
Lecture #8

Dr Risat Pathan

Department of Computer Science and Engineering
Chalmers University of Technology

Real-Time Systems

Real-Time Systems

Verification

Implementation

Specification
•  Network communication

Embedded systems in the aircraft and automotive domain
require support for real-time network communication

Network communication

Hardware platform

1µ

2µ 3µ

4µ

Network communication

message

sender receiver 1τ 2τ

Network communication

message delay

T1 T2 1τ 2τ

t

t

network

t

1τ

2τ

Message delay:
•  Message delays are caused by the following overheads:

–  Formatting (packetizing) the message
–  Queuing the message, while waiting for access to medium
–  Transmitting the message on the medium
–  Notifying the receiver of message arrival
–  Deformatting (depacketizing) the message

Formatting/deformatting overheads are typically included in

the execution time of the sending/receiving task.

Network communication

Queuing delay:
•  The cause of the queuing delay for a message depends

on the actual network used. For example:
–  Waiting for a corresponding time slot (e.g., FlexRay)
–  Waiting for a transmission token (e.g., Token Ring)

–  Waiting for a contention-free transmission (e.g., Ethernet)

–  Waiting for network priority negotiation (e.g., CAN)

–  Waiting for removal from priority queue (e.g., Switched Ethernet)

Network communication

To be used in a real-time system with hard timing constraints
the queuing delay must be bounded.

Transmission delay:
•  The delay for transmitting the message is the sum of:

Network communication

Lt
v

=prop

and a propagation delay
–  communication distance (m)
–  signal propagation velocity (m/s)

Nt
R

= frame
frame

a frame delay
–  message length (bits)
–  data rate (bits/s)

How is the message transfer synchronized between
communicating tasks?

•  Asynchronous communication:
–  Sending and reception of messages are performed as

independent operations at run-time.

•  Synchronous communication:
–  Sending and receiving tasks synchronize their network

medium access at run-time.

Network communication

Asynchronous communication
•  Implementation:

–  Network controller chip administrates message transmission
and reception (example: CAN, Ethernet)

–  Interrupt handler notifies the receiver

•  Release jitter:
–  Queuing delays at sender and notification delay at receiver

cause variations in message arrival time
–  Arrival-time variations gives rise to release jitter at receiving

task (which may negatively affect schedulability)
–  Release jitter is minimized by adding offsets to receiving tasks

Network communication

Network communication

Asynchronous communication:

release jitter

queuing delay

transmission delay

notification delay

T1 T2 1τ 2τ

t

t

network

t

1τ

2τ

Network communication

Asynchronous communication:

release jitter = 0

queuing delay

transmission delay

notification delay

T1 T2 1τ 2τ

t

t

network

t

1τ

2τ

Synchronous communication
•  Implementation:

–  Network controller chip makes sure message transmission
and reception occurs within a dedicated time slot in a TDMA
bus network (example: FlexRay)

–  Off-line static (time-table) scheduling is used for matching
the time slot with the execution of sending and receiving tasks

–  Queuing and notification delays can be kept to a minimum by
instructing the off-line scheduling algorithm to use jitter
minimization as the scheduling objective

Network communication

Network communication

Synchronous communication:

T1 T2 1τ 2τ

t

t

network

t

1τ

2τ

dedicated time slot

How is the message transferred onto the medium?
•  Contention-free communication:

–  Senders need not contend for medium access at run-time
–  Examples: TTCAN, FlexRay, Switched Ethernet

•  Token-based communication:
–  Each sender using the medium gets one chance to send its

messages, based on a predetermined order
–  Examples: Token Ring, FDDI

•  Collision-based communication:
–  Senders may have to contend for the medium at run-time
–  Examples: Ethernet, CAN

Network communication

Contention-free communication:
•  One or more dedicated time slots for each task/processor

–  Shared communication bus
–  Medium access is divided into communication cycles (normally

related to least-common-multiple of task periods)
–  Dedicated time slots provide bounded queuing delays
–  TTCAN ("exclusive mode"), FlexRay ("static segment")

