
TinyTimber
Johan Nordlander

johan.nordlander@dataductus.se
Data Ductus AB / Chalmers

Real-Time Systems EDA223

Jan 24, 2019

1

The classical program

Time

Provide input data

Collect output data

start

stop

Ig
no

re
 f

ur
th

er
 in

pu
t

D
ef

er
 e

ar
ly

 o
ut

pu
t

2

Provide input data

In practice

Time

Collect output data

start

stop

In
pu

t
ke

pt
 c

on
st

an
t

O
ut

pu
t

no
t

lo
ok

ed
 a

t↪
↪

↪

3

Modern programs

Time

Se
ns

it
iv

e
to

 e
vo

lv
in

g
in

pu
t

M
us

t
pr

od
uc

e
ev

ol
vi

ng
 o

ut
pu

t

↪
↪

↪

↪

4

Why?
- Because modern computers are components among other

evolving components like
- Keyboards, mice and displays
- Human users behind these components
- Network interfaces
- Other computers behind these components
- Sensors and actuators
- Real physical objects behind these components

- Because a modern computer program is very rarely in
superior control of its environment

5

Dealing with evolving input
- Approach 1: New input is read from the environment 

at the initiative of the program
- (As often as "possible"...)
- (Or in an ad hoc fashion...)
- Or at well-defined times!

- Approach 2: New input is written into the program  
at the initiative of the environment
- (Just to be stored somewhere...)
- Or guaranteed to trigger an associated reaction!

6

Approach 1: Time-triggered systems

- Idea: read input at pre-defined times, chosen to match the
expected variations in input

- Obvious special case: read input every T time units 
(the periodic process)

- What happens between the computations? Nothing – the
CPU can just shut down!

- How choose T? Use Nyqvist's sampling theorem!

- What if there are multiple inputs?
- Let the highest frequency input determine T...
- Or run multiple periodic processes in parallel!

7

Periodic time-triggered systems

Time

T1

T2

T3

parallel

8

Adding input/output

Time

T

Read sequence Write sequence

Note how each invocation corresponds to the  
classic program model

↪
↪
↪

↪
↪
↪

9

Approach 2: Event-triggered systems

- Idea: let the environment decide when input has changed
enough to require some program action;  
i.e., when an event has occurred

- Well-known concept on the computer hardware level: the
external interrupt!

- What happens between the event processing phases?
Nothing – the CPU can just shut down!

- What if there are events with overlapping reactions?
- Buffer up the events...
- Or run multiple event-handlers in parallel!

10

Event-triggered systems

Time

parallel

buffered

11

Adding input/output

Time

↪
↪
↪

↪
↪

Again: note how each invocation corresponds 
to the classic program model!

12

Adding input/output

Time

↪
↪
↪

↪
↪

New option: let the events
carry input data as well

13

Adding input/output

Time

↪
↪
↪

↪
↪

New option: let some write
operations trigger new events!

New option: let the events
carry input data as well

14

Chains of events

Time

parallel

buffered

15

Time- vs. event-triggered systems

Time-triggered systems
observe the environment
and take action on basis
of the changes they see.

Event-triggered systems
are controlled by the environ-
ment, and take action when the
environment so decides.

Suitable when input may be
constantly changing and all
value are equally interesting,
like in control systems

Suitable when interesting input
values are highly irregular, or
when it is already discrete, like
in communication systems

16

(1) If we allow events with offsets...

Time

T1

T2

A time-triggered
system

T1

T2

An event-triggered
system with offsets

17

(2) If we allow self-referencing...

Time

T T

A self-referencing event-
triggered system with offsets

T T

TT

A time-triggered
system

18

(3) If startup is made explicit...

T

T

T

Time

T

T

T

A time-triggered
system

A self-referencing event-
triggered system with offsets

Must have started at some point!

Ad infinitum...

Explicit startup event!

19

Then:
Time-triggered behavior emerges as a special case of an

event-triggered system!

Time-triggered
systems

Event-
triggered
systems

20

Time-triggerering as a special case

- A time-triggered behavior is just a chain of event
reactions, separated by well-defined time offsets

- A periodic process is such a chain-reaction that oscillates
(produces as many new events as those it reacts to)

- Many hybrid variants exist between the extremes of one
single reaction and the oscillating periodic behavior

- Allows us to seamlessly study trade-offs between the
basic approaches

- Note: not the commonly taught real-time systems view!

- It is however the view we find in TinyTimber!

21

TinyTimber
- A run-time kernel + a design style for programming

embedded real-time systems in C

- Also a cut-down variant of the programming language
Timber (timber-lang.org)

- Basic ideas:
- Events can be triggered with time offsets
- Events = asynchronous method calls
- Methods belong to objects
- Objects = protected sets of state variables
- Also: synchronous method calls (mimic read/write)

22

A TinyTimber run-time scenario

Time

paused

T

T

stateful
objects

buffered

synchronous
call

asynchronous calls ... with offset

↪

23

int inc(Counter *self, int arg) {
 if (self->enabled)
 self->value = self->value + arg;
 return self->value;
}
int enable(Counter *self, int arg) {
 self->enabled = arg;
 return 0;
}

In concrete C

Counter cA = initCounter(1);
Counter cB = initCounter(0);

typedef struct {
 Object super;
 int value;
 int enabled;
} Counter;

Creating global instances

Method definitions

Contructor definition

#define initCounter(en) { initObject(), 0, en }

State layout

24

... ASYNC(&cA, inc, 1); ...

