EDA223/DIT162 Real-Time Systems January 12, 2019
Laboratory Assignment — Part 1

Objective: The purpose of Part 1 of the lab is to obtain experience with the behavior
of a timing-dependent system with and without explicitly defined deadlines, and under
varying amounts of system load. First, you will design a tone generator task that produces
the waveform of a tone with a given frequency (Step 1). Second, you will add a background
task that will compete with the tone generator task in a way that will distort the tone in
an audible way even during normal load conditions (Step 2). Third, you will run the tone
generator task and background task together in a way that does not distort the generated
tone under normal load conditions (Step 3). Finally, you will measure the execution time
of the tone generator task and the background task for some given scenarios (Step 4).

Approval: When you see the text “Assistant’s approval: ” below a problem
description you should show your solutions to the laboratory assistant. If the solutions
are found to be satisfactory the laboratory assistant will sign your lab-PM and mark the
corresponding examination objective as 'Passed’ in Canvas. You can then continue with
the next problem.

Step 1: And then there was sound ...

Implement a pulse wave tone generator on card MD407, by means of a periodic task that
feeds the card’s DAC (digital-to-analog converter) with alternating ’1’s and ’0’s. In this
context a ’0’ means writing the value 0 to the DAC, whereas a ’1’ means writing a value
between 1 and 20 (0x14 in hexadecimal notation) to the DAC. Set the tone frequency to 1
kHz. The memory address of the 8-bit DAC data register is 0x4000741C. If implemented
correctly, the pulse wave should produce an audible output in a speaker connected to the
audio jack on the MD407 card.

CAUTION: Because the output of the DAC is connected to a speaker output without
any attenuation you should never write values larger than 20 to the DAC. Otherwise, the
output signal may ruin your headphone speakers and/or your hearing. Recommended
values, producing a comfortable sound level on most speakers, are in the range 5-15.

You should now implement support for controlling the tone generator task from your
keyboard, without stopping the periodic execution of the tone generator task. First, im-
plement a wvolume control that allows you to increase and decrease the value, repre-
senting a '1’, to the DAC. Make sure that your volume control always keeps the value
within the minimum and maximum limits of 1 and 20, respectively. Control the volume
up/down function with suitable keys on the keyboard. Second, implement a mute func-
tion that allows you to enable and disable the sound on your card’s audio jack. Control
the mute/unmute function with suitable keys on the keyboard.

Problem 1: Demonstrate the audible 1 kHz output, as well as the volume
control and mute function, to the teaching assistant.

Assistant’s approval:cco..oonnn.

Step 2: Fifty shades of distortion

Extend the program from Step 1 with a periodic background load task with a period of
1300 wus, that, for each invocation (each new period), executes an empty loop a number
of times defined by a variable labeled background loop_range. The intention is that the
background task should increase the overall load of the processor in a controlled manner,
where larger values of the variable background_loop_range correspond to higher load,
and smaller values correspond to lower load.

The background load task should be run concurrently with the tone generator task
from Step 1. Remember that, in order to implement two concurrent tasks in TinyTimber,
you need to use two independent objects. Place the variable background_loop_range
inside the object you use for the background task, and give it a default value of 1000.
If implemented correctly, you should hear a ”dirtier” version of the 1 kHz tone that is
being distorted by the periodic executions of the background task.

You should now implement a load control that allows you use the keyboard to increase
and decrease the value of variable background_loop_range while both tasks are running.
It is recommended that you increment and decrement in steps of 500. Control the load
increase/decrease function with suitable keys on the keyboard. Print the value of variable
background_loop_range every time it is changed.

Problem 2.a: With the tone generator producing a 1 kHz tone increase the
value of variable background_loop_range from 1000 to 8000. What happens
with the generated tone as you increase the background load?

Problem 2.b: Repeat the procedure in Problem 2.a, but let the tone gener-
ator task produce a 769 Hz tone. Is the distortion different now? If so, why?
What happens with the generated tone as you increase the background load?

A SWOT S e

Problem 2.c: Repeat the procedure in Problem 2.a, but let the tone gener-
ator task produce a 537 Hz tone. Is the distortion different now? If so, why?
What happens with the generated tone as you increase the background load?

Assistant’s approval: ...

Step 3: Deadlines to the rescue

Add an explicit deadline of 100 us to the 1 kHz tone generator task. Also assign a
deadline of 1300 us to the background load task (that is, equal to its period). The
intention is to make use of the timing-aware scheduling in the TinyTimber kernel, and
demonstrate its usefulness in an application with strict timing constraints. Give the
variable background_loop_range a default value of 1000. If implemented correctly, you
should now once again hear the clean sounding tone from Step 1.

Problem 3.a: Add a deadline control that allows you to enable and dis-
able the deadlines of both tasks simultaneously. Control the deadline en-
able/disable function with suitable keys on the keyboard.

Problem 3.b: With deadlines enabled for the two tasks, and the tone gen-
erator producing a 1 kHz tone, use the load control keys to increase the value
of variable background_loop_range from 1000 to 8000. What happens with
the generated tone as you change the background load?

A ISWT S oo

Problem 3.c: With deadlines enabled for the two tasks, and the tone gener-
ator producing a 1 kHz tone, increase the background load beyond the range
used in Problem 3.b until you hear a pitch drop effect where the tone generator
starts producing a tone with a lower frequency. What is the value of variable
background_loop_range when the pitch drop effect begins to be noticeable?

Assistant’s approval: ...

Step 4: What’s the time?

You should now measure the worst-case execution time (WCET) of the program code
in the tone generator task and the background task, respectively. The execution time
of a task may vary from one execution to another (for example, due to the variation in
hardware or software behavior). Therefore, you should measure the WCET of a task by
running it 500 times, and then derive the mazimum WCET as well as the average WCET
based on data that you collect during these executions. To get as accurate estimates of the
WCET as possible, do not include any ASYNC/AFTER/SEND calls in the measurement.

Problem 4.a: Measure the WCET of the background task by running it
in isolation, that is, without running the tone generator task. The variable
background_loop_range should have the value that you identified in Problem
3.c for the pitch drop effect. Perform the measurement by running the task
a large number of times, as described above. What are the values for the
maximum WCET and average WCET, respectively?

Problem 4.b: Measure the WCET of the background task by running it
in isolation, that is, without running the tone generator task. The variable
background_loop_range should have a value of 1000. Perform the measure-
ment by running the task a large number of times, as described above. What
are the values for the maximum WCET and average WCET, respectively?

Problem 4.c: Measure the WCET of the tone generator task by running it
in isolation, that is, without running the background task. Perform the mea-
surement by running the task a large number of times, as described above.
What are the values for the maximum WCET and average WCET, respec-
tively?

Assistant’s approval:ccooooooiiiiiinnn.

That’s it for Part 1.
Have fun with Part 2!

