
Where do Time Constraints Come Fromand Where do They Go? �Krithi RamamrithamDepartment of Computer ScienceUniversity of MassachusettsAmherst Ma. 01003email: krithi@cs.umass.eduInvited Paper { To appear inInternational Journal of Database ManagementAbstractWhile a lot of work has been done in real-time systems, in real-timedatabase systems, and more recently, in real-time active databases onthe topic of time constrained processing of tasks and transactions, verylittle work exists that deals with the origin of the time constraintsassociated with the data, the events, and the actions. In this paper weidentify the sources and semantics of time constraints and show that it isimportant to minimize the number of \mandated" timing requirementsand also weaken the implications of timing constraint violations. TheEvent-Condition-Action rules of active real-time databases provide auseful framework to specify the timing properties of interest as well asthe actions to be taken when the properties are violated. That is, anactive real-time database can be made to store the data pertaining tothe controlled system as well as the meta-data about the controllingsystem.�This work was supported, in part, by NSF under grant IRI-9208920.



Contents1 Introduction 32 Motivating Examples 43 Factors that determine the Time Constraints 54 Origins of Timing Properties of Events, Data, and Ac-tions 74.1 Time Constraints of Events : : : : : : : : : : : : : : : : 74.2 Time Constraints of Data : : : : : : : : : : : : : : : : : 94.3 Time Constraints of Actions : : : : : : : : : : : : : : : : 125 Dealing with Time Constraints and their Violations 146 Derivation of Time Constraints 177 Discussion 18

2



1 IntroductionWhat separates real-time systems from non real-time systems is thepresence of data that becomes invalid with the passage of time, thepresence of events that must occur in a timely fashion, and the pres-ence of actions whose timely completion is as important as the resultsproduced. Many of the timeliness requirements, however, are artifactsof the way a system is designed and the (usually ad-hoc) manner inwhich the time constraints are assigned. Of course, some time con-straints are imposed by the external (physical) environment and thesemust be ensured by the system. However, quite often, since the originsof the time constraints are not known to a real-time system, it attemptsto satisfy them all, leading to an overconstrained or overdesigned sys-tem.Given speci�c time constraints, a lot of work has been done on thetopic of time constrained processing of tasks and transactions [5]. Butvery little work exists that deals with the origins of the time constraintsassociated with the data, the events, and the actions. Knowing theirorigins it is possible to determine the semantics of the time constraintsand also the best ways to satisfy timing requirements. This paper ex-amines these issues and shows that the timing properties of interest andthe actions to be taken when the properties are violated can be speci-�ed using the Event-Condition-Action (ECA) rules of active databases.Because of this, a real-time active database system (RTADB) can serveas a repository of not only the data about the environment of interestbut also of the meta-data that can help in the adaptive handling oftime constraint violations { of the data, events and the actions.Throughout this paper we will use the term action to refer to com-putations with time constraints. Actions could be complex, containingsubactions. Actions encompass real-time tasks and real-time transac-tions.The rest of the paper is structured as follows. In Section 2 we discusstwo real-time application examples that can bene�t from RTADB tech-nology. These will be used to substantiate the points made throughoutthe paper. Factors that determine the time constraints are discussed inSection 3. Section 4 provides a detailed discussion of the origins of the3



