(®%)) UNIVERSITY OF GOTHENBURG

Real-Time Systems

Lecture #8

Dr Risat Pathan

Department of Computer Science and Engineering
Chalmers University of Technology

CHALMERS |

48%)) UNIVERSITY OF GOTHENBURG

Real-Time Systems

* Network communication

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Network communication

Embedded systems in the aircraft and automotive domain
require support for real-time network communication

250kbit
125kbit
25Mbit

CAN High Speed
CAN Low Speed

MOST

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG
UNIVERSITY OF TECHNOLOGY N6

Network communication

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Network communication

message delay

>
< »

v

A o
’’

v

netwo rk - P

6 |

\ 4

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Network communication

Message delay:

e Message delays are caused by the following overheads:
— Formatting (packetizing) the message
— Queuing the message, while waiting for access to medium
— Transmitting the message on the medium
— Notifying the receiver of message arrival
— Deformatting (depacketizing) the message

Formatting/deformatting overheads are typically included in
the execution time of the sending/receiving task.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Network communication

Queuing delay:
e The cause of the queuing delay for a message depends
on the actual network used. For example:
— Waiting for a corresponding time slot
— Waiting for a transmission token
— Waiting for a contention-free transmission
— Waiting for network priority negotiation
— Waiting for removal from priority queue

To be used in a real-time system with hard timing constraints
the queuing delay must be bounded.

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Network communication

Transmission delay:
e The delay for transmitting the message is the sum of:

a frame delay

. _ Nframe
— message length (bits) lirame = R
— data rate (bits/s)

and a propagation delay

— communication distance (m) { S
— signal propagation velocity (m/s)

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Network communication

How is the message transfer synchronized between
communicating tasks?

e Asynchronous communication:

— Sending and reception of messages are performed as
independent operations at run-time.

e Synchronous communication:

— Sending and receiving tasks synchronize their network
medium access at run-time.

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Network communication

Asynchronous communication

e Implementation:
— Network controller chip administrates message transmission
and reception (example: CAN, Ethernet)
— Interrupt handler notifies the receiver

e Release jitter:

— Queuing delays at sender and notification delay at receiver
cause variations in message arrival time

— Arrival-time variations gives rise to release jitter at receiving
task (which may negatively affect schedulability)

— Release jitter is minimized by adding offsets to receiving tasks

CHALMERS |

UNIVERSITY OF GOTHENBURG

Network communication

Asynchronous communication: queuing delay

transmission delay

notification delay

1 | -
/ >
e /
,,,,,,,,,,,,,,,,,,,,,,,,,
network i -
-
7, R
B
dl |
- Lad

release jitter

CHALMERS |

UNIVERSITY OF GOTHENBURG

Network communication

Asynchronous communication: queuing delay

transmission delay

notification delay

1 | -
/ >

e /

,,,,,,,,,,,,,,,,,,,,,,,,,

network i -
-
7, R
B

release jitter = 0

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Network communication

Synchronous communication

e Implementation:

— Network controller chip makes sure message transmission
and reception occurs within a dedicated time slot in a TDMA
bus network (example: FlexRay)

— Off-line static (time-table) scheduling is used for matching
the time slot with the execution of sending and receiving tasks

— Queuing and notification delays can be kept to a minimum by
instructing the off-line scheduling algorithm to use jitter
minimization as the scheduling objective

CHALMERS |

UNIVERSITY OF GOTHENBURG

Network communication

Synchronous communication:

A

dedicated time slot

fffffffffffffffffffffffff
aaaaaaaaaaaaaaaaaaaaaaaaa

)
’’

v

v

2

\ 4

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Network communication

How is the message transferred onto the medium?

e Contention-free communication:

— Senders need not contend for medium access at run-time
— Examples: TTCAN, FlexRay, Switched Ethernet

e Token-based communication:

— Each sender using the medium gets one chance to send its
messages, based on a predetermined order

— Examples: Token Ring, FDDI

e Collision-based communication:
— Senders may have to contend for the medium at run-time
— Examples: Ethernet, CAN

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Network communication

Contention-free communication:

e One or more dedicated time slots for each task/processor

— Shared communication bus

— Medium access is divided into communication cycles (normally
related to least-common-multiple of task periods)

— Dedicated time slots provide bounded queuing delays
— TTCAN ("exclusive mode"), FlexRay ("static segment")

e One sender only for each communication line

— Point-to-point communication networks with link switches

— Output and input buffers with deterministic queuing policies in
switches provide bounded queuing delays

— Switched Ethernet

CHALMERS |

UNIVERSITY OF GOTHENBURG

The TTCAN protocol

— Widely used in today’s automotive systems
— Based on the CAN protocol
— Bus topology
— Maedia: twisted pair
1Mbit/s

A second controller is |
required to implement the

redundant bus

CHALMERS | {®%)) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

The TTCAN protocol

- "Exclusive” — guaranteed service
I "Arbitration” - guaranteed service (high ID), best effort (low ID)
"Reserved” - for future expansion...

