UNIVERSITY OF GOTHENBURG

Real-Time Systems

Lecture #5

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

CHALMERS |

48%)) UNIVERSITY OF GOTHENBURG

Real-Time Systems

* Mutual exclusion
» Call-back functionality

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Mutual exclusion

Systems with cooperating concurrent tasks often work
with shared data structures.

e A problem that has to be solved is then how to guarantee
that the data structure is always kept in a consistent state.

Data structures such as queues, lists and data bases will
not work as intended if their state becomes inconsistent.

e A working solution is achieved if one makes sure that only
one task at a time receive access to the data structure.

e EXxclusive access to a data structure can be achieved by
making sure that the program code (i.e., the critical region)
that manipulates the data structure can execute without
being preempted in the most critical moment.

CHALMERS |

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

Example: circular buffer in TinyTimber

// Define a class Circular Buffer with space for 8 natural numbers (2 0)

#define BSize 8
[] Unused slots

typedef struct { [l stored data
Object super;
int count;
int I;
int J;
int A[BSize]; I I

} Circular Buffer;

// If the buffer is full, Put should return the value -1.
// If the buffer is empty, Get should return the value -1.

int Put(Circular Buffer*, int); // Insert new element
int Get(Circular Buffer*, int); // Remove old element

// Define an instance of the buffer

Circular Buffer Buf = { initObject(), 0, 0, 0 }; // empty buffer

CHALMERS |

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

Example: circular buffer in TinyTimber

int Put (Circular Buffer *self, int data) {
if (self->count < BSize) {

self->A[self->I] = data;
self->I = (self->I + 1) % BSize; [] Unused slots
self->count = self->count + 1; [l stored data
return 0;

}

else
return -1;

} T

int Get (Circular Buffer *self, int unused) {
if (self->count > 0) {
int data = self->A[self->J];

self->J = (self->J + 1) % BSize;
self->count = self->count - 1;

return data;

}
else
return -1;

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Mutual exclusion

In TinyTimber the methods Put or Get must be called
using SYNC () in order to guarantee mutual exclusion.

If Put or Get would be called as regular functions in C,
mutual exclusion can not be guaranteed.

In the latter case, the buffer data structure could very easily
become corrupt and give rise to data inconsistencies.

The following example demonstrates one such case ...

CHALMERS |

UNIVERSITY OF GOTHENBURG

Mutual exclusion

Assume that the buffer has the following state:

Now, investigate what happens if Put is called as a regular
function by two concurrent tasks:

void T1 (App *self, int c) { void T2 (App *self, int c) {
Put (&Buf, X) ; Put (&Buf,Y);

ASYNC (self,T1,c); ASYNC (self,T2,c);

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Mutual exclusion

The following execution order causes data inconsistency:

Put (&Buf, X) : Put (&Buf,Y) : Comment:
A(I) = X;
A(I) = Y; // X 1s overwritten
I = (I + 1) % BSize;
count = count + 1;
I = (I + 1) % BSize; // old value remains
count = count + 1; // in last data slot
What we want is What we get is
consistent data: inconsistent data:
XY Y| ?

CHALMERS |

UNIVERSITY OF GOTHENBURG

Mutual exclusion

Again, assume that the buffer has the following state:

But this time observe what happens when pPut is called
using SYNC () by the two concurrent tasks:

void T1 (App *self, int c) { void T2 (App *self, int c) {
SYNC (&Buf, Put, X) ; SYNC (&Buf, Put,Y) ;

ASYNC (self,T1,c); ASYNC (self,T2,c);

CHALMERS |

UNIVERSITY OF TECHNOLOGY

¢ UNIVERSITY OF GOTHENBURG

Mutual exclusion

With SYNC () we get data consistency:

SYNC (&Buf, Put, X) :

A(I) = X;
I = (I + 1) % BSize;
count = count + 1;

What we want is
consistent data:

SYNC (&Buf, Put, Y) :

A(I) = Y;
I = (I + 1) %
count = count + 1;

XY

BSize; //

Comment :

// data store is done
// correctly

// data store is done
correctly

What we get is
consistent data:

Y

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Machine-level mutual exclusion

To guarantee mutual exclusion in the critical regions of
e.g. semaphore operations or mutex methods some
even more fundamental support is needed.

For this purpose there are two mechanisms offered at the
lowest (machine-code) level:

e Disabling the processor’s interrupt service mechanism

— Should involve any interrupt that may lead to a task switch
— Only suitable for single-processor systems

e Atomic processor instructions
For example: the test-and-set instruction
— Variables can be tested and updated in one operation
— Necessary for systems with two or more processors

CHALMERS | {
¢
%)
)
UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Disabling processor interrupts

In single-processor systems, the mutual exclusion is guaranteed
by disabling the processor’s interrupt service mechanism
("interrupt masking”) while the critical region is executed.

