Feedback on hand-in problem set 2
Feedback on muddy issues
Adder delay optimization
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Hand-in problem set 2
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Task 1. The tapered buffer

Normalized delay and tapering factor for
tapered buffers from lab 4

< Tapering factor, fopt
< Normalized delay

Value Axis
8 8 &8 8 8

3 B 5 6 7 8 9 10
Number of stages in tapered buffer
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Task 1. The tapered buffer

Dynamic power for load and tapered buffers in lab 4

< Power without load
© Load power

0,003

3 4 5 B 7 8 9 10

Number of stages in tapered buffer
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Task 1. The tapered buffer

 The majority of you did not draw any
conclusions in task e)!

— Why not?
— That is the most important thing!

— | promise there will be some task like that in the
exam.

— | promise you that life will be that way!
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Task 4. Still some confusion about
Inversion

11 10

Cin
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MUD cards

* Hold violation
— Tpd too short? How can it be too short?
— The gap between tpcd and tc.

* Metastability
— Metastability window, when input goes close to clock edge
— Regarding rate and exit time
— Derivation still not clear.
— Graphical representation in logarithmic scale
— Does metastability occur between contamination delay and propagation delay?
— The probabilities for entering metastability and failure etc. The exact equations
— How to decrease the probability metastable entry and exit window in complex gates.
— What is probability to enter and to exit?
— How to avoid or detect failure to synchronize.

* Other
— There should be more problems to solve on metastability.
— Names, notation of signals seem rather inconsistent.
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Minimum Prepagation Delay
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 MTBF is a time

— It is how long time it will take on average between
errors

— 1/MTBF is the frequency of errors

— MTBF depends on fundamental properties of the
systems that operate.



Entering metastability

* Now and then the unsynchronized input changes.
It happens “randomly”, f, times per second.

* The sensitive time window for a flipflop is T, long.
This window is repeated once every clock cycle

* The number of clock cycles per second is f..

* How many times per second do the data
transitions occur when the flipflop is in its
sensitive time window?

Rate = fDTch
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Entering metastability

A flip-flop has a sensitive time window around the time when the clock edge happens: Tw
It happens once every clock cycle, T, or with a rate of f.

Tc

«
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Tw

Then asynchronous events/signals arrive at any time with a rate of fp

A 4

Some times they hit the sensitive time windows, sometimes they don’t.

Two ways to lower rate of entering: Faster flip-flops or lower clock frequency
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Entering metastability

* To lower the rate of entering we can:

— Use a flipflop that has a shorter Tw time.
* In principle a faster flip-flop.
— Lower the clock frequency.

 So that the Tw window does not occur so often.

— Maybe make the input change less often.
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Exiting metastability

* The rate of exiting depends exponentially on
how long we wait, that is the allowed
resolution time.

* So if we just can wait long enough the rate of
getting an error will decrease a lot (1/MTBF)

* Or another way to put it is MTBF will increase
exponentially with the time we wait.
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Z ool 6\8\ Ll Time to exit depends Ioggrlth_mlc_:ally on V, but not
® Time (7s) on the end voltage V, which is fixed.

V, is unknown. But probabilistic

analysis shows that if latch is metastable
at time 0 the probability that it

remains metastable at time tis:
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Failure rate / MTBF

S: is the allotted synchronization time

Failure is to remain metastable after this time

Rate( failures) = Tw fp fce
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Parameters

* Flipflops characteristics:
—Tyand T
e System characteristics:

— fc and (to some extent) f,

* What we have to play with:

— S: the allotted synchronization period

18 October 2018

16



En example — determine required S
(here called t )

Device r(ns) lo(s) t.(ns)
MTBF (t,)= 74LS74 1.50 4.0 107" 77.71
I 74874 1.70 1.0 10-% 66.14
exp ( r T) 745174 .20 S0-107° 48 .62
I, fa 745374 0.91 40107 4086
74F74 0.40 20-107 17.68
PALCI6RS-25 0.52 95.10°"° 14.22+
MTBF = 1000 yrs. PALC22V |0B-2( 0.9 56.10-1 S
F - 25 MHZ 1’\ N od ¥V - , J._() o ‘(‘l ' .0/
a = 100 KHz PALCE22V10-7 0.19 1.3.107" 4.38°
=" 7300-series CPLD 0.29 1.0 - 10715 5.27%
0500-series CPLD 0.17 0.6 1078 2.30°

Example due to Peter Cheung, Imperial college
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How to avoid metastability

* Entering:

— Use fast flipflops and clock them with as low clock
frequency as possible.

