(®%)) UNIVERSITY OF GOTHENBURG

"""""

Real-Time Systems

Lecture #2

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology



CHALMERS |

48%)) UNIVERSITY OF GOTHENBURG

Real-time systems

* Programming paradigm
» Concurrent programming




CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Real-time programming

Recommended programming paradigm:

— Concurrent programming
e Reduces unnecessary dependencies between tasks
e Enables a composable schedulability analysis

— Reactive programming

o Certifies that tasks are activated only when work should be done;
tasks are kept idle otherwise

e Maps directly to the task model used in schedulability analysis

— Timing-aware programming
e Certifies that timing constraints are visible at the task level

e Enables priority-based scheduling of tasks, which in turn facilitates
schedulability analysis



(8% UNIVERSITY OF GOTHENBURG

CHALMERS |

Real-time programming

Desired properties of a real-time programming language:

— Support for partitioning software into units of concurrency

e tasks or threads
e object methods

— Support for communication with the environment

e access to I/O hardware
e machine-level data types

— Support for the schedulability analysis
e notion of (high-resolution) time
e task priorities

e task delays
e hardware interrupt handlers



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Real-time programming

What programming languages are suitable?

— C, C++
e Support for machine-level programming
e Concurrent programming via run-time system (POSIX, TinyTimber)
e Priorities and notion of time via run-time system (POSIX, TinyTimber)

— Java
e Support for machine-level programming
e Support for concurrent programming (threads)
e Support for priorities and notion of time (Real-Time Java)

— Ada 95

e Support for machine-level programming
e Support for concurrent programming (tasks)
e Support for priorities and notion of time



(8% ) UNIVERSITY OF GOTHENBURG

CHALMERS |

Why concurrent programming?

Most real-time applications are inherently parallel
— Events in the target system’s environment often occur in parallel

— By viewing the application as consisting of multiple tasks, this
parallel reality can be reflected

— While a task is waiting for an event (e.g., I/O or access to a
shared resource) other tasks may execute

Enables a composable schedulability analysis

— First, the local timing properties of each task are derived
— Then, the interference between tasks are analyzed

System can obtain reliability properties
— Redundant copies of the same task makes system fault-tolerant



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Issues with concurrent programming

Access to shared resources

— Many hardware and software resources can only be used by
one task at a time (e.g., processor, data structures)

— Only pseudo-parallel access is possible in many cases

Synchronization and information exchange

— System modeling using concurrent tasks also introduces a
need for synchronization and information exchange.

Concurrent programming must hence be supported by an
advanced run-time system that handles the scheduling of
shared resources and communication between tasks.



CHALMERS |

(8% ) UNIVERSITY OF GOTHENBURG

Support for concurrent programming

Support in the programming language:

Program is easier to read and comprehend, which means
simpler program maintenance

Program code can be easily moved to another operating system

For some embedded systems, a full-fledged operating system is
unnecessarily expensive and complicated

Examples: Ada 95, Java, Modula, Occam, ...

Example:

Ada 95 offers support via task, rendezvous & protected objects

Java offers support via threads & synchronized methods



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Support for concurrent programming

Support in the run-time system:

— Simpler to combine programs written in different languages
whose concurrent programming models are incompatible

— There may not exist a simple one-to-one mapping between
the language’s model and the run-time system’s model

— Operating systems become more and more standardized, which
makes program code more portable between OS’s
(e.g., POSIX for UNIX, Linux, Mac OS X, and Windows)

Example:

UNIX, Linux, etc offer support via fork, semctl & msgcitl

POSIX offers support via threads & mutex methods
TinyTimber offers support via reactive objects & mutex methods



CHALMERS | UNIVERSITY OF GOTHENBURG

Example: a simple control system

Objective: Keep temperature and
pressure for a chemical process
within given bounds.

Thermometer

Pressure sensor

Pumpl/valve



CHALMERS |

UNIVERSITY OF TECHNOLOGY

E[HHVERMTYOFGOTHENBURG

Sequential solution (Ada95)

procedure Controller is
TR : Temp Reading;
PR : Pressure Reading;
HS : Heater Setting;
PS : PressuEe_Setting;
begin
loop
T Read(TR);
Temp Convert (TR, HS) ;
T Write (HS);
PrintLine (“"Temperature:

P Read (PR);
Pressure Convert (PR, PS);
P Write (PS);
PrintLine (“Pressure: ”,
end loop;
end Controller;

”, TR);

