Where do Time Constraints Come From

and Where do They Go? *

Krithi Ramamritham
Department of Computer Science

University of Massachusetts
Ambherst Ma. 01003

email: krithi@cs.umass.edu

Invited Paper — To appear in
International Journal of Database Management

Abstract

While a lot of work has been done in real-time systems, in real-time
database systems, and more recently, in real-time active databases on
the topic of time constrained processing of tasks and transactions, very
little work exists that deals with the origin of the time constraints
associated with the data, the events, and the actions. In this paper we
identify the sources and semantics of time constraints and show that it is
important to minimize the number of “mandated” timing requirements
and also weaken the implications of timing constraint violations. The
Event-Condition-Action rules of active real-time databases provide a
useful framework to specify the timing properties of interest as well as
the actions to be taken when the properties are violated. That is, an
active real-time database can be made to store the data pertaining to
the controlled system as well as the meta-data about the controlling
system.

*This work was supported, in part, by NSF under grant IRI-9208920.

Contents

1 Introduction 3
2 Motivating Examples 4
3 Factors that determine the Time Constraints 5

4 Origins of Timing Properties of Events, Data, and Ac-

tions 7
4.1 Time Constraints of Events 7
4.2 Time Constraints of Data 9
4.3 Time Constraints of Actions 12

5 Dealing with Time Constraints and their Violations 14
6 Derivation of Time Constraints 17

7 Discussion 18

1 Introduction

What separates real-time systems from non real-time systems is the
presence of data that becomes invalid with the passage of time, the
presence of events that must occur in a timely fashion, and the pres-
ence of actions whose timely completion is as important as the results
produced. Many of the timeliness requirements, however, are artifacts
of the way a system is designed and the (usually ad-hoc) manner in
which the time constraints are assigned. Of course, some time con-
straints are imposed by the external (physical) environment and these
must be ensured by the system. However, quite often, since the origins
of the time constraints are not known to a real-time system, it attempts
to satisfy them all, leading to an overconstrained or overdesigned sys-

tem.

Given specific time constraints, a lot of work has been done on the
topic of time constrained processing of tasks and transactions [5]. But
very little work exists that deals with the origins of the time constraints
associated with the data, the events, and the actions. Knowing their
origins it is possible to determine the semantics of the time constraints
and also the best ways to satisfy timing requirements. This paper ex-
amines these issues and shows that the timing properties of interest and
the actions to be taken when the properties are violated can be speci-
fied using the Event-Condition-Action (ECA) rules of active databases.
Because of this, a real-time active database system (RTADB) can serve
as a repository of not only the data about the environment of interest
but also of the meta-data that can help in the adaptive handling of

time constraint violations — of the data, events and the actions.

Throughout this paper we will use the term action to refer to com-
putations with time constraints. Actions could be complex, containing
subactions. Actions encompass real-time tasks and real-time transac-

tions.

The rest of the paper is structured as follows. In Section 2 we discuss
two real-time application examples that can benefit from RTADB tech-
nology. These will be used to substantiate the points made throughout
the paper. Factors that determine the time constraints are discussed in

Section 3. Section 4 provides a detailed discussion of the origins of the

timing properties of actions, data, and events. Implications of timing
constraint violations is the topic of Section 5. Section 6 briefly dis-
cusses how time constraints ought to be derived methodically. Section

7 summarizes the paper.

2 Motivating Examples

In this section we introduce two examples of real-time applications that
can benefit from real-time active database technology. Aspects of these
examples will be used throughout the paper to illustrate our ideas.

(Further detailed examples can be found in [6]).

Consider recognizing and directing objects moving along a set of
conveyer belts on a factory floor. An object’s features are captured
by a camera to determine its type and to recognize whether it has
any abnormalities. Depending on the observed features, the object is
directed to the appropriate workcell. In addition, the system updates

its database with information about the object.

