EDA223/DIT162 Real-Time Systems January 16, 2019
Laboratory Assignment — Part 0

Objective: The purpose of Part 0 of the lab is to get you familiarized with the 1/O
capabilities of the MD407 card and learn the background for Part 1 and Part 2 of the
laboratory assignment. First, you will learn how to compile a given test application using
the cross compiler for the Cortex-M4 microcontroller and upload the executable on the
target hardware (Step 1). Second, you will learn how to take input from the keyboard
of your workstation to the application hosted on the target microcontroller via the USB
serial port of the MD407 card and how to generate output to the console program on
your workstation (Step 2). Third, you will learn how to compute the periods of the task
that generates the waveform for the tones of the Brother John tune, and decide on the
data structures that you need for Part 2 of the laboratory assignment (Step 3). Finally,
you will get acquainted with some general guidelines and hints that will help you to get
through Part 1 and Part 2 of the laboratory assignment without unnecessary problems.

Approval: When you see the text “Assistant’s approval: ” below a problem
description you should show your solutions to the laboratory assistant. If the solutions
are found to be satisfactory the laboratory assistant will sign your lab-PM, and you can
continue with the next problem. When all problems in Part 0 have been approved the
assistant will mark the corresponding examination objectives as "Passed’ in Canvas.

Step 0: Rules of Conduct

Read the 'Rules of Conduct’ document and sign it to indicate that you are aware of its
contents. Then hand in the signed document to the course examiner.

Step 1: Hello, hello...

Open the CodeLite-TinyTimber quickstart tutorial which is available under the
Resources page in Canvas. Follow the guidelines given in the tutorial to compile and
upload the test application on the target hardware. If you run the test application
successfully, you will see an output similar to the following on the console:

TinyTimber v2.06 (2018-02-05)

Hello, hello...

Step 2: I/0 Using the serial port

During this step, you will practice input and output using the serial port to read data
from the workstation keyboard and generate output on the console. You will work with
the code in the application.c file.

Locate the reader method in the application.c file. Whenever you press a key
on the keyboard, the sci_interrupt method (an interrupt handler) located in the
sciTinyTimber.c file is invoked and the entered character is read from the serial port.
This interrupt handler then invokes the reader method and provides to it the character
read as a parameter. In summary, the reader method is executed whenever you press
a key on the keyboard. It also prints the character to the console. For example, if you
type character ‘R’, you will see Rcv: ‘R’ printed on the console.

Only one character can be read at a time from the serial port. Now you will learn how
to take integer input. In order to read an integer, we have to type each character that
constitutes the integer. In addition, you also need to type a special delimiter character,
for example, ‘e’ to specify the end of the integer input. For example, reading integer -53
from the keyboard requires you to type ‘-’ (the sign), ‘5’ (the first digit), ‘3’ (the second
digit), and finally, ‘e’ (the delimiter).

Since the reader method is called each time a character is typed, we have to store all
the previous characters of the integer number being typed in the keyboard before reading
the next character. Therefore, in order to store every character that is entered until the
delimiter is hit, you need to declare a string, that is, a character array of a fixed size.
Every time a character is hit, it is compared with the delimiter (’e’). If the character
typed is the delimiter, then you need to store the null character ‘\0’ in the string to
specify the end of the input integer!. Now the string can be converted to its integer
representation using the atoi function. An example declaration of a fixed-size string and
use of the atoi function is the following:

int num;

char buf[20];

buf [0]="-";

buf [1]="5";

buf [2]="3";

buf [3]="\0";

num = atoi(buf); //variable num is equal to integer -53

Now you will learn how to output to the console. You can only print a charac-
ter or a string in the console using the TinyTimber’s build-in macros SCI_WRITECHAR
or SCI_WRITE, respectively. Locate at least one use of SCI_WRITECHAR and one use of
SCI_WRITE macro in the application.c file. In order to write the value of an integer
variable in console, you first have to convert the integer into a string, and then print that
string using SCI_WRITE. For the conversion, the snprintf function can be used.

Problem 2.a: Read integer —106 from keyboard and store it in an integer
variable called myNum. Add 13 to myNum and print the result to the console.
Repeat the calculation by reading some other integers from the keyboard.

