
Lecture #2 

Professor Jan Jonsson 

Department of Computer Science and Engineering 
Chalmers University of Technology 

Real-Time Systems 



Real-time systems 

Verification 

Implementation 

Specification 
•  Programming paradigm 
•  Concurrent programming 



Real-time programming 

Recommended programming paradigm: 
–  Concurrent programming 

•  Reduces unnecessary dependencies between tasks 
•  Enables a composable schedulability analysis 

–  Reactive programming 
•  Certifies that tasks are activated only when work should be done; 

tasks are kept idle otherwise 
•  Maps directly to the task model used in schedulability analysis 

–  Timing-aware programming 
•  Certifies that timing constraints are visible at the task level 
•  Enables priority-based scheduling of tasks, which in turn facilitates 

schedulability analysis 



Real-time programming 

Desired properties of a real-time programming language: 
–  Support for partitioning software into units of concurrency 

•  tasks or threads (Ada95, Java or POSIX C) 
•  object methods (C/C++ using the TinyTimber kernel) 

–  Support for communication with the environment 
•  access to I/O hardware (e.g. view I/O registers as variables) 
•  machine-level data types (e.g. bit-field type, address pointers) 

–  Support for the schedulability analysis 
•  notion of (high-resolution) time (⇒ timing-aware programming) 
•  task priorities (reflects constraints ⇒ timing-aware programming) 
•  task delays (idle while not doing useful work ⇒ reactive model) 
•  hardware interrupt handlers (event generators ⇒ reactive model) 



Real-time programming 

What programming languages are suitable? 
–  C, C++ 

•  Support for machine-level programming 
•  Concurrent programming via run-time system (POSIX, TinyTimber) 
•  Priorities and notion of time via run-time system (POSIX, TinyTimber) 

–  Java 
•  Support for machine-level programming 
•  Support for concurrent programming (threads) 
•  Support for priorities and notion of time (Real-Time Java) 

–  Ada 95 
•  Support for machine-level programming 
•  Support for concurrent programming (tasks) 
•  Support for priorities and notion of time 



Why concurrent programming? 

Most real-time applications are inherently parallel 
–  Events in the target system’s environment often occur in parallel 
–  By viewing the application as consisting of multiple tasks, this 

parallel reality can be reflected 
–  While a task is waiting for an event (e.g., I/O or access to a 

shared resource) other tasks may execute 

Enables a composable schedulability analysis 
–  First, the local timing properties of each task are derived 
–  Then, the interference between tasks are analyzed 

System can obtain reliability properties 
–  Redundant copies of the same task makes system fault-tolerant 



Issues with concurrent programming 

Access to shared resources 
–  Many hardware and software resources can only be used by 

one task at a time (e.g., processor, data structures) 
–  Only pseudo-parallel access is possible in many cases 

Synchronization and information exchange 
–  System modeling using concurrent tasks also introduces a 

need for synchronization and information exchange. 

Concurrent programming must hence be supported by an 
advanced run-time system that handles the scheduling of 
shared resources and communication between tasks. 



Support for concurrent programming 

Support in the programming language: 
–  Program is easier to read and comprehend, which means 

simpler program maintenance 
–  Program code can be easily moved to another operating system 
–  For some embedded systems, a full-fledged operating system is 

unnecessarily expensive and complicated 
–  Examples: Ada 95, Java, Modula, Occam, ... 

 
Example: 

Ada 95 offers support via task, rendezvous & protected objects 
Java offers support via threads & synchronized methods 



Support for concurrent programming 

Support in the run-time system: 
–  Simpler to combine programs written in different languages 

whose concurrent programming models are incompatible 
–  There may not exist a simple one-to-one mapping between  

the language’s model and the run-time system’s model 
–  Operating systems become more and more standardized, which 

makes program code more portable between OS’s 
(e.g., POSIX for UNIX, Linux, Mac OS X, and Windows) 

Example: 
UNIX, Linux, etc offer support via fork, semctl & msgctl 
POSIX offers support via threads & mutex methods 
TinyTimber offers support via reactive objects & mutex methods 



Example: a simple control system 

Thermometer 

Switch 

Pressure sensor 

Screen 

Heater 

S 

T 

ADC 

DAC 

P ADC 

Pump/valve 

 Objective: Keep temperature and 
pressure for a chemical process 

within given bounds. 



Sequential solution (Ada95) 

procedure Controller is 
  TR : Temp_Reading; 
  PR : Pressure_Reading; 
  HS : Heater_Setting; 
  PS : Pressure_Setting; 
begin 
  loop 
    T_Read(TR);        -- read temperature 
    Temp_Convert(TR,HS);   -- convert to temperature setting 
    T_Write(HS);        -- to temperature switch 
    PrintLine(“Temperature: ”, TR); -- to screen 
 
    P_Read(PR);        -- read pressure 
    Pressure_Convert(PR,PS);  -- convert to pressure setting 
    P_Write(PS);        -- to pressure control 
    PrintLine(“Pressure: ”, PR);  -- to screen 
  end loop; 
end Controller; 