•  One sender only for each communication line
–  Point-to-point communication networks with link switches
–  Output and input buffers with deterministic queuing policies in

switches provide bounded queuing delays
–  Switched Ethernet

Network communication

The TTCAN protocol
–  Widely used in today’s automotive systems
–  Based on the CAN protocol
–  Bus topology
–  Media: twisted pair
–  1Mbit/s

Node 7
Node 1

Node 4

Node 3

Node 6

Node 5

Node 2

A

S

S

S

CPU/
mem/CC

Node

A second controller is
required to implement the
redundant bus

The TTCAN protocol

Basic cycle
0

Basic cycle
1

Basic cycle
2

Basic cycle
3

Transmission
Columns

t

”Exclusive” – guaranteed service

”Arbitration” – guaranteed service (high ID), best effort (low ID)

”Reserved” – for future expansion...

The FlexRay protocol

Node 1

Node 3

Node 2

Node 6

Node 5

A

B

Node 7

Node 4 Redundant channel can be
used for an alternative
schedule

A

S

S

S

CPU/
mem/CC

Node

–  For next-generation automotive systems
–  Double channels, bus or star (even mixed).
–  Media: twisted pair, fibre
–  10 Mbit/s for each channel

The FlexRay protocol

Guaranteed periodical Guaranteed periodical/
aperiodical

”Best-effort”
aperiodical

63
62

3
2
1
0

N
etw

ork Idle Tim
e

S
ym

bol w
indow

Static segment
(m slots)

Dynamic segment
(n mini-slots)

Max 64 nodes on a Flexray network.

”Static segment” (compare w/ TTCAN ”Exclusive”)
– guaranteed service

”Dynamic segment” (compare w/ TTCAN ”Arbitration”)
– guaranteed service (high ID), ”best effort” (low ID)

Token-based communication:
•  Utilize a token for the arbitration of message transmissions

on a shared medium
–  The sender is only allowed to transmit its messages when it

possesses the token
–  Message priorities can provide bounded queuing delays

•  Examples:
–  Token Ring (IEEE 802.5)
–  FDDI (ANSI X3T9.5)

Network communication

Token Ring: (IEEE 802.5)

Token-based communication

constantly rotating token

1µ

2µ

3µ

4µ

Single rotating ring, twisted pair, 4 Mbit/s

Fiber Distributed Data Interface: (ANSI X3T9.5)

Token-based communication

multiple rotating tokens

1µ

2µ

3µ

4µ

Dual counter-rotating rings, optical fibre, 100 Mbit/s

Collision-based communication:
•  Utilize collision-detect mechanism to determine validity of

message transmissions on a shared medium
–  The sender tries to send messages independently of other

senders’ intention to do so
–  Attempts may be done at any time or when some specific

network state occurs

•  Examples:
–  Ethernet w/ multiple senders (IEEE 802.3)
–  CAN (ISO 11898)

Network communication

Ethernet protocols w/ multiple senders:
•  Senders attempt to send a complete message
•  If messages collide, all transmissions are aborted
•  After collision, re-transmission is made after a random delay

Message queuing delay can in general not be bounded!
 Therefore, these protocols do not give any guarantees for
meeting imposed message deadlines!

Collision-based communication

Controller Area Network (CAN): (ISO 11898)

Collision-based communication

collision-detect broadcast bus

1µ

2µ 3µ

4µ

Broadcast serial bus, dual wire (resistor terminated), 1 Mbit/s

Controller Area Network (CAN):
•  Senders transmit a message header (with an identifier)
•  If messages collide, a hardware-supported protocol is used

to determine what sender will be allowed to send the rest of
the message; transmissions by other senders are aborted

Message queuing delay can be bounded with appropriate
identifier assignment!
 Therefore, this protocol makes it possible to meet imposed
message deadlines!