Transmission

Columns
Basic cycle
0

Basic cycle
1

Basic cycle
2

Basic cycle

3

A 4

CHALMERS |

UNIVERSITY OF GOTHENBURG

The FlexRay protocol

— For next-generation automotive systems

— Double channels, bus or star (even mixed).
— Media: twisted pair, fibre

— 10 Mbit/s for each channel

Redundant channel can be
used for an alternative
schedule

CHALMERS | &) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

The FlexRay protocol

"Static segment” (compare w/ TTCAN "Exclusive”)
— guaranteed service

- "Dynamic segment” (compare w/ TTCAN "Arbitration”)
— guaranteed service (high ID), “best effort” (low ID)

63 [| | |
62 [| | |

: : o

: Guaranteed periodical : Guaranteed periodical/ | "Best-effort” < %

: : aperiodical aperiodical ?, o)

o | ~

= |2

a ®

=

sl | || s |3

®
2 _______
1 _______
0 _______

Static segment Dynamic segment
(m slots) (n mini-slots)

Max 64 nodes on a Flexray network.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Network communication

Token-based communication:

o Utilize a token for the arbitration of message transmissions
on a shared medium

— The sender is only allowed to transmit its messages when it
possesses the token

— Message priorities can provide bounded queuing delays

e Examples:

— Token Ring
— FDDI

CHALMERS |

(8%) UNIVERSITY OF GOTHENBURG

Token-based communication

Token Ring:

M,

My

constantly rotating token

My

—
e

My

—

Single rotating ring, twisted pair, 4 Mbit/s

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Token-based communication

Fiber Distributed Data Interface:

multiple rotating tokens

My

N S

Dual counter-rotating rings, optical fibre, 100 Mbit/s

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Network communication

Collision-based communication:

o Utilize collision-detect mechanism to determine validity of
message transmissions on a shared medium

— The sender tries to send messages independently of other
senders’ intention to do so

— Attempts may be done at any time or when some specific
network state occurs

e Examples:

— Ethernet w/ multiple senders
— CAN

UNIVERSITY OF GOTHENBURG

"'5'
CHALMERS | {
g
8
N
UNIVERSITY OF TECHNOLOGY

Collision-based communication

Ethernet protocols w/ multiple senders:

e Senders attempt to send a complete message
e If messages collide, all transmissions are aborted
e After collision, re-transmission is made after a random delay

Message queuing delay can in general not be bounded!

Therefore, these protocols do not give any guarantees for
meeting imposed message deadlines!

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Collision-based communication

Controller Area Network (CAN):

M, My

collision-detect broadcast bus

M, My

Broadcast serial bus, dual wire (resistor terminated), 1 Mbit/s

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Collision-based communication

Controller Area Network (CAN):

e Senders transmit a message header (with an identifier)

e |If messages collide, a hardware-supported protocol is used
to determine what sender will be allowed to send the rest of

the message; transmissions by other senders are aborted

Message queuing delay can be bounded with appropriate
identifier assignment!

Therefore, this protocol makes it possible to meet imposed
message deadlines!

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

The CAN protocol

CAN message frame format:

0] 0 data length

4 bits
SOF message control 0 - 8 bytes of data (payload) error check || ack|| EOF
identifier
1 bit 11 bits 6 bits 0 - 64 bits 15 bits 1bit 7 bits

Message identifier can be used for several purposes:
e enable receiver to filter messages (original purpose)
e assign a priority to the message (low number = high priority)

CHALMERS | &) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

The CAN protocol

CAN message frame format:

Start-of-

frame bit RTR bit Delimiter bits
Recessive tl -
Dominant L e
4—p + -4 -4 » -+
Message Data field (0 - 8 bytes) End-of-
Identifier T frame field
(11 bits) control CRC- (7 bits) |ntermission
field Sequence ACK field
Ar' bitra tionl (6 bits) (15 bits) slot (3 bits)
field
CRC
field [Acknowledgomen(
field (2 bits)
* Bit stuffing »

Y

CAN data frame

-

CHALMERS |

(8%) UNIVERSITY OF GOTHENBURG

The CAN protocol

CAN protocol:
Wired-AND:

Each node monitors the bus while transmitting.

