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Provide input data

In practice
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Modern programs
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Why?
- Because modern computers are components among other 

evolving components like 
- Keyboards, mice and displays 
- Human users behind these components 
- Network interfaces 
- Other computers behind these components 
- Sensors and actuators 
- Real physical objects behind these components 

- Because a modern computer program is very rarely in 
superior control of its environment
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Dealing with evolving input
- Approach 1:   New input is read from the environment 

at the initiative of the program 
- (As often as "possible"...) 
- (Or in an ad hoc fashion...) 
- Or at well-defined times! 

- Approach 2:   New input is written into the program  
at the initiative of the environment 
- (Just to be stored somewhere...) 
- Or guaranteed to trigger an associated reaction!
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Approach 1:  Time-triggered systems

- Idea: read input at pre-defined times, chosen to match the 
expected variations in input 

- Obvious special case: read input every T time units 
(the periodic process) 

- What happens between the computations? Nothing – the 
CPU can just shut down! 

- How choose T? Use Nyqvist's sampling theorem! 

- What if there are multiple inputs? 
- Let the highest frequency input determine T... 
- Or run multiple periodic processes in parallel!

7



Periodic time-triggered systems
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Adding input/output
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Approach 2: Event-triggered systems

- Idea: let the environment decide when input has changed 
enough to require some program action;  
i.e., when an event has occurred 

- Well-known concept on the computer hardware level: the 
external interrupt! 

- What happens between the event processing phases? 
Nothing – the CPU can just shut down! 

- What if there are events with overlapping reactions? 
- Buffer up the events... 
- Or run multiple event-handlers in parallel!
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Event-triggered systems
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Adding input/output
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Adding input/output
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New option: let the events 
carry input data as well

13



Adding input/output
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New option: let the events 
carry input data as well
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Chains of events
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Time- vs. event-triggered systems

Time-triggered systems 
observe the environment 
and take action on basis 
of the changes they see.

Event-triggered systems 
are controlled by the environ- 
ment, and take action when the 
environment so decides.

Suitable when input may be 
constantly changing and all 
value are equally interesting, 
like in control systems

Suitable when interesting input 
values are highly irregular, or 
when it is already discrete, like 
in communication systems
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(1) If we allow events with offsets...
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(2) If we allow self-referencing...
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(3) If startup is made explicit...
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Explicit startup event!
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Then:
Time-triggered behavior emerges as a special case of an 

event-triggered system!

Time-triggered 
systems

Event- 
triggered 
systems
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Time-triggerering as a special case

- A time-triggered behavior is just a chain of event 
reactions, separated by well-defined time offsets 

- A periodic process is such a chain-reaction that oscillates 
(produces as many new events as those it reacts to) 

- Many hybrid variants exist between the extremes of one 
single reaction and the oscillating periodic behavior 

- Allows us to seamlessly study trade-offs between the 
basic approaches 

- Note: not the commonly taught real-time systems view! 

- It is however the view we find in TinyTimber!
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TinyTimber
- A run-time kernel + a design style for programming 

embedded real-time systems in C 

- Also a cut-down variant of the programming language 
Timber (timber-lang.org) 

- Basic ideas: 
- Events can be triggered with time offsets 
- Events = asynchronous method calls 
- Methods belong to objects  
- Objects = protected sets of state variables 
- Also: synchronous method calls (mimic read/write)
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A TinyTimber run-time scenario
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int inc( Counter *self, int arg ) {  
 if (self->enabled)  
  self->value = self->value + arg;  
 return self->value;  
}  
int enable( Counter *self, int arg ) {  
 self->enabled = arg;  
 return 0;  
} 

In concrete C

Counter cA = initCounter(1); 
Counter cB = initCounter(0);

typedef struct {  
 Object super;  
 int value;  
 int enabled;  
} Counter;

Creating global instances

Method definitions

Contructor definition

#define initCounter(en) { initObject(), 0, en } 

State layout
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... ASYNC( &cA, inc, 1 ); ... 

... int r = SYNC( &cA, inc, 0 ); ... 

