
Lecture #6

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Real-Time Systems

Real-Time Systems

Verification

Implementation

Specification
•  Clocks, time, delay
•  Task priorities

Recollection from an earlier lecture

Desired properties of a real-time programming language:
–  Support for partitioning software into units of concurrency

•  tasks or threads (Ada95, Java or POSIX C)
•  object methods (C/C++ using the TinyTimber kernel)

–  Support for communication with the environment
•  access to I/O hardware (e.g. view I/O registers as variables)
•  machine-level data types (e.g. bit-field type, address pointers)

–  Support for the schedulability analysis
•  notion of (high-resolution) time (⇒ timing-aware programming)
•  task priorities (reflects constraints ⇒ timing-aware programming)
•  task delays (idle while not doing useful work ⇒ reactive model)
•  hardware interrupt handlers (event generators ⇒ reactive model)

Clocks and time

To construct a real-time system, the chosen programming
language or the run-time system must support a notion
of (high-resolution) time that can be used for modeling
the system’s time constraints.

“Real-time” time is represented by a system clock, that can
be read in order to report current time.

The system clock is typically implemented using a free-
running timer, giving the following properties:
–  Time is strictly monotonic (cannot be adjusted backwards)
–  Time is measured in elapsed time units since an epoch.
–  Time unit and epoch are both implementation dependent.

Real-time clocks in Ada95

The Real-Time Systems annex in Ada95 defines a data type
Time that represents real time with a resolution of 1 ms or
better. The current value of the real time can be read by
calling the function Clock.

task body Controller is
 Start, Diff : Time;
 Limit: Time_Span := Milliseconds(17);
begin
 loop
 Start := Clock;
 ... -- program code whose execution time is measured
 Diff := Clock - Start;
 if Diff > Limit then
 ... -- program code for error handling

 end if;
 end loop;
end Controller;

Convert human-perceived time to
internal representation of time.

Real-time clocks in TinyTimber

TinyTimber defines a data type Time that represents real time
with a resolution of 10 µs for the MD407 card (lab system).

Method executions in TinyTimber have a baseline, which is a
timestamp (of type Time) representing an earliest start time
for the execution of the method.
–  The baseline of a method is the baseline of its caller,

except when a new explicit baseline is provided by the
caller (using the AFTER() or SEND() operation.)

–  The baseline of an interrupt-handler method is the time
of the interrupt.

Real-time clocks in TinyTimber

TinyTimber defines a data type Time that represents real time
with a resolution of 10 µs for the MD407 card (lab system).

Method executions in TinyTimber have a baseline, which is a
timestamp (of type Time) representing an earliest start time
for the execution of the method.
–  A sample value of the real time can be read by calling

the function CURRENT_OFFSET(), which returns the
current time measured from the current baseline.

–  The current baseline can be bookmarked by calling the
function T_RESET() with an object of class Timer.
The time duration from the bookmark to the baseline
of a later event can then be calculated by calling the
function T_SAMPLE() with the same object.

Real-time clocks in TinyTimber

void Controller(Object *self, int unused) {
 Time Start, Diff;
 Time Limit = MSEC(17);

 Start = CURRENT_OFFSET();
 ... // program code whose execution time is measured
 Diff = CURRENT_OFFSET() - Start;

 if (Diff > Limit) {
 ... // program code for error handling
 }

 ASYNC(self, Controller, unused);
}

Macros for converting human-perceived time (s, ms, µs) to internal
representation of time (and the other way around) are available in
the file ”TinyTimber.h” in the lab system source code package.

Convert human-perceived time to
internal representation of time.

Periodic activities

The majority of embedded real-time applications rely on
periodic activities, that is, tasks executing at regular
intervals as part of e.g. a control loop.

Typically, control theory dictates the choice of execution
interval for the periodic activities.

To support the reactive programming model, tasks should
be idle while not doing useful work.

Therefore, it must be possible in the chosen programming
language or the run-time system to delay (idle) the
execution of a task until it is time for its next activation.

Periodic activities

How can the execution of a task be delayed in Ada95?
•  Use the (relative) delay statement:

delay 0.05; -- wait for 0.05 seconds

•  The delay statement guarantees that the task executing it will
be idle at least the indicated number of seconds.

•  The actual idle time could be longer because the re-activated

task may have to wait for other tasks to complete their execution
(how much depends on the priority-assignment policy used in
the run-time system.)

Periodic activities

Example: Execute a task periodically every 50 milliseconds. task body T is
 Interval : constant Duration := 0.05;
begin
 loop
 Action; -- procedure doing useful work
 delay Interval;
 end loop;
end T;

Note that this solution gives rise to a systematic time skew

–  The code for Action takes a certain time Δaction

–  The code for administrating the loop construct takes a certain
time Δloop

⇒ The minimum interval between two executions of Action is:
 50 + Δaction + Δloop milliseconds.