timing properties of actions, data, and events. Implications of timingconstraint violations is the topic of Section 5. Section 6 brie
y dis-cusses how time constraints ought to be derived methodically. Section7 summarizes the paper.2 Motivating ExamplesIn this section we introduce two examples of real-time applications thatcan bene�t from real-time active database technology. Aspects of theseexamples will be used throughout the paper to illustrate our ideas.(Further detailed examples can be found in [6]).Consider recognizing and directing objects moving along a set ofconveyer belts on a factory 
oor. An object's features are capturedby a camera to determine its type and to recognize whether it hasany abnormalities. Depending on the observed features, the object isdirected to the appropriate workcell. In addition, the system updatesits database with information about the object.The following aspects of this example are noteworthy. First of all,features of an object must be collected while the object is still in frontof the camera. Then the object must be recognized by matching thefeatures against models for di�erent objects stored in a database. Thismatching has to be completed in time so that the command to directthe object to the appropriate destination can be given before the objectreaches the point where it must be directed onto a di�erent conveyerbelt that will carry it to its next workcell. The database update mustalso be completed in time so that the system's attention can move tothe next object to be recognized. If, for any reason, a time-constrainedaction is not completed within the time limits, alternatives may bepossible. In this example, if feature extraction is not completed intime, the object could be discarded for now to be brought back in frontof the camera at a later point in time.As another example, consider the following air tra�c control sce-nario at an airport. The air tra�c control system makes decisions con-cerning incoming aircrafts' 
ight path, the order in which they shouldland, and separation between landings based on a multitude of param-4



eters including current wind velocity, position of the aircrafts, theirspeed, fuel position, and altitude and the type of aircraft. If an airtra�c controller cannot accommodate all the incoming aircrafts, he orshe can ask aircraft(s) to assume a holding pattern until the situationimproves.Applications such as these introduce the need for real-time activedatabase systems. These applications involve gathering data from theenvironment, processing gathered information in the context of infor-mation acquired in the past, and providing timely response. Anotheraspect of these examples is that they involve processing of both tem-poral data, which loses its validity after a certain interval, as well asarchival data. Finally, the applications involve triggering of speci�cactions in speci�c situations.Real{time systems consist of a a controlling system and a controlledsystem. For example, in an automated factory, the controlled system isthe factory 
oor with its robots, assembling stations, and the assembledparts; the controlling system is the computer and human interfacesthat manage and coordinate the activities on the factory 
oor. Thecontrolled system can be viewed as the environment with which thecomputer interacts.3 Factors that determine the Time Con-straintsIn this section, we examine the factors that determine these time con-straints. The externally-imposed temporal properties depend on manyfactors including:� Characteristics of the physical systems being controlled:{ e.g., the speed of the aircraft (to calculate time at whichit will touch ground); the speed of the conveyer belt (tocalculate available time to decide the path of the object).� Stability characteristics of a system as governed by its controllaws: 5



{ e.g., servo control loops of robot hands, 
y-by-wire avionics.� Quality of service requirements (service delays tolerable by thecontrolled system or humans):{ e.g., sampling rates for audio and video; responsiveness ofair tra�c controller to an aircraft pilot's request for currentweather conditions at destination.� Human (re)action times, human sensory perception:{ e.g., time between warning (e.g. low fuel level) and actionbased on the warning (e.g. immediate start of landing fol-lowing emergency procedures).These factors determine the time constraints that are inherited by thecontrolling system from the external environment. Understanding thesefactors is important because some of these are more important to satisfy(e.g., physical environment related factors) than others (e.g., quality-of-service factors related to human interactions). Using this information,importance levels can be set for actions.In some sense, all time constraints, be they externally imposed orresulting from design decisions (see below), are artifacts. For instance,in relation to the items listed above, length of a runway or speed of anaircraft are determined by cost and technology considerations; qualityof service requirements, for instance, in telephone networks, are quiteoften decided by regulatory authorities; response times guaranteed byservice providers are determined by cost and competitiveness factors.Unfortunately, many of these decisions are not under the control ofa computer system designer. Hence, the system designer's decisionsmust be made within the boundaries laid out by others. This is whatwe referred to above as being externally-imposed. What is importantto note is that the number of factors \given" to the designer must bekept to a minimum leaving more options to satisfy the requirements.Subsequent decisions of the designer introduce additional constraints.The type of computing platform used (e.g., centralized vs. distributed),the type of software design methodology used (e.g., data-centric vs.action-centric), the (pre-existing) subsystems used in composing the6