... AFTER( SEC(2), &cB, enable, 1 ); ... 

Calling methods
Asynchronous call

Synchronous call

Asynchronous call with offset

Top-level application setup

MyApplication app = initMyApplication(); 

int main() { 
   INSTALL( &app, compute, IRQ1 ); 
   INSTALL( &cB, inc, IRQ2 ); 
   return TINYTIMBER( &app, reset, 0 ); 
}
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Local state

Run-time execution model
In parallel

Mutually 
exclusive
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26



Methods

Finite sequences that 
- Read and write local state 
- Call other methods 
- Perform local computations

No indefinitely blocking operations, 
no infinite loops: 

objects sleep between temporary activity

The classical OO intuition recast to a concurrent setting!

Local state

Method

Method
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Timing reference
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Timing reference
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Timing reference
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Baseline move
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Periodicity
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Timing windows
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Constrained periodicity
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Use pointer to 
circumvent one-arg-only 
restriction.  
(Only safe with SYNC)

A clock
typedef struct { 
    Object super; 
    int sec, min, hour; 
} Clock; 

#define initClock()    { initObject(), 0, 0, 0 } 

int tick( Clock *self, int arg ) { 
    self->sec++; 
    if (self->sec == 60) { self->sec = 0; self->min++; } 
    if (self->min == 60) { self->min = 0; self->hour++; } 
    AFTER( SEC(1), self, tick, 0 ) 
} 

int sample( Clock *self, CalendarTime *arg ) { 
    arg->sec = self->sec; arg->min = self->min; arg->hour = self->hour; 
}

typedef struct { 
    int sec, min, hour; 
} CalendarTime;
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A clock

Clock clock = initClock(); 

....

clock
↪

tick

sample

tick

....

TINYTIMBER( &clock, tick, 0 );

Q: Will the clock 
start oscillating 
by itself?

A: No...

Ignition event!
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An on-off clock
typedef struct { 
    Object super; 
    int sec; 
    int enabled; 
} OnOffClock; 

#define initOnOffClock()    { initObject(), 0, 1 } 

int tick( OnOffClock *self, int arg ) { 
    if (self->enabled) 
        self->sec = self->sec + 1; 
    AFTER( SEC(1), self, tick, 0 ) 
} 

int sample( OnOffClock *self, int arg ) {   return self->sec;   } 

int enable( OnOffClock *self, int en ) {   self->enabled = en;   } 
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An on-off clock

tick(...) enable(..., 0) enable(..., 1)

No increments!

40



A different on-off clock
typedef struct { 
    Object super; 
    int sec, enabled; 
} OnOffClock2; 

#define initOnOffClock2()    { initObject(), 0, 1 } 

int tick( OnOffClock2 *self, int arg ) { 
    if (self->enabled) { 
        self->val = self->val + 1; 
        AFTER( SEC(1), self, tick, 0 ) 
    } 
} 

int sample( OnOffClock2 *self, int arg ) {   return self->sec;   } 

int enable( OnOffClock2 *self, int en ) {     
    if (en && !self->enabled)   ASYNC( self, tick, 0 ); 
    self->enabled = en; 
}
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A different on-off clock

tick(...) enable(..., 0) enable(..., 1)

Ghost tick Non-existent

42



Timber

• The big brother of TinyTimber 

• Full-featured language: 

• Higher-order & strongly typed 

• Dynamic object creation, garbage-collected heap 

• Haskell-like syntax (but no laziness!) 

• Purely functional computation sub-language 

• A real-time successor to O'Haskell (an OO Haskell ext.) 

• Developed in part by groups & individuals at Chalmers, 
Luleå U. of T., Oregon Grad. Inst., Kansas State U.
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Compiling Timber
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TinyTimber offers: 

• Lightweight real-time facilities for C 

• Implicit concurrency 

• Implicit state protection 

• Object-oriented program structure 

• Robust timing semantics 

Main conceptual treshold for programmers:  Reactivity!  

The big win of reactivity:  
Modular composition of real-time systems  

with composable timing!

Wrapping up
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