The following aspects of this example are noteworthy. First of all,
features of an object must be collected while the object is still in front
of the camera. Then the object must be recognized by matching the
features against models for different objects stored in a database. This
matching has to be completed in time so that the command to direct
the object to the appropriate destination can be given before the object
reaches the point where it must be directed onto a different conveyer
belt that will carry it to its next workcell. The database update must
also be completed in time so that the system’s attention can move to
the next object to be recognized. If, for any reason, a time-constrained
action is not completed within the time limits, alternatives may be
possible. In this example, if feature extraction is not completed in
time, the object could be discarded for now to be brought back in front

of the camera at a later point in time.

As another example, consider the following air traffic control sce-
nario at an airport. The air traffic control system makes decisions con-
cerning incoming aircrafts’ flight path, the order in which they should

land, and separation between landings based on a multitude of param-

eters including current wind velocity, position of the aircrafts, their
speed, fuel position, and altitude and the type of aircraft. If an air
traffic controller cannot accommodate all the incoming aircrafts, he or
she can ask aircraft(s) to assume a holding pattern until the situation

Improves.

Applications such as these introduce the need for real-time active
database systems. These applications involve gathering data from the
environment, processing gathered information in the context of infor-
mation acquired in the past, and providing timely response. Another
aspect of these examples is that they involve processing of both tem-
poral data, which loses its validity after a certain interval, as well as
archival data. Finally, the applications involve triggering of specific

actions in specific situations.

Real-time systems consist of a a controlling system and a controlled
system. For example, in an automated factory, the controlled system is
the factory floor with its robots, assembling stations, and the assembled
parts; the controlling system is the computer and human interfaces
that manage and coordinate the activities on the factory floor. The
controlled system can be viewed as the environment with which the

computer interacts.

3 Factors that determine the Time Con-
straints

In this section, we examine the factors that determine these time con-
straints. The externally-tmposed temporal properties depend on many

factors including:

o Characteristics of the physical systems being controlled:

— e.g., the speed of the aircraft (to calculate time at which
it will touch ground); the speed of the conveyer belt (to
calculate available time to decide the path of the object).

o Stability characteristics of a system as governed by its control

laws:

— e.g., servo control loops of robot hands, fly-by-wire avionics.

e Quality of service requirements (service delays tolerable by the

controlled system or humans):

— e.g., sampling rates for audio and video; responsiveness of
air traffic controller to an aircraft pilot’s request for current

weather conditions at destination.
e Human (re)action times, human sensory perception:

— e.g., time between warning (e.g. low fuel level) and action
based on the warning (e.g. immediate start of landing fol-

lowing emergency procedures).

These factors determine the time constraints that are inherited by the
controlling system from the external environment. Understanding these
factors is important because some of these are more important to satisfy
(e.g., physical environment related factors) than others (e.g., quality-of-
service factors related to human interactions). Using this information,

importance levels can be set for actions.

In some sense, all time constraints, be they externally imposed or
resulting from design decisions (see below), are artifacts. For instance,
in relation to the items listed above, length of a runway or speed of an
aircraft are determined by cost and technology considerations; quality
of service requirements, for instance, in telephone networks, are quite
often decided by regulatory authorities; response times guaranteed by
service providers are determined by cost and competitiveness factors.
Unfortunately, many of these decisions are not under the control of
a computer system designer. Hence, the system designer’s decisions
must be made within the boundaries laid out by others. This is what
we referred to above as being externally-imposed. What is important
to note i1s that the number of factors “given” to the designer must be

kept to a minimum leaving more options to satisfy the requirements.

Subsequent decisions of the designer introduce additional constraints.
The type of computing platform used (e.g., centralized vs. distributed),
the type of software design methodology used (e.g., data-centric vs.

action-centric), the (pre-existing) subsystems used in composing the

system, the nature of the actions (e.g., monolithic action vs. graph-

structured action), etc., further curtail the decisions.

At some level in the design of a real-time application, decisions
concerning whether an action is periodic, sporadic, or aperiodic have
to be made, the values for the periods, deadlines, and offsets within
periods must be chosen, and importance or criticality values must be

assigned.