system, the nature of the actions (e.g., monolithic action vs. graph-structured action), etc., further curtail the decisions.At some level in the design of a real-time application, decisionsconcerning whether an action is periodic, sporadic, or aperiodic haveto be made, the values for the periods, deadlines, and o�sets withinperiods must be chosen, and importance or criticality values must beassigned.Thus, the decisions made at one level a�ect those at the otherlevel(s). What has to be recognized is that while no decision at any levelis likely to be sacrosanct, i.e., beyond modi�cation, cost and time con-siderations will prevail in any such overhaul of prior decisions. Decisionsat one level may percolate to many subsystems below and a previousdecision may not be changeable just to accommodate the needs of asingle subsystem.While it will be bene�cial to determine all related time constraintsin an optimal fashion, for non-trivial systems the problem is likely tobe intractable. This is the reason a divide-and-conquer approach isadopted wherein a system is designed from subsystems each of whichmust satisfy a set of given time constraints. Such time constraintsre
ect the speci�c design strategy and the subsystems chosen as muchas the externally imposed timing requirements.4 Origins of Timing Properties of Events,Data, and ActionsIn this section we examine the origins of the time constraints from theperspective of the events, the data, and the actions.4.1 Time Constraints of EventsIn real-time applications, actions are triggered by the occurrence ofevents, that is, associated with each action is an event occurrence.Because of this, certain types of time constraints on the actions areinherited from the types of events that trigger these actions. Henceit is important to examine events with respect to their timing-related7



properties. In essence, there are three types of such time constraints[2].1. Maximum: delay between two events.Example: Once an object enters the view of the camera, objectrecognition must be completed within t1 seconds.2. Minimum: delay between two events.Example: No two 
ight landings must occur within t2 seconds.3. Durational: length of an event.Example: The aircraft must experience no turbulence for atleast t3 seconds before the \seat-belts sign" can be switched o�once again.With respect to the last example, note that an event with a durationcan be viewed as a complex event where the begin and end of thecomplex event are themselves marked by the occurrence of a (simple)event.Events could be inputs or stimulus (S) events, output or response(R) events, and internal (I) or invisible (outside the system) events.At some level within the system, even internal events can be cate-gorized as S or R events with respect to subsystems of the system. Forexample, if the planning subsystem of an automated factory takes thecurrent and desired position of a robot and creates a plan for the robotto reach the desired position, the arrival of the request to the planneris an S event as far as the planner is concerned; when the planner pro-duces the plan and sends it to the rest of the factory control system,an R event occurs. Both of these, however, could be events that occuras a result of a larger request from the environment (e.g. the operator)to the factory control system, for example to get the 
oor to producea new product.Minimum, maximum, and durational constraints can occur betweenstimulus and response events (that is, all four combinations are possi-ble) even though, the S-R combination is the only one usually consid-ered in the scheduling literature. 8



The maximum and minimum type of time constraints associatedwith recurring (stimulus) events are also referred to as rate-based con-straints since they relate to the maximum and minimum rate of arrivalof recurring stimuli.The occurrence of an event is handled by an action associated withthat event. Time constraints on these events determine the constraintson these actions: rate-based constraints translate into periodicity re-quirements for the corresponding actions. Time constraints relating astimulus and its response corresponds to deadline constraints. Spec-i�cations of minimal separation between response to a stimulus andthe next stimulus dictate the behavior of the sporadic activity thatdeals with that stimulus. Thus, the constraints on events translate toconstraints on the actions that deal with these events.The ECA rules are very convenient to enforce these constraints andalso to trigger the actions. It is very easy, for example, to see how onecan translate the example given for the durational constraint into anECA rule.4.2 Time Constraints of DataThe controlling system interacts with its environment based on the dataavailable about the environment, say from various sensors, e.g. posi-tion, velocity, and altitude sensors, and cameras. It is imperative thatthe state of the environment, as perceived by the controlling system,be consistent with the actual state of the environment. Otherwise, thedecisions of the controlling system may be wrong and their e�ects dis-astrous. Hence, timely monitoring of the environment as well as timelyprocessing of the sensed information is necessary.The sensed data is processed further to derive new data. For exam-ple, data such as aircraft position, heading, and velocity, are used toderive the time at which it would touch ground if allowed to land. Thisderivation depends on the nature of the aircraft and its payload and sosome of the needed information may have to be fetched from archivalstorage. The controlling system's responses are based on the deriveddata, where the derivation may involve multiple steps. In our air tra�ccontrol example, the derived information is used to send commands to9



