
A gentle introduction

The overall purpose of a Timber program is to react to events sent to it from its execution
environment. This process is potentially infinite, and the order of external events is also not
generally known in advance.

To capture this intuition, Timber defines its primary run-time structure to be a set of
interconnected reactive objects, that each encapsulate a piece of the global program state. A
reactive object is a passive entity defined by a set of methods, whose relative execution
order is left to be determined by clocks and external events. Between invocations, a Timber
object just maintains its state, ready to react when a method call occurs. Like real-world
objects, Timber objects evolve in parallel, although the methods belonging to a particular
object are always run under mutually exclusion. Concurrency as well as state protection is
thus implicit in Timber, and does not require any direct mentioning of threads or other
concurrency constructs.

Objects are created by instantiating a class. Methods are either asynchronous or
synchronous, as denoted by the keywords action and request, respectively. The most
radical property of Timber is that it is free from any indefinitely blocking constructs;
because of this, a Timber object is always fully responsive when not actively executing
code. This process structure should be contrasted to the common infinite event-loop pattern
in other languages, where blocking system calls are used to partition an otherwise linear
thread of execution into event-handling fragments.

Each reaction in Timber is furthermore associated with a programmable timing window,
delimited by upper and lower constraints called the baseline and the deadline of a reaction.
The semantics of these constraints is formally defined like the rest of the language, and
serves the purpose of codifying the legal behavior of a Timber system in a platform-
independent manner. The timing window is inherited by each method call by default, but
can also be manually set by the programmer; using the constructs after for moving a
window forward with an offset, and before for setting a timing window width. Both values
are measured relative to the fixed reference-points of baselines, never from the point in time
a method call is actually made. Posting a message to arrive at some specific time into the
future is thus easy in Timber, and defining a periodic process amounts to the special case of
repeating such a pattern recursively.

The following Timber example shows a simple implementation of a sonar driver that is
coupled to an alarm. The specifications assumed state that a sonar beep should be 2
milliseconds long, with a maximum jitter of 50 microseconds, and that the required
accuracy of the measurements dictate that time-stamps associated with beeps must also be
accurate down to the 50 microsecond range. The figure below illustrates the timing
windows constraining the involved methods ping  and stop, and thus, indirectly, the actual
beep produced.



Furthermore, the sonar is supposed to sound every 3 seconds, and the deadline for reacting
to off-limit measurements is 5 milliseconds. These specifications look as follows when
translated into Timber code:

 
sonar port alarm critical =
   class
      tm = new timer
      count := 0
      ping = before (microsec 50) action
                port.write beep_on
                tm.reset
                after (millisec 2) stop
                after (sec 3) ping
      stop = before (microsec 50) action
                port.write beep_off
      echo = before (millisec 5) action
                diff <- tm.sample
                if critical diff then
                    count := count + 1
                    alarm count
      result { interrupt = echo, start = ping }

The header sonar port alarm critical  here defines function sonar  to take
port  (the port controlling the beeping hardware), alarm  (the method to call in
emergency) and critical  (a boolean function on time values) as parameters. The shown
class construct creates a local timer  object instance tm , initializes a state variable
count  to 0, and furthermore defines the asynchronous methods ping , stop  and
echo . The resulting interface is a record containing methods named interrupt  and
start , which are just exported aliases for the local method names echo  and ping ,
respectively.

A timer  object allows the time between the current baseline and the baseline of the last
timer reset to be measured. This is utilized in method echo , where the time since the last
invocation of ping  (bound to differ from the beep emission by at most 50 microseconds)
is sampled and analyzed to determine if an alarm should be sent. When this happens, the
provided alarm method is given the accumulated alarm count as an argument. Notice how
each ping  causes two future events to be triggered: one call to stop  2 milliseconds from
the current baseline, and a recursive invocation of ping  itself after 3 seconds to keep the
periodic sonar activity alive.



As an example of how a sonar object might be instantiated to run on a bare-metal embedded
system, here follows an example of the root declaration for such a system.

root world = do
    regs = new register_array world
    irq = new interrupt_vector world
    crit d = d < millisec 15
    al = new alarm (regs!com_port_addr)
    so = new sonar (regs!sonar_port_addr) al crit
    irq.install [so.start, so.interrupt, al.ack]

The root of a Timber system is a simple procedure that essentially creates the desired
structure of reactive objects and makes it known to the external world. The world itself is
provided by the run-time system as an abstract handle, on top of which specific interfaces
matching the intended working environment can be built. For a bare metal platform this
amounts to a register array (indexed using the operator ! ) and an interrupt vector, but the
set of available world interfaces generally varies between the supported platforms. The
POSIX environment, for example, is a full-featured operating system interface, that among
other things allows installation of event-handlers on arbitrary data streams.

The semantics of Timber allows a natural implementation in terms of an EDF scheduler,
where the asynchronous methods of a program correspond to tasks, objects take the role of
shared resources, and all methods (synchronous as well as asynchronous) simply denote
code sequences that require exclusive access to the owning object. Timber also relegates
management of its garbage-collected heap to idle time, thus facilitating direct application of
known schedulability and execution time analysis methods. The implementation technique
used furthermore allows both objects and messages to be created in large numbers without
incurring any run-time penalty, at the same time as the number of threads behind the scenes
(i.e., the number of execution contexts and stacks) can be limited to the maximum
preemption depth a system is expected to need.

Additional features of Timber not covered here include a strong static type system
supporting subtyping, parametric polymorphism with overloading, and automatic type
inference; a rich set of heap-allocated immutable datatypes; first-class citizenship to all
values (meaning that methods as well as classes can be sent as arguments and stored inside
data structures); and a referentially transparent evaluation semantics in the purely functional
tradition.



History

Timber is a direct descendant of O'Haskell , which was developed at Chalmers University of
Technology in 1999. O'Haskell extended the lazy functional programming language
Haskell  with object-oriented concepts such as methods, classes and subtyping, while
retaining the purely functional execution model of its ancestor. It also introduced the
characteristic notion of concurrent reactive objects that Timber subsequently has adopted.

The Timber language attained its main shape during the Timber project, which was run at
the Oregon Graduate Institute between 2000 and 2003 as part of the DARPA PCES
program (Program Composition for Embedded Systems). Here the semantics of time-
constrained reactions was developed, and it was also decided to abandon the lazy execution
model of Haskell and O'Haskell in favor of a more standard (i.e., strict) parameter passing
mechanism; primarily for the purpose of facilitating more predictable execution times. A
prototype Timber interpreter was developed at this time, based on a similar implementation
of the O'Haskell language.

After 2003, work on the Timber language regrettably had to continue at a slower pace,
primarily concentrating on completing the implementation of the Timber compiler. Since
2007, however, the project has regained momentum, and the language is now being actively
developed and maintained by groups and individuals at Luleå University of Technology,
Chalmers University of Technology, University of Kansas and Portland State University.
Version 1.0 of the Timber compiler was publicly released in the fall of 2008.
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