UNIVERSITY OF GOTHENBURG

Real-Time Systems

Lecture #4

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology



CHALMERS |

48%)) UNIVERSITY OF GOTHENBURG

Real-Time Systems

* Resource management

/




CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Resource management

Resource management is a general problem that exists
at several levels in a real-time system.

e Shared resources internal to the the run-time system:
— CPU time
— Memory pool (for dynamic allocation of memory)
— Data structures (queues, tables, buffers, ...)
— 1/O device access (ports, status registers, ...)

e Shared resources specific to the application program:
— Data structures (buffers, state variables, databases...)
— Displays (to avoid garbled text if multiple tasks use it)

— Entities in the application environment (seats in a cinema or an
aircraft, a car parking facility, etc)



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Resource management

Classification of resources:

e EXxclusive access: there must be only one user at a time.
— Exclusiveness is guaranteed through mutual exclusion

— Program code that is executed while mutual exclusion applies
Is called a critical region

— Examples: manipulation of data structures or I/O device registers

e Shared access: there can be multiple users at a time.

— Resource manager makes sure that the number of users
are within acceptable limits

— The program code for the resource manager is a critical region

— Classical computer science example:
Dining Philosophers Problem




CHALMERS |

(8% ) UNIVERSITY OF GOTHENBURG

Resource management

Operations for resource management:

acquire: to request access to a resource
release: to release a previously acquired resource

The acquire operation can be either blocking or non-blocking:

Blocking: the task that calls acquire is blocked if the resource

is not available. Blocked tasks are stored in a queue, in FIFO or
priority order. When the requested resource becomes available

one of the blocked tasks is unblocked and is activated via a call-
back functionality.

Non-blocking: acquire returns a status code to the calling task

indicating whether access to the resource was granted or not.



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Resource management

Problems with resource management:
e Deadlock: tasks blocks each other and none of them can use
the resource.

— Deadlock can only occur if the tasks require access to more than
one resource at the same time

— Deadlock can be avoided by following certain guidelines

e Starvation: Some task is blocked because resources are
always assigned to other (higher priority) tasks.

— Starvation can occur in most resource management scenarios

— Starvation can be avoided by granting access to resources in
FIFO order

In general, deadlock and starvation are problems that must
be solved by the program designer!



CHALMERS |

UNIVERSITY OF GOTHENBURG

Resource management

Example #1: Assume that two tasks, A and B, want to use
two different resources at the same time ...

R1, R2 : Shared Resource; )

cack A - A task switch from A to B after
fack body A is this code line causes deadlock.
begin

R1.Acquire;
R2.Acquire;

R2 .Release;
R1.Release;
end A;

task B;

task body B is

begin
R2.Acquire;
R1.Acquire;

R1.Release;
R2 .Release;
end B;



CHALMERS |

UNIVERSITY OF GOTHENBURG

Resource management

Example #1: Assume that two tasks, A and B, want to use
two different resources at the same time ...

R1, R2Z : Shared Resource;

task A;

task body A is

begin
R1.Acquire;
R2.Acquire;

R2 .Release;
R1.Release;

end A; Deadlock can be avoided if the
task B; tasks acquire the resources

task body B is in the same order.
begin

R1.Acquire;
R2.Acquire;

R2 .Release;
R1.Release;
end B;



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Resource management

Example #2: The dining philosophers problem ...

e Five philosophers live together in a house.

e The house has one round dinner table with five plates
of rice.

e There are five sticks available: one stick between every
pair of plates.

e The philosophers alternate between eating and thinking.
To be able to eat the rice, a philosopher needs two sticks.

e Sticks are a scarce resource: only two philosophers can
eat at the same time.

How is deadlock and starvation avoided?



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Resource management

Example #2: The dining philosophers problem ...

e The following solution will cause deadlock if all philosophers
should happen to take the left stick at exactly the same time:

loop
Think;
Take left stick;
Take right stick;
Eat;
Drop left stick;
Drop right stick;
end loop;

e One way to avoid deadlock and starvation is to only allow
four philosophers at the table at the same time.



QO
F~
=
[aa)]
Z
=
T
=
O
O
o
O
D
=
w2
=
-
>
—
Z
=

CHALMERS |

Example #3: A potential issue in our daily life ...




CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Deadlock

Conditions for deadlock to occur:

1. Mutual exclusion
— only one task at a time can use a resource

2. Hold and wait

— there must be tasks that hold one resource at the same time
as they request access to another resource

3. No preemption
— aresource can only be released by the task holding it

4. Circular wait

— there must exist a cyclic chain of tasks such that each task
holds a resource that is requested by another task in the chain



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Deadlock

Guidelines for avoiding deadlock:

1. Tasks should, if possible, only use one resource at a time.

2. 1f (1) is not possible, all tasks should request resources in
the same order.

3. If (1) and (2) are not possible, special precautions should be
taken to avoid deadlock. For example, resources could be
requested using non-blocking calls.

Example: the TinyTimber kernel can detect deadlock situations
when a synchronous call is made. In such situations SYNC () will
not make the intended method call and instead return a value of
(-1) to notify the caller.



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Resource management

Program constructs for resource management:

e Ada 95 uses protected objects.
e Older languages (e.g. Modula-1, Concurrent Pascal) use monitors.
e Java uses synchronized methods, a simplified version of monitors.

