UNIVERSITY OF GOTHENBURG

Real-Time Systems

Lecture #9

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology



CHALMERS |

{8 ) UNIVERSITY OF GOTHENBURG

Real-Time Systems

» Scheduling

* Optimality

* Feasibility tests

» Computational complexity




CHALMERS |

(&%) UNIVERSITY OF GOTHENBURG

Scheduling

A schedule is a reservation of spatial (e.g., processor,

shared objects) and temporal (time) resources for a
given set of tasks.

processor

v

Shicet B B

v



CHALMERS |

(&%) UNIVERSITY OF GOTHENBURG

Scheduling

A scheduling algorithm is used for generating a

schedule for a given set of tasks for a particular
type of run-time system.

e The scheduling algorithm is implemented by a scheduler
In the run-time system, that decides in what order the
tasks should be executed.

e Note that the scheduler decides which task should be
executed next, whereas the dispatcher is responsible
for starting the selected task.




CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Scheduling

How is scheduling implemented?

e Cyclic executive:

— The schedule is generated "off-line” before the tasks becomes
ready, sometimes even before the system is in mission.

— The schedule consists of a time table, containing explicit start

and completion times for each task instance, that controls the
order of execution at run-time.

e Pseudo-parallel execution:

— The schedule is generated "on-line” as a side effect of tasks
being executed, that is, when the system is in mission.

— Ready tasks are sorted in a queue and receive access to the
processor based on priority and/or time quanta ("round-robin”).




CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Scheduling

How is scheduling implemented? (cont'd)

e Cyclic executive:

— The implementation of the scheduler is relatively simple
because the next task is chosen with a table look-up.

— However, the time table must be generated off-line (before
the system is in mission) by a more advanced algorithm.

e Pseudo-parallel execution:

— The implementation of the scheduler is more sophisticated
because it consists of a decision algorithm that must be
activated regularly (at each system event).

— If shared resources are used the scheduler must also handle
protocols for avoiding priority/deadline inversion.



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Scheduling

When are scheduling decisions taken?

e Non-preemptive scheduling:

— Scheduling decisions are taken when no task executes.
— Mutual exclusion can be automatically guaranteed.
— Corresponds to fundamental assumption in WCET analysis.

e Preemptive scheduling:
— Scheduling decisions may be taken as soon as the system
state changes (that is, even during an ongoing task execution).
— Mutual exclusion may have to be guaranteed with semaphores
(or similar primitives).
— WCET analysis becomes more complicated, because the state
In caches and pipelines will change at a task switch.



(8% ) UNIVERSITY OF GOTHENBURG

CHALMERS |

Scheduling

When are scheduling decisions taken? (cont'd)

e Myopic scheduling:
— Scheduling algorithm only knows about tasks that are ready.
— Scheduling decisions are only taken when system state changes.
— On-line myopic scheduling is state-of-the-art in run-time systems.

e Clairvoyant scheduling:
— Scheduling algorithm "knows the future”; that is, it knows in
advance all the arrival times of all the tasks.

— Scheduling decisions may be taken at any time, not necessarily
when system state changes.

— On-line clairvoyant scheduling is very difficult (often impossible)
to realize in practice.



CHALMERS | ({8Y%)) UNIVERSITY OF GOTHENBURG

Scheduling

A schedule is said to be feasible if it fulfills all application
constraints for a given set of tasks.

A set of tasks is said to be schedulable if there exists at

least one scheduling algorithm that can generate a
feasible schedule.




CHALMERS | ({8Y%)) UNIVERSITY OF GOTHENBURG

Scheduling

A scheduling algorithm is said to be optimal with respect

that maximizes/minimizes that metric value.




CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Feasibility tests

A feasibility test is used for deciding whether a set of
tasks is feasible or not for a given scheduler.

Important characteristics of feasibility tests:
e Exactness

— What conclusions can be drawn regarding feasibility based
on the outcome of the test?

o Computational complexity

— How long time does it take for the test to produce an outcome
with a decision regarding feasibility?



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Feasibility tests

Exactness of a feasibility test

e The outcome of a feasibility test is binary:
— Positive or Negative
— True or False
— Yes or No

e The conclusions that can be drawn depends on
whether the test is:

— Sufficient

— Necessary
— Exact



CHALMERS |

UNIVERSITY OF GOTHENBURG

Feasibility tests

o A feasibility test is sufficient if it with a positive outcome
shows that a set of tasks is definitely schedulable.

— A negative outcome says nothing! A set of tasks can still be
schedulable despite a negative outcome.

