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In a concurrent program, it is not necessary to specify the exact order in which
tasks execute. Synchronization primitives are used to enforce the local ordering
constraints, such as mutual exclusion, but the general behaviour of the program
exhibits significant non-determinism. If the program is correct then its functional
outputs will be the same regardless of internal behaviour or implementation
details. For example, five independent tasks can be executed non-preemptively
in 120 different ways on a single processor. With a multiprocessor system or
preemptive behaviour, there are infinitely more interleavings.

While the program’s outputs will be identical with all these possible inter-
leavings, the timing behaviour will vary considerably. If one of the five tasks has
a tight deadline then perhaps only interleavings in which it is executed first will
meet the program’s temporal requirements. A real-time system needs to restrict
the non-determinism found within concurrent systems. This activity is known as
scheduling. In general, a scheduling scheme provides two features:

« An algorithm for ordering the use of system resources (in particular the CPUs).

e A means of predicting the worst-case behaviour of the system when the
scheduling algorithm is applied.
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366 SCHEDULING REAL-TIME SYSTEMS

The predictions can then be used to confirm that the temporal requirements of
the system are satisfied.

A scheduling scheme can be static (if the predictions are undertaken be-
fore execution) of dynamic (if run-time decisions are used). This chapter will
concentrate mainly on static schemes. Most attention will be given to preemptive
priority-based schemes on a single processor system. Here, tasks are assigned
priorities such that at all times the task with the highest priority is executing (if it is
not delayed or otherwise suspended). A scheduling scheme will therefore involve
a priority assignment algorithm and a schedulability test. Other scheduling ap-
proaches, such as EDF, and multiprocessor and energy issues are also covered
in this chapter. The first approach to be review, however, will be the traditional
scheme involving the production of a cyclic executive. All issues concerned with
programming schedulable systems are covered in the next chapter.

11.1 The cyclic executive approach

With a fixed set of purely periodic tasks, it is possible to lay out a complete schedule
such that the repeated execution of this schedule will cause all tasks to run at their
correct rate. The cyclic executive is, essentially, a table of procedure calls, where each
procedure represents part of the code for a ‘task’. The complete table is known as the
major cycle; it typically consists of a number of minor cycles each of fixed duration.
So, for example, four minor cycles of 25 ms duration would make up a 100 ms major
cycle. During execution, a clock interrupt every 25 ms will enable the scheduler to loop
through the four minor cycles. Table 11.1 provides a task set that must be implemented
via a simple four-slot major cycle. A possible mapping onto the cyclic executive is shown
in Figure 11.1, which illustrates the job that the processor is executing at any particular
time.

Task Period, T Computation time, C

a 25 10
b 25 8
c 50 5
d 50 4
e 100 2

Table 11.1 Cyclic executive task set.
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Figure 11.1 Time-line for task set.
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Even this simple example illustrates some important features of this approach.

e No actual tasks exist at run-time; each minor cycle is just a sequence of procedure
calls.

e The procedures share a common address space and can thus pass data between
themselves. This data does not need to be protected (via a semaphore, for example)
because concurrent access is not possible.

e All ‘task’ periods must be a multiple of the minor cycle time.

This final property represents one of the major drawbacks of the cyclic executive ap-
proach; others include (Locke, 1992):

¢ the difficulty of incorporating sporadic tasks;

e the difficulty of incorporating tasks with long periods; the major cycle time is the
maximum period that can be accommodated without secondary schedules (that is,
a procedure in a major cycle that will call a secondary procedure every N major
cycles);

o the difficulty of actually constructing the cyclic executive;

e any ‘task’ with a sizeable computation time will need to be split into a fixed
number of fixed sized procedures (this may cut across the structure of the code
from a software engineering perspective, and hence may be error-prone).

If it is possible to construct a cyclic executive then no further schedulability test is needed
(the scheme is ‘proof by construction’). However, for systems with high utilization, the
building of the executive is problematic. An analogy with the classical bin packing
problem can be made. With that problem, items of varying sizes (in just one dimension)
have to be placed in the minimum number of bins such that no bin is over-full. The bin
packing problem is known to be NP-hard and hence is computationally infeasible for
sizeable problems (a typical realistic system will contain perhaps 40 minor cycles and
400 entries). Heuristic sub-optimal schemes must therefore be used.

Although for simple periodic systems, the cyclic executive will remain an appropri-
ate implementation strategy, a more flexible and accommodating approach is furnished
by the task-based scheduling schemes. These approaches will therefore be the focus in
the remainder of this chapter. ‘

11.2 Task-based scheduling

With the cyclic executive approach, at run-time, only a sequence of procedure calls is
executed. The notion of task (thread) is not preserved during execution. An alternative
approach is to support task execution directly (as is the norm in general-purpose operating
systems) and to determine which task should execute at any one time by the use of one
or more scheduling attributes. With this approach, a task is deemed to be in one of a
number of states (assuming no intertask communication):

e runnable;
o suspended waiting for a timing event — appropriate for periodic tasks;
e suspended waiting for a non-timing event — appropriate for sporadic tasks.
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11.2.1 Scheduling approaches

There are, in general, a large number of different scheduling approaches. In this book
we will consider three.

e Fixed-Priority Scheduling (FPS) — this is the most widely used approach and
is the main focus of this chapter. Each task has a fixed, static, priority which is
computed pre-run-time. The runnable tasks are executed in the order determined
by their priority. In real-time systems, the ‘priority’ of a task is derived from its
temporal requirements, not its importance to the correct functioning of the system
or ifs integrity.

o Earliest Deadline First (EDF) Scheduling — here the runnable tasks are exe-
cuted in the order determined by the absolute deadlines of the tasks; the next
task to run being the one with the shortest (nearest) deadline. Although it is usual
to know the relative deadlines of each task (e.g. 25 ms after release), the abso-
lute deadlines are computed at run-time, and hence the scheme is described as
dynamic.

e Value-Based Scheduling (VBS) ~ if a system can become overloaded (current
utilization greater than 100%) then the use of simple static priorities or deadlines
is not sufficient; a more adaptive scheme is needed. This often takes the form of
assigning a value to each task and employing an online value-based scheduling
algorithm to decide which task to run next.

As indicated earlier, the bulk of this chapter is concerned with FPS as it is supported
by various real-time languages and operating system standards. The use of EDF is
also important and some consideration of its analytical basis is given in the following
discussions. A short description of the use of VBS is given towards the end of the chapter
in Section 11.12.

11.2.2 Scheduling characteristics

There are a number of important characteristics that can be ascribed to a scheduling test,
The two most important are sufficiency and necessity.

o A schedulability test is defined to be sufficient if a positive outcome guarantees
that all deadlines are always met.

o A test can also be labelled as necessary if failure of the test will indeed lead to a
deadline miss at some point during the execution of the system.

A sufficient and necessary test is exact and hence is in some sense optimal;
a sufficient but not necessary test is pessimistic, but for many situations an exact test
is intractable. From an engineering point of view, a tractable sufficient test with low
pessimism is ideal.

A scheduling test is usually applied to the worst-case behavioural description of
the application. A system is schedulable with respect to a specified scheduling policy if
it will meet all its timing requirements when executed on its target platform with that
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scheduling policy. A scheduling test is said to be sustainable if it correctly predicts
that a schedulable system will be remain schedulable when its operational parameters
‘improve’ — for example, if a system is schedulable it should remain so if some of its
tasks have their periods or deadlines increased, or their resource requirement reduced,
or if the application is moved to a faster processor.

11.2.3 Preemption and non-preemption

With priority-based scheduling, a high-priority task may be released during the execution
of a lower-priority one. In a preemptive scheme, there will be an immediate switch
to the higher-priority task. Alternatively, with non-preemption, the lower-priority task
will be allowed to complete before the other executes. In general, preemptive schemes
enable higher-priority tasks to be more reactive, and hence they are preferred. Between
the extremes of preemption and non-preemption, there are alternative strategies that
allow a lower-priority task to continue to execute for a bounded time (but not necessarily
to completion). These schemes are known as deferred preemption or cooperative
dispatching. These will be considered again in Section 11.10.3. Before then, dispatching
will be assumed to be preemptive. Schemes such as EDF and VBS can also take on a
preemptive or non-preemptive form.

11.2.4 Simple task model

An arbitrarily complex concurrent program cannot easily be analysed to predict its
worst-case behaviour. Hence it is necessary to impose some restrictions on the structure
of real-time concurrent programs. This section will present a very simple model in order
to describe some standard scheduling schemes. The model is generalized in later sections
of this chapter. The basic model has the following characteristics.

e The application is assumed to consist of a fixed set of tasks.
e All tasks are periodic, with known periods.
o The tasks are completely independent of each other.

e All system overheads, context-switching times and so on are ignored (that is,
assumed to have zero cost).

e All tasks have deadlines equal to their periods (that is, each task must complete
before it is next released).!

e All tasks have fixed worst-case execution times.

e No task contains any internal suspension points (e.g. an internal delay statement
or a blocking I/O request).
e All tasks execute on a single processor (CPU).

! As the deadline is derived from the task’s period it is sometimes referred to as an implicit deadline. It the
deadline value is different from the period then the deadline is explicit.
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Notation Description

Worst-case blocking time for the task (if applicable)
Worst-case execution time (WCET) of the task
Deadline of the task

The interference time of the task

Release jitter of the task

Number of tasks in the system

Priority assigned to the task (if applicable)
Worst-case response time of the task

Minimum time between task releases (task period)
The utilization of each task (equal to C/T)

The name of a task

R ONRvYES~NDOW

[
N

Table 11.2  Standard notation.

One consequence of the task’s independence is that it can be assumed that at some
point in time all tasks will be released together. This represents the maximum load on the
processor and is known as a critical instant. Table 11.2 gives a standard set of notations
for task characteristics.

Each task is assumed to give rise to a (potentially) infinite series of executions.
Each execution is known as an invocation (release) of the task or simply as a job.