PR) ;

read temperature

convert to temperature setting
to temperature switch

Lo screen

read pressure

convert to pressure setting
to pressure control

Lo screen



CHALMERS | ) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Sequential solution (C)

void Controller () {
Temp Reading TR;
Pressure Reading PR;
Heater Setting HS;
Pressu;e_Setting PS;

while (1) {

T Read (&TR); -— read temperature

Temp Convert (TR, &HS) ; -— convert to heater setting
T_WrIte(HS); -—- set temperature switch
PrintLine (“"Temperature: ”, TR); —-- write to screen

P Read (&PR); -—- read pressure
Pressure_Convert(PR,&PS); -—- convert to pressure setting
P Write (PS); -— set pressure control

PrintLine (“Pressure: ”, PR); -— write to screen



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Sequential solution

Drawback:

— the inherent parallelism of the application is not exploited

e Procedures T Read and P Read block the execution until a new
temperature or pressure sample is available from the sensor

e while waiting to read the temperature, no attention can be given
to the pressure (and vice versa)

e if the call for reading the temperature does not return because of
a fault, it is no longer possible to read the pressure

— the independence of the control functions are not considered

e temperature and pressure must be read with the same interval

¢ the iteration frequency of the loop is mainly determined by the
blocking time of the calls to T Read and P Read.



CHALMERS | {®8Y%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Improved sequential solution (C)

The Boolean function Ready_Temp indicates

void Controller () { whether a sample from the sensor is available

.
L4

while (1) {

1f (Ready Temp()) {
T Read(&TR); -—- read temperature
Temp Convert (TR, &HS) ; —-— convert to heater setting
T Write (HS); -- set temperature switch

PrintLine (“"Temperature: ”, TR);

}

if (Ready Pres()) {
P_Read(gPR); -—- read pressure
Pressure Convert (PR, &PS) ; -— convert to pressure setting
P Write (PS); -— set pressure control

r”

PrintLine (“"Pressure: , PR);



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Improved sequential solution

Advantages:

— the inherent parallelism of the application is exploited
e pressure and temperature control do not block each other

Drawbacks:

— the program spends a large amount of time in “busy wait” loops
e processor capacity is unnecessarily wasted
e schedulability analysis is made complicated/impossible

— the independence of the control functions is not considered

e if the call for reading the temperature does not return because of
a fault, it is no longer possible to read the pressure



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Concurrent solution

Step 1: Make concurrent:
— Partition the software into units of concurrency

Ada95:

Create two units of type task, T Controller and P Controller,
each containing the code for handling the data from respective sensor.

TinyTimber: First create two objects, T Obj and P_0Ob3j, each with
one method (T Controller and P Controller) containing the
code for handling the data from respective sensor. Then create two

interrupt handlers, one for each sensor, that calls the respective object
method when data becomes available.



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Concurrent solution

Step 2: Make reactive:
— Tasks should be idle if there is no work to be done

Ada95: Call the blocking procedures T Read and P_Read to idle.

TinyTimber: Since methods T Controller and P Controller
must be called to be activated they are by default idle.

— Activate task as a reaction to an incoming event

Ada95: A call to procedure T Read or P_ Read unblocks when data
becomes available at a sensor, thus activating the calling task.

TinyTimber: An interrupt handler calls (activates) its corresponding
method when data becomes available at a sensor.



CHALMERS |

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

Concurrent solution (Ada95)

procedure Controller is

task T Controller;
task P Controller;

task body T Controller is
begin
loop
T Read (TR) ;
Temp Convert (TR, HS) ;
T Write (HS);
PrintLine (“Temperature: ”, TR);
end loop;
end T Controller;

task body P Controller is
begin
loop
P Read (PR) ;
Pressure Convert (PR, PS);
P Write (PS) ;
PrintLine (“Pressure: ”, PR);
end loop;
end P Controller;

begin
null; -—- begin parallel execution
end Controller;



CHALMERS |

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

Concurrent solution (TinyTimber)

// Define two new objects of TinyTimber basic class Object

Object T Obj = InitObject();
Object P 0Obj InitObject () ;

// Declare the methods for each new object

void T Controller (Object*, int);
void P Controller (Object*, int);

// Define two new objects of class Sensor (definition not shown here),
// representing the sensors

Sensor sensor t = initSensor (SENSOR PORTO, &T Obj, T Controller);
Sensor sensor p = initSensor (SENSOR PORT1, &P Obj, P Controller);



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Concurrent solution (TinyTimber)

// Define the methods for handling the input data. Each method is
// called with the data from the sensor as parameter.

void T Controller (Object *self, int data) {
Heater Setting HS;

