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1 Introduction

This document describes the C programming interface to TinyTimber, a very small
and lightweight run-time kernel for event-driven embedded systems.

Prerequisites assumed in this document are familiarity with standard sequen-
tial programming in the C language as well as basic knowledge of microprocessor
fundamentals, especially concerning interrupt handling and device I/O on the as-
sembly level. Experience with the concepts of an object-oriented language such as
Java will also be helpful, but is not an absolute necessity.

2 Design principles

The fundamental idea that underlies the design of TinyTimber is the notion of a
reactive object. A reactive object is a component that reacts to incoming events by
updating its internal state and/or emitting outgoing events of its own. Between
such activations a reactive object is idle; i.e., it simply maintains its state while
waiting for future activations.

According to this view, a hardware device such as a serial port controller is
a typical reactive object. The device itself is literally a ”black box” object that
does nothing unless stimulated by external events. In the case of a serial port
these events are of two kinds: either a signal change on the incoming communi-
cation line, or a read or write command received on the connected data bus. The
emitted events are similarly divided; either a generated signal change on the out-
going communication line, or an interrupt signal issued towards some connected
microprocessor. The clock pulse driving the shift registers of the port may also
be included among the external event sources, if desired. At all times, the current
state of a serial port object is the contents of its internal registers. Figure 1 depicts
this view.1

1Although the graphical notation used within this document is entirely informal, the two
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Figure 1: A reactive object in the form of a serial port

The microprocessor itself may also be considered a reactive object. It reacts to
incoming interrupt events by updating its state (memory and registers) or gener-
ating commands (read or write) on the data bus. Here as well a clock pulse may be
viewed as an additional source of incoming events. Perhaps less obvious is the fact
that a microprocessor which is done emitting all its responses to previous events is
also in effect doing ”nothing” until a new interrupt occurs. Programmers tend to
think of this ”nothing” as the repeated execution of some dummy instruction, but
it should be noted that most microprocessor architectures provide an alternative
in the form of an instruction that literally halts program flow until an interrupt
occurs. In any case, the division of a microprocessor’s time into active and inactive
phases is an important aspect of its behavior. Figure 2 shows the system obtained
when a microprocessor object is connected to a serial port and a keyboard object
via some common data bus.

Even a compound system can be thought of as a reactive object in its own right.
For example, a user of the microprocessor system in Figure 2 will probably not
distinguish the individual components from each other, but rather view the system
as a single object capable of emitting serial port packets while reacting to incoming
port and keyboard events. Conversely, a single reactive object might reveal a more
refined structure of interconnected components when looked at from the inside, and
this pattern may very well repeat itself at different levels of magnification. The
core idea of TinyTimber is to let such a hierarchy of reactive objects extend into

kinds of arrows used are intended to distinguish between one-way signalling (the straight arrow)
and request-response communication (the fishhook). Blocks stand for stateful objects, and the
operatons that can be performed on these appear as rounded rectangles along the border. The
clock symbol is just a generator of periodic events.
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Figure 2: A microprocessor object connected to a keyboard and a serial port

the programmable internals of a microprocessor object as well.
So, the microprocessor is a hardware reactive object whose behavior and in-

ternal structure is defined by software. The links across this hardware/software
boundary are the interrupt handlers, which constitute the externally visible meth-
ods of the microprocessor object. The persistent state of the microprocessor are all
the global variables, which we may choose to partition into an object structure that
reflects a conceptual hardware decomposition of the programmed application. Fig-
ure 3 illustrates what the software-defined internal structure of a microprocessor
object may look like.2

An essential aspect of real world objects is that they naturally evolve in parallel
with each other, so a key task for the TinyTimber kernel is to simulate concurrent
execution of multiple software objects on single processor hardware. Moreover,
TinyTimber will also guarantee that the methods of a particular object execute in
a strictly sequential fashion, thus avoiding the need for any manual state protection
mechanisms (see Figure 4). To make this scheme work, the programmer has to
ensure that every method call that crosses an object boundary is handled by the
TinyTimber kernel. Apart from that requirement, though, programming with
TinyTimber is as simple as partitioning the program state into an appropriate
object structure, and defining the behavior of each object in terms of method
code.

Details of the TinyTimber method call primitives will be explained in sub-
sequent sections. First, however, some basic techniques for expressing object-

2This figure shows a clock symbol placed over one of the one-way communication arrows,
as an indicator of the TinyTimber way of controlling timing behavior. More on this topic in
Section 6.
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oriented concepts in C must be discussed.