11.3 Fixed-priority scheduling (FPS)

With the straightforward model outlined above, there exists a simple optimal priority
assignment scheme for FPS known as rate monotonic priority assignment. Each task
is assigned a (unique) priority based on its period: the shorter the period, the higher
the priority (that is, for two tasks i and j, T; <T;=> P, > P;). This assignment is
optimal in the sense that if any task set can be scheduled (using preemptive priority-
based scheduling) with a fixed-priority assignment scheme, then the given task set can
also be scheduled with a rate monotonic assignment scheme. Table 11.3 illustrates a five
task set and shows what the relative priorities must be for optimal temporal behaviour.
Note that priorities are represented by integers, and that the higher the integer, the greater
the priority. Care must be taken when reading other books and papers on priority-based

Task Period, T Priority, P

a 25 5
b 60 3
c 42 4
d 105 1
e 75 2

Table 11.3 Example of priority assignment.
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scheduling, as often priorities are ordered the other way; that is, priority 1 is the highest.
In this book, priority 1 is the lowest, as this is the normal usage in most programming
languages and operating systems.

11.4 Utilization-based schedulability tests for FPS

This section describes a very simple schedulability test for FPS which, although not
exact, is attractive because of its simplicity.

Liu and Layland (1973) showed that by considering only the utilization of the task
set, a test for schedulability can be obtained (when the rate monotonic priority ordering
is used). If the following condition is true then all N tasks will meet their deadlines (note
that the summation calculates the total utilization of the task set):

N C
)3 (‘f‘) < N@ 1) (L

i=1 !

Table 11.4 shows the utilization bound (as a percentage) for small values of N. For
large N, the bound asymptotically approaches 69.3%. Hence any task set with a combined
utilization of less than 69.3% will always be schedulable by a preemptive priority-based
scheduling scheme, with priorities assigned by the rate monotonic algorithm.

Three simple examples will now be given to illustrate the use of this test. In these
examples, the units (absolute magnitudes) of the time values are not defined. As long
as all the values (T's, Cs and so on) are in the same units, the tests can be applied. So
in these (and later examples), the unit of time is just considered to be a fick of some
notional time base.

Table 11.5 contains three tasks that have been allocated priorities via the rate
monotonic algorithm (hence task ¢ has the highest priority and task a the lowest). Their

N Utilization bound

1 100.0%
2 82.8%
3 78.0%
4 75.7%
5
0

74.3%

1 71.8%

Table 11.4 Utilization bounds.

Task  Period, T Computation time, C Priority, P Utilization, U

a 50 12 1 0.24
b 40 10 2 0.25
c 30 10 3 0.33

Table 11.5 Task set A.
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Figure 11.2  Time-line for task set A.

combined utilization is 0.82 (or 82%). This is above the threshold for three tasks (0.78),
and hence this task set fails the utilization test.

The actual behaviour of this task set can be illustrated by drawing out a time-line.
Figure 11.2 shows how the three tasks would execute if they all started their executions
at time 0. Note that, at time 50, task ¢ has consumed only 10 ticks of execution, whereas
it needed 12, and hence it has missed its first deadline.

Time-lines are a useful way of illustrating execution patterns. For illustration,
Figure 11.2 is drawn as a Gantt chart in Figure 11.3.

The second example is contained in Table 11.6, Now the combined utilization is
0.775, which is below the bound, and hence this task set is guaranteed to meet all its
deadlines. If a time-line for this set is drawn, all deadlines would be satisfied.

Although cumbersome, time-lines can actually be used to test for schedulability.
But how far must the line be drawn before one can conclude that the future holds no
surprises? For task sets that share a common release time (that is, they share a crifical
instant), it can be shown that a time-line equal to the size of the longest period is
sufficient (Liu and Layland, (1973)). So if all tasks meet their first deadline then they
will meet all future ones.

¢ 10 20 30 40 50
Time —p

Figure 11.3  Gantt chart for task set A.
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Task  Period, T Computation time, C Priority, P Utilization, U

a 80 32 1 0.400
b 40 5 2 0.125
c 16 4 3 0.250

Table 11.6 Task set B.

Task  Period, T Computation time, C  Priority, P Utilization, U

a 80 40 1 0.50
b 40 10 2 0.25
c 20 5 3 0.25

Table 11.7 Task set C.

A final example in given in Table 11.7. This is again a three-task system, but the
combined utility is now 100%, so it clearly fails the test. At run-time, however, the
behaviour seems correct, all deadlines are met up to time 80 (see Figure 11.4). Hence
the task set fails the test, but at run-time does not miss a deadline. Therefore, the test
is sufficient but not necessary. If a task set passes the test, it will meet all deadlines;
if it fails the test, it may or may not fail at run-time. A final point to note about this
utilization-based test is that it only supplies a simple yes/no answer. It does not give any
indication of the actual response times of the tasks. This is remedied in the response time
approach described in Section 11.5.

11.4.1 Improved utilization-based tests for FPS

Since the publication of the Lui and Layland utilization bound a number of improvements
have been developed. Here two alternative schemes are considered. First a simple re-
interpretation of Equation (11.1) can be employed. Rather than the N standing for the

Process

Time ———p

Figure 11.4 Time-line for task set C.
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number of tasks, it can be defined to be the number of distinct task families in the
application. A family of tasks have periods that are multiples of a common value (for
example 8, 16, 64 and 128).

Consider the task sets defined earlier. For task set B (Table 11.6) there are three
tasks but only two families (the 80 and 40 periods imply a single family). So the bound for
this system is now 0.828 (not 0.78). The utilization of task set B is 0.775 so is below both
bounds. However, if the period of task ¢ is shortened to 14 (from 16) then the utilization
of the task set rises to 0.81 (approximately) — this is above the Lui and Layland bound
but below the new bound and hence this new task set is correctly deemed schedulable
by this new test.

For task set C (see Table 11.7) there is an even more impressive improvement.
Now there is only one family (as the periods are 80, 40 and 20). So the utilization bound
is 1.0 and hence this system is schedulable by this test, Although this result shows the
effectiveness of this approach there is a drawback with this test — it is not sustainable.
Consider a minor change to the characteristics of this task set; let the period of task a
move from 80 to 81. This alteration should make the system easier to schedule; a period
has been extended and hence the overall utilization has been reduced (though only by a
small amount from 1 to 0.994). But the move from 80 to 81 results in there now being two
families and not just one, so the bound drops from 1 to 0.82. The new system cannot be
proven to be schedulable (although it clearly is if the original task set was schedulable).

Another improved utilization-based test was developed by Bini et al. (2007) and
has a different form:

H <%’ + 1) <2 (11.2)

i=1

To give a simple example of the use of this formulation, consider again task set
B (Table 11.6) with the minor modification that the period of task a is now 76 (rather
than 80). The total utilization of this new system is .796 which is above the bound for
three tasks, and hence schedulability is unproven. Note there are now three families so
no improvement from the other approach. Applying Equation (11.2)

1.421 % 1.125 % 1.25 =1.998 < 2

indicates that the system is schedulable by this test and, indeed, a time-line for this
revised task set would show that all deadlines have been met.

11.5 Response time analysis (RTA) for FPS

The utilization-based tests for FPS have two significant drawbacks: they are not exact,
and they are not really applicable to a more general task model. This section provides a
different form of test. The test is in two stages. First, an analytical approach is used to
predict the worst-case response time (R) of each task. These values are then compared,
trivially, with the task deadlines. This requires each task to be analysed individually.
For the highest-priority task, its worst-case response time will equal its own com-
putation time (that is, R = C). Other tasks will suffer interference from higher-priority
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tasks; this is the time spent executing higher-priority tasks when a low-priority task is
runnable. So for a general task i:

R =Ci+1I (11.3)

where I; is the maximum interference that task / can experience in any time interval
(r,t + R;).? The maximum interference obviously occurs when all higher-priority tasks
are released at the same time as task i (that is, at a critical instant). Without loss of
generality, it can be assumed that all tasks are released at time 0. Consider one task ()
of higher priority than /. Within the interval [0, R;), it will be released a number of times
(at least one). A simple expression for this number of releases is obtained using a ceiling
function:

R
Number_Of Releases = [—’}
T;
The ceiling function ([ 1) gives the smallest integer greater than the fractional number on
which it acts. So the ceiling of 1/3 is 1, of 6/5 is 2, and of 6/3 is 2. The definitions of the
ceilings of negative values need not be considered. Later in this chapter floor functions
are employed; they compute the largest integer smaller than the fractional part meaning
that the floor of 1/3 is 0, of 6/5 is 1 and of 6/3 is again 2.
So, if R; is 15 and 7} is 6 then there are three releases of task j (at times 0, 6 and
12). Each release of task j will impose an interference of C;. Hence:
: R;
Maximum_Interference = ’VF] C;
i
If C; = 2 then in the interval [0, 15) there are 6 units of interference. Each task of higher
priority is interfering with task i, and hence:

- 3l

Jjehp(d)

where Ap(i) is the set of higher-priority tasks (than i). Substituting this value back into
Equation (11.3) gives (Joseph and Pandya, 1986):

Ri=Ci+ Y, [?] C; (11.4)
J

Jjehp(i)

Although the formulation of the interference equation is exact, the actual amount
of interference is unknown as R; is unknown (it is the value being calculated). Equa-
tion (11.4) has R; on both sides, but is difficult to solve due to the ceiling functions. It is
actually an example of a fixed-point equation. In general, there will be many values of
R; that form solutions to Equation (11.4). The smallest such value of R; represents the
worst-case response time for the task. The simplest way of solving Equation (114)isto

2Note that as a discrete time model is used in this analysis, all time intervals must be closed at the beginning
(denoted by ‘[*) and open at the end (denoted by a *)’). Thus a task can complete executing on the same tick
as a higher-priority task is released.
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form a recurrence relationship (Audsley et al., 1993a):

n
wt=c+ [w—] c; (11.5)
jehpiy b7/

The set of values {w?,w!, w?, .., w!, ..} is, clearly, monotonically non-
decreasing. When w}' = w!"*, the solution to the equation has been found. If w) < R;
then w}' is the smallest solution and hence is the value required. If the equation does not
have a solution then the w values will continue to rise (this will occur for a low-priority
task if the full set has a utilization greater than 100%). Once they get bigger than the
task’s period, 7', it can be assumed that the task will not meet its deadline. The starting
value for the process, w?, must not be greater than the final (unknown) solution R;. As
R; > C; a safe starting point is C; — there are, however, more efficient starting values
(Davis et al., 2008).

The above analysis gives rise to the following algorithm for calculation response
times:

for i in 1..N loop -- for each task in turn
n := 0
w! = G
loop
calculate new u$+' from Equation (11.5)
if w™ = W then
Ri t= UJI’»'
exit value found
end if

if w'l > T then

1
exit value not found
end if
n:=n + 1
end loop
end loop

By implication, if a response time is found it will be less than 7}, and hence less than
D;, its deadline (remember with the simple task model D; = T).