When programming in languages (e.g. C and C++) that do not
provide the constructs mentioned above, mechanisms provided by
the real-time kernels or operating system must be used.

e POSIX offers semaphores and methods with mutual exclusion.

e The TinyTimber kernel offers methods with mutual exclusion.

To allow TinyTimber to support general acquire and release
operations a suitable object type (e.g. monitor or semaphore)
must be added to the kernel.




CHALMERS | §
u
)
N
UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Protected objects

Protected objects:

A protected object is a construct offered by Ada95.

A protected object offers operations with mutual exclusion
for data being shared by multiple tasks.

A protected operation can be an entry, a procedure or a
function. The latter is a read-only operation.

Protected entries are guarded by a Boolean expression
called a barrier.

The barrier must evaluate to "true” to allow the entry body
code to be executed. If the barrier evaluates to “false”, the
calling task will block until the barrier condition changes.



CHALMERS | &) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Protected objects

Implementing an exclusive resource in Ada95:

protected type Exclusive Resource is
entry Acquire;
procedure Release;

private
Busy : Boolean := false;

end Exclusive Resource;

protected body Exclusive Resource 1is
entry Acquire when not Busy 1is
begin
Busy := true;
end Acquire;

procedure Release is
begin
Busy := false;
end Release;
end Exclusive Resource;



CHALMERS | ) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Protected objects

R : Exclusive Resource;

task A, B;

task body A is
begin

R.Acquire;
R.Release;
end A;

task body B is
begin

R.Acquire;
R.Release;

End B;



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Monitors

Monitors:

e A monitor is a construct offered by some (older)
languages, e.g., Modula-1, Concurrent Pascal, Mesa.

e A monitor encapsulates data structures that are shared
among multiple tasks and provides procedures to be
called when a task needs to access the data structures.

e Execution of monitor procedures are done under mutual
exclusion.

e Synchronization of tasks is done with a mechanism called
condition variable. Each such variable represents a given
Boolean condition for which the tasks should synchronize.




(8% ) UNIVERSITY OF GOTHENBURG

CHALMERS |

Monitors

Monitors vs. protected objects:

e Monitors are similar to protected objects in the sense that
both are objects that can guarantee mutual exclusion
during calls to procedures manipulating shared data.

e The difference between monitors and protected objects are
in the way they handle synchronization:

— Protected objects use entries with barriers
— Monitors use condition variables

e Java offers a monitor-like construct:
— Java’s synchronized methods correspond to monitor procedures

— However, Java has no mechanism that corresponds to condition
variables; a thread that gets woken up must check manually
whether the resource is available.



(8% UNIVERSITY OF GOTHENBURG

CHALMERS |

Monitors

Operations on condition variables:

wait (cond var): the calling task is blocked and is inserted into
a FIFO queue corresponding to cond var.

send (cond var): wake up first task in the queue corresponding
to cond var. No effect if the queue is empty.

Properties:

1. After a call to wait the monitor is released (e.g., other tasks may
execute the monitor procedures).

2. A call to send must be the last statement in a monitor procedure.



CHALMERS | &) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Monitors

Implementing an exclusive resource with a monitor:

monitor body Exclusive Resource 1is

Busy : Boolean := false;
notBusy: condition variable;

procedure Acquire is

begin
if Busy then Wait (notBusy); end if;
Busy := true;

end Acquire;

procedure Release is
begin
Busy := false;
Send (notBusy) ;
end Release;

end Exclusive_Resource;



¢ UNIVERSITY OF GOTHENBURG

CHALMERS |

UNIVERSITY OF TECHNOLOGY

Monitors

R : Exclusive Resource;

task A, B;

task body A is
begin

R.Acquire;
R.Release;
end A;

task body B is
begin

R.Acquire;
R.Release;

End B;



CHALMERS |

UNIVERSITY OF GOTHENBURG

Semaphores

Semaphores:

e A semaphore is a passive synchronization primitive that is
used for protecting shared and exclusive resources.

e Synchronization is done using two operations, wait and

signal. These operations are atomic (indivisible) and
are themselves critical regions with mutual exclusion.

e Semaphores are often used in run-time systems to
Implement more advanced mechanisms, e.g., protected
objects or monitors.



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Semaphores

A semaphore s is an integer variable with value domain > 0
Atomic operations on semaphores:
Init (s, n): assign s an initial value n

Wait (s) : if s > 0 then
s :=s - 1;
else
"block calling task”;

Signal (s): if ”“any task that has called Wait(s) is blocked”
then
"allow one such task to execute”;
else
s :=s + 1;



CHALMERS | {8%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Semaphores

Implementing semaphores in Ada95:

protected type Semaphore (Initial : Natural := 0) is
entry Wait;
procedure Signal;

private

Value : Natural := Initial;
end Semaphore;

protected body Semaphore is
entry Wait when Value > 0 is

begin

Value := Value - 1;
end Wait;
procedure Signal is
begin

Value := Value + 1;

end Signal;
end Semaphore;



CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Semaphores

R : Semaphore (1) ;
task A, B;

task body A is
begin

R.Wait;
é:éignal;
end A;
task body B is
begin
R.Wait;
é:éignal;

end B;