3 Basic object-orientation in C

Object-oriented programming means many different things to different people, so
let us start with some terminology.

By an object we mean a collection of variables at some unique place in mem-
ory, together with a set of functions that have the exclusive right to access these
variables. The functions are commonly called methods, and the variables are often
termed state or instance variables. Calling, or invoking a method of an object is
commonly thought of as sending a message to the object. A class is a template
for creating objects with a similar variable layout and a similar set of methods.
Inheritance is a mechanism for defining classes on basis of already existing classes,
primarily by adding state variables and methods.

To encode these object-oriented concepts in the C language we will use a com-
bination of a typedef and a struct for defining the variable structure of classes,
and the standard technique of ”self-application” for invoking methods. Here is an
example of a class Counter that specifies two instance variables:

typedef struct {

int value;

int enabled;

} Counter;

Creating an object from a class template just means initializing a fresh object
variable of the right type with the proper initial values. We will consistently use a
preprocessor macro initX to express initialization of an object of class X, which
for the Counter class might look like

#define initCounter(en) { 0, en }

A fresh Counter object is then created as follows:

Counter cnt = initCounter(1);

Self-application means invoking a method by applying it to the address of the
receiving object – that is, to the self of the receiver. A method belonging to a class
X is thus supposed to take a pointer to an X object as an extra first parameter.
The following functions both qualify as Counter methods:

int inc( Counter *self, int arg ) {

if (self->enabled)

self->value = self->value + arg;

5



return self->value;

}

int enable( Counter *self, int arg ) {

self->enable = arg;

return 0;

}

To call method inc on object cnt with argument 1, one essentially just writes

inc( &cnt, 1 );

However, as we will see in Section 4, method calls directed towards an object
different from the current self will be expressed in a slightly different manner.

Moreover, a method could in principle return any type and take any number
and type of arguments after the mandatory first object pointer. For technical
reasons, though, TinyTimber restricts the method calls it handles to carry just
one integer parameter and return an integer-valued result. This restriction may
be loosened somewhat by means of type casts, provided that the actual values can
be represented within the space of an integer.

A class C may inherit a class B – i.e., be an extension of class B – by including
a B object as the first component of its variable layout. For example, a class
ResetCounter can be defined as an extension of Counter as follows:

typedef struct {

Counter super;

int nResets;

} ResetCounter;

#define initResetCounter(en) { initCounter(en), 0 };

A ResetCounter object created by

ResetCounter rcnt = initResetCounter(1);

may now be treated as a Counter object by means of a simple type cast, because
the address of an object and the address of its first component will always be
identical. Hence methods inc and enable above may be used on ResetCounter

objects as well:

inc( (Counter*)&rcnt, 4 );

enable( (Counter*)&rcnt, 0 );

The ResetCounter class may in addition provide new methods that do not work
on Counter objects. Here is an example:
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int reset( ResetCounter *self, int arg ) {

self->super.value = 0;

self->nResets++;

return 0;

}

Notice how the instance variables of the superclass object are accessible via the
field super. It is also important to observe that the super field must denote a
full superclass object, not merely a pointer to such an object; otherwise the type
casting trick shown above will not work.

More advanced object-oriented mechanisms such as dynamic binding and method
override are certainly possible to encode along this line as well, but this is as far
as we need to go in order to utilize the TinyTimber kernel. In fact, even the use
of inheritance as described above is probably an overkill in many applications.

However, the TinyTimber kernel places some basic requirements on the lay-
out of every object it manages, and these requirements are most straightforwardly
expressed terms of inheritance. Concretely this means that every class in a Tiny-
Timber system must inherit the predefined class Object, either directly or via
some other class that inherits Object. To qualify as a correct TinyTimber class,
our Counter class should thus actually have been written

typedef struct {

Object super;

int value;

int enabled;

} Counter;

#define initCounter(en) { initObject(), 0, en }

The definition of ResetCounter is ok as it is, because it inherits Object via
Counter. From now on we will silently assume that all classes follow the in-
heritance requirement one way or another.

The most important aspect of our encoding is that it naturally leads to a
software structure where the program state is partitioned into well-defined units
of concurrency. Moreover, provided that

1. only the methods of an object are allowed to access its state variables, and

2. method calls not directed to the current self are handled by the kernel,

the TinyTimber kernel is actually able to guarantee that the state integrity of all
objects is automatically preserved, even in the presence of overlapping reactions
and multiple concurrent events.
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This property heavily depends on the way method calls are performed, so let us
now take a look at the TinyTimber primitives for invoking methods in a concurrent
setting.