Assistant’s approval: ...

'Make sure that the character array is large enough to store any number you could possible use,
including an initial ‘-’ and the trailing ‘\0’. Unintended writes of data outside the limits of a character
array can cause many hard-to-solve problems in your software!

Problem 2.b: Implement a function that continuously reads a series of in-
teger numbers. Print the running sum each time a new number is entered.
Typing 'F’ should reset the running sum. An example output produced when
entering numbers 13, -7, and 20 looks like this:

Rcv: ’1°
Rcv: ’3°
Rcv: ’e’

The entered number is 13
The running sum is 13

Rcv: -’
Rcv: ’7°
Rcv: ‘e’

The entered number is -7
The running sum is 6

Rcv: °2°
Rcv: ’0°
Rcv: ’e’

The entered number is 20
The running sum is 26
Rev: ’F’

The running sum is O

Note that the running sum and the character array are state variables, i.e.
their values need to be stored between each call to the reader method. You
should therefore place the running sum and the character array (and any other
variable relating to the array) inside a suitable object.

Assistant’s approval:cccoooooiinnn.

Step 3: Preliminaries for Part 1 and Part 2

You have already listened to the Brother John tune in your first exercise class. A tune
is a sequence of several tones. Brother John has 32 tones. The Brother John tune is
generated by playing its tones one by one: the first tone is played, then the second tone is
played, etc. After the 327¢ tone finishes, the sequence of tones is repeated starting from
the first tone. In others words, the Brother John tune is a cyclic sequence of 32 tones.

You need to implement program code to generate one particular tone in Part 1
of the laboratory assignment. Before that, in this part, you will learn the background
regarding how to generate a tone, particularly, how to compute the period of the task
that produces the waveform of the tone. A particular tone is generated by periodically
writing alternating '1’s and '0’s to the DAC (digital-to-analog converter) of the MD407
card. In other words, a tone-generating task periodically writes the digits of the following
sequence to the DAC:

17 07 17 07 1, 07

The time between two consecutive writes is the period of the tone-generating task. The
period of the task is computed from the frequency of the tone. If the required frequency
of the tone is f Hz, then the corresponding period of the task must be % sec.

Problem 3.a: Consider that alternating '1’s and ’0’s are written to the DAC
so that a tone of frequency 200 Hz is produced. The period of the tone-
generating task is equal to one of the following. Tick the correct one. [Hint:
1 sec = 10% ms =106ps|

Answer: (a) 5000 ps (b) 2500 us (c) 2000 ps

Problem 3.b: Consider that the DAC is written with alternating '1’s and
'0’s so that a tone of frequency 1 kHz is produced. Find the period of the
tone-generating task.

Answer: ... s

Assistant’s approval: ...l

At this point, you know how to compute the period of the tone-generating task for a given
frequency. Therefore, if the frequency for each of the 32 tones of the Brother John tune
is known, you can compute the corresponding task period for each of the frequencies.
For practical reasons, Part 2 of the laboratory assignment refers to a frequency index,
rather than the frequency itself, for each of the 32 tones. A frequency index ¢ is an integer,
e.g., 1 = —3. For a given frequency index 7, the corresponding frequency is denoted by p(7).
Now you will learn how to compute the frequency corresponding to any given frequency
index.

The frequency index 7 = 0 is called the base frequency index. The frequency for the base
index is called the base frequency, which in our case is p(0) = 440 Hz (see footnote?).

Problem 3.c: Consider that the DAC is written with alternating ’1’s and
'0’s so that a tone with base frequency p(0) is produced. Find the period of
the tone-generating task.

Answer: s

Assistant’s approval: ...

Given the base frequency p(0), frequencies for other indices can be computed based on
one of the various temperament standards used for musical instruments. In Part 2 of the
laboratory assignment, one such standard called equal-tempered 12-tone scale is used.