— Keep data rate of incoming signal as low as possible.
* Exiting:

— Allot “long enough” synchronization period S.

— Use well-designed synchronizers.

* Whatis “long enough” MTBF?
— Note that with many units MTBF decreases!

18 October 2018
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More about tree adders



Tree Adder Taxonomy
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Extra wire tracks
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Ladner-Fischer adder
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[16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1<CIN ]

Logic levels L=5
Extra levels /=1
Fanout 2/+1=5
f=2

Wire tracks 2t=1
t=0
[+f+t=L-1=3
(1,2, 0)
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Kogge-Stone adder

Logic levels L=4
Extra levels /=0
Fanout 2/+1=2
f=0

Wire tracks 2t=8
t=3
[+f+t=L-1=3
(0,0, 3)

\

16:0 15:0 14:0 13:0 12:011:010:0 9:0 80 7:0 6:0 5:0 4:0 3:0 2:0 1:0 O0:0
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Kogge-Stone adder

| Logic levels L=5
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Brent-Kung adder
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Logic levels L=6
Extra levels /=3
Fanout 2/+1=2
f=0

Wire tracks 2t=1
t=0
[+f+t=L-1=3
(3,0, 0)
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(b) Sklansky

(15 14 13 12 11 10 9

Extra logic levels
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Extra fanout O

Ladner- Fischer
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f (Fanout) O sene

Sklansky
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(d) Han-Carlson
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Sklansky adder propagation delay

Timing constraints

Using the path effort to minimize delay by
optimizing stage efforts through gate sizing



Sklansky Adder Propagation Delay

X4 non-inverting logic cell means: X4 input logic — X8 output driver

< tpd >
- X4 X4

g f f f

— A021 A

g N N\ N
AO21 gate:  — XOR2

p=7, g=0.5 b,

(assuming p;,, = 1)

18 October 2018

d=2p+fl+f2+f3

XOR2
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XOR2
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Sklansky Adder Propagation Delay

For starters: concentrate on tree delay, all X4 gates, and neglect the SUM XOR gates

e tpd >
X4 X4 X4 X4
i fi=1 f,=2 fi=4
H A021 A A — A —
g DI N 4 N,
' < =4 <3,
AO21 gate:  \— XORZ N N
p=7, g=05 b1 \ A \ A
N XOR2 \ A
f=gh=05x2=1 b, \\ A A
fi=gh =05x4=2
2o D=Ep+f1+f2+f3 N A
fi=gh =0.5x8=4 = XOR2
»D=Ep+1+2+4=2p+7
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Sklansky Adder Propagation Delay

For starters: concentrate on tree delay, all X4 gates, and neglect the SUM XOR gates
Note that all stage efforts are different, would equal stage efforts be more efficient?

X4

A e

2,

< tpd p!
. X4 X4

i U 72 Lo
~ AO021 A i
5 N N
AO21 gate:  \— XORZ

p=7, g=0.5 b,

path logical effort G = g,g,¢g, = (%)
path branching effort B =bb, =2x4 =

path electrical effort H =8
path effort F = GHB =8

18 October 2018
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XOR2

N

N A
N

N

Rewrite delay formula

D=Ep+fl+f2+i

hts

Integrated Circuit Design - Adder wrap up
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Sklansky Adder Propagation Delay

For starters: concentrate on tree delay, all X4 gates, and neglect the SUM XOR gates

Note that all stage efforts are different, would equal stage efforts be more efficient?
toa R

X4 X8 X8 X4

i /. £

“AOZl\A \ AA \AA
=4, LN

AO21 gate:  \— XOR2 N N A
A A

'
[ ]

p=7, g=0.5 b
1 \\ XOR2 \\ A
A
path effort F = GBH = (4)’ (2x4)x8 =8 b, N\ A
stage effort f = YF =3 =2 . v f | \ A
stage fanout h= /g =4 Rewrite delay formula \\ XOR2

f=2 » D=Ep+(2+2+2)=2p+6
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Sklansky Adder Propagation Delay

Now, consider also the SUM XOR gates!

