UNIVERSITY OF GOTHENBURG

Real-Time Systems

Lecture #6

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

CHALMERS |

48%)) UNIVERSITY OF GOTHENBURG

Real-Time Systems

« Clocks, time, delay
« Task priorities

UNIVERSITY OF GOTHENBURG

CHALMERS |

Recollection from an earlier lecture

Desired properties of a real-time programming language:

— Support for partitioning software into units of concurrency
e tasks or threads (Ada95, Java or POSIX C)
e object methods (C/C++ using the TinyTimber kernel)

— Support for communication with the environment
e access to I/O hardware (e.g. view /O registers as variables)
e machine-level data types (e.g. bit-field type, address pointers)

— Support for the schedulability analysis
e notion of (high-resolution) time (= timing-aware programming)
e task priorities (reflects constraints = timing-aware programming)

task delays (idle while not doing useful work = reactive model)
hardware interrupt handlers (event generators = reactive model)

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Clocks and time

To construct a real-time system, the chosen programming
language or the run-time system must support a notion
of (high-resolution) time that can be used for modeling
the system’s time constraints.

“‘Real-time” time is represented by a system clock, that can
be read in order to report current time.

The system clock is typically implemented using a free-
running timer, giving the following properties:
— Time is strictly monotonic (cannot be adjusted backwards)

— Time is measured in elapsed time units since an epoch.
— Time unit and epoch are both implementation dependent.

CHALMERS |

UNIVERSITY OF GOTHENBURG

Real-time clocks in Ada95

The Real-Time Systems annex in Ada95 defines a data type
Time that represents real time with a resolution of 1 ms or
better. The current value of the real time can be read by
calling the function clock.

Convert human-perceived time to

) internal representation of time.
task body Controller is

Start, Diff : Time;

Limit: Time Span := Milliseconds (17);
begin
loop
Start := Clock;

... -—- program code whose execution time is measured
Diff := Clock - Start;
if Diff > Limit then
-—- program code for error handling
end if;

end loop;
end Controller;

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Real-time clocks in TinyTimber

TinyTimber defines a data type Time that represents real time
with a resolution of 10 ys for the MD407 card (lab system).

Method executions in TinyTimber have a baseline, which is a
timestamp (of type Time) representing an earliest start time
for the execution of the method.

— The baseline of a method is the baseline of its caller,
except when a new explicit baseline is provided by the
caller (using the AFTER () or SEND () operation.)

— The baseline of an interrupt-handler method is the time
of the interrupt.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Real-time clocks in TinyTimber

— A sample value of the real time can be read by calling
the function CURRENT OFFSET (), which returns the
current time measured from the current baseline.

— The current baseline can be bookmarked by calling the
function T RESET () with an object of class Timer.
The time duration from the bookmark to the baseline
of a later event can then be calculated by calling the
function T samPLE () with the same object.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Real-time clocks in TinyTimber

void Controller (Object *self, int unused) { Convert human-perceived time to

Time Start, Diff; internal representation of time.
Time Limit = MSEC(17);

Start = CURRENT OFFSET () ;
// program code whose execution time is measured

Diff = CURRENT_OFFSET() - Start;
if (Diff > Limit) {
// program code for error handling

}

ASYNC (self, Controller, unused);

Macros for converting human-perceived time (s, ms, ys) to internal
representation of time (and the other way around) are available in
the file “TinyTimber.h” in the lab system source code package.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Periodic activities

The majority of embedded real-time applications rely on
periodic activities, that is, tasks executing at regular
intervals as part of e. g. a control loop.

Typically, control theory dictates the choice of execution
iInterval for the periodic activities.

To support the reactive programming model, tasks should
be idle while not doing useful work.

Therefore, it must be possible in the chosen programming
language or the run-time system to delay (idle) the
execution of a task until it is time for its next activation.

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Periodic activities

How can the execution of a task be delayed in Ada95?

o Use the (relative) delay statement:
delay 0.05; -— wait for 0.05 seconds

e The delay statement guarantees that the task executing it will
be idle at least the indicated number of seconds.

e The actual idle time could be longer because the re-activated
task may have to wait for other tasks to complete their execution
(how much depends on the priority-assignment policy used in
the run-time system.)