the aircraft to land or to assume a holding pattern. In general, the his-tory of (interactions with) the environment are also logged in archivalstorage.In order for the control system to take the right decisions and pro-vide the proper response to the environment, its view of the environ-ment must be a close re
ection of the actual state of the environment.This need to maintain consistency between the actual state of the en-vironment and the state as re
ected by the contents of the databaseleads to the notion of temporal consistency. Temporal consistency hastwo components [8, 1]:� Absolute consistency { between the state of the environment andits re
ection in the database; this arises from the need to keepthe controlling system's view of the state of the environment con-sistent with the actual state of the environment. Let us denote adata item in the real-time database byd : (value; avi; timestamp)where dvalue denotes the current state of d, and dtimestamp denotesthe time when the observation relating to d was made. davi de-notes d's absolute validity interval, i.e., the length of the timeinterval following dtimestamp during which d is considered to haveabsolute validity.� Relative consistency { among the data used to derive other data;this arises from the need to produce the data used to derive otherdata close to each other. A set of data items used to derive anew data item form a relative consistency set. Each such set R isassociated with a relative validity interval denoted by Rrvi.Assume that d 2 R. d has a correct state i�1. dvalue is logically consistent { satis�es all integrity constraintsspeci�ed on the data.2. d is temporally consistent:� Absolute consistency: (current time � dtimestamp) � davi.10



� Relative consistency: 8d0 2 R; j dtimestamp � d0timestamp j � Rrvi:Ideally, we would like the data in the database to be temporallycorrect at all times. In practice, however, it is crucial that data be tem-porally correct when it is used or consumed by some action. Viewedfrom this need, absolute consistency can be seen as a freshness con-straint and relative consistency can be seen as a correlation constraint[3]. That is, when a data item is used, it must be fresh (as speci�ed bythe absolute consistency requirements) and must be temporally corre-lated (as speci�ed by the relative consistency requirements) with otherdata that it is used with.Keeping the data in the database temporally correct requires timelyexecution of the actions that record the arrival of stimulus or input andthe timely derivation of data. If the data is temporally invalid correctiveactions must be taken.Example: Position, velocity, and heading values pertaining toaircrafts, as re
ected in the air tra�c controller's database mustbe fresh as well as temporally correlated. If temporal validity islost, new values must be obtained to restore validity.There are obvious interrelationships between the way one type ofdata is used to derive another, the composition of the relative consis-tency sets, and the manner in which timestamps are set for derived data.Methodical approaches must be developed to address this problem suchthat the system is not overconstrained, i.e., temporal consistency re-quirements must not be stricter than necessary. This is important sincetemporal consistency requirements translate into time constraints onactions (see Section 6), and the more restrictive the temporal consis-tency requirements, the tighter the time constraints on actions, and theharder it is to satisfy them.Before we conclude our discussion of data temporal properties, sev-eral points must be noted.The avi and rvi of data may change with system dynamics, e.g.,mode changes. For instance, during the takeo� and landing stages ofa 
ight it is necessary to monitor speed and altitude closely, i.e., they11



must have a small avi. But, it might be appropriate to increase the avionce the aircraft is cruising.A data item that does not re
ect the state of the environment anymore can still be useful to a controlling system. First of all, it can beused as a predictor. For instance, past wind speeds over a particular
ying area can help in determining future trends. Secondly, a particularalgorithm might be able to work with approximate state values. Gen-erally speaking, di�erent subsystems may require data with di�erentgrades of temporal validity.4.3 Time Constraints of ActionsHaving covered the timing aspects of events and data we are now ina position to summarize the reasons for actions being associated withtime constraints.� Time constraints dictate the behavior of the environment { theyconstrain the rates and times at which inputs arrive at the system.Example: In an air tra�c control system, a 
ight commandermust not ask for permission to land until the aircraft is 10 minutesfrom the airport.� Time constraints prescribe performance of the system { they dic-tate the responsiveness of the system to these inputs.Example: Once landing permission is requested, a response mustbe provided within 30 seconds.� Time constraints are imposed on actions that sense the environ-ment and update the controlling system's database so as to main-tain data temporal consistency.Example: Actions that update an aircraft's dynamic parame-ters, such as position and altitude, must execute with speci�edperiodicity. These actions may have deadlines depending on howsoon the current data will become invalid.These three types of time constraints are end-to-end in nature, gov-erning the relationship between the controlling system (the real-timesystem) and the controlled system (the environment).12