Thus, the decisions made at one level affect those at the other
level(s). What has to be recognized is that while no decision at any level
is likely to be sacrosanct, i.e., beyond modification, cost and time con-
siderations will prevail in any such overhaul of prior decisions. Decisions
at one level may percolate to many subsystems below and a previous
decision may not be changeable just to accommodate the needs of a

single subsystem.

While it will be beneficial to determine all related time constraints
in an optimal fashion, for non-trivial systems the problem is likely to
be intractable. This is the reason a divide-and-conquer approach is
adopted wherein a system is designed from subsystems each of which
must satisfy a set of given time constraints. Such time constraints
reflect the specific design strategy and the subsystems chosen as much

as the externally imposed timing requirements.

4 Origins of Timing Properties of Events,
Data, and Actions

In this section we examine the origins of the time constraints from the

perspective of the events, the data, and the actions.

4.1 Time Constraints of Events

In real-time applications, actions are triggered by the occurrence of
events, that is, associated with each action is an event occurrence.
Because of this, certain types of time constraints on the actions are
inherited from the types of events that trigger these actions. Hence

it is important to examine events with respect to their timing-related

properties. In essence, there are three types of such time constraints

[2].

1. Mazimum: delay between two events.

Example: Once an object enters the view of the camera, object

recognition must be completed within ¢; seconds.

2. Minimum: delay between two events.

Example: No two flight landings must occur within ¢, seconds.

3. Durational: length of an event.

Example: The aircraft must experience no turbulence for at
least t3 seconds before the “seat-belts sign” can be switched off

once again.

With respect to the last example, note that an event with a duration
can be viewed as a complex event where the begin and end of the
complex event are themselves marked by the occurrence of a (simple)

event.

Events could be inputs or stimulus (S) events, output or response

(R) events, and internal (I) or invisible (outside the system) events.

At some level within the system, even internal events can be cate-
gorized as S or R events with respect to subsystems of the system. For
example, if the planning subsystem of an automated factory takes the
current and desired position of a robot and creates a plan for the robot
to reach the desired position, the arrival of the request to the planner
is an S event as far as the planner is concerned; when the planner pro-
duces the plan and sends it to the rest of the factory control system,
an R event occurs. Both of these, however, could be events that occur
as a result of a larger request from the environment (e.g. the operator)
to the factory control system, for example to get the floor to produce

a new product.

Minimum, maximum, and durational constraints can occur between
stimulus and response events (that is, all four combinations are possi-
ble) even though, the S-R combination is the only one usually consid-

ered in the scheduling literature.

The maximum and minimum type of time constraints associated
with recurring (stimulus) events are also referred to as rate-based con-
straints since they relate to the maximum and minimum rate of arrival

of recurring stimuli.

The occurrence of an event is handled by an action associated with
that event. Time constraints on these events determine the constraints
on these actions: rate-based constraints translate into periodicity re-
quirements for the corresponding actions. Time constraints relating a
stimulus and its response corresponds to deadline constraints. Spec-
ifications of minimal separation between response to a stimulus and
the next stimulus dictate the behavior of the sporadic activity that
deals with that stimulus. Thus, the constraints on events translate to

constraints on the actions that deal with these events.

The ECA rules are very convenient to enforce these constraints and
also to trigger the actions. It is very easy, for example, to see how one

can translate the example given for the durational constraint into an

ECA rule.

4.2 Time Constraints of Data

The controlling system interacts with its environment based on the data
available about the environment, say from various sensors, e.g. posi-
tion, velocity, and altitude sensors, and cameras. It is imperative that
the state of the environment, as perceived by the controlling system,
be consistent with the actual state of the environment. Otherwise, the
decisions of the controlling system may be wrong and their effects dis-
astrous. Hence, timely monitoring of the environment as well as timely

processing of the sensed information is necessary.

The sensed data is processed further to derive new data. For exam-
ple, data such as aircraft position, heading, and velocity, are used to
derive the time at which it would touch ground if allowed to land. This
derivation depends on the nature of the aircraft and its payload and so
some of the needed information may have to be fetched from archival
storage. The controlling system’s responses are based on the derived
data, where the derivation may involve multiple steps. In our air traffic

control example, the derived information is used to send commands to

the aircraft to land or to assume a holding pattern. In general, the his-
tory of (interactions with) the environment are also logged in archival

storage.