4 Concurrent method calls

Recalling Figure 4, every TinyTimber object acts a potential host of concurrent
activity. On the other hand, method calls directed to a particular object must
execute in a strictly serial fashion, such that each object is executing at most one
of its methods at a time. These requirements affect the semantics of method calls
in two different ways:

1. Each time a method call is made, the caller must actually check that the
receiving object is not already executing some method. Should this be the
case, the caller must wait.

2. Alternatively, in cases where the caller is not really interested in the result
returned by a method, the receiving object could be left to execute the
designated method whenever it is ready. This would leave the caller free to
continue immediately once the method call is posted, possibly executing in
parallel with the called method.

Unfortunately, neither alternative will happen automatically if methods are in-
voked in the standard self-applicative fashion. For example, suppose some method
of an object x wishes to call method reset of object rcnt defined in Section 3.
Simply writing

reset( &rcnt, 0 );

will force execution of reset irrespective of whether rcnt is already executing
another method or not (with possible corruption of the state variables of rcnt

as a result). Moreover, this simplistic mechanism will not provide any option for
letting the current method of x continue in parallel with method reset.

In the concurrent programming literature, the two invocation alternatives de-
scribed as bullets 1 and 2 above go under the names synchronous and asynchronous
message passing, respectively. TinyTimber supports them both in the form of two
primitive operations: SYNC and ASYNC.

Primitive SYNC takes an object pointer, a method name and an integer argu-
ment, and performs a synchronous method call as described under bullet 1. For
example, to execute the method call attempted above in a synchronous fashion,
one writes

SYNC( &rcnt, reset, 0 );

8



Should the method result be of interest, it can be captured as the result of the
SYNC operation:

some_variable = SYNC( &rcnt, inc, 1 );

The primitive ASYNC also takes an object pointer, a method name and an
integer argument, but performs an asynchronous method invocation along the
lines of bullet 2 instead. An asynchronous variant of the previous example thus
looks as follows:

ASYNC( &rcnt, reset, 0 );

The result of an ASYNC call is always a message tag, independently of whether
the actual method invoked returns a meaningful value or not (recall that the
ASYNC primitive does not wait for any result to be produced). The returned tag is
mostly ignored, but can also be used to prematurely abort a pending asynchronous
message (see the appendix for details).

Making an asynchronous call to the currently executing object (i.e., to the
current self) is perfectly reasonable – that call will be handled after the active
method has terminated. This would be like sending a letter to one’s own mail
address, to be picked up at a later time. The usefulness of such an arrangement
will perhaps be more evident after Section 6, where some variants of the ASYNC

primitive are discussed.
On the other hand, a synchronous call to the current self is an unconditional

error that will lead to deadlock, because the receiver cannot possibly be ready to
accept such a call at any time. This situation would be like calling one’s own
telephone number and waiting for someone to pick up the phone – clearly not a
good strategy for making progress! If the intention is to simply call a method of
the current self as if it were an ordinary subroutine, the standard self-application
mechanism should be used instead. In fact, this is the only scenario where self-
application should be used in a TinyTimber system; all other method calls either
cross an object boundary and/or need asynchronous behavior.

In general, deadlock may result whenever there is a cycle of objects that call
each other synchronously. Should deadlock occur, TinyTimber will abort the clos-
ing SYNC call, and return the error code -1. Programmers must therefore take
special action to disambiguate SYNC results if -1 can also be expected as a proper
return value. The easiest way is to avoid deadlocks altogether, by breaking every
synchronous call cycle with an ASYNC call at some point.

A word of caution: Both SYNC and ASYNC make heavy use of type casts to
achieve a convenient method call syntax. Unfortunately, the C language is not
potent enough to detect some misuses that may result; for example, attempting
to call method reset on object cnt (which does not support that method). As
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is always the case when type casts are involved, the programmer must take full
responsibility for the correctness of the resulting program. But this should be no
news to a C programmer!

5 The software-hardware boundary

Figure 3 shows the logical structure of a hypothetical microprocessor and its pro-
grammed software internals. Three reactive objects can be identified, each one
supporting its own methods and some local state. These objects are conveniently
described and implemented according to the techniques discussed in Sections 3
and 4.

