _
 + lamx * Te(0, j)
 For i = 2 To nx - 2
 e(i) = -lamx
 f(i) = 2 * (1 + lamx)
 g(i) = -lamx
 r(i) = lamy * Te(i, j - 1) + 2 * (1 - lamy) * Te(i, j) + lamy * Te(i, j + 1)
 Next i
 e(nx - 1) = -lamx
 f(nx - 1) = 2 * (1 + lamx)
 r(nx - 1) = lamy * Te(nx - 1, j - 1) + 2 * (1 - lamy) * Te(nx - 1, j) _
 + lamy * Te(nx - 1, j + 1) + lamx * Te(ny, j)
 Call Tridiag(e(), f(), g(), r(), Ted(), nx - 1)
 For i = 1 To nx - 1
 Te(i, j) = Ted(i)
 Next i
 Next j
 t = t + h / 2
 If t >= tend Then Exit Do

 Loop
 'save values for output
 np = np + 1
 tpr(np) = t
 For i = 0 To nx
 For j = 0 To ny
 Tepr(i, j, np) = Te(i, j)
 Next j
 Next i
 If t >= tf Then Exit Do
Loop
'output results back to sheet
Range("a5").Select
Range("a5:e2005").ClearContents
For k = 0 To np
 ActiveCell.Value = "t = " & tpr(k)
 ActiveCell.Offset(1, 0).Select
 For j = ny To 0 Step -1
 For i = 0 To nx
 ActiveCell.Value = Tepr(i, j, k)
 ActiveCell.Offset(0, 1).Select
 Next i
 ActiveCell.Offset(1, -nx - 1).Select
 Next j
 ActiveCell.Offset(1, 0).Select
Next k
Range("a5").Select
End Sub
Sub Tridiag(e, f, g, r, x, n)
Call Decomp(e, f, g, n)
Call Substit(e, f, g, r, n, x)
End Sub
Sub Decomp(e, f, g, n)
Dim k As Integer
For k = 2 To n
 e(k) = e(k) / f(k - 1)
 f(k) = f(k) - e(k) * g(k - 1)
Next k
End Sub
Sub Substit(e, f, g, r, n, x)
Dim k As Integer
For k = 2 To n
 r(k) = r(k) - e(k) * r(k - 1)
Next k
x(n) = r(n) / f(n)
For k = n - 1 To 1 Step -1
 x(k) = (r(k) - g(k) * x(k + 1)) / f(k)
Next k
End Sub

30.13 MATLAB solution:

%PDE Parabolic Problem - Heat conduction in a rod
% u[xx]=u[t]
% BC u(0,t)=0 u(1,t)=1
% IC u(x,0)=0 x<1

% i=spatial index, from 1 to imax
% imax = no. of x points
% n=time index from 1 to nmax
% nmax = no. of time steps,
% Crank-Nicolson Formulation

imax=61;
nmax=60; % last time step = nmax+1

% Constants
dx=1/(imax-1);
dx2=dx*dx;
dt=dx2; % Setting dt to dx2 for good stability and results

% Independent space variable
x=0:dx:1;

% Sizing matrices
 u=zeros(imax,nmax+1); t=zeros(1,nmax+1);
 a=zeros(1,imax); b=zeros(1,imax);

 c=zeros(1,imax); d=zeros(1,imax);
ba=zeros(1,imax); ga=zeros(1,imax);
up=zeros(1,imax);

% Boundary Conditions
 u(1,1)=0;
 u(imax,1)=1;

% Time step loop
% n=1 represents 0 time, n+1 = next time step

t(1)=0;
for n=1:nmax

t(n+1)=t(n)+dt;

% Boundary conditions & Constants
 u(1,n+1)=0;
 u(imax,n+1)=1;
 dx2dt=dx2/dt;

% coefficients
 b(2)=-2-2*dx2dt;
 c(2)=1;
 d(2)=(2-2*dx2dt)*u(2,n)-u(3,n);
 for i=3:imax-2
 a(i)=1;
 b(i)=-2-2*dx2dt;
 c(i)=1;
 d(i)=-u(i-1,n)+(2-2*dx2dt)*u(i,n)-u(i+1,n);
 end
 a(imax-1)=1;
 b(imax-1)=-2-2*dx2dt;
 d(imax-1)=-u(imax-2,n)+(2-2*dx2dt)*u(imax-1,n)-2;
% Solution by Thomas Algorithm

ba(2)=b(2);
ga(2)=d(2)/b(2);
for i=3:imax-1
 ba(i)=b(i)-a(i)*c(i-1)/ba(i-1);
 ga(i)=(d(i)-a(i)*ga(i-1))/ba(i);
end