In order for the control system to take the right decisions and pro-
vide the proper response to the environment, its view of the environ-
ment must be a close reflection of the actual state of the environment.
This need to maintain consistency between the actual state of the en-
vironment and the state as reflected by the contents of the database
leads to the notion of temporal consistency. Temporal consistency has

two components [8, 1]:

o Absolute consistency — between the state of the environment and
its reflection in the database; this arises from the need to keep
the controlling system’s view of the state of the environment con-
sistent with the actual state of the environment. Let us denote a

data item in the real-time database by
d : (value, avi, timestamp)

where d,q4e denotes the current state of d, and diimestamp denotes
the time when the observation relating to d was made. dg,; de-
notes d’s absolute validity interval, i.e., the length of the time
interval following dijmestamp during which d is considered to have

absolute validity.

o Relative consistency — among the data used to derive other data;
this arises from the need to produce the data used to derive other
data close to each other. A set of data items used to derive a
new data item form a relative consistency set. Each such set R is

associated with a relative validity interval denoted by R,.;.
Assume that d € R. d has a correct state iff

1. dyaiue 1s logically consistent — satisfies all integrity constraints

specified on the data.
2. d is temporally consistent:

e Absolute consistency: (current_time — diumestamp) < davi-

10

S R’rvi .

e Relative consistency: Vd' € R, | diimestamp — Fiimestamp |

Ideally, we would like the data in the database to be temporally
correct at all times. In practice, however, it is crucial that data be tem-
porally correct when it is used or consumed by some action. Viewed
from this need, absolute consistency can be seen as a freshness con-
straint and relative consistency can be seen as a correlation constraint
[3]. That is, when a data item is used, it must be fresh (as specified by
the absolute consistency requirements) and must be temporally corre-
lated (as specified by the relative consistency requirements) with other
data that it is used with.

Keeping the data in the database temporally correct requires timely
execution of the actions that record the arrival of stimulus or input and
the timely derivation of data. If the data is temporally invalid corrective

actions must be taken.

Example: Position, velocity, and heading values pertaining to
aircrafts, as reflected in the air traffic controller’s database must
be fresh as well as temporally correlated. If temporal validity is

lost, new values must be obtained to restore validity.

There are obvious interrelationships between the way one type of
data is used to derive another, the composition of the relative consis-
tency sets, and the manner in which timestamps are set for derived data.
Methodical approaches must be developed to address this problem such
that the system is not overconstrained, i.e., temporal consistency re-
quirements must not be stricter than necessary. This is important since
temporal consistency requirements translate into time constraints on
actions (see Section 6), and the more restrictive the temporal consis-
tency requirements, the tighter the time constraints on actions, and the

harder it is to satisfy them.

Before we conclude our discussion of data temporal properties, sev-

eral points must be noted.

The avi and rvi of data may change with system dynamics, e.g.,
mode changes. For instance, during the takeoff and landing stages of

a flight it is necessary to monitor speed and altitude closely, i.e., they

11

must have a small avi. But, it might be appropriate to increase the avsz

once the aircraft is cruising.

A data item that does not reflect the state of the environment any
more can still be useful to a controlling system. First of all, it can be
used as a predictor. For instance, past wind speeds over a particular
flying area can help in determining future trends. Secondly, a particular
algorithm might be able to work with approximate state values. Gen-
erally speaking, different subsystems may require data with different

grades of temporal validity.

4.3 Time Constraints of Actions

Having covered the timing aspects of events and data we are now in
a position to summarize the reasons for actions being associated with

time constraints.

e Time constraints dictate the behavior of the environment — they

constrain the rates and times at which inputs arrive at the system.

Example: In an air traffic control system, a flight commander
must not ask for permission to land until the aircraft is 10 minutes

from the airport.

e Time constraints prescribe performance of the system — they dic-

tate the responsiveness of the system to these inputs.