The �rst and second types of time constraints are related to theevents that occur and the system's response to stimulus events. Thisresponse can itself be considered as an event. Time constraints fromthe perspective of events were examined in Section 4.1. In some cases, aspeci�ed time constraint is speci�ed directly on an action, e.g., actionA must complete within t time units. Since action completion is anevent, we can view this as a time constraint on the event occurrencealso. The third type of time constraint arises primarily due to theneed to keep the controlling system in synchrony with the controlledsystem. In Section 4.2 we examined the details of such data temporalconsistency requirements.Time constraints belonging to a fourth category facilitate the devel-opment of feasible solutions { they constrain the internal behavior sothat solutions may be derived. For example, the timely synchronizationof nodes' views of each others' states is often used to detect faults in adistributed system. If a node fails to receive an \I am alive" messagefrom a healthy node within a speci�ed time-out interval, expensive faultdiagnosis procedures may be invoked.Here as well as in many other situations, time is used as a synchro-nization mechanism and to achieve coordination. It is important toimpose the minimal and least stringent set of time constraints neces-sary to obtain correctness.This section can be summarized as follows: Time constraints canbe associated with events, data, and actions. Events trigger actionsand data temporal consistency is maintained through timely actions. .Thus, from the viewpoint of the controlling system, the various types oftiming constraints result in the need for the time-constrained executionof actions. Of course, the methodical translation of the data and eventtiming requirements into timing constraints on actions is, for the mostpart, still an open issue. We discuss some of the considerations inSection 6 after examining the implications of not meeting the timingrequirements. 13



5 Dealing with Time Constraints and theirViolationsAn issue of interest to the designer of a real-time system concerns thescheduling of time constrained actions so as to minimize the penaltyresulting from the actions that are either delayed or not executed atall, and to maximize the value accruing to the system from the actions.If a large negative penalty will result from a delay or non-executionof an action, we have a safety-critical or hard time constraint.Example: The deadline set for an aircraft to leave the runwayafter landing is safety-critical.If there is no value to executing an action after the deadline haspassed and no penalty accrues, we have a �rm deadline. An alternativeaction (including a null action) is possibly available to deal with theviolation of the time constraint.Example: A transaction that is attempting to recognize a mov-ing object must complete acquiring the necessary information be-fore the object goes outside its view and hence has a �rm dead-line. If the �rm deadline is not met the object must be broughtin front of the camera once again and recognition attempted withincreased importance.ON (deadline of \object recognition")IF (action not completed)DO (\try again with increased importance).Example: If at time t1 an aircraft has been cleared to land,necessary steps, for example, to lower the landing gear, to begindeceleration, and to reduce altitude, must be completed within 10seconds. Otherwise, we would like to abort the landing within agiven deadline, say 5 seconds; the abort must be completed within14