This way, unwanted task switches in the critical region (caused
by e.g. timer interrupts) are avoided. However, all other tasks
are unable to execute during this time.

Therefore, critical regions should only contain such instructions
that really require mutual exclusion (e.g., code that handles

the operations wait and signal for semaphores).

Note: this method is not used in multi-processor systems
since interrupt management is typically not synchronized
between the processors.

CHALMERS | ¥) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Disabling processor interrupts

task A;
task B;
task body A is
begin
Disable Interrupts; -— turn off interrupt handling
e -- critical region
Enable Interrupts; -— A leaves critical region
. .. a -- remaining program code
end A;
task body B is
begin
Disable Interrupts; -— turn off interrupt handling
. -—- critical region
Enable Interrupts; -—- B leaves critical region

ce -— remalning program code
end B;

CHALMERS |

UNIVERSITY OF GOTHENBURG

Atomic processor instruction

In multi-processor systems with shared memory, a test-and-set
instruction is used for handling critical regions.

A test-and-set instruction is a processor instruction that reads
from and writes to a variable in one atomic operation.

The functionality of the test-and-set instruction can be illustrated
by the following Ada procedure:

procedure testandset (lock, previous : in out Boolean) is

begin
previous := lock; -— lock 1s read and 1its value saved
lock := true; —-— lock 1s set to "true”

end testandset;

The combined read and write of 1ock must be atomic. In a multi-
processor system, this is guaranteed by locking (disabling
access to) the memory bus during the entire operation.

CHALMERS | &) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Atomic processor instruction

lock : Boolean := false; -— shared flag
task A, B;
task body A is

previous : Boolean;
begin

loop

testandset (lock, previous); -— A walts 1f critical region 1s busy
exit when not previous;
end loop;

e -— critical region
lock := false; -— A leaves critical region
-—- remalning program code

end A;
task body B is

previous : Boolean;
begin

loop

testandset (lock, previous); -—- B waits 1if critical region 1is busy
exit when not previous;
end loop;

. -—- critical region

lock := false; -—- B leaves critical region
ce -— remalning program code
end B;

CHALMERS | &) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Atomic processor instruction

lock : Boolean := false; -— shared flag
task A, B;
task body A is

previous : Boolean;
begin

loop

testandset (lock, previous); -— A walts 1f critical region 1s busy
exit when not previous;
end loop;

.. -— critical region
[lock := false;) -- A leaves critical region
-—- remalning program code

end A;
task body B is

previous : Boolean;
begin

loop

testandset (lock, previous); -—- B waits 1if critical region 1is busy
exit when not previous;
end loop;

. .. -—- critical region
[lock := false;) -- B leaves critical region
-- remalning program code

end B;

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Call-back functionality

Operations for resource management:

e acquire: torequest access to a resource
e release: torelease a previously acquired resource

The acquire operation can be either blocking or non-blocking:

e Blocking: the task that calls acquire is blocked if the resource
is not available. Blocked tasks are stored in a queue, in FIFO or
priority order. When the requested resource becomes available
one of the blocked tasks is unblocked and is activated via a call-
back functionality.

e Non-blocking: acquire returns a status code to the calling task
indicating whether access to the resource was granted or not.

To support the reactive programming paradigm (that is, no
“busy waiting” code) we should use the blocking approach.

CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Call-back functionality

Protected objects:

protected type Exclusive Resource 1is
entry Acquire;
procedure Release;

private
Busy : Boolean := false;

end Exclusive Resource;

protected body Exclusive Resource is

entry Acquire when not Busy 1is

begin
Busy := true;

end Acquire;

procedure Release is

begin , If task blocks here, call-back
Busy := false;)) -

information must be saved in

end Release;
end Exclusive Resource; order to wake up the task later.

CHALMERS |

UNIVERSITY OF TECHNOLOGY

{ }IHHVERHTYOFGOTHENBURG

Call-back functionality

Monitors:

monitor body Exclusive Resource 1is

Busy : Boolean := false;
notBusy: condition variable;

procedure Acquire is

begin
if Busy then Wait (notBusy); end if;
Busy := true;

end Acquire;

procedure Release is
begin
Busy := false; If task blocks here, call-back
Send (notBusy) ; . . :
information must be saved in

end Release;
order to wake up the task later.

end Exclusive_Resource;

¢ UNIVERSITY OF GOTHENBURG

CHALMERS |
Call-back functionality
Semaphores:
protected type Semaphore (Initial : Natural := 0) is

entry Wait;
procedure Signal;

private
Value : Natural := Initial;

end Semaphore;

protected body Semaphore is
entry Wait when Value > 0 is
begin
Value := Value - 1;
end Wait;

procedure Signal is
begin If task blocks here, call-back

Value := Value + 1; information must be saved in

end Signal;
end Semaphore; order to wake up the task later.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Call-back functionality