Example: Once landing permission is requested, a response must

be provided within 30 seconds.

e Time constraints are imposed on actions that sense the environ-
ment and update the controlling system’s database so as to main-

tain data temporal consistency.

Example: Actions that update an aircraft’s dynamic parame-
ters, such as position and altitude, must execute with specified
periodicity. These actions may have deadlines depending on how

soon the current data will become invalid.

These three types of time constraints are end-to-end in nature, gov-
erning the relationship between the controlling system (the real-time

system) and the controlled system (the environment).

12

The first and second types of time constraints are related to the
events that occur and the system’s response to stimulus events. This
response can itself be considered as an event. Time constraints from
the perspective of events were examined in Section 4.1. In some cases, a
specified time constraint is specified directly on an action, e.g., action
A must complete within ¢ time units. Since action completion is an
event, we can view this as a time constraint on the event occurrence
also. The third type of time constraint arises primarily due to the
need to keep the controlling system in synchrony with the controlled
system. In Section 4.2 we examined the details of such data temporal

consistency requirements.

Time constraints belonging to a fourth category facilitate the devel-
opment of feasible solutions — they constrain the internal behavior so
that solutions may be derived. For example, the timely synchronization
of nodes’ views of each others’ states is often used to detect faults in a
distributed system. If a node fails to receive an “I am alive” message
from a healthy node within a specified time-out interval, expensive fault

diagnosis procedures may be invoked.

Here as well as in many other situations, time is used as a synchro-
nization mechanism and to achieve coordination. It is important to
impose the minimal and least stringent set of time constraints neces-

sary to obtain correctness.

This section can be summarized as follows: Time constraints can
be associated with events, data, and actions. Events trigger actions
and data temporal consistency is maintained through timely actions. .
Thus, from the viewpoint of the controlling system, the various types of
timing constraints result in the need for the time-constrained execution
of actions. Of course, the methodical translation of the data and event
timing requirements into timing constraints on actions is, for the most
part, still an open issue. We discuss some of the considerations in
Section 6 after examining the implications of not meeting the timing

requirements.

13

5 Dealing with Time Constraints and their
Violations

An issue of interest to the designer of a real-time system concerns the
scheduling of time constrained actions so as to minimize the penalty
resulting from the actions that are either delayed or not executed at

all, and to maximize the value accruing to the system from the actions.

If a large negative penalty will result from a delay or non-execution

of an action, we have a safety-critical or hard time constraint.

Example: The deadline set for an aircraft to leave the runway

after landing is safety-critical.

If there is no value to executing an action after the deadline has
passed and no penalty accrues, we have a firm deadline. An alternative
action (including a null action) is possibly available to deal with the

violation of the time constraint.

Example: A transaction that is attempting to recognize a mov-
ing object must complete acquiring the necessary information be-
fore the object goes outside its view and hence has a firm dead-
line. If the firm deadline is not met the object must be brought
in front of the camera once again and recognition attempted with

increased importance.

ON (deadline of “object recognition”)
IF (action not completed)

DO (“try again with increased tmportance).

Example: If at time ¢; an aircraft has been cleared to land,
necessary steps, for example, to lower the landing gear, to begin
deceleration, and to reduce altitude, must be completed within 10
seconds. Otherwise, we would like to abort the landing within a

given deadline, say b seconds; the abort must be completed within

14

the deadline, presumably because that is the “cushion” available
to the system to abort the landing without affecting other air-

crafts. This requirement can be expressed as follows:

ON (10 seconds after “initiating landing preparations”)
IF (steps not completed)
DO (within 5 seconds “Abort landing”).

In the second example above, we have encoded the behavior in terms
of the Event-Condition-Action paradigm of active databases to show

how the rules can be made to embody the control knowledge.

Many actions can be executed even after their deadlines because the
consumer of the output of the actions can live with data that arrives
late. Such deadlines are termed soft. But if indeed there is a follow-up
action to this delayed action, the system must be capable of adapting
its decisions to handle this delay so that the overall end-to-end time

constraints are satisfied.