In the above discussion, w; has been used merely as a mathematical entity for
solving a fixed-point equation. It is, however, possible to get an intuition for w; from the
problem domain. Consider the point of release of task 7. From that point, until the task
completes, the processor will be executing tasks with priority P; or higher. The processor
is said to be executing a P;-busy period. Consider w; to be a time window that is moving
down the busy period. At time O (the notional release time of task i), all higher-priority
tasks are assumed to have also been released, and hence:

jehp(@)

This will be the end of the busy period unless some higher-priority task is released a
second time. If it is, then the window will need to be pushed out further. This continues
with the window expanding and, as a result, more computation time falling into the
window. If this continues indefinitely then the busy period is unbounded (that is, there
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Task Period, T Computation time, C Priority, P

a 7 3 3
b 12 3 2
c 20 5 1

Table 11.8 Task set D.

is no solution). However, if at any point, an expanding window does not suffer an extra
‘hit’ from a higher-priority task then the busy period has been completed, and the size
of the busy period is the response time of the task.

To illustrate how the RTA is used, consider task set D given in Table 11.8, The
highest-priority task, a, will have a response time equal to its computation time (f(n
example, R, = 3). The next task will need to have its response time calculated. Let wd
equal the computation time of task b, which is 3. Equation (11.5) is used to derive the
next value of w:

-+f3)

that is, w} = 6. This value now balances the equation (w} = w; = 6) and the response
time of task b has been found (that is, R, = 6).
The final task will give rise to the following calculations:

wd =35
s 5
=54 2134+ |2 (3=11
w, -+ 7-‘ +[121
(117 117
254 |—|34+|—[3=14
w + 7 + D
147 (147
354 |—|34|—|3=17
we =3+ 171011
w4—5+-1—7«73+‘1—7—3—20
c 7 217
207 . [20]
S5 234123 =120
we =3+ |01

Hence R, has a worst-case response time of 20, which means that it will just meet its
deadline. This behaviour is illustrated in the Gantt chart shown in Figure 11.5.

Consider again the task set C. This set failed the utilization-based test but was
observed to meet all its deadlines up to time 80. Table 11.9 shows the response times
calculated by the above method for this collection. Note that all tasks are now predicted
to complete before their deadlines.

The response time calculations have the advantage that they are sufficient and
necessary — if the task set passes the test they will meet all their deadlines; if they fail
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Figure 11.5  Gantt chart for task set D.

Task  Period, 7 Computation time, C Priority, P Response time, R

a 80 40 1 80
b 40 10 2 15
c 20 5 3 5

Table 11.9 Response time for task set C.

the test, then, at run-time, a task will miss its deadline (unless the computation time
estimations, C, themselves turn out to be pessimistic). As these tests are superior to the
utilization-based ones, this chapter will concentrate on extending the applicability of the
response time method.

11.6 Sporadic and aperiodic tasks

To expand the simple model of Section 11.2.4 to include sporadic (and aperiodic) task
requirements, the value 7T is interpreted as the minimum (or average) inter-arrival inter-
val (Audsley et al., 1993a). A sporadic task with a T value of 20 ms is guaranteed not to
arrive more than once in any 20 ms interval. In reality, it may arrive much less frequently
than once every 20 ms, but the response time test will ensure that the maximum rate can
be sustained (if the test is passed!).

The other requirement that the inclusion of sporadic tasks demands concerns the
definition of the deadline. The simple model assumes that D = T'. For sporadic tasks,
this is unreasonable. Often a sporadic is used to encapsulate an error-handling routine
or to respond to a warning signal. The fault model of the system may state that the error
routine will be invoked very infrequently — but when it is, it is urgent and hence it has
a short deadline. Our model must therefore distinguish between D and T, and allow
D < T. Indeed, for many periodic tasks, it is also useful to allow the application to
define deadline values less than period.

An inspection of the response time algorithm for FPS, described in Section 11.5,
reveals that:

e it works perfectly for values of D less than 7 as long as the stopping criterion
becomes w'*! > D;;

e it works perfectly well with any priority ordering — Ap (i) always gives the set of
higher-priority tasks.
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Although some priority orderings are better than others, the test will provide the worst-
case response times for the given priority ordering.

In Section 11.7, an optimal priority ordering for D < T is defined (and proved).
A later section will consider an extended algorithm and optimal priority ordering for the
generalcase of D < T, D =T or D > T.

11.6.1 Hard and soft tasks

For sporadic tasks, average and maximum arrival rates may be defined. Unfortunately,
in many situations the worst-case figure is considerably higher than the average. In-
terrupts often arrive in bursts and an abnormal sensor reading may lead to significant
additional computation. It follows that measuring schedulability with worst-case figures
may lead to very low processor utilizations being observed in the actual running system.
As a guideline for the minimum requirement, the following two rules should always be
complied with.

e Rule 1 —all tasks should be schedulable using average execution times and average
arrival rates.

e Rule 2 — all hard real-time tasks should be schedulable using worst-case execution
times and worst-case arrival rates of all tasks (including soft).

A consequence of Rule 1 is that there may be situations in which it is not possible to
meet all current deadlines. This condition is known as a transient overload; Rule 2,
however, ensures that no hard real-time task will miss its deadline. If Rule 2 gives rise
to unacceptably low utilizations for ‘normal execution’, direct action should be taken to
try and reduce the worst-case execution times (or arrival rates).

11.6.2 Aperiodic tasks and fixed-priority execution-time servers

One simple way of scheduling aperiodic tasks, within a priority-based scheme, is to run
such tasks at a priority below the priorities assigned to hard tasks. In effect, the aperiodic
tasks run as background activities, and therefore cannot steal, in a preemptive system,
resources from the hard tasks. Although a safe scheme, this does not provide adequate
support to soft tasks which will often miss their deadlines if they only run as background
activities. To improve the situation for soft tasks, a server (or execution-time server) can
be employed. Servers protect the tasking resources needed by hard tasks, but otherwise
allow soft tasks to run as soon as possible.

Since they were first introduced in 1987, a number of server methods have been
defined. Here only two will be considered: the Deferrable Server (DS) and the Sporadic
Server (SS) (Lehoczky et al., 1987).

With the DS, an analysis is undertaken (using, for example, the response time
approach) that enables a new task to be introduced at the highest priority.> This task, the

3Servers at other priorities are possible, but the description is more straightforward if the server is given a
higher priority than all the hard tasks.
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server, thus has a period, 7, and a capacity C;. These values are chosen so that all the
hard tasks in the system remain schedulable even if the server executes periodically with
period 7; and execution time C,. At run-time, whenever an aperiodic task arrives, and
there is capacity available, it starts executing immediately and continues until either it
finishes or the capacity is exhausted. In the latter case, the aperiodic task is suspended
(or transferred to a background priority). With the DS model, the capacity is replenished
every T time units.

The operation of the SS differs from DS in its replenishment policy. With SS, if a
task arrives at time ¢ and uses ¢ capacity then the server has this ¢ capacity replenished
T, time units after 7. In general, SS can furnish hi gher capacity than DS but has increased
implementation overheads. Section 12.6 describes how SS is supported by C/Real-Time
POSIX; DS and SS can be analysed using response time analysis (Bernat and Burns,
1999),

As all servers limit the capacity that is available to aperiodic soft tasks, they can
also be used to ensure that sporadic tasks do not execute more often than expected. If
a sporadic task with inter-arrival interval of T; and worst-case execution time of C; is
implemented not directly as a task, but via a server with I, = T; and C; = C;, then its
impact (interference) on lower-priority tasks is bounded even if the sporadic task arrives
too quickly (which would be an error condition).

All servers (DS, SS and others) can be described as bandwidih preserving in that
they attempt to:

e make CPU resources available immediately to aperiodic tasks (if there is a
capacity);

e retain the capacity for as long as possible if there are currently no aperiodic tasks
(by allowing the hard tasks to execute).

Another bandwidth preserving scheme, which often performs better than the server
techniques, is dual-priority scheduling (Davis and Wellings, 1995). Here, the range of
priorities is split into three bands: high, medium and low. All aperiodic tasks run in
the middle band. Hard tasks, when they are released, run in the low band, but they
are promoted to the top band in time to meet their deadlines. Hence in the first stage
of execution they will give way to aperiodic activities (but will execute if there is no
such activity). In the second phase they will move to a higher priority and then have
precedence over the aperiodic work. In the high band, priorities are assigned accord-
ing to the deadline monotonic approach (see below). Promotion to this band occurs
at time D — R. To implement the dual-priority scheme requires a dynamic priority
provision,

11.7 Task systems with D < T

In the above discussion on sporadic tasks it was argued that, in general, it must be
possible for a task to define a deadline that is less than its inter-arrival interval (or
period). It was also noted earlier that for D = T the rate monotonic priority ordering
was optimal for a fixed priority scheme. Leung and Whitehead (1982) showed that
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Computation Response
Task  Period, T  Deadline, D time, C Priority, P time, R
a 20 5 3 4 3
15 7 3 3 6
c 10 10 4 2 10
d 20 20 3 1 20

Table 11.10 Example task set for DMPO.

for D < T, a similar formulation could be defined — the deadline monotonic priority
ordering (DMPO). Here, the fixed priority of a task is inversely proportional to its
relative deadline: (D; < D; = P; > P;). Table 11.10 gives the appropriate priority
assignments for a simple task set. It also includes the worst-case response time — as
calculated by the algorithm in Section 11.5. Note that a rate monotonic priority ordering
would successfully schedule these tasks.

In the following subsection, the optimality of DMPO is proven. Given this result
and the direct applicability of response time analysis to this task model, it is clear that
FPS can adequately deal with this more general set of scheduling requirements. The
same is not true for EDF scheduling, see Section 11.11. Once tasks can have D < T
then the simple utilization test (total utilization less than one) cannot be applied.

Having raised this difficulty with EDF, it must be remembered that EDF is the
more effective scheduling scheme. Hence any task set that passes an FPS schedulability
test will also always meet its timing requirements if executed under EDF. The necessary
and sufficient tests for FPS can thus be seen as sufficient tests for EDF.