According to this standard, the ratio of 2 %)1) always equals the twelfth root of 2. In

2This is the frequency of the musical note A, which is a commonly-used audio frequency reference
for calibration of acoustic equipment and tuning of musical instruments.

other words, given any two consecutive frequency indices i and (i + 1), the frequencies
p(7) and p(i + 1) are related as follows:

p(i+1)
p(i)

Simple arithmetic shows that the frequency p(k) and p(i) for frequency indices k and ¢
are related as follows:

_p(i+1) _p(i+2) _pk-1) _ p(k) _
p(i) pG+1) " p(k-2) p(k-1)

1
2

=2

-

1
=212

which yields
p(k) _ e

— =2 12i
p(1)

Problem 3.d: Given that p(0) =440 Hz, the frequency p(k) for index k can
be computed using Equation (1). Complete the following statement:

p(k) = 440 x (2)

Problem 3.e: As mentioned before the period of the tone-generating task
must be % sec in order to produce a tone of frequency f Hz. What should
the period of the tone-generating task be when (a) the frequency index is -7,

and (b) the frequency index is 97

Answer: (a)co....... s (b) o s

Assistant’s approval:cccoooooiiinnn.

Now you know how to compute the period of the tone-generating task that corresponds
to a given frequency index k, assuming base frequency p(0). Since the base frequency
p(0) = 440 Hz is known, we can compute the task periods corresponding to the tones in
any given tune if all frequency indices for the tones are available. The Brother John tune
consists of the following 32 tones expressed in the form of frequency indices:

0240024045745 77975407975400-500-50

Table 1: The 32 frequency indices for the Brother John tune

Problem 3.f: Add an integer array of length 32 to your application code and
copy into it the 32 frequency indices for the Brother John tune, in the order
given by Table 1.

Problem 3.g: Inspect the 32 frequency indices given in Table 1 and find the
maximum and minimum frequency indices.

Answer: Maximum 1S Minimum isceeeneen.

Assistant’s approval: ...,

The magnitude (value) of all the frequency indices in Table 1 can be increased or decreased
using a transpose parameter called key. The value of key can be in range [-5...5]. The
frequency indices in Table 1 are for key = 0 (that is, the Brother John tune as played in
the key of A). The value of key is added to each of the 32 frequency indices in Table 1,
thereby producing new frequency indices for the given key. For example, if key = -2
(transposing the tune to the key of G), then an offset of -2 is added to each of the 32
frequency indices given in Table 1 and a new set of frequencies will be used when playing
the tune.

Problem 3.h: What are the first 10 frequency indices of the Brother John
tune for key = —-57?

Problem 3.i: Inspect the 32 frequency indices given for key = 0. If the key
can be within the range of [-5...5], what is the maximum and minimum
frequency index of the Brother John tune for any given key?

Answer: Maximum 1S Minimum 1Sccoveenne..

Assistant’s approval:cccooooooiiinnn.

Let max_index and min_index be the maximum and minimum indices, respectively, ob-
tained in the solution of Problem 3.i.

Problem 3.j: Pre-compute the periods of the tone-generation task corre-
sponding to all frequency indices in the range | min_index ...max_index |.
If a computed period is not an integer number, use only the integer part of
the result. There is no need to involve floating-point arithmetic at run-time
as the effects of using only integer values will not be perceived by the human
ear. Add another integer array, named period, of appropriate length to your
application code and copy the pre-computed periods into the array.

[Hint: It is recommended that you use a tool to do the manual computation
of periods, for example, you can use a spreadsheet program like Excel, a
programming language like Python, or even MATLAB.]

Note that the indices for the new array differ from the frequency indices. For
example, array element period[0] refers to frequency index Therefore,
when the frequency index is £ (where min_index < f < max_index), the array
element period[......] needs to be accessed (find the answer in terms of f).

Assistant’s approval: ...,

You stored frequency indices of Brother John tune in an array based on Table 1, and now
also have an array of all required periods for the tone-generating task.

Problem 3.k: Add a function to your application code that prints the periods
corresponding to all 32 frequency indices of the Brother John tune for key=0.

Assistant’s approval:cccoooooiiiiinnnn.

Problem 3.1: Add a function to your application code that takes the key as
input from the keyboard (in the form of an integer number) and prints the
periods corresponding to the 32 frequency indices of the Brother John tune
for the input key.

Assistant’s approval: ...l

That’s it for Part 0.
Good luck with Part 1 and Part 2!