CHALMERS |

UNIVERSITY OF GOTHENBURG

Periodic activities

Example: Execute a task periodically every 50 milliseconds.

task body T is
Interval : constant Duration := 0.05;
begin
loop
Action; —-— procedure doing useful work
delay Interval;

end loop;
end T;

Note that this solution gives rise to a systematic time skew

— The code for Action takes a certain time Aaction

— The code for administrating the loop construct takes a certain
time Aloop

= The minimum interval between two executions of Action is:
50 + Aaction + Aloop milliseconds.

CHALMERS |

UNIVERSITY OF GOTHENBURG

Periodic activities

How can systematic time skew be avoided in Ada95?
o Use the (absolute) delay statement:

delay until Later; -—- walit until clock becomes Later

e The absolute delay statement causes the task executing to be
idle until the given time instant at the earliest.

task body T is

Interval : constant Duration := 0.05;
Next Time : Time;
begin

Next Time := Clock + Interval;

loop
Action; -— procedure doing useful work
delay until Next Time;
Next Time := Next Time + Interval;

end loop; -

end T;

CHALMERS |

UNIVERSITY OF GOTHENBURG

Periodic activities

How are periodic activities implemented in TinyTimber?

e Use the AFTER () operation:
AFTER (base off, object, method, argument);

e The AFTER () operation guarantees that the specified method
does not begin executing until time baseline at the earliest:

baseline = current baseline + base off

Here, current baseline is the current baseline of the method
posting the call with the AFTER () operation.

void T (Object *self, int unused) {
Time Interval = MSEC (50);

Action () ; // procedure doing useful work
AFTER (Interval, self, T, unused);

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Periodic activities

Note that both the delay until statement (in Ada95) and
the AFTER () operation (in TinyTimber) may suffer from

local time skew:
— Other active tasks/methods with same or higher priority may

interfere so that the task/method cannot begin its execution at
the desired time instant.

— In the case of periodic tasks/methods, the local time skew may
vary between different activations of the same task/method.

— Local time skew can be reduced/eliminated by using suitable
scheduling algorithms, or be determined with the aid of special
analysis methods.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Task priorities

To be able to guarantee a predictable (and thereby analyzable)
behavior of a real-time system, the programming language
and run-time system must have support for task priorities.

Task priorities are used for selecting which task that should be
executed if multiple tasks contend over the CPU resource.

In a real-time system, the priority should reflect the time-criticality
of the task.

The priority of a task can be given in two different ways:

Static priorities: based on task characteristics that are known
before the system is running, e.qg., iteration frequency or
deadline.

Dynamic priorities: based on task characteristics that are derived
at certain times while the system is running, e.g., remaining
execution time or remaining time to deadline.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Priority support in Ada95

Ada95 can use both static and dynamic priorities, although
only static priorities are supported in the core language.

The static (base) priority of a task is expressed using the
pragma pPriority, Which should be located in the
specification of the task.

task Pl is
pragma Priority(5);
end P1;

The range of the priority values is implementation dependent
(not defined in the language):

subtype Any Priority is Integer range implementation-defined;

CHALMERS |

UNIVERSITY OF GOTHENBURG

Priority support in Ada95

The low and medium parts of the available priority value
range is used for normal tasks (subtype Priority).

The highest priority values are used for interrupt handlers
and protected objects (subtype Interrupt Priority).

The Real-Time Systems annex of Ada95 provides support
for dynamic priorities:

package Ada.Dynamic Priorities is
procedure Set Priority(...);

function Get Priority(...) return Any Priority;
end Ada.Dynamic Priorities;

By means of this package, the priority of a task can be read
and modified while the system is running.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Priority support in TinyTimber

TinyTimber uses dynamic priorities exclusively: it implements
the earliest-deadline-first (EDF) priority-assignment policy.

“The method whose deadline is closest in time receives highest priority”

e Time-critical method calls can be done by means of the
BEFORE () operation, which performs an asynchronous call
with an explicit deadline:

BEFORE (rel deadline, object, method, argument);

e The BEFORE () operation requests that the specified method
should complete its execution by deadline at the latest:

deadline = current baseline + rel deadline

Here, current baseline is the current baseline of the
method posting the call with the BEFORE () operation.