Collision-based communication

0 0 data length

4 bits

CAN message frame format: (short format)

The CAN protocol

Message identifier can be used for several purposes:
•  enable receiver to filter messages (original purpose)
•  assign a priority to the message (low number ⇒ high priority)

message
identifier 0 - 8 bytes of data (payload) error check SOF ack EOF

11 bits 6 bits 7 bits 1 bit 15 bits 1 bit 0 - 64 bits

control

CAN message frame format: (short format)

The CAN protocol

CAN protocol: (binary countdown)

The CAN protocol

Wired-AND:
Each node monitors the bus while transmitting.
If multiple nodes are transmitting simultaneously

and one node transmits a ’0’,
then all nodes will see a ’0’.

If all nodes transmit a ’1’,
then all nodes will see a ’1’.

CAN protocol: (binary countdown)

The CAN protocol

1. Each node with a pending message waits until bus is idle.
2. The node begins transmitting the highest-priority message

pending on the node. Identifier is transmitted first, in the order
of most-significant bit to least-significant bit.

3. If a node transmits a recessive bit (’1’) but sees a dominant
bit (’0’) on the bus, then it stops transmitting since it is not
transmitting the highest-priority message in the system.

4. The node that transmits the last bit of its identifier without
detecting a bus inconsistency has the highest priority and
can start transmitting the rest of the message frame.

CAN protocol: (binary countdown)

The CAN protocol

Interrupt handlers in TinyTimber

Example: implementing a CAN interrupt handler:
1. Define class Can, and add state variables for:

•  the hardware base address of the device
•  call-back information for a method if data received by the

handler needs to be taken care of by the user-level code (the
call back should be done using an ASYNC() call)

•  necessary local storage (buffers, queues, etc)

2. Define a symbol CAN_PORT0 representing the hardware
 base address of the device.
 #define CAN_PORT0 device_hardware_address

3. Create an object can0 of class Can, and initialize it with:
•  the hardware base address CAN_PORT0
•  any possible call-back information

Interrupt handlers in TinyTimber

Example: implementing a CAN interrupt handler (cont’d):

App app = { initObject(), 0, 'X' };

void receiver(App*, int);

Can can0 = initCan(CAN_PORT0, &app, receiver);

void receiver(App *self, int unused) { // call-back function
 CANMsg msg;
 CAN_RECEIVE(&can0, &msg);
 SCI_WRITE(&sci0, "Can msg received: ");
 SCI_WRITE(&sci0, msg.buff);
}

In file ‘application.c’:

Interrupt handlers in TinyTimber

Example: implementing a CAN interrupt handler (cont’d):
4. Write an interrupt handler as a method can_interrupt

and associate it with the object.
5. Declare a symbol CAN_IRQ0 and assign to it the TinyTimber

kernel’s logical number of the hardware interrupt:
#define CAN_IRQ0 interrupt_logical_number

6. Inform the TinyTimber kernel that the method is a handler
for interrupt CAN_IRQ0, by making a call to

INSTALL(&can0, can_interrupt, CAN_IRQ0);

 This should be done before the call to TINYTIMBER()

Interrupt handlers in TinyTimber

Example: implementing a CAN interrupt handler (cont’d):
7. Provide an operation CAN_INIT() that takes care of

performing any remaining initialization of the device.
8. Call CAN_INIT() in the “kick-off” method that was supplied

as argument to the TINYTIMBER() call.

Interrupt handlers in TinyTimber

Example: implementing a CAN interrupt handler (cont’d):

void startApp(App *self, int arg) {
 CANMsg msg;
 CAN_INIT(&can0);
 …
 CAN_SEND(&can0, &msg);
}

int main() {
 INSTALL(&can0, can_interrupt, CAN_IRQ0);
 TINYTIMBER(&app, startApp, 0);
}

In file ‘application.c’:

Interrupt handlers in TinyTimber

Example: implementing a CAN interrupt handler (cont’d):

typedef unsigned char uchar;

typedef struct {
 uchar msgId; // Valid values: 0-127
 uchar nodeId; // Valid values: 0-15
 uchar length;
 uchar buff[8];
} CANMsg;

In file ‘canTinyTimber.h’:

CANMsg holds the user-relevant parts of the CAN message frame.
•  nodeID holds the four least-significant bits of the identifier field
•  msgID holds the seven most-significant bits of the identifier field