Sequential solution (C) 

void Controller() { 
  Temp_Reading TR; 
  Pressure_Reading PR; 
  Heater_Setting HS; 
  Pressure_Setting PS; 
 
  while (1) { 
    T_Read(&TR);        -- read temperature 
    Temp_Convert(TR,&HS);   -- convert to heater setting 
    T_Write(HS);        -- set temperature switch 
    PrintLine(“Temperature: ”, TR); -- write to screen 
 
    P_Read(&PR);        -- read pressure 
    Pressure_Convert(PR,&PS);  -- convert to pressure setting 
    P_Write(PS);        -- set pressure control 
    PrintLine(“Pressure: ”, PR);  -- write to screen 
  } 
} 



Sequential solution 

Drawback: 
–  the inherent parallelism of the application is not exploited 

•  Procedures T_Read and P_Read  block the execution until a new 
temperature or pressure sample is available from the sensor 

•  while waiting to read the temperature, no attention can be given 
to the pressure (and vice versa) 

•  if the call for reading the temperature does not return because of 
a fault, it is no longer possible to read the pressure 

–  the independence of the control functions are not considered 
•  temperature and pressure must be read with the same interval 
•  the iteration frequency of the loop is mainly determined by the 

blocking time of the calls to T_Read and P_Read. 



Improved sequential solution (C) 

void Controller() { 
  ...; 
 
  while (1) { 
    if (Ready_Temp()) { 
      T_Read(&TR);        -- read temperature 
      Temp_Convert(TR,&HS);   -- convert to heater setting 
      T_Write(HS);        -- set temperature switch 
      PrintLine(“Temperature: ”, TR); 
    } 
 
    if (Ready_Pres()) { 
      P_Read(&PR);        -- read pressure 
      Pressure_Convert(PR,&PS);  -- convert to pressure setting 
      P_Write(PS);        -- set pressure control 
      PrintLine(“Pressure: ”, PR); 
    }           
  } 
} 

The Boolean function Ready_Temp indicates 
whether a sample from the sensor is available 



Improved sequential solution 

Advantages: 
–  the inherent parallelism of the application is exploited 

•  pressure and temperature control do not block each other 

Drawbacks: 
–  the program spends a large amount of time in “busy wait” loops 

•  processor capacity is unnecessarily wasted 
•  schedulability analysis is made complicated/impossible 

–  the independence of the control functions is not considered 
•  if the call for reading the temperature does not return because of 

a fault, it is no longer possible to read the pressure 



Concurrent solution 

Step 1: Make concurrent: 
–  Partition the software into units of concurrency 

Ada95:  
Create two units of type task, T_Controller and P_Controller, 
each containing the code for handling the data from respective sensor. 
 
TinyTimber: First create two objects, T_Obj and P_Obj, each with 
one method (T_Controller and P_Controller) containing the 
code for handling the data from respective sensor. Then create two 
interrupt handlers, one for each sensor, that calls the respective object 
method when data becomes available. 



Concurrent solution 

Step 2: Make reactive: 
–  Tasks should be idle if there is no work to be done 

Ada95: Call the blocking procedures T_Read and P_Read to idle. 
TinyTimber: Since methods T_Controller and P_Controller 
must be called to be activated they are by default idle.  

–  Activate task as a reaction to an incoming event  
Ada95: A call to procedure T_Read or P_Read unblocks when data 
becomes available at a sensor, thus activating the calling task. 
TinyTimber: An interrupt handler calls (activates) its corresponding 
method when data becomes available at a sensor.  



Concurrent solution (Ada95) 

procedure Controller is    
task T_Controller; 
task P_Controller; 
 
task body T_Controller is 
begin 
  loop 
     T_Read(TR);    
     Temp_Convert(TR,HS);   
     T_Write(HS);   
     PrintLine(“Temperature: ”, TR);   
  end loop; 
end T_Controller; 
 
task body P_Controller is 
begin 
  loop 
     P_Read(PR);   
     Pressure_Convert(PR,PS); 
     P_Write(PS);   
     PrintLine(“Pressure: ”, PR);   
  end loop; 
end P_Controller; 
 
begin 
  null;  -- begin parallel execution 
end Controller; 



Concurrent solution (TinyTimber) 

// Define two new objects of TinyTimber basic class Object 
 
Object T_Obj = InitObject(); 
Object P_Obj = InitObject(); 
 
// Declare the methods for each new object 
 
void T_Controller(Object*, int); 
void P_Controller(Object*, int); 
 
// Define two new objects of class Sensor (definition not shown here), 
// representing the sensors  
 
Sensor sensor_t = initSensor(SENSOR_PORT0, &T_Obj, T_Controller); 
Sensor sensor_p = initSensor(SENSOR_PORT1, &P_Obj, P_Controller); 
 
... 



Concurrent solution (TinyTimber) 

// Define the methods for handling the input data. Each method is 
// called with the data from the sensor as parameter. 
 
void T_Controller(Object *self, int data) { 
  Heater_Setting HS; 
 
  Temp_Convert(data, &HS);   -- convert to heater setting 
  T_Write(HS);        -- set temperature switch 
  PrintLine(“Temperature: ”, data); 
} 
 
void P_Controller(Object *self, int data) { 
  Pressure_Setting PS; 
 
  Pressure_Convert(data, &PS);  -- convert to pressure setting 
  P_Write(PS);        -- set pressure control 
  PrintLine(“Pressure: ”, data); 
} 
 
... 