CHALMERS |

UNIVERSITY OF GOTHENBURG

Priority support in TinyTimber

e Time-critical method calls can also be done via the use of the
SEND () operation, which performs an asynchronous call
with a new baseline and an explicit deadline:

SEND (base off, rel deadline, object, method, argument);

e The SEND () operation requests that the specified method
should begin its execution by baseline at the earliest and
complete its execution by deadline at the latest:

baseline = current baseline + base off

deadline = baseline + rel deadline

Here, current baseline is the current baseline of the
method posting the call with the SEND () operation.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Example: time-critical task in C

Problem: Implement a time-critical periodic task in C using
the TinyTimber kernel.

— The task should be activated every 2 ms.

— Once activated, the task must complete its execution
within 50 ps

— The time-critical code is located in subroutine Action ()

CHALMERS |

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

Example: time-critical task in C

#include “TinyTimber.h”

typedef struct {
Object super;
Time period;
Time deadline;
} PeriodicTask;

PeriodicTask ptask = { initObject (), MSEC(2), USEC(50) 1},

volid D (PeriodicTask *self, int unused);

void T (PeriodicTask *self, int unused) {
BEFORE (self->deadline, self, D, unused);
}

void D (PeriodicTask *self, int unused) {
Action () ; // procedure doing time-critical work
AFTER (self->period, self, T, unused);

}

main () {
return TINYTIMBER (&ptask, T, 0);

}

CHALMERS | &) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example: time-critical task in C

Alternative (and more compact) solution:

#include “TinyTimber.h”

typedef struct {
Object super;
Time period;
Time deadline;
} PeriodicTask;

PeriodicTask ptask = { initObject (), MSEC(2), USEC(50) 1},

void TD(PeriodicTask *self, int unused) {
Action () ; // procedure doing time-critical work
SEND (self->period, self->deadline, self, TD, unused);

}

main () {
return TINYTIMBER (&ptask, TD, 0);

}

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Priorities and shared objects

When task priorities are used to introduce determinism and
analyzability to the system, this must also encompass
the handling of shared (mutex) objects.

In order to verify the system, an upper bound of each task’s
blocking time must be possible to derive.

Such derivation is relatively simple as long as a task can
only be blocked by tasks with higher priority.

The analysis becomes much more difficult when mutex
objects are used, as a task can then also be blocked by
tasks with lower priority that do not use the object.

One such example is when priority inversion occurs.

(a similar scenario, deadline inversion, occurs when EDF priorities
are used instead of static priorities)

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Priority inversion

Assume three tasks H, M and L (decreasing priorities) where H
and L share a mutex object.

1. Assume that task L with lowest priority requests and acquires a
mutex object (critical region).

2. Task H, which has highest priority, then starts and requests the
mutex object. As only one task at a time can execute code in a
mutex object, H must wait until L releases the object.

3. Task M, which has medium priority, preempts task L according
to the priority rules and then starts its execution.
e Priority inversion has now occurred because task M preempted a
task (H) with higher priority.
e The blocking time for task H now depends on a task (M) with lower
priority that does not use the mutex object.

¢ |f task M should use another mutex object there would also be a
potential risk that deadlock could occur.

CHALMERS |

UNIVERSITY OF GOTHENBURG

Priority inversion

priority (H) > priority (M) > priority (L)
H and L share mutex resource R

normal execution

critical region Blocking time for H is not bounded
by execution of critical region
H blocked /
LI

y /S :
M h/

L % % 20 IR

t1 2 t

v

CHALMERS |

(8%) UNIVERSITY OF GOTHENBURG

Deadline inversion

normal execution

critical region

H and L share mutex resource R

H misses its deadline

H blocked
A |« q
H >
|
M A— .
|
L % /777 [1] ,
t1

[

CHALMERS

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Mars Pathfinder 1997

Wind Sensor ——

Wind Socks

b&“‘
Atmospheric Structure Instrument

Thermocouples
and Meteorology Package —
(ASI/MET)

