UNIVERSITY OF GOTHENBURG

Real-Time Systems

Lecture #7

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

CHALMERS |

48%)) UNIVERSITY OF GOTHENBURG

Real-Time Systems

» System models
» Execution-time analysis

CHALMERS | ¥) UNIVERSITY OF GOTHENBURG
Verification by testing
K;;LE OCHH OiB—BiE—*] avTBIII Wattersor?

Dad? How do they know They drive bigger and ~ Then they take the = Honey, if you

how much weight a bridge bigger trucks over the ~ weight of the last fruck ¢ don't know the

can handle? a1 bridge until it collapses! || andrebuild the bridge | |known that! answer',I just
e ' - i SAY so!

Free translation from Swedish by J. Jonsson

CHALMERS |

UNIVERSITY OF GOTHENBURG

Verification by testing

Congratulations, Builder Bob!
It seems to be strong enough this time.
Let’s open the bridge.

: - 2 E’Aﬁ'“'h T ‘ T [!‘

So, is this how bridges (or other mechanical constructions) are built?

Of course not! There are models (properties of materials) and
theories (laws of mechanics) involved to determine in advance

that a construction will withstand the predicted load.

CHALMERS |

UNIVERSITY OF GOTHENBURG

Verification by models & theory

Distribution Max. value
Simply supported beam with central load X
Pz o L
M (z) = ol for0<z< 3 o — PL P
* ’ P(L—zx) L) ML j2 1 A ~
—35 for 3 = & S L (
B
P . Iz L/2 H L/2 s—
Q)={2, riST=3 Ql=lQ:=%2 | :
—T’ fOI‘ 5 =S S L |
M \/
_ Pz(42%-3L?) L Q
w(z) = { p —L%?EQI—SL 44 2) orfsess Wrj2 = o
e, forf <z <L 48ET

So, why cannot computer systems be built and verified in advance
using models and theories?

Well, they can ... using system models and schedulability analysis

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Verification

How do we perform schedulability analysis?

e [ntroduce abstract models of system components:
— Task model (computation requirements, timing constraints)
— Processor model (resource capacities)
— Run-time model (task states, dispatching)

e Predict whether task executions will meet constraints

— Use timing-correct abstract system models
— Make sure that computation requirements never exceed
resource capacities

— Generate a (partial or complete) run-time schedule resulting
from task executions and detect worst-case scenarios

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Verification

How do we simplify schedulability analysis?

e Concurrent and reactive programming paradigm
— Suitable schedulable entity (thread, method, ...)

— Language constructs for expressing application constraints
for schedulable entities (data types, annotations, macros, ...)

— Estimated WCET for schedulable entities

e Deterministic task execution
— Time tables or static/dynamic task priorities
— Preemptive task execution

— Run-time protocols for access to shared resources (dynamic
priority adjustment and non-preemptable code sections)

CHALMERS | ’3 UNIVERSITY OF GOTHENBURG

Designing a real-time system

New design!

o S - E
\\\\
\\,\\
‘ ———

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Run-time model

The run-time model expresses the state of a task:

waiting

interrupt

wait dispatch

Running: Currently executing task
Ready: Task that is available for execution
Waiting: Task that cannot execute because it is needs access to a

resource other than the processor

CHALMERS | J) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Task model

Implementation J 1 Abstract model

void taskl(Object *self, int p) {

Actionl();

SEND(Periodl, Deadlinel, self, taskl, p);
}

2 :{ ClaTvaOl}

void task2(Object *self, int p) {

Action2();

SEND(Period2, Deadline2, self, task2, p);
}

void kickoff (Object *self, int p) {
AFTER(Offsetl, &appl, p):;

AFTER(Offset2, &app2, p):; —
} Tz_{czaTzaDpOz}

main() {
TINYTIMBER(&app main, kickoff, 0);
}

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Task model

The task model expresses the timing behavior of a task:

e The static parameters describe characteristics of a task
that apply independent of other tasks.

— These parameters are derived from the specification or the
implementation of the system

— For example: period, deadline, WCET

e The dynamic parameters describe effects that occur during
the execution of a task.