% Back substitution step
u(imax-1,n+1)=ga(imax-1);
for i=imax-2:-1:2
 u(i,n+1)=ga(i)-c(i)*u(i+1,n+1)/ba(i);
end
dt=1.1*dt;
end
% end of time step loop

% Plot
% Storing plot value of u as up, at every 5 time steps, np=5
%j=time index

%i=space index

np=5;
for j=np:np:nmax
for i=1:imax
up(i)=u(i,j);

end
plot(x,up)
hold on
end
grid
title('u[xx]=u[t]; u(0,t)=0, u(1,t)=1, u(x,0)=0; Crank-Nicolson
Formulation')
xlabel('x - ND Space')
ylabel('u - ND Temperature')
hold off

% Storing times for temp. profiles
%These can be saved in a data file or examined in the command file
tp=zeros(1,(nmax-1)/np);
i=1;
tp(1)=0;
for k=np:np:nmax
i=i+1;
tp(i)=t(k);
end
tp

 gtext('n=60');gtext('n=50');gtext('n=40');gtext
('n=30'); gtext('n=20');gtext('n=10');gtext('n=1');
gtext('t=.766');
gtext('t=.1115');gtext('t=.0413');gtext('t=.014');
gtext('t=.0038');gtext('t=0')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u[xx]= u[t]; u(0,t)= 0, u(1,t)= 1, u(x ,0)=0; Crank -Nicolson Form ulat ion

x - ND S pac e

u
 -

 N
D

 T
e

m
p

e
ra

tu
re

n=60

n= 50

n=40

n=30

n=20

n=10

n= 1

t= .766

t= .1115

t= .0413

t= .014

t= .0038

t=0

tp =

 Columns 1 through 7

 0 0.0013 0.0038 0.0078 0.0142 0.0246 0.0413

 Columns 8 through 13

 0.0682 0.1115 0.1813 0.2937 0.4746 0.7661

30.14

t
u

r
u

rr
u

∂
∂=

∂
∂+

∂
∂ 1

2

2

Substituting of second order correct Crank-Nicolson analogues

t
uu

t
u

rir

r
uu

r
uu

r
u

r

uuu

r

uuu

r
u

nini

nininini

nininininini

∆
−

=
∂
∂

∆−=









∆
−

+
∆
−

=
∂
∂










∆

+−
+

∆

+−
=

∂
∂

+

−++−++

−++−+++

,1,

,1,11,11,1

2
,1,,1

2
1,11,1,1

2

2

)1(

222
1

2
1

into the governing equation give the following finite difference equations:

nini

nininini

u
i

u
t

r

u
i

u
i

u
t

r
u

i

,1,

2

,11,11,

2

1,1

)1(2
1122

)1(2
1

1
)1(2

1
122

)1(2
1

1

+

−++++−









−

+−+











∆

∆−−









−

+−=







−

++











∆

∆
−−+








−

−

For the end points:

x = 1 (i = R), substitute the value of uR = 1 into the above FD equation
x = 0 (i = 1), set the FD analog to the first derivative = 0

0
222

1 ,0,21,01,2

1
=








∆
−

+
∆
−

=





∂
∂ ++

= r
uu

r
uu

r
u nnnn

i

Also substitute in i = 1 into the finite difference equation and algebraically eliminate
nn uu ,01,0 ++ from the two equations and get the FD equation at i = 1:

[] [] nnnn uu
t

ruu
t

r
,2,1

2

1,21,1

2
222222 −+












∆

∆
−−=+












∆

∆
−− ++

%PDE Parabolic Problem - Heat conduction in the radial direction in a
circular rod
% u[rr]+(1/r)u[r]=u[t] 0<r<1
% BC u(1,t)=1 u[r](0,t)=0
% IC u(r,0)=0 0<r<1
% i=spatial index, from 1 to imax
% imax = no. of r points (imax=21 for 20 dr spaces)
% n=time index from 1 to nmax
% nmax = no. of time steps,
% Crank-Nicolson Formulation

imax=41;
nmax=60; % last time step = nmax+1

% Constants

dr=1/(imax-1);
dr2=dr*dr;
dt=dr2; % Setting dt to dr2 for good stability and results

% Independent space variable
r=0:dr:1;

% Sizing matrices

u=zeros(imax,nmax+1); t=zeros(1,nmax+1);
a=zeros(1,imax); b=zeros(1,imax);

 c=zeros(1,imax); d=zeros(1,imax);
ba=zeros(1,imax); ga=zeros(1,imax);
up=zeros(1,imax);