... int r = SYNC(&cA, inc, 0); ...

... AFTER(SEC(2), &cB, enable, 1); ...

Calling methods
Asynchronous call

Synchronous call

Asynchronous call with offset

Top-level application setup

MyApplication app = initMyApplication();

int main() {
 INSTALL(&app, compute, IRQ1);
 INSTALL(&cB, inc, IRQ2);
 return TINYTIMBER(&app, reset, 0);
}

25

Local state

Run-time execution model
In parallel

Mutually
exclusive

Object A

Object B

Method 4

Method 3

External 
events

External 
reactions

Asynchronous

Synchronous

Messages

↪

Local state

Method 2

Method 1

Asynchronous delayed

26

Methods

Finite sequences that
- Read and write local state
- Call other methods
- Perform local computations

No indefinitely blocking operations,
no infinite loops:

objects sleep between temporary activity

The classical OO intuition recast to a concurrent setting!

Local state

Method

Method

27

Timing reference

Baseline

m

28

Timing reference

Baseline

m2

m

SYNC(&o, m2, a)

29

Timing reference

Baseline

m2

ASYNC(&o, m2, a)

m

30

Baseline move

Baseline 1

m2

T

Baseline 2

AFTER(T, &o, m2, a)

m

31

Periodicity

Baseline n

T

Baseline n+1

AFTER(T, self, m, a)

m m

AFTER(T, self, m, a)

T

32

Timing windows

Baseline

d

Deadline

m

33

Window resize

Baseline

d

D

Deadline d Deadline D

m

m2

BEFORE(D, &o, m2, a)

34

Window move

Baseline

T

Baseline +T

m

m2

D

Deadline D

d

Deadline d

SEND(T, D, &o, m2, a)

35

Constrained periodicity

Baseline n

T

Baseline n+1

m

D

Deadline n Deadline n+1

SEND(T, D, self, m, a) SEND(T, D, self, m, a)

m

D

T

36

Use pointer to
circumvent one-arg-only
restriction.  
(Only safe with SYNC)

A clock
typedef struct {
 Object super;
 int sec, min, hour;
} Clock;

#define initClock() { initObject(), 0, 0, 0 }

int tick(Clock *self, int arg) {
 self->sec++;
 if (self->sec == 60) { self->sec = 0; self->min++; }
 if (self->min == 60) { self->min = 0; self->hour++; }
 AFTER(SEC(1), self, tick, 0)
}

int sample(Clock *self, CalendarTime *arg) {
 arg->sec = self->sec; arg->min = self->min; arg->hour = self->hour;
}

typedef struct {
 int sec, min, hour;
} CalendarTime;

37

A clock

Clock clock = initClock();

....

clock
↪

tick

sample

tick

....

TINYTIMBER(&clock, tick, 0);

Q: Will the clock
start oscillating
by itself?

A: No...

Ignition event!

38

An on-off clock
typedef struct {
 Object super;
 int sec;
 int enabled;
} OnOffClock;

#define initOnOffClock() { initObject(), 0, 1 }

int tick(OnOffClock *self, int arg) {
 if (self->enabled)
 self->sec = self->sec + 1;
 AFTER(SEC(1), self, tick, 0)
}

int sample(OnOffClock *self, int arg) { return self->sec; }

int enable(OnOffClock *self, int en) { self->enabled = en; }

39

An on-off clock

tick(...) enable(..., 0) enable(..., 1)

No increments!

40

A different on-off clock
typedef struct {
 Object super;
 int sec, enabled;
} OnOffClock2;

#define initOnOffClock2() { initObject(), 0, 1 }

int tick(OnOffClock2 *self, int arg) {
 if (self->enabled) {
 self->val = self->val + 1;
 AFTER(SEC(1), self, tick, 0)
 }
}

int sample(OnOffClock2 *self, int arg) { return self->sec; }

int enable(OnOffClock2 *self, int en) {
 if (en && !self->enabled) ASYNC(self, tick, 0);
 self->enabled = en;
}

41

A different on-off clock

tick(...) enable(..., 0) enable(..., 1)

Ghost tick Non-existent

42

Timber

• The big brother of TinyTimber

• Full-featured language:

• Higher-order & strongly typed

• Dynamic object creation, garbage-collected heap

• Haskell-like syntax (but no laziness!)

• Purely functional computation sub-language

• A real-time successor to O'Haskell (an OO Haskell ext.)

• Developed in part by groups & individuals at Chalmers,
Luleå U. of T., Oregon Grad. Inst., Kansas State U.

43

Compiling Timber

Timber
source
code

Timber
compiler

C source
code

RTS

C compiler and
linker

011001101
001000

C source
code

TinyTimber: C API and 
programming model

C source
code

44

TinyTimber offers:

• Lightweight real-time facilities for C

• Implicit concurrency

• Implicit state protection

• Object-oriented program structure

• Robust timing semantics

Main conceptual treshold for programmers: Reactivity!

The big win of reactivity:
Modular composition of real-time systems  

with composable timing!

Wrapping up

45