11.7.1 Proof that DMPO is optimal

Deadline monotonic priority ordering is optimal if any task set, Q, that is schedulable by
priority scheme, W, is also schedulable by DMPO. The proof of optimality of DMPO
will involve transforming the priorities of Q (as assigned by W) until the ordering is
DMPO. Each step of the transformation will preserve schedulability.

Let i and j be two tasks (with adjacent priorities) in Q such that under W: P; > P;
and D; > D;. Define scheme W’ to be identical to W except that tasks i and j are
swapped. Consider the schedulability of Q under W'.

e All tasks with priorities greater than P; will be unaffected by this change to lower-
priority tasks.

e All tasks with priorities lower than P; will be unaffected. They will all experience
the same interference from i and j.

e Task j, which was schedulable under W, now has a higher priority, suffers less
interference, and hence must be schedulable under W'.

All that is left is the need to show that task i, which has had its priority lowered, is still
schedulable.
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Under W, R; < D;, D; < D; and D; < T; and hence task i only interferes once
during the execution of j.

Once the tasks have been switched, the new response time of i becomes equal to
the old response time of j. This is true because under both priority orderings C i+ G
amount of computation time has been completed with the same level of interference from
higher-priority tasks. Task j was released only once during R i, and hence interferes only
once during the execution of i under W', It follows that:

R;:RjSDj<D;

It can be concluded that task i is schedulable after the switch.

Priority scheme W’ can now be transformed (to W”) by choosing two more tasks
‘that are in the wrong order for DMPO’ and switching them. Each such switch preserves
schedulability. Eventually there will be no more tasks to switch; the ordering will be
exactly that required by DMPO and the task set will still be schedulable. Hence, DMPO
is optimal.

Note that for the special case of D = T, the above proof can be used to show that,
in this circumstance, rate monotonic ordering is also optimal.

11.8 Task interactions and blocking

One of the simplistic assumptions embodied in the system model, described in Sec-
tion 11.2.4, is the need for tasks to be independent. This is clearly unreasonable, as task
interaction will be needed in almost all meaningful applications. In Chapters 5 and 6,
it was noted that tasks can interact safely either by some form of protected shared data
(using, for example, semaphores, monitors, synchronized methods or protected objects)
or directly (using some form of rendezvous). All of these language features lead to the
possibility of a task being suspended until some necessary future event has occurred
(for example, waiting to gain a lock on a semaphore, or entry to a monitor, or until
some other task is in a position to accept a rendezvous request). In general, synchronous
communication leads to more pessimistic analysis as it is harder to define the real worst
case when there are many dependencies between task executions. The following analysis
is therefore more accurate when related to asynchronous communication where tasks
exchange data via protected shared resources. The majority of the material in the next
two sections is concerned with fixed-priority scheduling. The issue of task interactions
and EDF scheduling will be considered in Section 11.11.4.

If a task is suspended waiting for a lower-priority task to complete some required
computation then the priority model is, in some sense, being undermined. In an ideal
world, such priority inversion (Lauer and Satterwaite, 1979) (that is, a high-priority
task having to wait for a lower-priority task) should not exist. However, it cannot, in
general, be totally eliminated. Nevertheless, its adverse effects can be minimized. If a
task is waiting for a lower-priority task, it is said to be blocked. In order to test for
schedulability, blocking must be bounded and measurable; it should also be small.

To illustrate an extreme example of priority inversion, consider the executions of
four periodic tasks: a, b, ¢ and d. Assume they have been assigned priorities according
to the deadline monotonic scheme, so that the priority of task d is the highest and that of
task a the lowest. Further, assume that tasks d and a (and tasks d and ¢) share a critical
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Task Priority Execution sequence Release time
a 1 EQQQQE 0
b 2 EE 2
c 3 EVVE 2
d 4 EEQVE 4

Table 11.11 Execution sequences.

section (resource), denoted by the symbol @ (and V), protected by mutual exclusion.
Table 11.11 gives the details of the four tasks and their execution sequences; in this table
‘E’ tepresents a single tick of execution time and ‘Q’ (or ‘V’) represent an execution
tick with access to the Q (or V) critical section. Thus task ¢ executes for four ticks; the
middle two while it has access to critical section V.

Figure 11.6 illustrates the execution sequence for the start times given in the table.
Task a is released first, executes and locks the critical section, Q. It is then preempted
by the release of task ¢ which executes for one tick, locks V and is then preempted by
the release of task d. The higher-priority task then executes until it also wishes to lock
the critical section, Q; it must then be suspended (as the section is already locked by
a). At this point, ¢ will regain the processor and continue. Once it has terminated, b
will commence and run for its entitlement. Only when b has completed will @ be able
to execute again; it will then complete its use of the Q and allow d to continue and
complete. With this behaviour, d finishes at time 16, and therefore has a response time
of 12; ¢ has a value of 6, b a value of 8, and ¢ a value of 17.

Process

0 2 4 6 8 10 12 14 16 18

Executing with Q locked |:| Preempted

3 Executing with Vlocked . Executing

. Blocked

Figure 11.6 Example of priority inversion.
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An inspection of Figure 11.6 shows that task d suffers considerable priority in-
version. Not only is it blocked by task a but also by tasks b and ¢. Some blocking is
inevitable; if the integrity of the critical section (and hence the shared data) is to be
maintained then a must run in preference to d (while it has the lock). But the blocking
of d by tasks ¢ and b is unproductive and will severely affect the schedulability of the
system (as the blocking on task d is excessive).

Priority inversion is not just a theoretical problem; real systems have been known
to fail due to this phenomenon. A much publicized* case was that of the NASA Mars
Pathfinder. Although the Sojourner rover successfully survived the bouncy landing on
Mars and was able to collect meteorological data, the spacecraft initially experienced a
series of total system resets resulting in lost data. Tasks on the Pathfinder spacecraft were
executed as fixed-priority threads. The high-priority data bus management thread and a
low-priority meteorological data gathering thread shared an “information bus’ protected
by a mutex. A communications thread ran with medium priority. At run-time, the release
pattern of the threads was such that the high-priority thread was waiting for the mutex
to be released on the information bus, but the lower-priority thread which was using
the bus and hence held the mutex lock could not make progress as it was preempted by
the relatively long-running medium-priority thread. This resulted in a watchdog timer
being triggered as the urgent high-priority data bus thread was missing its deadline. The
watchdog initiated a total system reset. The situation then repeated itself again and again.
The solution to this problem, once it was identified (which was not easy), was to turn
on priority inheritance that was fortunately supported by the spacecraft’s operating
system.

With priority inheritance, a task’s priority is no longer static; if a task p is suspended
waiting for task g to undertake some computation then the priority of g becomes equal
to the priority of p (if it was lower to start with). In the example given a little earlier, task
a will be given the priority of task d and will, therefore, run in preference to task ¢ and
task b. This is illustrated in Figure 11.7. Note that as a consequence of this algorithm, task
b will now suffer blocking even though it does not use a shared object. Also note that task
d now has a second block, but its response time has been reduced to 9. With the Mars
Pathfinder example once priority inheritance was turned on, the lower-priority thread
inherited the data bus thread’s priority and thus ran in preference to the medium-priority
thread.

With this simple inheritance rule, the priority of a task is the maximum of its own
default priority and the priorities of all the other tasks that are at that time dependent
upon it.

In general, inheritance of priority is not restricted to a single step. If task d is
waiting for task c, but ¢ cannot deal with d because it is waiting for task b then b as well
as ¢ is given d’s priority.

In the design of a real-time language, priority inheritance is of paramount impor-
tance. To have the most effective model, however, implies that the concurrency model
should have a particular form. With standard semaphores and condition variables, there is
no direct link between the act of becoming suspended and the identity of the task that will
reverse this action. Inheritance is therefore not easily implemented. With synchronous

f See http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html.
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Process

0 2 4 6 8 10 12 14 16 18

Figure 11.7 Example of priority inheritance.

message passing, indirect naming may also make it difficult to identify the task upon
which one is waiting. To maximize the effectiveness of inheritance, direct symmetric
naming would be the most appropriate.

Sha et al. (1990) show that with a priority inheritance protocol, there is a bound
on the number of times a task can be blocked by lower-priority tasks. If a task has m
critical sectjons that can lead to it being blocked then the maximum number of times it
can be blocked is m. That is, in the worst case, each critical section will be locked by a
lower-priority task (this is what happened in Figure 11.7). If there are only n (n < m)
lower-priority tasks then this maximum can be further reduced (to n).

If B; is the maximum blocking time that task i can suffer then for this simple
priority inheritance model, a formula for calculating B can easily be found. Let K be
the number of critical sections (resources) in the system. Equation (11.6) thus provides
an upper bound on B:

K
B =Y usage(k,i)C(k) (11.6)
k=1

where usage is a 0/1 function: usage(k, i) = 1 if resource k is used by at least one task
with a priority less than P;, and at least one task with a priority greater or equal to F;.
Otherwise it gives the result 0. C (k) is the worst-case execution time of the k critical
section. Nested resources are not accommodated by this simple formula; they require
the usage function to track resources that use other resources.

This algorithm is not optimal for this simple inheritance protocol. Firstly, it assumes
a single cost for using the resource, it does not try to differentiate between the cost of
each task’s use of the resource. Secondly, it adds up the blocking from each resource, but
this can only happen if each such resource is used by a different lower-priority process.
This may not be possible for a particular application. For example, if all k£ resources are
only used by one lower-priority task then there would be just one term to include in the
equation for B. Nevertheless, the equation serves to illustrate the factors that need to be
taken into account when calculating B. In Section 11.9, better inheritance protocols will
be described and an improved formula for B will be given.
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11.8.1 Response time calculations and blocking

Given that a value for B has been obtained, the response time algorithm can be modified
to take the blocking factor into account:’

R=C+B+1

that is,

R;
R =C;+ B; + Z {F} C; 1L.7)
j

Jjehp(@)

which can again be solved by constructing a recurrence relationship:

n
W =GB+ S H—] C; (1L8)
jehpiy 1 7Y

Note that this formulation may now be pessimistic (that is, not necessarily sufficient
and necessary). Whether a task actually suffers its maximum blocking will depend upon
task phasings. For example, if all tasks are periodic and all have the same period then
no preemption will take place and hence no priority inversion will occur. However, in
general, Equation (11.7) represents an effective scheduling test for real-time systems
containing cooperating tasks.