Example: An object’s features must be captured by a cam-
era, the features must be matched with those of objects in the
database and the decision concerning which way to direct the
object must all be completed before the object reaches a certain
point in its traversal. This sequence has an overall deadline from
which the time constraints of the component actions can be de-
rived. Each of these time constraints is a soft deadline since in
spite of their violation the overall action might still be able to

complete.

It should be clear that firm and soft time constraints offer the system
a certain amount of flexibility that is not present with hard or safety-
critical time constraints. As we stated earlier, most of the latter arise
from external considerations. It is therefore important to minimize the

number of such mandated requirements.

15

The presence of firm and soft time constraints calls for meta-control
algorithms which are capable of reacting to time constraint violations by
adjusting deadlines and other parameters, such as importance levels, of

future actions. These meta-control rules can be encoded as ECA rules.

Given this, an active real-time database system can serve not only as
the repository of the data about the environment being controlled, but
also as a repository of the control data, triggering the necessary adap-
tive responses to time constraint violations to effect recovery. These
responses can relate to the environment being controlled, e.g., “place
the aircraft in a holding pattern in case the runway is unavailable”, or
to the internal parameters set by the system, e.g., adjust the soft dead-
line of the “object matching” action in case the “object recognition”

action is delayed.

Also ECA rules can be used to appropriately react to overloads,
for example, by defining rules to shed load upon the recognition of an
overload or to increase the importance of a periodic action whose m

out of previous n instances missed their execution.

ON (nth violation within 10 secs)
IF (crisis-mode)

DO (drop all non-essential actions).

ECA rules can also help in dealing with impending the temporal
invalidity of data. Specifically, if a transaction needs a data item and
it is (about to become) invalid, it can trigger another action to fetch

that data from the environment.

Finally, ECA rules can also be used to govern the way transaction
processing is done, especially the way data migrates through the levels
of the memory hierarchy to ensure temporal validity, and how logging

is done to ease timely recovery[7].

16

6 Derivation of Time Constraints

Clearly, algorithms are needed to derive the optimal values for the time
constraints so as to maximize system performance, be it measured in
terms of utilization or productivity of resources or the value. Pre-
runtime as well as runtime support tools are necessary for the deriva-
tion of time constraints. The pre-runtime algorithms must derive the
time constraints such that they have the weakest possible attributes
(e.g., soft is preferable to firm) and runtime schemes must be able to
maximize the leeway afforded by these weak attributes. This area has
received very little attention even though recent results are encourag-
ing.

Let us consider a simple example, one considering just freshness, or
absolute consistency constraints of data. These are satisfied by periodic
sampling of the environment, that is, executing the action that obtains
data from a sensor and updates the database periodically. The issue
here, how should the period of this action be set? Consider one of
the many possible semantics of actions with period P: One instance
of the action must execute every period, as long as the start time and
completion time lie within a period, the execution is considered to be
correct with respect to the periodicity semantics. Suppose a simple
action takes at most e units of time to complete, (0 < e < P). If
an instance starts at time ¢ and ends at (¢ + e) and the next instance
starts at (¢ + 2+ P — e) and ends at (¢ + 2 x P), then we have
two instances, which are separated by (2 P) units of time in the worst
case. This, for example, will be the case if the rate monotonic static

priority approach is adopted.

Suppose the avt of altitudeis 10, i.e., altztude must be no more than
10 seconds old. It follows from the above periodicity semantics that to
maintain the avt of altitude, the period of the action that reads the

altitude must be no more than half the avz, that i1s 5.

Let us assume instead that periodic actions are scheduled so that
each instance of an action is guaranteed to start at the same time, rel-
ative to the beginning of a period. Then, the worst case separation
between the start time of one instance and the finish time of the subse-

quent instance will be (P + e). Since an action could write the relevant

17

data item any time during its execution, the interval (P + e) must be

less than the given avi, giving P = (avi — e).