Schedulable

Not schedulable




CHALMERS |

UNIVERSITY OF GOTHENBURG

Feasibility tests

o A feasibility test is necessary if it with a negative outcome
shows that a set of tasks is definitely not schedulable.

— A positive outcome says nothing! A set of tasks can still be
Impossible to schedule despite a positive outcome.

Schedulable

Task set positive test

Not schedulable



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Feasibility tests

e An exact feasibility test is both sufficient and necessary.
If the outcome of the test is positive the set of tasks is
definitely schedulable, and if the outcome is negative
the set of tasks is definitely not schedulable.

Schedulable

Not schedulable




CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Feasibility tests

Computational complexity of a feasibility test:

e For some schedulers the feasibility test can be done with
polynomial time complexity.
— These feasibility tests typically have relaxed assumptions

regarding the task model, for example: independent tasks
(with no shared resources) or tasks with deadline = period.

e For most schedulers the feasibility test cannot be done
with polynomial time complexity.
— These feasibility tests are either NP-complete problems or

have exponential time complexity because all possible
schedules must be considered in the worst case.




CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Feasibility tests

What types of feasibility tests exist?

e Hyper period analysis
— In an existing schedule no task execution may miss its deadline

e Processor utilization analysis
— The fraction of processor time that is used for executing the
task set must not exceed a given bound
e Response time analysis
— The worst-case response time for each task must not exceed
the deadline of the task
e Processor demand analysis

— The accumulated computation demand for the task set under
a given time interval must not exceed the length of the interval



CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Feasibility tests

What types of feasibility tests exist?

e Hyper period analysis (exponential time complexity)
— In an existing schedule no task execution may miss its deadline

e Processor utilization analysis (polynomial time complexity)

— The fraction of processor time that is used for executing the
task set must not exceed a given bound

e Response time analysis (NP-complete problem)

— The worst-case response time for each task must not exceed
the deadline of the task

e Processor demand analysis (NP-complete problem)

— The accumulated computation demand for the task set under
a given time interval must not exceed the length of the interval



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Why NP-completeness matters

Assume that your boss gives you the following problem:

Find a good algorithm (method) for determining whether
or not any given set of specifications for your company’s
new bandersnatch component can be met and, if so, find
a good algorithm for constructing a design that meets
those specifications.

“A Guide to the Theory of NP-Completeness”
by M. R. Garey and D. S. Johnson

P
a, ‘
%i
j&%@ The bandersnatch example is taken from
<>



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Why NP-completeness matters

Initial attempt:

Pull down your reference books and plunge into the task
with great enthusiasm.

Some weeks later ...

Your office is filled with crumpled-up scratch paper, and
your enthusiasm has lessened considerable because ...

... the solution seems to be to examine all possible designs!

You now have a new problem:
How do you convey the bad information to your boss?



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Why NP-completeness matters

Approach #1: Take the loser’s way out

%

“I can’t find an efficient algorithm, I guess I’m just too dumb.”

Drawback: Could seriously damage your position within the company



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Why NP-completeness matters

Approach #2: Prove that the problem is inherently intractable

I can’t find an efficient algorithm, because no such algorithm is possible!”’

Drawback: Proving inherent intractability can be as hard as finding
efficient algorithms. Even the best theoreticians have failed!



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Why NP-completeness matters

Approach #3: Prove that the problem is NP-complete
L L L

““I can’t find an efficient algorithm, but neither can all these famous people.”

Advantage: This would inform your boss that it is no good to fire you
and hire another expert on algorithms.



CHALMERS |

(&%) UNIVERSITY OF GOTHENBURG

NP-complete problems

NP-complete problems:
Problems that are “just as hard” as a large number of
other problems that are widely recognized as being
difficult by algorithmic experts.

NP-complete problems can (most likely)
only be solved by an exponential-time
algorithm in the general case.




(8% ) UNIVERSITY OF GOTHENBURG

CHALMERS |

NP-complete problems

Problem:

o A general question to be answered
Example: The “traveling salesman optimization problem”

Parameters:

e Free problem variables, whose values are left unspecified
Example: A set of “cities” C ={c,,...,c,} and a “distance” d(ci,cj)
between each pair of cities ¢, and c,

Instance:
e An instance of a problem is obtained by specifying
particular values for all the problem parameters

Example: C= {01,02,03,04},d(cl,cz) = lO,d(cl,c3) =5,d(cl,c4) =0,
d(cz,c3) = 6,d(cz,c4) = 9,d(c3,c4) =3



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

NP-complete problems

The Traveling Salesman Optimization Problem:

Minimum “tour” length = 27

Minimize the length of the “tour” that visits each city in
sequence, and then returns to the first city.