Temp Convert (data, &HS); -— convert to heater setting
T Write (HS); -— set temperature switch
PrintLine (“Temperature: ”, data);

void P _Controller (Object *self, int data) {
Pressure Setting PS;

Pressure Convert (data, &PS); -— convert to pressure setting
P Write (PS); -—- set pressure control
PrintLine (“Pressure: ”, data);



CHALMERS | {®8Y%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Concurrent solution (TinyTimber)

// Initialize the two sensor objects

void kickoff (Object *self, int unused) {
SENSOR INIT (&sensor t);
SENSOR INIT (&sensor p);

// Install interrupt handlers for the sensors, and then kick off
// the TinyTimber run-time system

int main () {
INSTALL (&sensor_ t, sensor interrupt, SENSOR INTO);

INSTALL (&sensor p, sensor interrupt, SENSOR INTI);
TINYTIMBER (&P Obj, kickoff, 0);
return 0;



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Concurrent solution

Advantages:

— the inherent parallelism of the application is fully exploited
e pressure and temperature control do not block each other
¢ the control functions can work at different frequencies
® NO processor capacity are unnecessarily consumed
e the application becomes more reliable

Drawbacks:

— the parallel tasks share a common resource
e the screen can only be used by one task at a time

e aresource handler must be implemented, for controlling the
access to the screen (to avoid garbled text)

¢ the resource handler must guarantee mutual exclusion (mutex)



R
CHALMERS | {8)) UNIVERSITY OF GOTHENBURG

Example: control system

Thermometer

Pressure sensor

Pumpl/valve



CHALMERS | {®8Y%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Solid concurrent solution (Ada95)

-—- Protected objects in Ada95 guarantee mutual exclusion for their
declared procedures: a calling task will be blocked if any of the
procedures in the object are already being used.

protected type Screen Controller is
procedure T Printline(data: in Temp Reading);
procedure P Printline(data: in Pressure Reading);
end Screen Controller; N

protected body Screen Controller is

begin
procedure T Printline(data : in Temp Reading) is
begin N N
Printline (“"Temperature: ", data);

end T Printline;

procedure P Printline(data : in Pressure Reading) 1is
begin
Printline (“Pressure: ”, data);
end P Printline;
end Screen Controller;



CHALMERS |

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

Solid concurrent solution (Ada95)

procedure Controller is

task T Controller;
task P Controller;

task body T Controller is
begin
loop
T Read (TR) ;
Temp Convert (TR, HS) ;
T Write (HS);
Screen Controller.T PrintLine (TR) ;
end loop; N
end T Controller;

task body P Controller is
begin N
loop
P Read (PR) ;
Pressure Convert (PR, PS);
P Write (PS) ;
Screen Controller.P PrintLine (PR);
end loop;
end P Controller;

begin
null; -—- begin parallel execution
end Controller;



CHALMERS |

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

Solid concurrent solution (TinyTimber)

*

TinyTimber objects guarantee mutual exclusion for their declared
methods: a call to the method will be blocked if any of the methods
* in the object are already being used.

*/

>*

// Define a new object of TinyTimber basic class Object

Object Screen Controller = InitObject();
// Define mutex methods for the new object

void T Printline (Object *self, int data) {
PrintLine (“Temperature: ”, data);

}

void P Printline (Object *self, int data) {

4

PrintLine (“"Pressure: , data);

}



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Solid concurrent solution (TinyTimber)

/%
* TinyTimber supports synchronous calls: the caller will be blocked
* if any of the methods in the object are already being used.

*/

void T Controller (Object *self, int data) ({
Heater Setting HS;

Temp Convert (data, &HS); -— convert to heater setting
T Write (HS); -—- set temperature switch
SYNC (&Screen Controller, T PrintLine, data);

void P Controller (Object *self, int data) {
Pressure Setting PS;

Pressure Convert (data, &PS); -— convert to pressure setting
P Write (PS); -— set pressure control
SYNC (&Screen Controller, P PrintLine, data);



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Solid concurrent solution (TinyTimber)

*

TinyTimber also supports asynchronous calls: the caller can continue
immediately after posting the method call, regardless of whether any
* of the methods in the object are already being used or not.

*/

>*

void T Controller (Object *self, int data) {
Heater Setting HS;

Temp Convert (data, &HS); -— convert to heater setting
T Write (HS); -- set temperature switch
ASYNC (&Screen Controller, T PrintLine, data);

void P Controller (Object *self, int data) {
Pressure Setting PS;

Pressure Convert (data, &PS); -— convert to pressure setting

P Write (PS); -— set pressure control
ASYNC (&Screen Controller, P PrintlLine, data);

}



