TinyTimber

Johan Nordlander
johan.nordlander@dataductus.se

Data Ductus AB / Chalmers

Real-Time Systems EDA223
Jan 24, 2019

The classical program

Provide input data

>

Ignore further input

Defer early output

e

stop

Collect output data

Time

Time

In practice

Provide input data

+ L
] q

+

= oG ~>
@)

+—

Q.

Q)

XX

-S <>—
a S

<

i (Coon)

stop

4

O

— ‘O
Q)

'

o

A,

4+

> o

-

-+

-

(@ N

4

—l -
O

Collect output data

Modern programs

FNd}no DUIAJOA2 2onpouJd Lsnyy

I

TRIT

bbb

Fndur DUIA[OAS 0} 2A14ISU2S

Time

Why?

- Because modern computers are components among other
evolving components like

- Keyboards, mice and displays

- Human users behind these components

- Network interfaces

- Other computers behind these components

- Sensors and actuators

- Real physical objects behind these components

- Because a modern computer program is very rarely in
superior control of its environment

Dealing with evolving input

- Approach 1: New input is read from the environment
at the initiative of the program

- (As often as "possible"...)
- (Or in an ad hoc fashion...)
- Or at well-defined times!
- Approach 2: New input is written into the program
at the initiative of the environment
- (Just to be stored somewhere...)
- Or guaranteed to trigger an associated reactionl

Approach 1. Time-triggered systems

- Idea: read input at pre-defined times, chosen to match the
expected variations in input

- Obvious special case: read input every T time units
(the periodic process)

- What happens between the computations? Nothing - the
CPU can just shut downl

- How choose T? Use Nygvist's sampling theorem!

- What if there are multiple inputs?
- Let the highest frequency input determine T...
- Or run multiple periodic processes in parallel!

Periodic time-triggered systems

T2

L /
Time \ parallel

Adding input/output

Read sequence Write sequence

A
-—
o— -
S —

T

v
—
o— -
S —

v Note how each invocation corresponds to the

Time classic program model

9

Approach 2: Event-triggered systems

- Idea: let the environment decide when input has changed
enough to require some program action;
i.e., when an event has occurred

- Well-known concept on the computer hardware level: the
external interrupt!

- What happens between the event processing phases?
Nothing - the CPU can just shut down!

- What if there are events with overlapping reactions?
- Buffer up the events...
- Or run multiple event-handlers in parallel

Event-triggered systems

RRER 2

7

RS 2

\\\\\\paraHel—%——~——’”””""

RENE o
R

|

buffered

Adding input/output

......... >

—
—
—

—
-—
......... >
—

S —_—

v Again: note how each invocation corresponds

Time to the classic program model!

Adding input/output

>
New option: let the events
carry input data as well

>

Time

Adding input/output

>
>
>
New option: let the events
carry input data as well
N New option: let some write
operations ftrigger new events!
>

Time

14

Chams of events

parallel

S / \

>

/

buffered

Time

Time- vs. event-triggered systems

Time-triggered systems
observe the environment
and take action on basis
of the changes they see.

Suitable when input may be
constantly changing and all
value are equally interesting,
like in control systems

16

Event-triggered systems

are controlled by the environ-
ment, and take action when the
environment so decides.

Suitable when interesting input
values are highly irregular, or
when it is already discrete, like
In communication systems

(1) If we allow events with offsets...

A time-triggered An even’r.—’rr‘iggered |

v
system system with offsets

Time

(2) If we allow self-referencing...

T — > T
Y C é X
T — O |7
Y C é X
T — O |7
! A time-triggered A self—r'efer'.encing event-
system triggered system with offsets

Time

(3) If startup is made explicit...

Must have started at some point! Explicit startup event!

—_ A > A

T — D T
! G — !

T — T
! G — !

T — O T
\ Adinfinitum.. |

A time-triggered A self-referencing event-
system triggered system with offsets

v
Time

19

Then:

Time-triggered behavior emerges as a special case of an
event-triggered system!

Time-triggered

systems

20

Time-triggerering as a special case

- A time-triggered behavior is just a chain of event
reactions, separated by well-defined time offsets

- A periodic process is such a chain-reaction that oscillates
(produces as many new events as those it reacts to)

- Many hybrid variants exist between the extremes of one
single reaction and the oscillating periodic behavior

- Allows us to seamlessly study trade-offs between the
basic approaches

- Note: not the commonly taught real-time systems view!

- It is however the view we find in Tiny Timber!