Periodic activities

How can systematic time skew be avoided in Ada95?
•  Use the (absolute) delay statement:

delay until Later; -- wait until clock becomes Later

•  The absolute delay statement causes the task executing to be
idle until the given time instant at the earliest.

task body T is
 Interval : constant Duration := 0.05;
 Next_Time : Time;
begin
 Next_Time := Clock + Interval;
 loop
 Action; -- procedure doing useful work
 delay until Next_Time;
 Next_Time := Next_Time + Interval;
 end loop;
end T;

Periodic activities

How are periodic activities implemented in TinyTimber?
•  Use the AFTER() operation:

AFTER(base_off, object, method, argument);

•  The AFTER() operation guarantees that the specified method
does not begin executing until time baseline at the earliest:
 baseline = current_baseline + base_off

 Here, current_baseline is the current baseline of the method
 posting the call with the AFTER() operation.

void T(Object *self, int unused) {
 Time Interval = MSEC(50);

 Action(); // procedure doing useful work
 AFTER(Interval, self, T, unused);
}

Periodic activities

Note that both the delay until statement (in Ada95) and
the AFTER() operation (in TinyTimber) may suffer from
local time skew:
–  Other active tasks/methods with same or higher priority may

interfere so that the task/method cannot begin its execution at
the desired time instant.

–  In the case of periodic tasks/methods, the local time skew may
vary between different activations of the same task/method.

–  Local time skew can be reduced/eliminated by using suitable
scheduling algorithms, or be determined with the aid of special
analysis methods.

Task priorities

To be able to guarantee a predictable (and thereby analyzable)
behavior of a real-time system, the programming language
and run-time system must have support for task priorities.

Task priorities are used for selecting which task that should be
executed if multiple tasks contend over the CPU resource.

In a real-time system, the priority should reflect the time-criticality
of the task.

The priority of a task can be given in two different ways:
Static priorities: based on task characteristics that are known

before the system is running, e.g., iteration frequency or
deadline.

Dynamic priorities: based on task characteristics that are derived
at certain times while the system is running, e.g., remaining
execution time or remaining time to deadline.

Priority support in Ada95

Ada95 can use both static and dynamic priorities, although
only static priorities are supported in the core language.

The static (base) priority of a task is expressed using the
pragma Priority, which should be located in the
specification of the task.
task P1 is
 pragma Priority(5);
end P1;

The range of the priority values is implementation dependent
(not defined in the language):

subtype Any_Priority is Integer range implementation-defined;

Priority support in Ada95

The low and medium parts of the available priority value
range is used for normal tasks (subtype Priority).

The highest priority values are used for interrupt handlers
and protected objects (subtype Interrupt_Priority).

The Real-Time Systems annex of Ada95 provides support
for dynamic priorities:
package Ada.Dynamic_Priorities is
 procedure Set_Priority(...);
 function Get_Priority(...) return Any_Priority;
end Ada.Dynamic_Priorities;

By means of this package, the priority of a task can be read

and modified while the system is running.

Priority support in TinyTimber

TinyTimber uses dynamic priorities exclusively: it implements
the earliest-deadline-first (EDF) priority-assignment policy.

“The method whose deadline is closest in time receives highest priority”

•  Time-critical method calls can be done by means of the
BEFORE() operation, which performs an asynchronous call
with an explicit deadline:

BEFORE(rel_deadline, object, method, argument);

•  The BEFORE() operation requests that the specified method
should complete its execution by deadline at the latest:
 deadline = current_baseline + rel_deadline

 Here, current_baseline is the current baseline of the
 method posting the call with the BEFORE() operation.

Priority support in TinyTimber

•  Time-critical method calls can also be done via the use of the
SEND() operation, which performs an asynchronous call
with a new baseline and an explicit deadline:

SEND(base_off, rel_deadline, object, method, argument);

•  The SEND() operation requests that the specified method
should begin its execution by baseline at the earliest and
complete its execution by deadline at the latest:
 baseline = current_baseline + base_off
 deadline = baseline + rel_deadline

 Here, current_baseline is the current baseline of the
 method posting the call with the SEND() operation.

Example: time-critical task in C

Problem: Implement a time-critical periodic task in C using
the TinyTimber kernel.

–  The task should be activated every 2 ms.
–  Once activated, the task must complete its execution

within 50 µs
–  The time-critical code is located in subroutine Action()

Example: time-critical task in C
#include “TinyTimber.h”

typedef struct {
 Object super;
 Time period;
 Time deadline;
} PeriodicTask;

PeriodicTask ptask = { initObject(), MSEC(2), USEC(50) };

void D(PeriodicTask *self, int unused);

void T(PeriodicTask *self, int unused) {
 BEFORE(self->deadline, self, D, unused);
}

void D(PeriodicTask *self, int unused) {
 Action(); // procedure doing time-critical work
 AFTER(self->period, self, T, unused);
}

main() {
 return TINYTIMBER(&ptask, T, 0);
}

Example: time-critical task in C

#include “TinyTimber.h”

typedef struct {
 Object super;
 Time period;
 Time deadline;
} PeriodicTask;

PeriodicTask ptask = { initObject(), MSEC(2), USEC(50) };

void TD(PeriodicTask *self, int unused) {
 Action(); // procedure doing time-critical work
 SEND(self->period, self->deadline, self, TD, unused);
}

main() {
 return TINYTIMBER(&ptask, TD, 0);
}

Alternative (and more compact) solution:

Priorities and shared objects

When task priorities are used to introduce determinism and
analyzability to the system, this must also encompass
the handling of shared (mutex) objects.