Solar Panel
——
Ot
P pe ~_— Low-Gain
Imager for Mars _—] g - Antenna
Pathfinder (IMP) — —
~ ASI/MET
RIS))) L -
High-Gain __—— € | 4 .
Antenna — \ >

Accelerometers

|
L=

Rover
Solar Panel
<
A\ = 7. '. 4 >
Pt 7 9
Solar Panel Instrument Electronics '
Assemblies

Alp'ha Proton
X-ray Spectrometer

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Mars Pathfinder 1997

(21 July, 1997, from Mars) Free moving Rover is in action

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Mars Pathfinder 1997

Texts discussing the problem with Mars Pathfinder:

e Risat Pathan's report from a graduate course
e Mike Jones' report from RTSS'97
e Glenn Reeves' (JPL) comments

Found in Canvas under ‘Resources’/ ‘Miscellaneous information’

“Even when you think you’ve tested everything that you can
possibly imagine, you're wrong”
-- Glenn E. Reeves (Pathfinder’s Software Team Leader)

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Priorities and shared resources

Avoiding priority and deadline inversion:

e Non-preemptive critical regions:
— Creates unnecessary blocking
— Only recommended for short critical regions

e Access-control protocols for critical regions:
— Periority Inheritance Protocol (PIP) [static priority]
— Priority Ceiling Protocol (PCP) [static priority]
— Immediate Ceiling Priority Protocol (ICPP) [static priority]
— Stack Resource Policy (SRP) [static and dynamic priority]
— Deadline Inheritance Protocol (DIP) [dynamic priority]

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Priorities and shared resources

Priority Inheritance Protocol:

e Basic idea: When a task 7; blocks one or more higher-
priority tasks, it temporarily assumes (inherits) the highest
priority of the blocked tasks.

e Advantage:

— Prevents medium-priority tasks from preempting T.and
prolonging the blocking duration experienced by
higher-priority tasks.

e Disadvantage:

— May deadlock: priority inheritance can cause deadlock

— Chained blocking: the highest-priority task may be blocked
once by every other task executing on the same processor.

UNIVERSITY OF GOTHENBURG

o
CHALMERS | ¢
)
)
UNIVERSITY OF TECHNOLOGY

Priorities and shared resources

Priority Ceiling Protocol:

e Basic idea: Each resource is assigned a priority ceiling
equal to the priority of the highest- priority task that can lock
it. Then, a task 7, is allowed to enter a critical region only if
its prlorlty IS hlgher than all priority ceilings of the resources
currently locked by tasks other than 7. .

When the task 7, blocks one or more hlgher-prlorlty tasks, it
temporarily inherits the highest priority of the blocked tasks.

e Advantage:
— No deadlock: priority ceilings prevent deadlocks
— No chained blocking: a task can be blocked at most the

duration of one critical region.

UNIVERSITY OF GOTHENBURG

CHALMERS | §
u
)
N
UNIVERSITY OF TECHNOLOGY

Priorities and shared resources

Ada95 compilers with the Real-Time Systems annex provide
support for the Immediate Ceiling Priority Protocol (ICPP),
a simpler-to-implement version of PCP.

TinyTimber provides support for the Deadline Inheritance
Protocol (DIP), which is similar to PIP but uses EDF

priorities instead of static priorities:

“When a task blocks one or more tasks with deadlines closer
in time, it temporarily assumes (inherits) the deadline closest
in time of the blocked tasks.”

To avoid the potential deadlock problem associated with DIP
and PIP, TinyTimber also implements a deadlock detection
mechanism (that indicate deadlock situations via the return

value of the sync () operation.)

CHALMERS |

UNIVERSITY OF GOTHENBURG

Immediate Ceiling Priority Protocol

priority (H) > priority (M) > priority (L)
normal execution H and L share mutex resource R

critical region

L receives R’s ceiling priority (= H’s priority)
H blocke : . .
L receives original priority

[
»

/
/

I
y /T/!t

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Deadline Inheritance Protocol

normal execution H and L share mutex resource R

critical region

L inherits H’s deadline
H blocked
A / }

/ : _~ Lreceives original deadline
/1~ .

y]] :
./ / !

. e m