% Boundary Conditions
 u(imax,1)=1;

% Time step loop
% n=1 represents 0 time, new time = n+1

t(1)=0;
for n=1:nmax
 t(n+1)=t(n)+dt;

% Boundary conditions & Constants
u(imax,n+1)=1;
dr2dt=dr2/dt;

% coefficients
 b(1)=-2-2*dr2dt;
 c(1)=2;
 d(1)=(2-2*dr2dt)*u(1,n)-2*u(2,n);
 for i=2:imax-2
 a(i)=1-1/(2*(i-1));
 b(i)=-2-2*dr2dt;
 c(i)=1+1/(2*(i-1));
 d(i)=(-1+1/(2*(i-1)))*u(i-1,n)+(2-
2*dr2dt)*u(i,n)+(-1-1/(2*(i-1)))*u(i+1,n);
 end
 a(imax-1)=1-1/(2*(imax-2));
 b(imax-1)=-2-2*dr2dt;
 d(imax-1)=(-1+1/(2*(imax-2)))*u(imax-2,n)+
(2-2*dr2dt)*u(imax-1,n)-2*(1+1/(2*(imax-2)))
% Solution by Thomas Algorithm
 ba(1)=b(1);
 ga(1)=d(1)/b(1);
 for i=2:imax-1
 ba(i)=b(i)-a(i)*c(i-1)/ba(i-1);
 ga(i)=(d(i)-a(i)*ga(i-1))/ba(i);
 end

% Back substitution step
 u(imax-1,n+1)=ga(imax-1);
 for i=imax-2:-1:1
 u(i,n+1)=ga(i)-c(i)*u(i+1,n+1)/ba(i);
 end
 dt=1.1*dt;

end
% end of time step loop

% Plot
% Storing plot value of u as up, at every 5 time steps
%j=time index
%i=space index

istart=4;
for j=istart:istart:nmax+1

for i=1:imax
 up(i)=u(i,j);

end
plot(r,up)

hold on
end
grid

title('u[rr]+(1/r)u[r]=u[t]; u(1,t)=1 u[r](0,t)=0; u(r,0)=0')
xlabel('r - ND Space')
ylabel('u - ND Temperature')
hold off

% Storing times for temp. profiles
% These can be saved in a data file or examined in the command file

tp=zeros(1,(nmax-1)/istart);
i=1;
tp(1)=0;
for k=istart:istart:nmax+1

i=i+1;
tp(i)=t(k);

end
tp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u[rr]+ (1/r)u[r]= u[t]; u(1,t)= 1 u[r](0,t)= 0; u(r,0)=0

r - ND S pac e

u
 -

 N
D

 T
e

m
p

e
ra

tu
re

tp =

 Columns 1 through 7

 0 0.0021 0.0059 0.0116 0.0199 0.0320 0.0497

 Columns 8 through 14

 0.0757 0.1137 0.1694 0.2509 0.3703 0.5450 0.8008

 Columns 15 through 16

 1.1754 1.7238

30.15

t
u

x
ub

dx
u

∂
∂=

∂
∂+∂

2

2

Substituting of second order correct Crank-Nicolson analogues

t
uu

t
u

x
uu

x
uu

x
u

x

uuu

x

uuu

x
u

nini

nininini

nininininini

∆
−

=
∂
∂









∆
−

+
∆
−

=
∂
∂










∆

+−
+

∆

+−
=

∂
∂

+

−++−++

−++−+++

,1,

,1,11,11,1

2
,1,,1

2
1,11,1,1

2

2

222
1

2
1

into the governing equation give the following finite difference equations

nini

nininini

uxbu
t

x

uxbuxbu
t

x
uxb

,1,

2

,11,11,

2

1,1

2
1122

2
1

1
2
1

122
2
1

1

+

−++++−





 ∆−−+












∆

∆−+





 ∆+−=



 ∆++












∆

∆
−−+



 ∆−

%PDE Parabolic Problem with a dispersion term
% u[xx]+bu[x]=u[t]
% BC u(0,t)=0 u(1,t)=1
% IC u(x,0)=0 x<1
% i=spatial index, from 1 to imax
% imax = no. of spatial points (imax=21 for 20 dx spaces)
% n=time index, from 1 to nmax
% nmax = no. of time steps
% Crank-Nicholson formulation for the spatial derivatives

imax=61;
nmax=60; % last time step = nmax+1

% constants

dx=1/(imax-1);
dx2=dx*dx;
dt=dx2;