11.9 Priority ceiling protocols

While the standard inheritance protocol gives an upper bound on the number of blocks a
high-priority task can encounter, this bound can still lead to an unacceptably pessimistic
worst-case calculation. This is compounded by the possibility of chains of blocks de-
veloping (transitive blocking), that is, task ¢ being blocked by task & which is blocked
by task a and so on. As shared data is a system resource, from a resource management
point of view not only should blocking be minimized, but failure conditions such as
deadlock should be eliminated. All of these issues are addressed by the ceiling priority
protocols (Sha et al., 1990), two of which will be considered in this chapter: the original
ceiling priority protocol and the immediate ceiling priority protocol. The original
protocol (OCPP) will be described first, followed by the somewhat more straightforward
immediate variant (ICPP). When either of these protocols is used on a single-processor
system:

¢ a high-priority task can be blocked at most once during its execution by lower-
priority tasks;

e deadlocks are prevented;

e transitive blocking is prevented;

¢ mutual exclusive access to resources is ensured (by the protocol itself).

Blocking can also be incorporated into the utilization-based tests, but now each task must be considered
individually.
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The ceiling protocols can best be described in terms of resources protected by critical
sections. In essence, the protocol ensures that if a resource is locked, by task a say,
and could lead to the blocking of a higher-priority task (b), then no other resource that
could block & is allowed to be locked by any task other than a. A task can therefore be
delayed by not only attempting to lock a previously locked resource but also when the
lock could lead to multiple blocking on higher-priority tasks.

The original protocol takes the following form.

(1) Each task has a static default priority assigned (perhaps by the deadline monotonic
scheme),

(2) Each resource has a static ceiling value defined; this is the maximum priority of
the tasks that use it.

(3) A task has a dynamic priority that is the maximum of its own static priority and
any it inherits due to it blocking higher-priority tasks.

(4) A task can only lock a resource if its dynamic priority is higher than the ceiling of
any currently locked resource (excluding any that it has already locked itself ).

The locking of a first system resource is allowed. The effect of the protocol is to ensure
that a second resource can only be locked if there does not exist a higher-priority task that
uses both resources. Consequently, the maximum amount of time a task can be blocked
is equal to the execution time of the longest critical section in any of the lower-priority
tasks that are accessed by higher-priority tasks; that is, Equation (11.6) becomes:

B = x?falx usage(k, i)C (k) 11.9)

The benefit of the ceiling protocol is that a high-priority task can only be blocked
once (per activation) by any lower-priority task. The penalty of this result is that more
tasks will experience this block.

Not all the features of the algorithm can be illustrated by a single example, but
the execution sequence shown in Figure 11.8 does give a good indication of how the
algorithm works and provides a comparison with the earlier approaches (that is, this
figure illustrates the same task sequence used in Figures 11.6 and 11.7).

In Figure 11.8, task a again locks the first critical section, as no other resources
have been locked. It is again preempted by task ¢, but now the attempt by ¢ to lock
the second section (V) is not successful as its priority (3) is not higher than the current
ceiling (which is 4, as Q is locked and is used by task d). At time 3, a is blocking c, and
hence runs with its priority at the level 3, thereby blocking b. The higher-priority task, d,
preempts a at time 4, but is subsequently blocked when it attempts to access Q. Hence
a will now continue (with priority 4) until it releases its lock on Q and has its priority
drop back to 1. Now, d can continue until it completes (with a response time of 7).

The priority ceiling protocols ensure that a task is only blocked once during each
invocation. Figure 11.8, however, appears to show task b (and task ¢) suffering two
blocks., What is actually happening is that a single block is being broken in two by the
preemption of task d. Equation (11.9) determines that all tasks (apart from task a) will
suffer a maximum single block of 4. Figure 11.8 shows that for this particular execution
sequence task ¢ and task b actually suffer a block of 3 and task d a block of only 2.
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Figure 11.8 Example of priority inheritance — OCPP.

11.9.1 Immediate ceiling priority protocol

The immediate ceiling priority algorithm (ICPP) takes a more straightforward approach
and raises the priority of a task as soon as it locks a resource (rather than only when it is
actually blocking a higher-priority task). The protocol is thus defined as follows.

e Each task has a static default priority assigned (perhaps by the deadline monotonic
scheme).

e Each resource has a static ceiling value defined; this is the maximum priority of
the tasks that use it.

o A task has a dynamic priority that is the maximum of its own static priority and
the ceiling values of any resources it has locked.

As a consequence of this final rule, a task will only suffer a block at the very beginning
of its execution. Once the task starts actually executing, all the resources it needs must
be free; if they were not, then some task would have an equal or higher priority and the
task’s execution would be postponed. The same task set used in earlier illustrations can
now be executed under ICPP (see Figure 11.9).

Task a having locked Q attime 1, runs for the next four ticks with priority 4. Hence
neither task b, task ¢ nor task d can begin. Once a unlocks @ (and has its priority reduced),
the other tasks execute in priority order. Note that all blocking is before actual execution
and that d’s response time is now only 6. This is somewhat misleading, however, as the
worst-case blocking time for the two protocols is the same (see Equation (11.9)).
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Figure 11.9 Example of priority inheritance —~ ICPP.

Although the worst-case behaviour of the two ceiling schemes is identical (from a
scheduling view point), there are some points of difference.

e ICCP is easier to implement than the original (OCPP) as blocking relationships
need not be monitored.

e ICPP leads to fewer context switches as blocking is prior to first execution.

o ICPP requires more priority movements as this happens with all resource usages;
OCPP changes priority only if an actual block has occurred.

Finally, note that ICPP is called the Priority Protect protocol in C/Real-Time POSIX and
Priority Ceiling Emulation in Real-Time Java.

11.9.2 Ceiling protocols, mutual exclusion and deadlock

Although the above algorithms for the two ceiling protocols were defined in terms of
locks on resources, it must be emphasized that the protocols themselves rather than some
other synchronization primitive provided the mutual exclusion access to the resource (at
least on a single processor system and assuming the tasks do not suspend whilst holding
alock). Consider ICPP; if a task has access to some resource then it will be running with
the ceiling value. No other task that uses that resource can have a higher priority, and
hence the executing task will either execute unimpeded while using the resource, or, if
it is preempted, the new task will not use this particular resource. Either way, mutual
exclusion is ensured.

The other major property of the ceiling protocols (again for single-processor sys-
tems and non-self-suspension) is that they are deadlock-free. In Section 8.7, the issue of
deadlock-free resource usage was considered. The ceiling protocols are a form of dead-
lock prevention. If a task holds one resource while claiming another, then the ceiling of
the second resource cannot be lower than the ceiling of the first. Indeed, if two resources
are used in different orders (by different tasks) then their ceilings must be identical. As
one task is not preempted by another with merely the same priority, it follows that once
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a task has gained access to a resource then all other resources will be free when needed.
There is no possibility of circular waits and deadlock is prevented.

11.10 An extendible task model for FPS

It was noted earlier that the model outlined in Section 11.2.4 was too simplistic for
practical use. In subsequent sections, three important restrictions were removed.

e Deadlines can be less than period (D < T).
¢ Sporadic and aperiodic tasks, as well as periodic tasks, can be supported.

o Task interactions are possible, with the resulting blocking being factored into the
response time equations.

Within this section, five further generalizations will be given. The section will conclude
with a general-purpose priority assignment algorithm.

11.10.1 Release jitter

In the simple model, all tasks are assumed to be periodic and to be released with perfect
periodicity; that is, if task [ has period T; then it is released with exactly that frequency.
Sporadic tasks are incorporated into the model by assuming that their minimum inter-
arrival interval is T. This is not, however, always a realistic assumption. Consider a
sporadic task s being released by a periodic task / (on another processor). The period
of the first task is 7; and the sporadic task will have the same rate, but it is incorrect
to assume that the maximum load (interference) s exerts on low-priority tasks can be
represented in Equation (11.4) or (11.5) as a periodic task with period 7, = 7;.

To understand why this is insufficient, consider two consecutive executions of
task /. Assume that the event that releases task s occurs at the very end of the periodic
task’s execution. On the first execution of task /, assume that the task does not complete
until its latest possible time, that is, R;. However, on the next invocation assume there
is no interference on task / so it completes within C;. As this value could be arbitrarily
small, let it equal zero. The two executions of the sporadic task are not separated by
T; but by T; — R;. Figure 11.10 illustrates this behaviour for 7; equal to 20, R; equal
to 15 and minimum C; equal to 1 (that is, two releases of the sporadic task within
6 time units). Note that this phenomenon is of interest only if task / is remote. If this was
not the case then the variations in the release of task s would be accounted for by the
standard equations, where a critical instant can be assumed between the releaser and the
released.

To capture correctly the interference sporadic tasks have upon other tasks, the
recurrence relationship must be modified. The maximum variation in a task’s release is
termed its release jitter (and is represented by J). For example, in the above, task s
would have a jitter value of 15. In terms of its maximum impact on lower-priority tasks,
this sporadic task will be released attime 0, 5,25, 45 and so on. That is, at times 0, T — J R
2T — J,3T — J, and so on. Examination of the derivation of the schedulability equation
implies that task i will suffer one interference from task s if R; is between O and T — J s
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Figure 11,10 Releases of sporadic tasks.

thatis R; € [0, T —J), twoif R; € [T — J, 2T — J), threeif R; € [2T — J,3T —J) and
so on. A slight rearrangement of these conditions shows a single hitif R; + J € [0, T),
a double hitif R; + J € [T, 2T) and so on. This can be represented in the same form as
the previous response time equations as follows (Audsley et al., 1993b):

Ri=B+C+ Y, Pf—ﬂ C; (11.10)
jehp(@ J

In general, periodic tasks do not suffer release jitter. An implementation may,
however, restrict the granularity of the system timer (which releases periodic tasks). In
this situation, a periodic task may also suffer release jitter. For example, a 7" value of 10
but a system granularity of 8 will imply a jitter value of 6 — at time 16 the periodic task
will be released for its time ‘10 invocation. If response time (now denoted as R eriodicy
is to be measured relative to the real release time then the jitter value must be added to

that previously calculated:
Rferiodic — Ri + Ji (11.11)

If this new value is greater than T; then the following analysis must be used.