ST

CHALMERS | {&)) UNIVERSITY OF GOTHENBURG

7

Est

NP-complete problems

The theory of NP-completeness applies only to decision problems,
where the solution is either a “Yes” or a “No”.

1

If an optimization problem asks for a solution that has minimum
“cost”, we can associate with that problem a decision problem that
includes a numerical bound B as an additional parameter and that

asks whether there exists a solution having cost no more than 5.




CHALMERS | &%) UNIVERSITY OF GOTHENBURG

NP-complete problems

The Traveling Salesman Decision Problem:

Is there a “tour” of all the cities in C having a total
length of no more than B?



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Intractability

Input length:
e The number of information symbols (e.g. bits
-

) ==
needed for representing a problem instance % !

of a given size.

Time-complexity function:

e EXxpresses an algorithm’s worst-case run-time

requirements giving, for each possible input °
length, the largest amount of time needed

by the algorithm to solve a problem instance
of that size.




CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Intractability

Polynomial-time algorithm:

e An algorithm whose time-complexity function is proportional
to p(n) for some polynomial function p, where 7 is the input
length.

Exponential-time algorithm:

e Any algorithm whose time-complexity function cannot be
bounded as above.

A problem is said to be intractable if it is so hard that no

polynomial-time algorithm can possibly solve it.




CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Class P

Alan Turing

Deterministic algorithm:

e Finite-state control:

— The algorithm can pursue only one computation at a time

— Given a problem instance I, some solution S
IS derived by the algorithm

— The correctness of S is inherent in the algorithm

The class P is the class of all decision problems I1
that can be solved by polynomial-time
deterministic algorithms.




CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Class NP

Non-deterministic algorithm:

1. Guessing stage:
— Given a problem instance I, some solution S is “guessed”.

— The algorithm can pursue an unbounded number of
Independent computational sequences in parallel.

2. Checking stage:

— The correctness of S is verified in a normal deterministic manner

The class NP is the class of all decision problems I1
that can be solved by polynomial-time
non-deterministic algorithms.




CHALMERS |

(&%) UNIVERSITY OF GOTHENBURG

NP-complete problems

Reducibility:

e A problem IT' is reducible to problem II if, for any
instance of IT’, an instance of I1 can be constructed in
polynomial time such that solving the instance of 11 will
solve the instance of IT" as well.

A decision problem IT is said to be NP-complete

if I € NP and, for all other decision problems
IT € NP, IT reduces to IT in polynomial time .




CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Some original NP-complete problems

SATISFIABILITY

7 I I

3-DIMENSIONAL VERTEX COVER HAMILTONIAN
MATCHING CIRCUIT
3-SATISFIABILITY CLIQUE PARTITION
KNAPSACK 3-PARTITION ANNIHILATION CLUSTERING
MINIMUM COVER LONGEST PATH BIN PACKING MAX CUT
INTEGER DEADLOCK JOB-SHOP REGISTER
PROGRAMMING AVOIDANCE SCHEDULING SUFFICIENCY
MULTIPROCESSOR TRAVELING GRAPH PREEMPTIVE

SCHEDULING SALESMAN COLORABILITY SCHEDULING



(8% UNIVERSITY OF GOTHENBURG

CHALMERS |

NP-completeness in practice

Pseudo-polynomial time complexity:

e Number problems
— This is a special type of NP-complete problems for which
the largest number (parameter value) in a problem instance
is not bounded by the input length (size) of the problem.

e Number problems are often quite tractable
— If the time complexity of a number problem can be shown to
be a polynomial-time function of both the input length and
the largest number, that number problem is said to have
pseudo-polynomial time complexity.

That is, the time-complexity function is proportional to p(max,n) for
some polynomial function p, where max is the largest number and

n is the input length.




CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Feasibility tests

What types of feasibility tests exist? (revisited)

e Hyper period analysis (exponential time complexity)
— In an existing schedule no task execution may miss its deadline

e Processor utilization analysis (polynomial time complexity)

— The fraction of processor time that is used for executing the
task set must not exceed a given bound

e Response time analysis (pseudo-polynomial complexity)

— The worst-case response time for each task must not exceed
the deadline of the task

e Processor demand analysis (pseudo-polynomial complexity)

— The accumulated computation demand for the task set under
a given time interval must not exceed the length of the interval