— These parameters are a function of the run-time system and
the characteristics of other tasks

— For example: start time, completion time, response time

CHALMERS |

UNIVERSITY OF GOTHENBURG

Task model

Static task parameters:

@ 7 :{CiazaDwOi}

C, : (undisturbed) WCET
T :period
D, : (relative) deadline

O, : (absolute) time offset

. D
‘A v 4 v 4 v
o i i ’
:H 1
EECi |
e N

CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

Task model

Dynamic task parameters: a,, - arrival time of k" instance
s,, - start time of k" instance
/, rcompletion time of k" instance
Ti:{CiDZ9Di90i} : o
R, : response time of k" instance

T : the k™ instance of T

‘ A T A S Y ST v

\ 4

0 A N
b ! t
o i O+k-1)-T R
< 5 oy = +(k—1)- i ik fi,k G
a. R i
Lk Lk R = max {R. k} (worst-case response time)
7,€T k=1 b

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Task model

Synchronous and asynchronous task sets:

e |n a synchronous task set the offsets of tasks are
identical, that is: v;_; :0,=0,

e |n an asynchronous task set the offsets of at least one
pair of tasks are not identical, that is: 3i,j:i=j,0, = 0,

Asynchronous task sets are typically used to reduce local skew
(jitter) or to remove the need for resource access protocols.

Note: Two tasks with identical periods, but different offsets, will
never arrive simultaneously during the lifetime of the system.
This means that the worst-case response times of the tasks will
be lower than if the offsets of the tasks were equal.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Task model

Task arrival patterns:

e Periodic tasks
— A periodic task arrives with a time interval T,

e Sporadic tasks
— A sporadic task arrives with a time interval 2 T,

e Aperiodic tasks
— An aperiodic task has no guaranteed minimum time between
two subsequent arrivals

= A priori schedulable (hard) real-time systems can only
contain periodic and sporadic tasks.

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Execution-time analysis

Code

WCET

for (i=1; i<=N; i++) {

if (A > K)
A = K-1;
else
N >) 42
if (A < K)
A = K;
else
A = K-1;

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Execution-time analysis

Background:

o \Worst-case execution time (WCET) is needed to
— perform (hard) schedulability analysis
— identify resource needs early in the design phase
— perform program tuning (critical loops and interrupt handlers)

e The WCET of a task depends on
— program structure + initial system state + input data

— temporal properties of the system (OS + hardware)
— internal and external system events

e \WCET estimates can be obtained via

— measurements
— static analysis

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Execution-time analysis

Requirements:

e A WCET estimate must be pessimistic but tight

0 < "Estimated WCET” — “Real WCET" < ¢
(¢ small compared to real WCET)

Pessimistic:
to make sure assumptions made in the schedulability
analysis of hard real-time tasks also apply at run time

Tight:
to avoid unnecessary waste of resources during scheduling
of hard real-time tasks

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Execution-time analysis

Execution time

estimated WCET

real WCET

') |

Input data

CHALMERS |

(8%) UNIVERSITY OF GOTHENBURG

Execution-time analysis

Estimating WCET via measurements:

Methodology:
— identify potential worst-case scenario
— run program code on hardware using worst-case scenario
— measure the execution time
— add a safety margin

Measuring techniques:
— system clocks, cycle-level simulators, in-circuit emulators
— observe hardware signals with oscilloscope or logic analyzer

Reflection:
— measured execution time will never exceed real WCET
— how large must safety margin be to get a pessimistic estimate?

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Execution-time analysis

Estimating WCET via static analysis:

e Methodology:

— determine the longest execution time of the program code
without actually running it

— uses models based on properties of software and hardware
— typically integrated with the compiler tools

e Analysis techniques:

— Path analysis: bound the number of times that different
program parts may be executed

— Timing analysis: bound the execution time of program parts

e Reflection:
— real WCET will never exceed estimated execution time
— how accurate must the models be to get a tight estimate?

CHALMERS |

(8%) UNIVERSITY OF GOTHENBURG

A simple (yet challenging) example

Derive WCET for the following program:

for (i=
if (A

1; 1<=N; 1++)

> K)

K-1;

Issues to consider:

e Input data is unknown

— Iteration bounds must be known
to facilitate analysis

e Path explosion
— 4N paths in this example

e Exclusion of non-executable (false)
paths

— T1 + E2 is a false path in the
example

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

A simpler (but non-trivial) example

Derive WCET for the following statement:

A=A/ B;

Issues to consider:

e Execution time:
— affected by cache misses, pipeline conflicts, exceptions ...