the deadline, presumably because that is the \cushion" availableto the system to abort the landing without a�ecting other air-crafts. This requirement can be expressed as follows:ON (10 seconds after \initiating landing preparations")IF (steps not completed)DO (within 5 seconds \Abort landing").In the second example above, we have encoded the behavior in termsof the Event-Condition-Action paradigm of active databases to showhow the rules can be made to embody the control knowledge.Many actions can be executed even after their deadlines because theconsumer of the output of the actions can live with data that arriveslate. Such deadlines are termed soft. But if indeed there is a follow-upaction to this delayed action, the system must be capable of adaptingits decisions to handle this delay so that the overall end-to-end timeconstraints are satis�ed.Example: An object's features must be captured by a cam-era, the features must be matched with those of objects in thedatabase and the decision concerning which way to direct theobject must all be completed before the object reaches a certainpoint in its traversal. This sequence has an overall deadline fromwhich the time constraints of the component actions can be de-rived. Each of these time constraints is a soft deadline since inspite of their violation the overall action might still be able tocomplete.It should be clear that �rm and soft time constraints o�er the systema certain amount of 
exibility that is not present with hard or safety-critical time constraints. As we stated earlier, most of the latter arisefrom external considerations. It is therefore important to minimize thenumber of such mandated requirements.15



The presence of �rm and soft time constraints calls for meta-controlalgorithms which are capable of reacting to time constraint violations byadjusting deadlines and other parameters, such as importance levels, offuture actions. These meta-control rules can be encoded as ECA rules.Given this, an active real-time database system can serve not only asthe repository of the data about the environment being controlled, butalso as a repository of the control data, triggering the necessary adap-tive responses to time constraint violations to e�ect recovery. Theseresponses can relate to the environment being controlled, e.g., \placethe aircraft in a holding pattern in case the runway is unavailable", orto the internal parameters set by the system, e.g., adjust the soft dead-line of the \object matching" action in case the \object recognition"action is delayed.Also ECA rules can be used to appropriately react to overloads,for example, by de�ning rules to shed load upon the recognition of anoverload or to increase the importance of a periodic action whose mout of previous n instances missed their execution.ON (nth violation within 10 secs)IF (crisis-mode)DO (drop all non-essential actions).ECA rules can also help in dealing with impending the temporalinvalidity of data. Speci�cally, if a transaction needs a data item andit is (about to become) invalid, it can trigger another action to fetchthat data from the environment.Finally, ECA rules can also be used to govern the way transactionprocessing is done, especially the way data migrates through the levelsof the memory hierarchy to ensure temporal validity, and how loggingis done to ease timely recovery[7].
16



6 Derivation of Time ConstraintsClearly, algorithms are needed to derive the optimal values for the timeconstraints so as to maximize system performance, be it measured interms of utilization or productivity of resources or the value. Pre-runtime as well as runtime support tools are necessary for the deriva-tion of time constraints. The pre-runtime algorithms must derive thetime constraints such that they have the weakest possible attributes(e.g., soft is preferable to �rm) and runtime schemes must be able tomaximize the leeway a�orded by these weak attributes. This area hasreceived very little attention even though recent results are encourag-ing.Let us consider a simple example, one considering just freshness, orabsolute consistency constraints of data. These are satis�ed by periodicsampling of the environment, that is, executing the action that obtainsdata from a sensor and updates the database periodically. The issuehere, how should the period of this action be set? Consider one ofthe many possible semantics of actions with period P : One instanceof the action must execute every period, as long as the start time andcompletion time lie within a period, the execution is considered to becorrect with respect to the periodicity semantics. Suppose a simpleaction takes at most e units of time to complete, (0 � e � P ). Ifan instance starts at time t and ends at (t + e) and the next instancestarts at (t + 2 � P � e) and ends at (t + 2 � P ), then we havetwo instances, which are separated by (2�P ) units of time in the worstcase. This, for example, will be the case if the rate monotonic staticpriority approach is adopted.Suppose the avi of altitude is 10, i.e., altitude must be no more than10 seconds old. It follows from the above periodicity semantics that tomaintain the avi of altitude, the period of the action that reads thealtitude must be no more than half the avi, that is 5.Let us assume instead that periodic actions are scheduled so thateach instance of an action is guaranteed to start at the same time, rel-ative to the beginning of a period. Then, the worst case separationbetween the start time of one instance and the �nish time of the subse-quent instance will be (P + e). Since an action could write the relevant17