However, Figure 3 also indicates that methods m1 and m8 are callable from
the world outside the microprocessor, and that methods m2, m6 and m7 are able
to invoke methods of this outside world in turn. It is now time to explain workings
of this software-hardware boundary in more detail.

Concretely, incoming method calls from the hardware environment correspond
to interrupt signals received by the microprocessor. Methods m1 and m8 thus have
the status of interrupt handlers, that are invoked each time the microprocessor
detects a signal on its corresponding interrupt input pins. Apart from this special
link to the outside world, interrupt handlers are ordinary methods accepting the
same type of parameters as methods invoked with SYNC and ASYNC. To install
method meth on object obj as an interrupt handler for interrupt source IRQ X, one
writes

INSTALL(&obj, meth, IRQ_X);

This call, which preferably should be performed during system startup, causes
meth to be subsequently invoked with &obj and IRQ X as arguments whenever the
interrupt identified by IRQ X occurs. The symbol IRQ X is here used as a place-
holder only; the exact set of available interrupt sources is captured in a platform-
dependent enumeration type Vector defined in the TinyTimber interface.

A few technical points regarding interrupts are worth noticing. Interrupt han-
dlers are effectively scheduled by the processor hardware, which on most platforms
means that they are executed non-preemptively (i.e., with further interrupts dis-
abled). To avoid conflicts between the hardware and software schedulers, Tiny-
Timber ensures that all methods of an object that has interrupt handlers installed
execute with interrupts disabled. This poses no restrictions on the way such meth-
ods can be invoked (SYNC or ASYNC), nor on what kind of calls that can be made
from within such methods. However, synchronous calls within an interrupt han-
dler will only succeed if the receiving object is inactive at the time of the interrupt.
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SYNC should therefore not be used by interrupt-handling methods unless it is ac-
ceptable that the failure value (-1) may occasionally be returned.

System reset is a particular event that most microprocessor hardware treats
as yet another interrupt source. To a C programmer, though, a ”system reset”
handler is already available in the form of the main function, so the TinyTimber
interface will typically not include a specific system reset identifier in its Vector

definition.3 The main function nevertheless has a special responsibility in a Tiny-
Timber system, in that it must hand over control to the TinyTimber scheduler;
otherwise the system will just terminate prematurely without handling any events.
This is achieved by invoking the non-terminating primitive TINYTIMBER as the last
main statement. Here is an example:

int main() {

INSTALL(&obj1, meth1, IRQ_1);

INSTALL(&obj2, meth2, IRQ_2);

return TINYTIMBER(&obj3, meth3, val);

}

This system will install two interrupt handlers before invoking TinyTimber proper,
thereby firing off the whole event-handling mechanism. The arguments given to
TINYTIMBER identify a method call that will act as the startup event — the Tiny-
Timber kernel will schedule this call as its first event-handling operation. Should
no specific startup event be desired, NULL can be given in place of all three argu-
ments.

Returning to Figure 3, the concrete representation of outgoing method calls
directed towards the hardware environment are read or write commands issued by
the processor to devices on the external data bus – i.e., events generated in software
to which hardware objects are supposed to react. Such I/O operations can be
conveniently expressed in the C language as either pointer operations (memory-
mapped architectures) or inline assembly code (separate I/O bus), and need no
involvement by the TinyTimber kernel. Still, I/O operations form an important
conceptual link in the reactive object model on which TinyTimber is built, and
they can preferably be understood as yet another form of method call in a reactive
system.

Here is an example of what a set of outgoing method calls to hardware objects
might look like on a memory-mapped architecture.

char *port = (char*) 0x1234; // "self" of the hardware object

...

3TinyTimber will reserve a few other interrupt sources for its own internal use as well, which
will also be absent from the definition of Vector.
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unsigned char = *port; // A "read" method call

...

*port = expr; // A "write" method call

For concrete information on the hardware objects available in a particular context,
platform specific C documentation should be consulted.

6 Managing time

Implied in the presentation this far has been the assumption that all methods
terminate after a relatively brief outburst of activity. This might contradict many
people’s perception that concurrent and event-driven software inevitably must in-
volve infinite loops. In a TinyTimber system this is far from the truth, though.
There are no means to ”block” for an event in TinyTimber, and when there is no
method activity, a reactive object simply rests. That characteristic naturally ap-
plies to microprocessor hardware as well, and thanks to the TinyTimber scheduler,
it also holds for the whole compound object that includes the microprocessor and
its programmed internals.