% Parameters
B=-4;

% Independent spatial variable
x=0:dx:1;

% Sizing matrices
u=zeros(imax,nmax); t=zeros(1,nmax);
a=zeros(1,imax); b=zeros(1,imax);

 c=zeros(1,imax); d=zeros(1,imax);
ba=zeros(1,imax); ga=zeros(1,imax);
up=zeros(1,imax);

% Boundary Conditions
 u(1,1)=0;
 u(imax,1)=1;

% Time step loop
% n=1 represents 0 time, new time = n+1

t(1)=0;
 for n=1:nmax

 t(n+1)=t(n)+dt;

% Boundary conditions & constants
u(1,n+1)=0;
u(imax,n+1)=1;
dx2dt=dx2/dt;

% Coefficients
 b(2)=-2-2*dx2dt;
 c(2)=1+0.5*B*dx;
 d(2)=(-1-0.5*B*dx)*u(3,n)+(2-2*dx2dt)*u(2,n);
 for i=3:imax-2
 a(i)=1-0.5*B*dx;
 b(i)=-2-2*dx2dt;
 c(i)=1+0.5*B*dx;
 d(i)=(-1-0.5*B*dx)*u(i+1,n)+(2-2*dx2dt)*u(i,n)+(-1+0.5*B*dx)*u
(i-1,n);
 end

a(imax-1)=1-0.5*B*dx;
b(imax-1)=-2-2*dx2dt;
d(imax-1)=2*(-1-0.5*B*dx)+(2-2*dx2dt)*u(imax-1,n)+(-1+0.5*B*dx)*u(imax-
2,n);

% Solution by Thomas Algorithm
 ba(2)=b(2);
 ga(2)=d(2)/b(2);
 for i=3:imax-1
 ba(i)=b(i)-a(i)*c(i-1)/ba(i-1);
 ga(i)=(d(i)-a(i)*ga(i-1))/ba(i);
 end

% Back substitution step
 u(imax-1,n+1)=ga(imax-1);
 for i=imax-2:-1:2
 u(i,n+1)=ga(i)-c(i)*u(i+1,n+1)/ba(i);
 end
 dt=1.1*dt;

end
% End of time step loop

%Plot
%Storing plot value of u as up, at ever 5 time steps
% j=time index
% i=speace index

for j=5:5:nmax
for i=1:imax

 up(i)=u(i,j);
end

plot(x,up)
hold on

end
grid

title('u[xx]+bu[x]=u[t]; u(0,t)=0 u(1,t)=1; u(x,0)=0 x<1')
xlabel('x - ND Space')
ylabel('u - ND Temperature')
hold off
gtext('b=-4')
% Storing times for temp. profiles
% These can be used in a data file or examined in the command file

tp=zeros(1,(nmax-1)/5);
i=1;
tp(1)=0;
for k=5:5:nmax

i=i+1;
tp(i)=t(k);

end
tp

tp =

 Columns 1 through 7

 0 0.0013 0.0038 0.0078 0.0142 0.0246 0.0413

 Columns 8 through 13

 0.0682 0.1115 0.1813 0.2937 0.4746 0.7661

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u[x x]+bu[x]= u[t] ; u(0,t)= 0 u(1,t)= 1; u(x ,0)= 0 x<1

x - ND S pace

u
 -

 N
D

 T
e

m
p

e
ra

tu
re

b=4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u[x x]+ bu[x]= u[t]; u(0,t)= 0 u(1,t)= 1; u(x ,0)= 0 x < 1

x - ND S pac e

u
 -

 N
D

 T
e

m
p

e
ra

tu
re

b= 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u[x x]+bu[x]= u[t]; u(0,t)=0 u(1,t)= 1; u(x ,0)= 0 x< 1

x - ND S pac e

u
 -

 N
D

 T
e

m
p

e
ra

tu
re

b=0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u[x x]+bu[x]= u[t]; u(0,t)=0 u(1,t)= 1; u(x ,0)= 0 x< 1

x - ND S pac e

u
 -

 N
D

 T
e

m
p

e
ra

tu
re

b= -2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u[x x]+bu[x]= u[t]; u(0,t)=0 u(1,t)= 1; u(x ,0)= 0 x< 1

x - ND S pac e

u
 -

 N
D

 T
e

m
p

e
ra

tu
re

b= -4

CHAPTER 31

31.1 The equation to be solved is

 d T
dx

2

2
20= −

Assume a solution of the form T = ax2 + bx + c which can be differentiated twice to give T” = 2a.
Substituting this result into the differential equation gives a = −10. The boundary conditions can
be used to evaluate the remaining coefficients. For the first condition at x = 0,

50 10 0 02= − + +() ()b c

or c = 50. Similarly, for the second condition.