Call-back information:

e As shown in the previous examples, the implementation
of resource management mechanisms such as protected
objects, monitors and semaphores make use of call-back
information to be able to wake up a blocked task when the
requested resource becomes available.

e Since multiple tasks may want to request access to a
resource that is currently unavailable, call-back information
for each of these tasks must be stored in a suitable data
structure, e.qg., a queue.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Call-back functionality

Call-back functionality in TinyTimber:

e TinyTimber has inherent method call blocking and call-back
functionality, via the syNcC () call, in its implementation of an
object (with its internal state) as an exclusive resource.

e However, TinyTimber cannot perform blocking or call back
based on conditions relating to the contents of an object.

If a generic acquire/release type of mechanism for
shared resources, such as semaphores, is to be added
to TinyTimber a separate call-back functionality must be
implemented for that mechanism (= this week’s exercise).

e TinyTimber also has call-back functionality in the device
drivers for the serial port and CAN interfaces, in support
of the reactive programming paradigm.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Call-back functionality

Device driver programming:

e A device driver is a software module that allows the user
to interact with peripheral devices, such as serial ports or
network interfaces, in a hardware-independent fashion.

e The device driver conceals the details in the cooperation
between software and hardware by defining a set of
operations on the device, e.q., initialize, read, and write.

e The device driver also contains handler code for any
hardware interrupt that may be associated with the
peripheral device. If a task may block while waiting for
an event to happen on the device, e.g., data becomes
available, the interrupt handler will require call-back
information from the user of the device.

UNIVERSITY OF GOTHENBURG

o
CHALMERS | ¢
)
)
UNIVERSITY OF TECHNOLOGY

Interrupt handlers in TinyTimber

Guidelines for interrupt handling in TinyTimber:

e |nterrupts must be handled using objects.

e An interrupt handler must be written as a method in
the object.

e Data being processed by the interrupt handler must
be stored in state variables in the object.

e Reading and writing such data from the user’s program
code must be done via synchronous calls to methods in

the object, i.e., sYNC () calls.

We will now study the device driver for the serial port (SCI)
In more detail.

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Interrupt handlers in TinyTimber

Example: implementing an SCI interrupt handler:

1. Define class serial, and add state variables for:

* the hardware base address of the device

e call-back information for a method if data received by the
handler needs to be taken care of by the user-level code
(the call back should be done using an async () call)

* necessary local storage (buffers, queues, etc)

2. Define a symbol scT poRrRTO representing the hardware
base address of the device.
#define SCI PORTO device hardware address

3. Create an object sci0 of class serial, and initialize it with:

* the hardware base address scI PORTO
* any possible call-back information

CHALMERS |

UNIVERSITY OF GOTHENBURG

Interrupt handlers in TinyTimber

Example: implementing an SCI interrupt handler (cont’d):

In file ‘application.c’:

App app = { 1nitObject(), 0, 'X' };

vold reader (App*, 1nt);

Serial sciO = initSerial (SCI PORTO, &app, reader);

void reader (App *self, int c) { // call-back function
SCI WRITE (&sciO, "Rcv: \'");

SCI WRITECHAR (&sciO, c);
SCI WRITE (&sciO, "\'\n");

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Interrupt handlers in TinyTimber

Example: implementing an SCI interrupt handler (cont’d):

4. Write an interrupt handler as a method sci interrupt
and associate it with the object.

5. Declare a symbol sc1 1rQ0 and assign to it the TinyTimber
kernel’s logical number of the hardware interrupt:
#define SCI IRQO interrupt logical number

6. Inform the TinyTimber kernel that the method is a handler
for interrupt sct TrRQO, by making a call to

INSTALL (&sciO, sci interrupt, SCI IRQO);

This should be done before the call to TINYTIMBER ()

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Interrupt handlers in TinyTimber

Example: implementing an SCI interrupt handler (cont’d):

7. Provide an operation sct INIT () that takes care of
performing any remaining initialization of the device.

8. Call sct 1INIT () inthe “kick-off” method that was supplied
as argument to the TINYTIMBER () call.

CHALMERS |

UNIVERSITY OF GOTHENBURG

Interrupt handlers in TinyTimber

Example: implementing an SCI interrupt handler (cont’d):

In file ‘application.c’:

vold startApp (App *self, int arg) {
SCI INIT (&sci0);
SCI WRITE (&sci0O, "Hello, hello...\n");

}

int main() {
INSTALL (&sci0, sci interrupt, SCI IRQO);
TINYTIMBER (&app, startApp, 0);