Still, what is lacking in the TinyTimber picture painted so far is the ability
to express periodic activity. Or more generally put: to prescribe that a certain
activity must be triggered at a certain point in time.

The TinyTimber primitive for managing the passage of time is called AFTER.
Unlike time primitives in many other concurrent systems, AFTER does not stop
the program flow; instead it just sets up an event at a future point in time that
some chosen object will react to. The following code issues an asynchronous call
to method meth of object obj, to be be delivered after X seconds.

12



AFTER( SEC(X), &obj, meth, 123 );

Function SEC is a preprocessor macro that converts its argument to the platform
dependent units of time used by AFTER. Other useful macros with a similar purpose
are MSEC and USEC.

One important TinyTimber chracteristic is that the time parameter in an AFTER

call is not mesured from the time of the call, but from the current baseline, which is
a time-stamp TinyTimber sets for each interrupt and then subsequently maintains
for each message. The baseline of a message can be seen as a lower timebound
on its execution, and what AFTER actually does is that it lets the programmer
adjust the baseline of a called method with an offset relative to the current one
(see Figure 5). An AFTER call with a baseline offset of 0 thus means that the called
method runs with the same baseline as the caller. In fact, writing

ASYNC( &obj, meth, 123 );

is just a shorthand for the equivalent call

AFTER( 0, &obj, meth, 123 );

Counting time offsets from the stable reference point of a baseline makes the
actual time an AFTER call is made irrelevant. For example, the following methods
are equivalent, both performing some immediate work and triggerering more_work

to be run T seconds after the current baseline.

int work1( MyObject *self, int arg ) {

// do immediate work

AFTER( SEC(T), &obj, more_work, 0 );

}

int work2( MyObject *self, int arg ) {

AFTER( SEC(T), &obj, more_work, 0 );

// do immediate work

}

Below follows a method that will react to an initial invocation by repeatedly
calling itself every T milliseconds.

int tick( MyObject *self, int arg ) {

// do something useful

AFTER( MSEC(T), self, tick, arg );

}
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This example succinctly captures the way periodic computations are expressed in
TinyTimber. That is, a recursive asynchronous method call with a time offset
replaces the loops and blocking operations found in many other systems. An
immediate benefit of the TinyTimber formulation is that every object utilizing the
pattern is free to handle any other events in the space between periodic activations.
A TinyTimber object simply treats the ticking of time as any other event – i.e.,
as some unknown source of an ordinary method call. Moreover, the new baseline
computed by an AFTER call is indifferent to the actual speed at which methods
execute. Periodic computations in particular are thus free from accumulating
drift.

For applications where hard real-time performance is required, TinyTimber
also provides an option for specifying the deadlines of asynchronous messages. A
deadline marks a point in time when a method must be done, and together with
the baseline of a method call, it defines a time window of legal method execution
(see Figure 6).

To perform an asynchronous call with an explicit deadline D, one writes

BEFORE( D, &obj, meth, 123 );

C.f. Figure 7. To do the same with an additional baseline offset T, a combination
of the AFTER and BEFORE primitives is used (Figure 8):

SEND( T, D, &obj, meth, 123 );

In both cases, the specified deadline parameter is a time-span measured relative
the baseline of the generated message. As a special case, a relative deadline value
of 0 is interpreted as infinity; i.e., specifying an infinitely wide window of legal
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execution. With this fact in mind, all variants of the asynchronous method call
can actually be defined as variations of SEND:

BEFORE( D, ... ) = SEND( 0, D, ... )

AFTER( T, ... ) = SEND( T, 0, ... )

ASYNC( ... ) = SEND( 0, 0, ... )

The baseline of a method call may preferably be used as a time-stamp for the
event that initiated the call, as it is insensitive to any scheduling decisions made
by the kernel. Moreover, TinyTimber offers a built-in class Timer, with methods
T RESET and T SAMPLE, that allows the difference between two such time-stamps
to be obtained. The following example shows the core of a sonar measurement
application, where time-stamps and the facilities of class Timer are put to good
use.

typedef struct {

Object super;

Timer timer;

} Sonar;

#define initSonar() { initObject(), initTimer() }

#define GENERATOR_PORT = (*(char *) 0x1234)

Sonar sonar = initSonar();

int stop( Sonar *self, int arg ) {

GENERATOR_PORT = SONAR_OFF;

}

int echo( Sonar *self, int arg ) {

Time diff = T_SAMPLE(&self->timer);

if (diff < MSEC(LIMIT)) ...;