11.10.2 Arbitrary deadlines

To cater for situations where D; (and hence potentially R;) can be greater than T;, the
analysis must again be adapted. When deadline is less than (or equal) to period, it is
necessary to consider only a single release of each task. The critical instant, when all
higher-priority tasks are released at the same time, represents the maximum interference
and hence the response time following a release at the critical instant must be the worst
case. However, when deadline is greater than period, a number of releases must be
considered. The following assumes that the release of a task will be delayed until any
previous releases of the same task have completed.
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If a task executes into the next period then both releases must be analysed to
see which gives rise to the longest response time. Moreover, if the second release is not
completed before a third occurs than this new release must also be considered, and so on.

For each potentially overlapping release, a separate window w(q) is defined, where
g is just an integer identifying a particular window (that is, ¢ = 0,1,2,...). Equa-
tion (11.5) can be extended to have the following form (ignoring release jitter) (Tindell
et al., 1994):

w!

W (@) = B+ @+ DG+ Y [ 'T(‘”] c, a112)
jenp@y ! I

For example, with ¢ equal to 2, three releases of the task will occur in the window, For

each value of ¢, a stable value of w(g) can be found by iteration — as in Equation (11.5).

The response time is then given as:

Ri(q) = w(q) — qT; (11.13)

For example, with ¢ = 2 the task started 27; into the window and hence the response
time is the size of the window minus 27,

The number of releases that need to be considered is bounded by the lowest value
of g for which the following relation is true:

Ri(g) =T; (11.14)

At this point, the task completes before the next release and hence subsequent windows
do not overlap. The worst-case response time is then the maximum value found for
each g:

R; = max R;(g) (11.15)

g=0,1,2,...

Note that for D < T, the relation in Equation (11.14) is true for q = 0 (if the task can be
guaranteed), in which case Equations (11.12) and (11.13) simplify back to the original
equation. If any R > D, then the task is not schedulable.

When this arbitrary deadline formulation is combined with the effect of release
jitter, two alterations to the above analysis must be made. First, as before, the interference
factor must be increased if any higher-priority tasks suffer release jitter:

wi(g) + J;

Wit Q) =Bi+@+1Ci+ Y [—(‘l)ﬁf] C; (11.16)
jehp() J

The other change involves the task itself. If it can suffer release jitter then two

consecutive windows could overlap if response time plus jitter is greater than period. To
accommodate this, Equation (11.13) must be altered:

Ri(q) = wi(q) —qT; + J; (11.17)
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11.10.3 Cooperative scheduling

The models described above have all required true preemptive dispatching. In this section,
an alternative scheme is outlined (the use of deferred preemption). This has a number of
advantages, but can still be analysed by the scheduling technique based on response time
analysis. In Equation (11.7), for example, there is a blocking term B that accounts for
the time a lower-priority task may be executing while a higher-priority task is runnable.
In the application domain, this may be caused by the existence of data that is shared
(under mutual exclusion) by tasks of different priority. Blocking can, however, also be
caused by the run-time system or kernel. Many systems will have the non-preemptable
context switch as the longest blocking time (for example, the release of a higher-priority
task being delayed by the time it takes to context switch to a lower-priority task — even
though an immediate context switch to the higher-priority task will then ensue).

One of the advantages of using the immediate ceiling priority protocol (to calculate
and bound B) is that blocking is not cumulative, A task cannot be blocked both by an
application task and a kernel routine — only one could actually be happening when the
higher-priority task is released.

Cooperative scheduling exploits this non-cumulative property by increasing the
situation in which blocking can occur. Let Byax be the maximum blocking time in the
system (using a conventional approach). The application code is then split into non-
preemptive blocks, the execution times of which are bounded by Buax. At the end of
each of these blocks, the application code offers a ‘de-scheduling’ request to the kernel.
If a high-priority task is now runnable the kernel will instigate a context switch; if not,
the currently running task will continue into the next non-preemptive block.

The normal execution of the application code is thus totally cooperative, A task
will continue to execute until it offers to de-schedule. Hence, as long as any critical
section is fully contained between de-scheduling calls, mutual exclusion is assured. This
method does, therefore, require the careful placement of de-scheduling calls.

To give some level of protection over corrupted (or incorrect) software, a kernel
could use an asynchronous signal, or abort, to remove the application task if any non-
preemptive block lasts longer than Byax (see Chapter 13).

The use of deferred preemption has two important advantages. It increases the
schedulability of the system, and it can lead to lower values of C. In the solution of
Equation (11.4), as the value of w is being extended, new releases of higher-priority
tasks are possible that will further increase the value of w. With deferred preemption, no
interference can occur during the last block of execution. Let F; be the execution time of
the final block, such that when the task has consumed C; — F; time units, the last block
has (just) started. Equation (11.4) is now solved for C; — F; rather than C;:

i
w:_1+l = Byax + ¢ —F + Z [%—] Cj (11.18)
jehp(i) J
When this converges (that is, w}'“ = "), the response time is given by:
R, =w! + F; (11.19)

In effect, the last block of the task has executed with a higher priority (the highest) than
the rest of the tasks.
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This straightforward application of response time analysis is, however, misleading
and may in certain circumstances lead to errors — that is, the analysis is not sufficient.
Consider as a simple example a two task system with each task having deadline equal to
period. The first task has a period of 6 and a computation time of 2 which is executed as
a single non-preemptive block. The other task has a period of 8 and an execution time of
6 split into two 3 unit blocks. The longer period for this task means that it has the lower
priority. The first task has a blocking term of 3 which, with its own computation time
of 2, gives a response time of 5. The second task is first analysed to see when its first
block will complete. This has a computation time of 3 and suffers 2 units of interference
and so w} converges simple to the value 5. To this is added the F; value of 3 to give
an overall response time of 8. This appears to imply that the system is schedulable. But
this is impossible — the overall utilization of these two tasks is greater than 1 (1/3 + 3/4)
which is indisputable evidence of unschedulability.

So why does the analysis fail on this example? There is a constraint on using
Equations (11.18) and (11.19) that is hidden and this example highlights the problem
because it does not satisfy this constraint. For these equations to apply, the worst-case
response time for each task with preemption must be less than the task’s period. If this
is not the case then it is possible for the second (or third . .. ) release of the task to be the
worst. If releases overlap in this way then the analysis used in the previous section for
deadline greater than period must be used.

For the example, the preemptive worst-case response time of the second task is
10 (two interferences plus execution time of 6) which is greater than 8 and hence the
second release must be analysed. The easiest method for computing this is to look at the
worst-case response time of a task made up of two serial executions of the second task.
Now this new task has a computation time of 12 made up of four 3 unit blocks. Applying
Equations (11.18) and (11.19) gives a value of w! of 15; when the final 3 is added in
this gives a response time of 18 which breaks the deadline value of 16 (for the second
invocation).

It must be emphasized that for most systems with utilization not greater than 1,
releases will not overlap and the straightforward use of these equations will provide the
correct result — but the constraint must always be checked.

The other advantage of deferred preemption comes from predicting more accu-
rately the execution times of a task’s non-preemptable basic blocks. Modern processors
have caches, prefetch queues and pipelines that all significantly reduce the execution
times of code. Typically, simple estimations of worst-case execution time are forced
to ignore these advantages and obtain very pessimistic results because preemption will
invalidate caches and pipelines. Knowledge of non-preemption can be used to predict
the speed up that will occur in practice. However, if the cost of postponing a context
switch is high, this will militate against these advantages.

11.10.4 Fault tolerance

Fault tolerance via either forward or backward error recovery always results in extra
computation. This could be an exception handler or a recovery block. In a real-time
fault-tolerant system, deadlines should still be met even when a certain level of faults
occur. This level of fault tolerance is known as the fault model. If C,.f is the extra
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computation time that results from an error in task i, then the response time equation
can easily be changed:

R;
Ri=B+C+ Y, hﬂ C;+ max Cf (11.20)
J

kehep(i
jehp() @

where hep(i) is the set of tasks with a priority equal to or higher than i.

Here, the fault model defines a maximum of one fault and there is an assumption
that a task will execute its recovery action at the same priority as its ordinary computation.
Equation (11.20) is easily changed to increase the number of allowed faults (F):

R; f
Ri=Bi+Ci+ ‘Z‘ [?} Cj+ max FC| (11.21)
jehp@y 7Y

Indeed, a system can be analysed for increasing values of F to see what number of
faults (arriving in a burst) can be tolerated. Alternatively, the fault model may indicate a
minimum arrival interval for faults. In this case the equation becomes:

_ R; Ri| -1
Ri=B+C+ ), {T,] cj+k533;(;i)<[TJck> (11.22)

jehp()

where Ty is the minimum inter-arrival time between faults.
In Equations (11.21) and (11.22), the assumption is made that in the worst case,
the fault will always occur in the task that has the longest recovery time.

11.10.5 Introducing offsets

In the scheduling analysis presented so far in this chapter, it has been assumed that all
tasks share a common release time. This critical instant is when all tasks are released
simultaneously (this is usually taken to occur at time 0). For fixed-priority scheduling,
this is a safe assumption; if all tasks meet their timing requirements when released
together then they will always be schedulable. There are, however, sets of periodic tasks
that can benefit from explicitly choosing their release times so that they do not share
a critical instant. This may result in improved schedulability. One task is said to have
an offset with respect to the others. Consider for illustration the three tasks defined in
Table 11.12.

If a critical instant is assumed then task a has response time of 4 and task b has
a response time of 8, but the third task has a worst-case response time of 16, which is

Task T D C
a 8 5 4
b 20 10 4
c 20 12 4

Table 11.12 Example of a task set,
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Task T D C o R
a 8 5 4 0 4
b 20 10 4 0 8
c 20 12 4 10 8

Table 11.13  Response time analysis of the task set.

Task T D C 0 R

a 8 5 4 0 4
n 10 10 4 0 8

Table 11.14 Response time analysis of the transformed task set.

beyond its deadline. For task c the interference from task b is sufficient to force a further
interference from a, and this is crucial. However, if task c is given an offset (O) of 10
(that is, retain the same period and relative deadline, but have its first release at time 10)
then it will never execute at the same time as b. The result is a schedulable task set — see
Table 11.13.