— depends on previous and (!) subsequent instructions
— also depends on (unknown) input data

e Observations:

— accurate estimation of WCET must be based on a detailed
timing model of the system architecture

— uncertainties are handled by making worst-case assumptions

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Fundamental issues

e In the path analysis:
— how to bound the number of iterations in a loop / recursion

— how to eliminate false (non-executable) paths cause by
e.g. if-then-else statements

e [n the timing analysis:

Everything that takes time must be modeled in a realistic
fashion (or at least not optimistically)

— must accurately model the temporal behavior of hardware

— must account for consequences of run-time events

CHALMERS |

(&%) UNIVERSITY OF GOTHENBURG

Path analysis

A control flow graph (CFG) describes
the structure of the program

Path analysis problem:

Find the longest executable path in
the program’s CFG

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Path analysis

Shaw’s Timing Schema (1989):

The estimated WCET (WCETe) is the
for (i=1; i<=N: i++) | execution time of the longest structural
if (A > K) path through the program
A = K-1; (T1)
else
A = K+1; (E1) WCETe =
if (A < K) N* (WCET (loop) +
A = K; (T2) WCET (I1) +
else max (WCET (T1), WCET(E1l)) +
A = K-1; (E2) WCET (I2) +
} max (WCET (T2) , WCET (E2)))

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Methods for path analysis

Manual method:

Programmer must provide information

Annotation of loop bounds:

e Provide upper bounds on loop indices and catch potential
exceptions at run time

Elimination of false paths:

e Enumerate all possible paths and list the set of false paths
so that these can be avoided in the analysis

Requires very detailed knowledge of the program’s function,
and is therefore also very prone to errors!

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Methods for path analysis

Automated method:

Support from the compiler

Derive upper bounds on loop indices:
e Requires an explicit loop index
e May not work for complicated termination conditions

Elimination of false paths:

e Symbolically execute the program to detect non-executable
program statements

Current methods are promising but only for fairly simple
programs where the analysis is trivial!

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Methods for path analysis

The reality?

Shaw’s timing schema implicitly assume that the execution
time of each language statement is constant and known

This is a realistic assumption for older types of processors,
that:

— lack execution pipelines
— lack cache memories
— do not generate exceptions

However, for the RISC type processor architectures, these
methods yield very pessimistic results!

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Timing analysis for RISC processors

RISC processors have several advanced mechanisms
(pipelining, caching, branch prediction, out-of-order
execution, ...) that cause significant variation in the
execution time of a processor instruction.

We must therefore estimate the execution time for each
executable path through the program and at the same time
account for these mechanisms.

This can be solved by partitioning the program code into code
blocks and analyze each block separately.

Today, mature methods for timing analysis only exist for
pipelining and caching.

CHALMERS |

(8%) UNIVERSITY OF GOTHENBURG

Timing analysis for RISC processors

Processor with pipeline:

IF ID EX M WB
A y

v
ICACHE DCACHE

Sources of time variations:
e data conflicts
e branch conflicts

Sources of time variations:

e cache misses
(have order-of-magnitude higher
access times than cache hits)

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Timing analysis of cache memory

Issues:

e Not enough to investigate an
Isolated code block

— miss/hit depends on previous
executions of the code

e [nstruction cache behavior is
predictable for each path

— known sequence of code

e Data cache behavior is more
difficult to analyze

— data addresses can depend on
the program’s input data

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Timing analysis of pipeline

Issues:

e Not enough to investigate an
Isolated code block

— conflicts may occur on the
boundary between code blocks

e Pipeline behavior is predictable
for each path

— known sequence of code

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Methods for timing analysis

Extension of Shaw’s Timing Schema

— Analysis is performed at code block level
— Merging of paths at certain code locations by estimating the

effects of worst-case situations (reduces path explosion)
Data flow analysis:

— Analysis performed at code block level
— Propagation of pipeline and cache states between blocks

Integer Linear Programming

— Formulate an ILP problem as a function of execution time and
number of executions at code block level

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Challenges

So far, non-preemptive execution of program code on a
single processor has been assumed.

In reality, pseudo-parallel execution is typically used,
something which requires preemptive execution.

— Preemptions will affect system state (i.e., cache contents will
change and pipeline will be flushed) and must therefore be

accounted for in the analysis.

— However, it is difficult to account for these effects in the analysis
of WCET, which means that it must be handled at a higher level
(i.e., in the schedulability analysis).

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Challenges

So far, non-preemptive scheduling of program code on a
single processor has been assumed.

In reality, multicore processors are used in real-time systems,
something which presents new problems:
— Several processors may have copies of the same code and data

In their local cache memories, and any updates will invalidate
the other copies. This must be accounted for in the analysis.