The above discussion illustrates the dependence of action timing
constraints not only on the temporal consistency requirements of the
data but also on the execution times of the actions and the scheduling
approach adopted. We should strive for a larger period since the larger
the period, the lower the resource utilization per unit time, and hence

higher the schedulability.

This simple example considered a single periodic monolithic action
whose period equals its deadline. Most real-world actions are quite
complex and as we have seen earlier the types of time constraints can

also be very complex.

Gerber et al. [3] have proposed a solution to the problem of de-
riving the periods, offsets and deadlines of the subactions in a graph
representation of an action so as to meet the temporal requirements,
such as freshness and correlation constraints, imposed on the data. The
solution assumes a uniprocessor execution environment (even though
it could be extended to parallel and distributed environments) wherein

all task execution times are known.

The problem is bad enough if we know the structure of the compu-
tations a prior: and the data is in memory. When dealing with com-
putations in disk-resident active database systems, one has to further
contend with one action dynamically triggering another action where
the computation times of the actions are unpredictable. Since these sys-
tems use a priority-driven scheduler, some researchers have begun to
explore the problem of assignment of priority to these actions, skirting

the problem of assigning time constraints first[4].

7 Discussion

In this paper, we have made a beginning in trying to understand the
issues underlying the origin and semantics of time constraints. Not
all deadlines are defined by users or by the application, as is said in
much of the real-time literature. It is important that the flexibility

afforded by derived deadlines be exploited by the control system. By

18

the same token, in those cases where the deadlines are derived, the
values must be chosen in an adaptive fashion and the deadline violation
must also be handled adaptively. This calls for a sound methodology for
assigning/deriving time constraints and for choosing their properties in

the least stringent manner.

Given time constrained events, data, and actions, the system must
be able to recover from violations of the time constraints and gracefully
degrade under overloads. The strategies for recovering from timing
violations can be encoded as ECA rules. Thus, an active real-time
database can be used to store the data about the controlled system but

also to store the meta-data about the controlling system.

Our focus has been on temporal properties. As has been mentioned
very often in the literature, in order to achieve timeliness it is possible to
relax logical correctness requirements, by relaxing the need for currency,
coherency, consistency and completeness. This is an area worthy of

investigation.

Acknowledgements

My sincere thanks to Gerhard Fohler, Jayant Haritsa, and Raju Sivasankaran,

for their comments and suggestions on previous versions of this paper.

References

[1] N. Audsley, A. Burns, M. Richardson, and A. Wellings. A Database
Model for Hard Real-Time Systems. Technical Report, Real-Time
Systems Group, Univ. of York, U.K., July 1991.

[2] B. Dasarathy. Timing constraints of Real-time systems: Con-
structs for Expressing Them, Methods for Validating Them. IEEE
Transactions on Software Engineering, pages 80-86, Jan 1985.

[3] R. Gerber, S. Hong, and M. Saksena. Guaranteeing Real-Time Re-
quirements with Resource-based Calibration of Periodic Processes.

Transactions on Software Engineering, July 1995.

19

[4] B. Purimetla, R. M. Sivasankaran, J. A. Stankovic, K. Ramam-

ritham, and D. Towsley. Priority Assignment in Real-Time Ac-
tive Databases. Conference on Parallel and Distributed Informa-
tion Systems, Oct 1994.

K. Ramamritham. Real-Time Databases. International Journal of

Distributed and Parallel Databases, Vol. 1, No. 2, 1993.

B. Purimetla, R. M. Sivasankaran, K. Ramamritham, and J. A.
Stankovic. Real-Time Databases: Issues and Applications. In Ad-
vances tn Real-Time Systems, Sang Son, Ed. Prentice-Hall, 1995.

R. M. Sivasankaran, K. Ramamritham, J. A. Stankovic, and D.
Towsley. Data Placement, Logging and Recovery in Real-Time

Active Databases. Workshop on Active Real-Time Databases, Swe-
den, June, 1995.

X. Song and J.W.S. Liu. How Well Can Data Temporal Consis-
tency be Maintained?. In the Proceedings of the IEEE Symposium
on Computer-Aided Control Systems Design, 1992.

20