100 10 10 10 502= − + +() ()b

which can be solved for b = 105. Therefore, the final solution is

 T x x= − + +10 105 502

The results are plotted in Fig. 31.5.

0

100

200

300

0 5 10

31.2 The heat source term in the first row of Eq. (31.26) can be evaluated by substituting Eq. (31.3)
and integrating to give

20 2 5
2 5

25
0

2 5 .
.

. − =∫
xdx

Similarly, Eq. (31.4) can be substituted into the heat source term of the second row of Eq.
(31.26), which can also be integrated to yield

20 0
2 5

25
0

2 5 x dx−
=∫ .

.

These results along with the other parameter values can be substituted into Eq. (31.26) to give

0 4 0 4 25
1 2 1

. . ()T T dT
dx

x− = − +

and

− + = +0 4 0 4 25
1 2 2

. . ()T T dT
dx

x

31.3 In a manner similar to Fig. 31.7, the equations can be assembled for the total system,

0 4 0 4
0 4 0 8 0 4

0 4 0 8 0 4
0 4 08 0 4

0 4 0 4

25
50
50
50

25

1

2

3

4

5

1

1

. .
. . .

. . .
. . .

. .

() /

() /

−
− −

− −
− −

−

















































=

− +

+



























T
T
T
T
T

dT x dx

dT x dx

The unknown end temperatures can be substituted to give

1 0 4
0 8 0 4
0 4 0 8 0 4

0 4 0 8
0 4 1

5
70
50
90
15

1

2

3

4

5

−
−

− −
−

− −





















 −



























=

−



























.
. .
. . .

. .
.

() /

() /

dT x dx
T
T
T

dT x dx

These equations can be solved for

dT x dx
T
T
T

dT x dx

() /

() /

1

2

3

4

5

105
250
325
275

95−



























=

−



























The solution, along with the analytical solution (dashed line) is shown below:

0

100

200

300

0 5 10

31.4

0
2

2= − −D d c
dx

U dc
dx

kc

R D d c
dx

U dc
dx

kc= − −
2

2

~ ~
~

D d c
dx

U dc
dx

kc N dx
x

x

i

2

2
1

2
~ ~

~− −








∫

D d c
dx

N x dxix

x 2

2
1

2
~

()∫ (1)

− ∫U dc
dx
N x dxix

x ~
()

1

2

(2)

− ∫k cN x dxix

x ~ ()
1

2

(3)

Term (1):

D
d c
dx

N x dx D

dc
dx

x
c c
x x

dc
dx

x
c c
x x

ix

x 2

2

1
1 2

2 1

2
2 1

2 1

1

2 ~
()

()

()
∫ =

− −
−
−

−
−
−



















Term (2):

dc
dx
N x dx c c

x x
N x dxix

x

ix

x~
() ()

1

2

1

2 2 1

2 1
∫ ∫=

−
−

N x dx x x
ix

x
()

1

2 2 1

2∫ =
−

∴ =
−∫ dc

dx
N x dx c c
ix

x ~
()

1

2 2 1

2

− = −

−

−

















∫U dc
dx
N x dx U

c c

c cix

x ~
()

1

2

2 1

2 1

2

2

Term (3):

− = −
− 






∫k c N x dx k x x c

cix

x ~ ()
()2 1 1

221

2

Total element equation [(1) + (2) + (3)]

a a
a a

c
c

b
b

11 11

11 11

1

2

1

2


















=








where

()a D
x x

U k x x11
2 1

2 12 2
=

−
− + − a D

x x
U

12
2 1 2

=
−
−

+ a D
x x

U
21

2 1 2
=

−
−

−

()a
D

x x
U k

x x22
2 1

2 12 2
= −

−
+ + −

b D dc
dx

x1 1= − () b D dc
dx

x2 2= ()

31.5 First we can develop an analytical function for comparison. Substituting parameters gives

15 10 508
2

2. × =d u
dx

Assume a solution of the form

u ax bx c= + +2

This can be differentiated twice to yield d2u/dx2 = 2a. This can be substituted into the ODE,
which can then be solved for a = 1.6667×10−7. The boundary conditions can then be used to
evaluate the remaining coefficients. At the left side, u(0) = 0 and