data item any time during its execution, the interval (P + e) must beless than the given avi, giving P = (avi � e).The above discussion illustrates the dependence of action timingconstraints not only on the temporal consistency requirements of thedata but also on the execution times of the actions and the schedulingapproach adopted. We should strive for a larger period since the largerthe period, the lower the resource utilization per unit time, and hencehigher the schedulability.This simple example considered a single periodic monolithic actionwhose period equals its deadline. Most real-world actions are quitecomplex and as we have seen earlier the types of time constraints canalso be very complex.Gerber et al. [3] have proposed a solution to the problem of de-riving the periods, o�sets and deadlines of the subactions in a graphrepresentation of an action so as to meet the temporal requirements,such as freshness and correlation constraints, imposed on the data. Thesolution assumes a uniprocessor execution environment (even thoughit could be extended to parallel and distributed environments) whereinall task execution times are known.The problem is bad enough if we know the structure of the compu-tations a priori and the data is in memory. When dealing with com-putations in disk-resident active database systems, one has to furthercontend with one action dynamically triggering another action wherethe computation times of the actions are unpredictable. Since these sys-tems use a priority-driven scheduler, some researchers have begun toexplore the problem of assignment of priority to these actions, skirtingthe problem of assigning time constraints �rst[4].7 DiscussionIn this paper, we have made a beginning in trying to understand theissues underlying the origin and semantics of time constraints. Notall deadlines are de�ned by users or by the application, as is said inmuch of the real-time literature. It is important that the 
exibilitya�orded by derived deadlines be exploited by the control system. By18



the same token, in those cases where the deadlines are derived, thevalues must be chosen in an adaptive fashion and the deadline violationmust also be handled adaptively. This calls for a sound methodology forassigning/deriving time constraints and for choosing their properties inthe least stringent manner.Given time constrained events, data, and actions, the system mustbe able to recover from violations of the time constraints and gracefullydegrade under overloads. The strategies for recovering from timingviolations can be encoded as ECA rules. Thus, an active real-timedatabase can be used to store the data about the controlled system butalso to store the meta-data about the controlling system.Our focus has been on temporal properties. As has been mentionedvery often in the literature, in order to achieve timeliness it is possible torelax logical correctness requirements, by relaxing the need for currency,coherency, consistency and completeness. This is an area worthy ofinvestigation.AcknowledgementsMy sincere thanks to Gerhard Fohler, Jayant Haritsa, and Raju Sivasankaran,for their comments and suggestions on previous versions of this paper.References[1] N. Audsley, A. Burns, M. Richardson, and A.Wellings. A DatabaseModel for Hard Real-Time Systems. Technical Report, Real-TimeSystems Group, Univ. of York, U.K., July 1991.[2] B. Dasarathy. Timing constraints of Real-time systems: Con-structs for Expressing Them, Methods for Validating Them. IEEETransactions on Software Engineering, pages 80-86, Jan 1985.[3] R. Gerber, S. Hong, and M. Saksena. Guaranteeing Real-Time Re-quirements with Resource-based Calibration of Periodic Processes.Transactions on Software Engineering, July 1995.19



[4] B. Purimetla, R. M. Sivasankaran, J. A. Stankovic, K. Ramam-ritham, and D. Towsley. Priority Assignment in Real-Time Ac-tive Databases. Conference on Parallel and Distributed Informa-tion Systems, Oct 1994.[5] K. Ramamritham. Real-Time Databases. International Journal ofDistributed and Parallel Databases, Vol. 1, No. 2, 1993.[6] B. Purimetla, R. M. Sivasankaran, K. Ramamritham, and J. A.Stankovic. Real-Time Databases: Issues and Applications. In Ad-vances in Real-Time Systems, Sang Son, Ed. Prentice-Hall, 1995.[7] R. M. Sivasankaran, K. Ramamritham, J. A. Stankovic, and D.Towsley. Data Placement, Logging and Recovery in Real-TimeActive Databases. Workshop on Active Real-Time Databases, Swe-den, June, 1995.[8] X. Song and J.W.S. Liu. How Well Can Data Temporal Consis-tency be Maintained?. In the Proceedings of the IEEE Symposiumon Computer-Aided Control Systems Design, 1992.

20