Concurrent solution (TinyTimber) 

... 
 
// Initialize the two sensor objects 
 
void kickoff(Object *self, int unused) { 
  SENSOR_INIT(&sensor_t); 
  SENSOR_INIT(&sensor_p); 
} 
 
// Install interrupt handlers for the sensors, and then kick off 
// the TinyTimber run-time system 
 
int main() { 
    INSTALL(&sensor_t, sensor_interrupt, SENSOR_INT0); 
    INSTALL(&sensor_p, sensor_interrupt, SENSOR_INT1); 
    TINYTIMBER(&P_Obj, kickoff, 0); 
    return 0; 
} 



Concurrent solution 

Advantages: 
–  the inherent parallelism of the application is fully exploited 

•  pressure and temperature control do not block each other 
•  the control functions can work at different frequencies 
•  no processor capacity are unnecessarily consumed 
•  the application becomes more reliable 

Drawbacks: 
–  the parallel tasks share a common resource 

•  the screen can only be used by one task at a time 
•  a resource handler must be implemented, for controlling the  

access to the screen (to avoid garbled text) 
•  the resource handler must guarantee mutual exclusion (mutex) 



Example: control system 

Thermometer 

Switch 

Pressure sensor 

Screen 

Heater 

S 

T 

ADC 

DAC 

P ADC 

Pump/valve 



Solid concurrent solution (Ada95) 

-- Protected objects in Ada95 guarantee mutual exclusion for their 
declared procedures: a calling task will be blocked if any of the 
procedures in the object are already being used. 

 
protected type Screen_Controller is 
  procedure T_Printline(data: in Temp_Reading); 
  procedure P_Printline(data: in Pressure_Reading); 
end Screen_Controller; 
 
protected body Screen_Controller is 
begin 
  procedure T_Printline(data : in Temp_Reading) is 
  begin 
    Printline(“Temperature: ”, data); 
  end T_Printline; 
 
  procedure P_Printline(data : in Pressure_Reading) is 
  begin 
    Printline(“Pressure: ”, data); 
  end P_Printline; 
end Screen_Controller; 
 



Solid concurrent solution (Ada95) 

procedure Controller is    
task T_Controller; 
task P_Controller; 
 
task body T_Controller is 
begin 
  loop 
     T_Read(TR);    
     Temp_Convert(TR,HS);   
     T_Write(HS);   
     Screen_Controller.T_PrintLine(TR);   
  end loop; 
end T_Controller; 
 
task body P_Controller is 
begin 
  loop 
     P_Read(PR);   
     Pressure_Convert(PR,PS); 
     P_Write(PS);   
     Screen_Controller.P_PrintLine(PR);   
  end loop; 
end P_Controller; 
 
begin 
  null;  -- begin parallel execution 
end Controller; 



Solid concurrent solution (TinyTimber) 

/*  
 * TinyTimber objects guarantee mutual exclusion for their declared 
 * methods: a call to the method will be blocked if any of the methods 
 * in the object are already being used.  
 */ 
 
// Define a new object of TinyTimber basic class Object 
 
Object Screen_Controller = InitObject(); 
 
// Define mutex methods for the new object 
 
void T_Printline(Object *self, int data) { 
    PrintLine(“Temperature: ”, data); 
} 
 
void P_Printline(Object *self, int data) { 
    PrintLine(“Pressure: ”, data); 
} 
 



Solid concurrent solution (TinyTimber) 

/*  
 * TinyTimber supports synchronous calls: the caller will be blocked 
 * if any of the methods in the object are already being used.  
 */ 
 
void T_Controller(Object *self, int data) { 
  Heater_Setting HS; 
 
  Temp_Convert(data, &HS);   -- convert to heater setting 
  T_Write(HS);        -- set temperature switch 
  SYNC(&Screen_Controller, T_PrintLine, data); 
} 
 
void P_Controller(Object *self, int data) { 
  Pressure_Setting PS; 
 
  Pressure_Convert(data, &PS);  -- convert to pressure setting 
  P_Write(PS);        -- set pressure control 
  SYNC(&Screen_Controller, P_PrintLine, data); 
} 



Solid concurrent solution (TinyTimber) 

/*  
 * TinyTimber also supports asynchronous calls: the caller can continue 
 * immediately after posting the method call, regardless of whether any 
 * of the methods in the object are already being used or not.  
 */ 
 
void T_Controller(Object *self, int data) { 
  Heater_Setting HS; 
 
  Temp_Convert(data, &HS);   -- convert to heater setting 
  T_Write(HS);        -- set temperature switch 
  ASYNC(&Screen_Controller, T_PrintLine, data); 
} 
 
void P_Controller(Object *self, int data) { 
  Pressure_Setting PS; 
 
  Pressure_Convert(data, &PS);  -- convert to pressure setting 
  P_Write(PS);        -- set pressure control 
  ASYNC(&Screen_Controller, P_PrintLine, data); 
} 