0 16667 10 0 07 2= × + +−. () ()b c

and therefore, c = 0. At the right side of the bar, u(30) = 0 and

0 16667 10 30 307 2= × +−. () ()b

and therefore, b = −5×10−6, and the solution is

u x x= × − ×− −16667 10 5 107 2 6.

which can be displayed as

-4E-05

-2E-05

0E+00
0 6 12 18 24 30

The element equation can be written as

A E
x x

u
u

A E

du
dx

x

du
dx

x

P x N x dx

P x N x dx
c

c
x

x

x

x
2 1

1

2

1

2

1

2

1 1
1 1

1

2

1

2−
−

−

















=
−















+

















∫
∫

()

()

() ()

() ()

The distributed load can be evaluated as

−
−

= − −
−

= −∫ ∫50
6

6
150 50

0
6

150
0

6

0

6x dx x dx

Thus, the final element equation is

2 5 10 2 5 10
2 5 10 2 5 10

150
150

7 7

7 7
1

2

1

2

. .
. .

()

()

× − ×
− × ×


















=
−















+
−
−









u
u

A E

du
dx

x

du
dx

x
c

Assembly yields

15 10 2 5 10
5 10 2 5 10
2 5 10 5 10 2 5 10

2 5 10 5 10 2 5 10
2 5 10 5 10

2 5 10 15 10

150
300
300
300
300
150

8 7

7 7

7 7 7

7 7 7

7 7

7 7

1

1

1

1

1

2

. .
.

. .
. .

.
. .

()

()

× − ×
× − ×

− × × − ×
− × × − ×

− × ×
− × − ×



























































=

−
−
−
−
−
−





























du
dx

x

u
u
u
u

du
dx

x

which can be solved for

du
dx

x

u
u
u
u

du
dx

x

()

()

.

.

.

.

1

1

1

1

1

2

6

5

5

5

5

6

5 10
2 4 10
36 10
36 10
2 4 10
5 10

































=

− ×
− ×
− ×
− ×
− ×

×































−

−

−

−

−

−

These results, along with the analytical solution (dashed line) are displayed below:

-4E-05

-2E-05

0E+00
0 6 12 18 24 30

31.6
Option Explicit

Sub FErod()

Dim ns As Integer, ii As Integer, i As Integer, j As Integer
Dim k As Integer, m As Integer
Dim x(5) As Single, st(2, 2) As Single, c As Single
Dim s(2, 2) As Single, a(5, 5) As Single, b(5) As Single, d(5) As Single
Dim Te(5) As Single, ff As Single
Dim e(5) As Single, f(5) As Single, g(5) As Single, r(5) As Single
Dim dum1 As Single, dum2 As Single
Dim dTeLeft As Single, dTeRight As Single

'set parameters

ns = 4
x(1) = 0
x(2) = 2.5
x(3) = 5
x(4) = 7.5
x(5) = 10
Te(1) = 40
Te(5) = 200
ff = 10

'construct system matrix
st(1, 1) = 1: st(1, 2) = -1: st(2, 1) = -1: st(2, 2) = 1
For ii = 1 To ns
 c = 1 / (x(ii + 1) - x(ii))
 For i = 1 To 2
 For j = 1 To 2
 s(i, j) = c * st(i, j)
 Next j
 Next i
 For i = 1 To 2
 k = ii - 1 + i
 For j = 1 To 2
 m = ii - 1 + j
 a(k, m) = a(k, m) + s(i, j)
 Next j
 b(k) = b(k) + ff * ((x(ii + 1) - x(ii)) - (x(ii + 1) - x(ii)) / 2)
 Next i
Next ii

'determine impact of uniform source and boundary conditions
Call Mmult(a(), Te(), d(), ns + 1, ns + 1, 1)
For i = 1 To ns + 1
 b(i) = b(i) - d(i)
Next i
a(1, 1) = 1
a(2, 1) = 0
a(ns + 1, ns + 1) = -1
a(ns, ns + 1) = 0

'Transform square matrix into tridiagonal form
f(1) = a(1, 1)
g(1) = a(1, 2)
r(1) = b(1)
For i = 2 To ns
 e(i) = a(i, i - 1)
 f(i) = a(i, i)
 g(i) = a(i, i + 1)
 r(i) = b(i)
Next i
e(ns + 1) = a(ns + 1, ns)
f(ns + 1) = a(ns + 1, ns + 1)
r(ns + 1) = b(ns + 1)

'Tridiagonal solver
dum1 = Te(1)
dum2 = Te(ns + 1)
Call Tridiag(e, f, g, r, ns + 1, Te())
dTeLeft = Te(1)
dTeRight = Te(ns + 1)
Te(1) = dum1
Te(ns + 1) = dum2