Unfortunately, task sets with arbitrary offsets are not amenable to analysis. It is a
strongly NP-hard problem to choose offsets so that a task set is optimally schedulable.
Indeed, it is far from trivial to even check if a set of tasks with offsets share a critical
instant.®

Notwithstanding this theoretical result, there are task sets that can be analysed
in a relatively straightforward (although not necessarily optimal) way. In most realistic
systems, task periods are not arbitrary but are likely to be related to one another, As in the
example just illustrated, two tasks have a common period. In these situations it is easy
to give one an offset (of T /2) and to analyse the resulting system using a transformation
technique that removes the offset — and hence critical instant analysis applies. In the
example, tasks b and ¢ (c having the offset of 10) are replaced by a single notional task
with period 10, computation time 4, deadline 10 but no offset. This notional task has two
important properties.

e If it is schedulable (when sharing a critical instant with all other tasks), the two
real tasks will meet their deadlines when one is given the half period offset.

e If all lower-priority tasks are schedulable when suffering interference from the
notional task (and all other high-priority tasks), they will remain schedulable when
the notional task is replaced by the two real tasks (one with the offset).

These properties follow from the observation that the notional task always uses more
(or equal) CPU time than the two real tasks. Table 11.14 shows the analysis that would
apply to the transformed task set. The notional task is given the name ‘n’ in this table.

®One interesting result is that a task set with co-prime periods will always have a critical instant no matter
what offsets are chosen (Audsley and Burns, 1998).
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More generally the parameters of the notional task are calculated from the real
tasks a and b as follows:

T, =T,/2 (orTy/2as T, =T,)
C, = Max(C,, Cp)
D, = Min(D,, Dy)
P, = Max(P,, Py)

where P denotes priority.

Clearly, what is possible for two tasks is also applicable to three or more tasks. A
fuller description of these techniques is given in Bate and Burns (1997). In summary,
although arbitrary offsets are effectively impossible to analyse, the judicious use of
offsets and the transformation technique can return the analysis problem to one of a
simple task set that shares a critical instant. All the analysis given in earlier sections of
this chapter, therefore, applies.

In Section 10.5 offsets are used to control input and output jitter. Typically the
input and output activities involve much less computation time than the ‘middle’ task
that implements whatever algorithms are necessary to convert the input value to an
output setting. To analyse this program structure it is acceptable to ignore offsets. As
noted earlier a system that is schedulable when offsets are ignored remains schedulable
when they are added to the implementation scheme.

11.10.6 Other characteristics

In addition to the characteristics discussed in the last few sections (e.g. release jitter,
non-preemption, fault tolerance, arbitrary deadlines and offsets) there are many other
task attributes that have been analysed in the fixed-priority scheduling literature. For
example, tasks with precedence, tasks that must meet N in M deadlines (e.g. 4 in 5) but
not every deadline, and tasks that have a set of C values (not just a single maximum).
It is not necessary, however, to cover all these topics (and more) in order to complete
this treatment of RTA. The key property of RTA is that it is extendable and configurable.
New characteristics can be easily accommodated into the theory.

11.10.7 Priority assignment

The formulation given for arbitrary deadlines has the property that no simple algorithm
(such as rate or deadline monotonic) gives the optimal priority ordering. In this section,
a theorem and algorithm for assigning priorities in arbitrary situations is given. The
theorem considers the behaviour of the lowest priority task (Audsley et al., 1993b).

Theorem If task p is assigned the lowest priority and is feasible, then, if a
feasible priority ordering exists for the complete task set, an ordering exists
with task p assigned the lowest priority.

The proof of this theorem comes from considering the schedulability equations — for
example, Equation (11.12). If a task has the lowest priority, it suffers interference from all
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higher-priority tasks. This interference is not dependent upon the actual ordering of these
higher priorities. Hence if any task is schedulable at the bottom value it can be assigned
that place, and all that is required is to assign the other N — 1 priorities. Fortunately, the
theorem can be reapplied to the reduced task set. Hence through successive reapplication,
a complete priority ordering is obtained (if one exists).

The following code in Ada implements the priority assignment algorithm;’ Set
is an array of tasks that is notionally ordered by priority; Set (N) being the highest
priority, Set (1) being the lowest. The procedure Task_Test tests to see whether
task K is feasible at that place in the array. The double loop works by first swapping
tasks into the lowest position until a feasible result is found; this task is then fixed at that
position. The next priority position is then considered. If at any time the inner loop fails
to find a feasible task, the whole procedure is abandoned. Note that a concise algorithm
is possible if an extra swap is undertaken.

procedure Assign_Pri (Set : in out Task_Set; N : Natural;
Ok : out Boolean) is
begin
for K in 1..N loop
for Next in K..N loop
Swap (Set, K, Next);
Task_Test (Set, K, 0k);
exit when Ok;
end loop;
exit when not Ok; -- failed to find a schedulable task
end loop;
end Assign_Pri;

If the test of feasibility is exact (necessary and sufficient) then the priority ordering is
optimal. Thus for arbitrary deadlines (without blocking), an optimal ordering is found.
Where there is blocking, the priority ceiling protocols ensure that blockings are relatively
small and, therefore, the above algorithm produces adequate near optimal results.

11.10.8 Insufficient priorities

In all of the analysis presented in this chapter it has been assumed that each task has a
distinct priority. Unfortunately it is not always possible to accommodate this ‘one priority
per task’ ideal. If there are insufficient priorities then two or more tasks must share the
same priority. Fortunately, to check the schedulability of shared-priority tasks requires
only a minor modification to the response time test. Consider the basis Equation (11.4)
derived earlier in this chapter, which has a summation over all the higher-priority tasks. If
tasks share priorities then this summation must be over all higher- or equal-priority tasks:

Z R;
j

Jjehep(i)

where hep(i) is the set of higher- or equal-priority tasks (than 7).

"This algorithm has become known as Audsley’s algorithm.
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So, if tasks @ and b share priority i then a assumes it is getting interference from b
and b assumes it is getting interference from a. Clearly if @ and b are schedulable when
they share priority i then they will remain schedulable if they are assigned distinct but
adjacent priorities. The-converse is, however, not true.

One way to reduce the number of priority levels required for a specific system is
to first make sure the system is schedulable with distinct priorities. Then, starting from
the lowest priority, tasks are grouped together until the addition of an extra task breaks
schedulability. A new group is then started with this task, and the process continues until
all tasks are in groups (although some groups may contain only have a single task). A
minor variant of the priority assignment algorithm given above can easily implement
this scheme.

Reducing the number of priority levels inevitably reduces schedulability. Tests
have shown (Klein et al., 1993) that 92% of systems that are schedulable with distinct
priorities will remain schedulable if only 32 levels are available. For 128 priority values
this rises to 99%. In will be noted in the next chapter that Ada requires a minimum of 31
distinct priorities, Real-Time POSIX a minimum of 32 and Real-Time Java a minimum
of 28.

11.10.9 Execution-time servers

Finally, in the description of fixed-priority scheduling the topic of execution-time servers
isrevisited. As applications and hardware platforms become more complicated itis useful
to employ a virtual resource layer between the set of applications and the processor (or
processors) they execute on. An execution-time server both guarantees a certain level
of service and ensures that no more resource is allocated than is implied by the ‘service
contract’. So, for example, two multithreaded applications may co-exist on the one
processor. One application receives 4 ms every 10 ms, the other 6 ms. These levels are
guaranteed and policed. The first application will definitely get 4 ms, but it will not
be allocated more than 4 ms in a 10 ms interval even if it has a runnable high-priority
task.

There have been a number of execution-time servers proposed for FPS (see Section
11.6.2). Here three common ones are described: the Periodic Server, the Deferrable
Server and the Sporadic Server. The simple Periodic Server has a budget (capacity) and
areplenishment period. Following replenishment, client tasks can execute until either the
budget is exhausted or there are no longer any runnable client tasks. The server is then
suspended until the next replenishment time. The Deferrable Server is similar except
that the budget remains available even after clients have been satisfied — a client arriving
late will be serviced if there is budget available. Both Periodic and Deferrable Servers
are replenished periodically and the budget still available at replenishment is lost. The
Sporadic Server behaves a little differently. The budget remains indefinitely. When a
client arrives (at time ¢, say) it can use up the available budget which is then replenished
at time ¢ + the replenishment period of the server.

A complete system can contain a number of servers of these three types. The
Periodic Server is ideally suited for supporting periodic tasks, the Sporadic Server is
exactly what is required for sporadic tasks and the Deferrable Server is a good match
for handling aperiodic work. In the latter case, aperiodic tasks can be handled quickly if
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there is budget available — but once this is exhausted then the aperiodic tasks will not be
serviced and hence an unbounded load on the server will have no detrimental effects on
other parts of the system.

Scheduling these three server types on a fixed-priority system is relatively straight-
forward. Each server, of whichever type, is allocated a distinct priority. Response time
analysisis then used to verify that all servers can guarantee their budget and replenishment
period. Fortunately Periodic and Sporadic Servers behave exactly the same as periodic
tasks and hence the straightforward analysis for these servers is directly applicable. For
Deferrable Servers, the worst-case impact such a server can have on lower-priority tasks
occurs when its budget is used at the very end of one period and then again at the start
of the next. Conveniently this behaviour is identical to a periodic task suffering release
jitter and hence can be analysed using the formulation given in Section 11.10.1.

It follows from this brief discussion that the schedulability test for a task running
on a server involves two steps; first to verify that the server’s parameters are valid and
second that the response time of the task on that server is bounded by the task’s deadline.
The worst-case response time for a task executing on a server can be computed in a
number of ways. For example, a server that guarantees 2 ms every 10 ms is equivalent
to a processor running at 1/5 of its original speed. If all task computation times are
multiplied by 5 then standard RTA can be applied (using these new C values).8 A similar
approach is taken with variable speed processors — an example of this analysis is given
in Section 11.15.

11.11 Earliest deadline first (EDF) scheduling

EPS is undoubtedly the most popular scheduling approach available to the implementors
of real-time systems. The next chapter will show how it is supported in a number of
languages and operating systems. However, as discussed at the beginning of this chapter,
it is not the only approach studied in the real-time scheduling community. This section
focuses on an alternative approach, EDF, that has a number of properties that make it
almost as important as FPS. Unfortunately, it is currently less supported by languages
and operating systems (again see the next chapter). For this reason EDF analysis is not
covered here to the same level of detail afforded to FPS analysis.