}

int tick( Sonar *self, int arg ) {

GENERATOR_PORT = SONAR_ON;

T_RESET(&self->timer);

AFTER( MSEC(10), self, stop, 0 );

AFTER( MSEC(500), self, tick, 0 );

}
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int main() {

INSTALL( &sonar, echo, IRQ_ECHO_DETECT );

return TINYTIMBER( &sonar, tick, 0 );

}

TinyTimber uses both deadlines and baselines as input to its scheduling al-
gorithm, although it is actually only the deadlines that pose any real challenge
to the scheduler. However, missed deadlines are not trapped at run-time; if such
behavior is desired it must be programmed by means of a separate watchdog task.

Judging whether a TinyTimber program will meet all its deadlines at run-time
is an interesting problem, that can only be solved using a separate schedulabil-
ity analysis and known worst-case execution times for all methods. That topic,
however, is beyond the scope of the present text.

7 Summary of the TinyTimber interface

• #include "TinyTimber.h"

Provides access to the TinyTimber primitives.

• typedef struct {...} Object;

Base class of reactive objects. Every reactive object in a TinyTimber system
must be of a class that inherits (i.e., can be cast to) this class.

• #define initObject() {...}
Initialization macro for class Object.

• int SYNC( T *obj, int (*meth)(T*,A), A arg );

Synchronously invokes method meth on object obj with argument arg. Type
T must be a struct type that inherits from Object, while A can be any int-
sized type. If completion of the call would result in deadlock, -1 is returned;
otherwise the result is the value returned by m.

• typedef struct ... *Msg;

Abstract type of asynchronous message tags.

• #define NULL 0

Unit value of type Msg and other pointer types.

• Msg ASYNC( T *obj, int (*meth)(T*,A), A arg );

Asynchronously invokes method meth on object obj with argument arg.
Identical to SEND(0, 0, obj, meth, arg).
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• typedef signed long Time;

Type of time values (with platform-dependent resolution).

• Time SEC( int seconds );

Time MSEC( int milliseconds );

Time USEC( int microseconds );

Constructs a Time value from an argument given in seconds / milliseconds /
microseconds.

• int SEC OF( Time );

int MSEC OF( Time );

long USEC OF( Time );

Extracts whole seconds and millisecond or microsecond fractions of a Time

value.

• Msg AFTER( Time bl, T *obj, int (*meth)(T*,A), A arg );

Asynchronously invokes method meth on object obj with argument arg and
baseline offset bl. Identical to SEND(b, 0, obj, meth, arg).

• Msg BEFORE( Time dl, T *obj, int (*meth)(T*,A), A arg );

Asynchronously invokes method meth on object obj with argument arg and
relative deadline dl. Identical to SEND(0, dl, obj, meth, arg).

• Msg SEND( Time bl, Time dl, T *obj, int (*meth)(T*,A), A arg );

Asynchronously invokes method meth on object obj with argument arg,
baseline offset bl, and relative deadline dl. Type T must be a struct type
that inherits from Object, while A can be any int-sized type. Returns a tag
that can be used to identify the message in a future call to ABORT.

Offsets bl and dl allow a new execution window for the asynchronous call
to be defined on basis of the current one:

new baseline = current baseline + bl

new deadline = infinity, if dl = 0
= new baseline + dl, otherwise

• void ABORT( Msg m );

Prematurely aborts pending asynchronous message m. Does nothing if m has
already begun executing.
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• enum Vector = {...};
Platform-dependent list of interrupt source identifiers.

• INSTALL( T *obj, int (*meth)(T*, enum Vector), enum Vector v );

Install method meth on object obj as an interrupt-handler for interrupt
source i. Type T must be a struct type that inherits from Object. When an
interrupt on i occurs, meth will be invoked on obj with i as its argument.

• TINYTIMBER( T *obj, int (*meth)(T*,A), A arg );

Start up the TinyTimber system by invoking method meth on obj with
argument arg; then handle all subsequent interrupts and timed events as
they occur. Type T must be a struct type that inherits from Object, while
A can be any int-sized type. This function never returns.

• typedef struct {...} Timer;

Abstract type of timer objects.

• #define initTimer() {...}
Initialization macro for class Timer.

• void T RESET( Timer *t );

Reset timer t to the value of of current baseline.

• Time T SAMPLE( Timer *t );

Return difference between current baseline and timer t.

• Time CURRENT OFFSET(void);

Return current time measured from current baseline.

19