'output results
Range("a3").Select
ActiveCell.Value = "dTe(x = " & x(0) & ")/dx = "
ActiveCell.Offset(0, 1).Select
ActiveCell.Value = dTeLeft
ActiveCell.Offset(1, -1).Select
ActiveCell.Value = "dTe(x = " & x(ns + 1) & ")/dx = "
ActiveCell.Offset(0, 1).Select
ActiveCell.Value = dTeRight
ActiveCell.Offset(3, -1).Select

For i = 1 To ns + 1
 ActiveCell.Value = x(i)
 ActiveCell.Offset(0, 1).Select
 ActiveCell.Value = Te(i)
 ActiveCell.Offset(1, -1).Select
Next i
Range("b3").Select

End Sub

Sub Mmult(a, b, c, m, n, l)

Dim i As Integer, j As Integer, k As Integer
Dim sum As Single

For i = 1 To n
 sum = 0
 For k = 1 To m
 sum = sum + a(i, k) * b(k)
 Next k
 c(i) = sum
Next i

End Sub

Sub Tridiag(e, f, g, r, n, x)
Dim k As Integer

'decompose
For k = 2 To n
 e(k) = e(k) / f(k - 1)
 f(k) = f(k) - e(k) * g(k - 1)
Next k
'substitute
For k = 2 To n
 r(k) = r(k) - e(k) * r(k - 1)
Next k
x(n) = r(n) / f(n)
For k = n - 1 To 1 Step -1
 x(k) = (r(k) - g(k) * x(k + 1)) / f(k)
Next k
End Sub

The output is

31.7 After setting up the original spreadsheet, the following modifications would be made to insulate
the right edge and add the sink:

Cell I1: Set to 100

Cell I2: =(I1+2*H2+I3)/4; This formula would then be copied to cells I3:I8.

Cell I9: =(I8+H9)/2

Cell C7: =(C6+D7+C8+B7-110)/4

The resulting spreadsheet is displayed below:

A B C D E F G H I
1 87.5 100 100 100 100 100 100 100 102.8
2 75 89.6 96.9 101.7 104.9 105.7 105.4 105.1 105.6
3 75 86.4 96.2 105.2 112.1 112.4 110.8 109.5 109.2
4 75 85.0 96.3 110.8 126.0 120.9 115.9 113.1 112.2
5 75 82.2 93.2 115.7 160.1 129.4 118.7 114.6 113.5
6 75 75.6 78.4 98.8 119.4 117.9 114.9 113.2 112.6
7 75 66.8 46.1 81.8 100.8 107.7 109.9 110.5 110.6
8 75 70.3 67.5 81.4 94.3 102.3 106.5 108.4 108.9
9 75 72.0 72.2 82.0 92.8 100.7 105.3 107.6 108.2

Corresponding contour plots can be generated as

1 2 3 4 5 6 7 8 9
S1
S2

S3
S4

S5
S6

S7
S8

S9

1 2 3 4 5 6 7 8 9
S1

S3

S5
S7
S9

0
20
40
60
80

100
120
140
160
180

31.8 The results of the preceding problem (31.8) can be saved as a tab-delimited text file (in our case,
we called the file prob3108.txt). The following commands can then be used to load this file into
MATLAB, as well as to generate the contour plot along with heat flow vectors.

>> load prob3108.txt
>> [px,py]=gradient(prob3108);
>> cs=contour(prob3108);clabel(cs);hold on
>> quiver(-px,-py);hold off

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

 60

 80

 100

 120
 140

 160

31.9 The scheme for implementing this calculation on Excel is shown below:

A B C D E F G H I J K
1 87.5 100 100 100 100 100 100 100 100 100 62.5
2 75 25
3 75 25
4 75 25
5 75 25
6 62.5 50 50 50 50 50 50 50 50 50 37.5

The simple Laplace equation applies directly to the blank white cells (recall Fig. 31.14).
However, for the shaded cells impacted by the heat sink, a heat balance equation must be
written. For example, for cell E3, the control volume approach can be developed as

0 3 3 3 3 3 4 2 3 100= − − + − − − + − −k E D
x

y z k F D
x

y z k E E
y

x z k E E
y

x z x y' ' ' '
∆

∆ ∆
∆

∆ ∆
∆

∆ ∆
∆

∆ ∆ ∆ ∆

Collecting and canceling terms yields

0 4 3 3 3 4 3 100= − + + + + −E D F E D
x y
zk

∆ ∆
∆ '

Substituting the length dimensions and the coefficient of thermal conductivity gives,

E D F E D3 3 3 4 3 160
4

= + + + −

The result is depicted below, along with the corresponding contour plots.