In order to verify the system, an upper bound of each task’s
blocking time must be possible to derive.

Such derivation is relatively simple as long as a task can
only be blocked by tasks with higher priority.

The analysis becomes much more difficult when mutex
objects are used, as a task can then also be blocked by
tasks with lower priority that do not use the object.

One such example is when priority inversion occurs.
(a similar scenario, deadline inversion, occurs when EDF priorities

are used instead of static priorities)

Priority inversion

Assume three tasks H, M and L (decreasing priorities) where H
and L share a mutex object.
1. Assume that task L with lowest priority requests and acquires a

mutex object (critical region).
2. Task H, which has highest priority, then starts and requests the

mutex object. As only one task at a time can execute code in a
mutex object, H must wait until L releases the object.

3. Task M, which has medium priority, preempts task L according
to the priority rules and then starts its execution.
•  Priority inversion has now occurred because task M preempted a

task (H) with higher priority.
•  The blocking time for task H now depends on a task (M) with lower

priority that does not use the mutex object.
•  If task M should use another mutex object there would also be a

potential risk that deadlock could occur.

Priority inversion

t1

H blocked

t2

Blocking time for H is not bounded
by execution of critical region

t

t
H

t
M

normal execution

critical region

priority (H) > priority (M) > priority (L)

L

H and L share mutex resource R

Deadline inversion

t1

H blocked

t2 t

t
H

t
M

normal execution

critical region

L

H and L share mutex resource R

H misses its deadline

Mars Pathfinder 1997
Mars Pathfinder 1997

(21 July, 1997, from Mars) Free moving Rover is in action

(21 July, 1997 from Mars) Free moving Rover is in action

21 July 1997

Mars Pathfinder 1997

Mars Pathfinder 1997

Texts discussing the problem with Mars Pathfinder:
•  Risat Pathan's report from a graduate course
•  Mike Jones' report from RTSS'97
•  Glenn Reeves' (JPL) comments

“Even when you think you’ve tested everything that you can
possibly imagine, you’re wrong”
-- Glenn E. Reeves (Pathfinder’s Software Team Leader)

Found in Canvas under ‘Resources’ / ‘Miscellaneous information’

Priorities and shared resources

Avoiding priority and deadline inversion:
•  Non-preemptive critical regions:

–  Creates unnecessary blocking
–  Only recommended for short critical regions

•  Access-control protocols for critical regions:
–  Priority Inheritance Protocol (PIP) [static priority]
–  Priority Ceiling Protocol (PCP) [static priority]
–  Immediate Ceiling Priority Protocol (ICPP) [static priority]
–  Stack Resource Policy (SRP) [static and dynamic priority]
–  Deadline Inheritance Protocol (DIP) [dynamic priority]

Priority Inheritance Protocol:
•  Basic idea: When a task blocks one or more higher-

priority tasks, it temporarily assumes (inherits) the highest
priority of the blocked tasks.

Priorities and shared resources

τ i

•  Advantage:
–  Prevents medium-priority tasks from preempting and

prolonging the blocking duration experienced by
higher-priority tasks.

•  Disadvantage:
–  May deadlock: priority inheritance can cause deadlock
–  Chained blocking: the highest-priority task may be blocked

once by every other task executing on the same processor.

τ i

Priority Ceiling Protocol:
•  Basic idea: Each resource is assigned a priority ceiling

equal to the priority of the highest-priority task that can lock
it. Then, a task is allowed to enter a critical region only if
its priority is higher than all priority ceilings of the resources
currently locked by tasks other than .
When the task blocks one or more higher-priority tasks, it
temporarily inherits the highest priority of the blocked tasks.

•  Advantage:
–  No deadlock: priority ceilings prevent deadlocks
–  No chained blocking: a task can be blocked at most the

duration of one critical region.

iτ

iτ
iτ

Priorities and shared resources

Priorities and shared resources

Ada95 compilers with the Real-Time Systems annex provide
support for the Immediate Ceiling Priority Protocol (ICPP),
a simpler-to-implement version of PCP.

TinyTimber provides support for the Deadline Inheritance
Protocol (DIP), which is similar to PIP but uses EDF
priorities instead of static priorities:

 “When a task blocks one or more tasks with deadlines closer
in time, it temporarily assumes (inherits) the deadline closest
in time of the blocked tasks.”

To avoid the potential deadlock problem associated with DIP
and PIP, TinyTimber also implements a deadlock detection
mechanism (that indicate deadlock situations via the return
value of the SYNC()operation.)

Immediate Ceiling Priority Protocol

L receives R’s ceiling priority (= H’s priority)

L receives original priority
H blocked

t
H

t
M

normal execution

critical region

priority (H) > priority (M) > priority (L)

t
L

H and L share mutex resource R

Deadline Inheritance Protocol

L inherits H’s deadline

L receives original deadline

H blocked

t
H

t
M

normal execution

critical region

t
L

H and L share mutex resource R