21

Tiny Timber

- A run-time kernel + a design style for programming
embedded real-time systems in C

- Also a cut-down variant of the programming language
Timber (timber-lang.org)

- Basic ideas:
- Events can be triggered with time offsets
- Events = asynchronous method calls
- Methods belong to objects
- Objects = protected sets of state variables
- Also: synchronous method calls (mimic read/write)

22

A TinyTimber run-time scenario

Time

asynchronous calls

i

)

buffered

\\\\\\\\\\\\\\\;iifsTaTefuIfij;//////////////

—

with offseTE

syachronous

paused

call

objects

In concrete C

Contructor definition

typedef struct { #define initCounter(en) { initObject(), 0, en }
Object super;
int value; int inc(Counter *self, int arg) {
int enabled; if (self->enabled)
} Counter; self->value = self->value + arg;
\ return self->value;
State layout) |
int enable(Counter *self, int arg) {
self->enabled = arg;
Method definitions — | return O:
}

Counter cA = initCounter(1);
Counter cB = initCounter(0); | ——Creating global instances

24

Calling methods

.. ASYNC(&cA, inc, 1); ... —— Asynchronous call
.. int r=SYNC(&cA, inc,0); ... —— Synchronous call
.. AFTER(SEC(2), &cB, enable, 1); ... | — Asynchronous call with offset

Top-level application setup

MyApplication app = initMyApplication();

int main() {
INSTALL(&app, compute, IRQ1);
INSTALL(&cB, inc, IRQ2);
return TINYTIMBER(&app, reset, O);

}

25

Run-time execution model

o In parallel
Mutually Object A
exclusive
Local state
\ Object B
o MBIECE] - J Local state
External w Asynchronous W
events Method 2 J\ { Method 3 J —

S Messages External
Y ”C/?PonOUS [j reactions
MZThOd 4 -

.

(D)

AsynchronousUdelayed

26

Methods

Finite sequences that

- Read and write local state

Local state
/' - Call other methods

[Method J/ - Perform local computations

N
Method / No indefinitely blocking operations,

N y no infinite loops:

objects sleep between temporary activity

The classical OO intuition recast to a concurrent setting!

27

Timing reference

Baseline

Timing reference

m2

SYNC(&o, m2.a) 3

m

Baseline

Timing reference

m2

v ASYNC(&0, m2, a)

m

Baseline

Baseline move

T

m2

AFTER(T, &0, m2, a)

Baseline 1 Baseline 2

31

Periodicity

T z T
< > >
AFTER(T, self, m,a) AFTER(T, self, m,)
4 : Y : \/
m m

Baseline n Baseline n+1

32

Timing windows

d

A

Baseline Deadline

Window resize

D

m2

BEFORE(D, &0, m2, a) »

m

A

Baseline Deadline d Deadline D

34

Window move

T

< >

d 5 5 m2

:(> -

. SEND(T, D, &0, m2, a) :

Baseline Deadline d Baseline +T Deadline D

35

Constrained periodicity

_ T g T

é()E(

D | D
<) (>
SEND(T, D, self, m,a) SEND(T, D, self, m, a)
Y , v : \/
m m
>

Baseline n Baseline n+l

Deadline n Deadline n+l

36

A clock

typedef struct {

Object super;
int sec, min, hour; typedef struct {
} Clock: ' I int sec, min, hour;

} CalendarTime;
#define initClock() { initObject(),0,0,0}

int tick(Clock *self, int arg) { Use pointer fo

self->sec++: circumvent one-arg-only

. : triction
if (self->sec == 60) { self->sec = O; self->min++; } res -
if (self->min == 60) { self->min = O; self->hour++; } (Only safe with SYNC)
AFTER(SEC(1), self, tick, O)
}

int sample(Clock *self, CalendarTime *arg) {
arg->sec = self->sec; arg->min = self->min; arg->hour = self->hour;

}

37

A clock

Clock clock = initClock();
Q: Will the clock < > ‘

start oscillating -
by itself?

TINYTIMBER(&clock, tick, 0); fick

A: No...

sample

Ignition event!

38

An on-off clock

typedef struct {
Object super;
iInt sec;
int enabled;

} OnOffClock;

#define initOnOffClock() { initObject(), 0,1}
int tick(OnOffClock *self, int arg) {
if (self->enabled)
self->sec = self->sec + 1;

AFTER(SEC(1), self, tick, 0)
}

int sample(OnOffClock *self, int arg) { return self->sec; }

int enable(OnOffClock *self, int en) { self->enabled = en; }

39

An on-off clock

LT L]

| |

tick(...) enable(..., 0) enable(..., 1)

A different on-off clock

typedef struct {
Object super;
int sec, enabled;
} OnOffClock2;

#define initOnOffClock2() { initObject(), 0,1}

int tick(OnOffClock2 *self, int arg) {
if (self->enabled) {
self->val = self->val + 1;
AFTER(SEC(1), self, tick, O)
}
}

int sample(OnOffClock2 *self, int arg) { return self->sec; }

int enable(OnOffClock2 *self, int en) {
if (en && Iself->enabled) ASYNC(self, tick, 0);
self->enabled = en;

}

41

A different on-off clock

Timber

The big brother of TinyTimber

Full-featured language:

* Higher-order & strongly typed

* Dynamic object creation, garbage-collected heap

* Haskell-like syntax (but no laziness!)

* Purely functional computation sub-language

A real-time successor to O 'Haskell (an OO Haskell ext.)

Developed in part by groups & individuals at Chalmers,
Lulea U. of T., Oregon Grad. Inst., Kansas State U.

43

Compiling Timber

Timber
compiler

C compiler and
linker

TinyTimber: C API and
programming model

44

Wrapping up

TinyTimber offers:
* Lightweight real-time facilities for C

* Implicit concurrency

* Implicit state protection
* Object-oriented program structure

* Robust timing semantics

Main conceptual treshold for programmers: Reactivity!

The big win of reactivity:

Modular composition of real-time systems
with composable timing!

45