A B C D E F G H I J K
1 87.5 100 100 100 100 100 100 100 100 100 62.5
2 75 74.0 62.0 40.2 10.1 -1.5 7.9 34.7 50.8 51.3 25
3 75 59.0 33.7 -11.2 -98.2 -123.8 -101.8 -19.8 17.3 29.2 25
4 75 53.1 25.3 -20.7 -108.0 -133.7 -111.6 -29.2 8.8 23.4 25
5 75 53.3 34.9 11.2 -19.5 -31.3 -21.8 5.7 23.8 30.5 25
6 62.5 50 50 50 50 50 50 50 50 50 37.5

1 2 3 4 5 6 7 8 9 10 11
S1

S2

S3

S4

S5

S6

1

3 5 7 9

11

S1

S3

S5
-150
-100
-50

0
50

100

31.10 The results of the preceding problem (31.10) can be saved as a tab-delimited text file (in our
case, we called the file prob3110.txt). The following commands can then be used to load this
file into MATLAB, as well as to generate the contour plot along with heat flow vectors.

>> load prob3110.txt
>> [px,py]=gradient(prob3110);
>> cs=contour(prob3110);clabel(cs);hold on
>> quiver(-px,-py);hold off

2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 -100 -50

 0

 50

31.11
Program Plate
Use IMSL
Implicit None
Integer::ncval, nx, nxtabl, ny, nytabl
Parameter (ncval=11, nx=33, nxtabl=5, ny=33, nytabl=5)
Integer::i, ibcty(4), iorder, j, nout
Real::ax,ay,brhs,bx,by,coefu,prhs,u(nx,ny),utabl,x,xdata(nx),y,ydata(ny)
External brhs, prhs
ax = 0
bx = 40
ay = 0
by = 40
ibcty(1) = 1
ibcty(2) = 2
ibcty(3) = 1
ibcty(4) = 1
coefu = 0
iorder = 4
Call FPS2H(prhs, brhs, coefu, nx, ny, ax, bx, ay, by, ibcty, iorder, u, nx)
Do i=1, nx
 xdata(i) = ax + (bx - ax) * Float(i - 1) / Float(nx - 1)
End Do
Do j=1, ny
 ydata(j) = ay + (by - ay) * Float(j - 1) / Float(ny - 1)

End Do
Call UMACH(2, nout)
Write (nout,'(8X,A,11X,A,11X,A)') 'X', 'Y', 'U'
Do j=1, nytabl
 Do i=1, nxtabl
 x = ax + (bx - ax) * Float(i - 1) / Float(nxtabl - 1)
 y = ay + (by - ay) * Float(j - 1) / Float(nytabl - 1)
 utabl = QD2VL(x,y,nx,xdata,ny,ydata,u,nx,.FALSE.)
 Write (nout,'(4F12.4)') x, y, utabl
 End Do
End Do
End Program

Function prhs(x, y)
Implicit None
Real::prhs, x, y
prhs = 0
End Function

Real Function brhs(iside, x, y)
Implicit None
Integer::iside
Real::x , y
If (iside == 1) Then
 brhs = 50
ElseIf (iside == 2) Then
 brhs = 0
ElseIf (iside == 3) Then
 brhs = 75
Else
 brhs = 100
End If
End Function

Output:

 0.0000 0.0000 75.0000
 10.0000 0.0000 71.6339
 20.0000 0.0000 66.6152
 30.0000 0.0000 59.1933
 40.0000 0.0000 50.0000
 0.0000 10.0000 75.0000
 10.0000 10.0000 72.5423
 20.0000 10.0000 67.9412
 30.0000 10.0000 60.1914
 40.0000 10.0000 50.0000
 0.0000 20.0000 75.0000
 10.0000 20.0000 75.8115
 20.0000 20.0000 72.6947
 30.0000 20.0000 64.0001
 40.0000 20.0000 50.0000
 0.0000 30.0000 75.0000
 10.0000 30.0000 83.5385
 20.0000 30.0000 83.0789
 30.0000 30.0000 74.3008
 40.0000 30.0000 50.0000
 0.0000 40.0000 87.5000
 10.0000 40.0000 100.0000
 20.0000 40.0000 100.0000
 30.0000 40.0000 100.0000
 40.0000 40.0000 75.0000
Press any key to continue

31.12

Other node equations are derived similarly

31.13

Other node equations are derived similarly