11.11.1 Utilization-based schedulability tests for EDF

Not only did the seminal paper of Liu and Layland introduce a utilization-based test for
FPS but it also gave one for EDF. The following equation is for the simple task model
introduced in Section 11.2.4 — in particular, D = T for all tasks:

N ose
> <F> <1 (11.24)

i=1

8With this example, the computed response times may need to have the value 8 added to take into account
the ‘dead time’ before the sever can respond to requests from its client tasks.
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Clearly this is a much simpler test than the corresponding test for FPS (Equa-
tion (11.1)). As long as the utilization of the task set is less than the total capacity of the
processor then all deadlines will be met (for the simple task model). In this sense EDF is
superior to FPS; it can always schedule any task set that FPS can, but not all task sets that
are passed by the EDF test can be scheduled using fixed priorities. Given this advantage
it is reasonable to ask why EDF is not the preferred task-based scheduling method? The
reason is that FPS has a number of advantages over EDFE.

e FPS is easier to implement, as the scheduling attribute (priority) is static; EDF
is dynamic and hence requires a more complex run-time system which will have
higher overhead.

e It is easier to incorporate tasks without deadlines into FPS (by merely assigning
them a priority); giving a task an arbitrary deadline is more artificial.

e The deadline attribute is not the only parameter of importance; again it is easier
to incorporate other factors into the notion of priority than it is into the notion of
deadline, for example, the criticality of the task.

e During overload sitnations (which may be a fault condition) the behaviour of FPS
is more predictable (the lower-priority tasks are those that will miss their deadlines
first); EDF is unpredictable under overload and can experience a domino effect
in which a large number of tasks miss deadlines. This is considered again in
Section 11.12.

e The utilization-based test, for the simple model, is misleading as it is necessary
and sufficient for EDF but only sufficient for FPS. Hence higher utilizations can,
in general, be achieved for FPS.

Notwithstanding this final point, EDF does have an advantage over FPS because
of its higher utilization. Indeed it is easy to show that if a task set, with restrictions such
as deadline equal to period removed, is schedulable by any scheme then it will also be
schedulable by EDFE. The proof of this property follows the pattern used for proving that
DMPO is optimal (see Section 11.7.1). Starting with the feasible schedule it is always
possible to transform the schedule to one that becomes identical with the one EDF would
produce — and at each transformation schedulability is preserved.

11.11.2 Processor demand criteria for EDF

One of the disadvantages of the EDF scheme is that the worst-case response time for
each task does not occur when all tasks are released at a critical instant. In this situation
only tasks with a shorter relative deadline will interfere. However, later there may exist
a position in which all (or at least more) tasks have a shorter absolute deadline. In
situations where the simple utilization-based test cannot be applied (for example when
there is release jitter or when deadlines are shorter then periods) then a more sophisticated
scheduling test must be used. In FPS this takes the form of RTA (calculate the worst-case
response time for each task and then check that this is less than the related deadline).
For EDF this approach can again be used, but it is much more complicated to calculate
these response time values and hence it will not be described here. There is, however,
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Figure 11.11 PDC example.

an alternative scheme that checks for schedulability directly rather than via response
times. This method, called PDC (Processor Demand Criteria) (Baruah et al., 1990a, b),
is defined as follows.

Assuming a system starts at time 0 and all tasks arrive at their maximum frequency,
at any future time, ¢, it is possible to calculate the load on the system, /(). This is the
amount of work that must be completed before ¢, in other words, all jobs that had absolute
deadlines before (or at) 7. It is easy to give a formula for 2 (¢):

N |t+T - D
h(r) z:; { T J C; (11.25)
To illustrate this formula, consider a single task with7 = 5, D = 3and C = 1, and
two possible values of t: t1 = 12 and 2 = 14. Figure 11.11 illustrates these parameters,
The third deadline of the task is at 13 and hence is after 1 so /2 (#1) for this task should
be 2. But at 12 = 14 another execution of the task must be completed and so 7 (r2) = 3.
To compute these values easily, T — D is added to ¢; if this results in a value after the
next period then the floor function in Equation (11.25) will correctly add an extra C to
the total. So, in the example, T — D = 2, t1 + 2 = 14 and hence |14/5] = 2. But
t2+2=16andso [16/5] = 3.
The requirement for schedulability is that the load must never exceed the time
available to satisfy that level of load:

Vis0 h() <t (11.26)

PDC involves applying this equation to a limited number of 7 values. The number
of points is limited by two factors:

e only values of t that correspond to deadlines of tasks need be checked;

e there is an upper bound (L) on the values of ¢ that must be checked — this means
that an unschedulable system will have h(¢) > t for some value of f < L.

The first reduction comes from the fact that A (t) is constant between deadlines
and hence the worst case occurs at a deadline. To calculate the upper bound (L) on the
interval that must be checked, two formulae have been developed. The first one comes
from the need to check at least the first deadline of each task, and a bound based on
utilization (the derivation of all the equations given in the section can be found in the
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literature referenced in the Further Reading section at the end of this chapter):

SN (T = D)C/T; }

L,,:max{Dl,...,DN, U

The second bound is derived from the busy period of the system (that is, the time from
start-up at time O to the first null or background tick where no task is executing — at this
time, by definition, the load has been satisfied). This is easily obtained from a recurrence
relation similar to that used in FPS:

N
U)O = ZC,

i=1
j+ = [w!

i=1
When w/*! = w/ then this is the end of the busy period and L, = w’. Note this busy
period is bounded if the utilization of the task set is not greater then 1 (so this is always
checked first).

To obtain the least upper bound, the simple minimum of these two values is used:

L = min(L,, Ly) (11.27)

For example, consider a three task system as depicted in Table 11.15. The utilization
of this task set is 0.92. The computed values of L, and L, are 30.37 and 15 respectively;
hence the least upper bound is 15. In the time period from 0 to 15 there are five deadlines
to check — task ¢ at times 4, 8 and 12, task b at time 10 and task ¢ at time 14, At all of
these points Equation (11.26) is satisfied and the system is determined to be schedulable.
For example A(15) is 14 and 7 (12) is 6.

If the example is now modified to increase the computation time of b to 4 then the
utilization is still acceptable (0.987), but it is not schedulable. At time 14, /() has the
value 15, so h(14) > 14.

11.11.3 The QPA test

For non-trivial systems, L can be large and the number of deadlines between 0 and L
that need to be checked becomes excessive. Fortunately an efficient scheme has recently
been developed that can significantly reduce the number of time points that need to be
tested. This scheme, known as QPA (Quick Processor-demand Analysis), exploits the

Task T D C
a 4 4 1
b 15 10 3
c 17 14 8

Table 11.15 A task set for EDFE.
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Task T D C
a 4 4 1
b 8 6 1
c 10 10 1
d 12 8 2
e 15 12 2
f 21 20 3

Table 11.16 A task set for EDF.

following property (Zhang and Burns, 2008): rather than progress from O to L checking
each deadline, QPA starts at L and moves backwards towards 0 checking only a necessary
subset of the deadlines. '

Let h(L) = s.If s > L then the system is unschedulable. If this is not the case
(s < L)then h(t) < t forall values of t: s < t < L. Hence there is no need to check the
deadlines within the interval s..L. To verify this property assume (in order to construct
a counterexample) a value ¢ within the range has 4(¢) > t. Now t > 550 h(t) > 5. Also
h(t) < h(L) ast < L (the function A is monotonic in £). We must conclude that s > L
which contradicts the assumption that s < L.

Having jumped from L back to i(L), the procedure is repeated from h(L) to
h(h(L)), etc. At each step the essential test of h(f) < t is undertaken. Of course if
h(r) = t then no progress can be made and it is necessary to force progress by moving
from ¢ to the largest absolute deadline (d) in the system such as d < 1.

The QPA test looks at only a small fraction of the number of points that would
need to be analysed if all deadlines were checked. An example of the approach is as
follows. Six tasks have the characteristics given in Table 11.16. The utilization of this
task set is 0.965. The value of L is 59 and there are 34 deadlines that need to be checked
in this interval using PDC.

Applying QPA results in just 14 points that need to be considered, and these
correspond to the following values of ¢: 59, 53, 46, 43, 40, 33, 29, 24, 21, 19, 12,9, 5
and 1. In other examples (Zhang and Burns, 2008), QPA typically requires only 1% of
the effort of the original processor demand analysis scheme.

11.11.4 Blocking and EDF

When considering shared resources and blocking, there is a direct analogy between EDF
and FPS. Where FPS suffers priority inversion, EDF suffers deadline inversion. This is
when a task requires a resource that is currently locked by another task with a longer
deadline. Not surprisingly inheritance and ceiling protocols have been developed for EDF
but, as with earlier comparisons, the EDF schemes are somewhat more complex (Baruah,
2006).

As priorities are static, it is easy to determine which tasks can block the task
currently being analysed. With EDF, this relationship is dynamic; it depends on which
tasks (with longer deadlines) are active when the task is released. And this varies from
one release to another throughout the hyper-period.
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Probably the best scheme for EDF is the Stack Resource Policy (SRP) of Baker
(1991). This works in a very similar way to the immediate ceiling priority protocol for FPS
(indeed SRP influenced the development of ICPP). Each task, under SRP, is assigned
a preemption level. Preemption levels reflect the relative deadlines of the tasks, the
shorter the deadline the higher the preemption level; so they actually designate the static
priority of the task as assigned by the deadline monotonic scheme. At run-time, resources
are given ceiling values based on the maximum preemption level of the tasks that use
the resource.

When a task is released, it can only preempt the currently executing task if
its absolute deadline is shorter and its preemption level is higher than the
highest ceiling of the currently locked resources.

The result of applying this protocol is identical to applying ICPP (on a single
processor). Tasks suffer only a single block (it is as they are released), deadlocks are pre-
vented and a simple formula is available for calculating the blocking time. The blocking
term, once calculated, can be incorporated into PDC and QPA.

11.11.5 Aperiodic tasks and EDF execution-time servers

Following the development of server technology for fixed-priority systems, most of
the common approaches have been reinterpreted within the context of dynamic EDF
systems. For example there is a Dynamic Sporadic Server and a Dynamic Deferrable
Server. Whereas the static system needs a priority to be assigned (which is done pre-
run-time), the dynamic version needs to compute a deadline each time it needs to
execute.

In addition to these common forms of servers there are also a number that are
EDF-specific. These take the form of virtual (but slow) processors that can guarantee C
in T'. So an aperiodic task that requires to execute for 3C will be guaranteed to complete
in 3T if the server has no other work to do. To find more about EDF servers and EDF
scheduling in general, the reader is referred to the books by Liu and Buttazzo in the
Further Reading section at the end of this chapter.
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