If multiple nodes are transmitting simultaneously

and one node transmits a ’0’,

then all nodes will see a’0’.

If all nodes transmit a ’1’,
then all nodes will see a’1’.

Logik

+5V

R

Gate 1

Gate 2

Gaten

Bus

+5V

CHALMERS | §
u
)
N
UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

The CAN protocol

CAN protocol:

1.
2.

Each node with a pending message waits until bus is idle.

The node begins transmitting the highest-priority message
pending on the node. Identifier is transmitted first, in the order
of most-significant bit to least-significant bit.

. If a node transmits a recessive bit ('1’) but sees a dominant

bit ('0’) on the bus, then it stops transmitting since it is not
transmitting the highest-priority message in the system.

. The node that transmits the last bit of its identifier without

detecting a bus inconsistency has the highest priority and
can start transmitting the rest of the message frame.

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

The CAN protocol

CAN protocol:

Start-of-
framle bit RTII bit
i Control I
Identifier Field Data Field
M9 876543210
Node 1 | | | | | |
Node 2 | |
Node 3 L L T LT I
Bus Level | LT LTl |

Arbitration Phase

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Interrupt handlers in TinyTimber

Example: implementing a CAN interrupt handler:

1. Define class can, and add state variables for:

* the hardware base address of the device

e call-back information for a method if data received by the
handler needs to be taken care of by the user-level code (the
call back should be done using an async () call)

* necessary local storage (buffers, queues, etc)

2. Define a symbol caN PORTO representing the hardware
base address of the device.

#define CAN PORTO device hardware address

3. Create an object can0 of class Can, and initialize it with:

* the hardware base address CAN PORTO
* any possible call-back information

CHALMERS |

UNIVERSITY OF GOTHENBURG

Interrupt handlers in TinyTimber

Example: implementing a CAN interrupt handler (cont'd):

In file ‘application.c’:

App app = { 1nitObject(), 0, 'X' };
vold receiver (App*, 1int);
Can canO = initCan (CAN PORTO, &app, receiver);

void receiver (App *self, int unused) ({ // call-back function
CANMsg msg;
CAN RECEIVE (&can0O, &msqg);
SCI:WRITE(&sciO, "Can msg received: ");
SCI WRITE (&sci0O, msg.buff);

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Interrupt handlers in TinyTimber

Example: implementing a CAN interrupt handler (cont’'d):

4. Write an interrupt handler as a method can interrupt
and associate it with the object.

5. Declare a symbol caNn 1rRQ0 and assign to it the TinyTimber
kernel’s logical number of the hardware interrupt:
#define CAN IRQO interrupt logical number

6. Inform the TinyTimber kernel that the method is a handler
for interrupt can TrRQO, by making a call to

INSTALL (&canO, can interrupt, CAN IRQO);

This should be done before the call to TINYTIMBER ()

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Interrupt handlers in TinyTimber

Example: implementing a CAN interrupt handler (cont’'d):

7. Provide an operation can INIT () that takes care of
performing any remaining initialization of the device.

8. Call can INIT () in the “kick-off” method that was supplied
as argument to the TINYTIMBER () call.

CHALMERS |

UNIVERSITY OF GOTHENBURG

Interrupt handlers in TinyTimber

Example: implementing a CAN interrupt handler (cont'd):

In file ‘application.c’:

vold startApp (App *self, int arg) {
CANMsg msg;
CAN INIT (&canO) ;

CAN SEND (&can0O, &msg);
}

int main() {
INSTALL (&can0O, can interrupt, CAN IRQO);
TINYTIMBER (&app, startApp, 0);

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Interrupt handlers in TinyTimber

Example: implementing a CAN interrupt handler (cont’'d):

In file ‘canTinyTimber.h’:

typedef unsigned char uchar;

typedef struct {

uchar msgId; // Valid values: 0-127

uchar nodeId; // Valid values: 0-15
uchar length;

uchar buff[8];
} CANMsg;

CANMsqg holds the user-relevant parts of the CAN message frame.
e nodeID holds the four least-significant bits of the identifier field
e msgID holds the seven most-significant bits of the identifier field