!< tpd N
X4 X8 X8 g
g /, f S
~ AO021 A A i
g N g N\ 4 N\
' XOR2  \U N
AO21 gate: x4 N A
p=r, g=0.5 b, N XOR?2
N X4
b,

Rewrite delay formula on original form

d=Y p+fi+fi+ /i

18 October 2018 Integrated Circuit Design - Adder wrap up
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Sklansky Adder Propagation Delay

Now, consider also the SUM XOR gates!

e tpd >
X4 X8 X8 X4
g / f fio
— A021 A A — A
g DI N 4 N,
| XOR2  \l N
AO21 gate: x4 N A N A
p=7, g=0.5 b, N A XoR2 N\
N X4 N\

Insert numbers into delay formula
D=Ep+l 2x8+4 +l 4x8+4 +l 8x4+4 _
2 4 2 8 2 8

= Ep +%(5+45+45) = Ep +7> Ep +6.0 onlyasmall difference

18 October 2018 Integrated Circuit Design - Adder wrap up
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Sklansky Adder Propagation Delay

Now, consider also the SUM XOR gates!

< tpd >
X4 X y
g /i 2 £
H A021 A A |
| N ' xoR2 \\ A \\
AO21 gate: x4 N A
p=7, g=0.5 b, \ A A
N\ X4
b,
Find sizes x and y that minimize delay
D=2p+l 2x+4) 1(4y+4) 1(8x4+4
2 4 2 X 2 y
1(x+2 4y +4 36)
= Ep+— + +
20 2 X y

18 October 2018 Integrated Circuit Design - Adder wrap up

N\ XOR2
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Sklansky Adder Propagation

Now, consider also the SUM XOR gates! “y

Delay

8 9 10 11 12 14

8
9

707 711 7,19 7,31 7,46 7,82
7,00 7,00 705 714 725 754
7,00 697 699 7,05 714 7,37

. Lo i1 5t 907 208 507 2 IR
X4 X9 X9 . X4 AR AR PR
f £ £
~ AO12 A A — A —
, N\ A N\ A N\ A
N1 7 xoR2 T\ A N A
AO12 gate: N X4 N NS
p=7.33, g=0.5 b, N A YOR2 N\ A
N\ X4 N\ A
b, N A
Let derivatives wrt x and y be equal to zero \ A
df(x,y)=l_4y_+1=0. x=0 =0 N\ A XOR2
dx 2 x? ’ =7 V= AN x4
df ( x, 4 36 1
(d’;y)=;-?=o D=3 p+=(55+45+4)= 3 p+7

Really no difference

18 October 2018 Integrated Circuit Design - Adder wrap up
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Sklansky Adder Propagation Delay

What difference would sizes X10 do? x;v 8 9 10 1 12 u

707 711 7,19 7,31 7,46 7,82

8 700 700 705 714 7,25 7,54

9 700 697 699 7,05 714 7,37

t d 10 705 7,00 700 704 710 7,29
p 11 7,14 7,07 7,05 7,07 711 7,26
725 7,17 7,13 7,14 7,17 7,29

| X4 X10 X10 i X4 1421 7,54 7,43 7,37 7,35 7,36 7,43
g /i 2 £
~ AO21 A A — A
| N\ A N\ A N
' NI xor2 |\
AO21 gate: N\t yg NG
p=7, g=0.5 b A
: \\ XOR2  \\ A
X4 N\

. A

'
[ ]

A
D=Ep+%(6+4.4+3.6)=2p+7 \\ XC)ZEZ

Same,same, but no difference
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Sklansky Adder Propagation Delay

What if we add wire capacitances?

X4

< tpd >
X4 2x+8 X 4y +12 y
hl=T h2=L h3=8X4+20
i Y
— A021 A A
| g XOR2 )\
© %,
AO21 gate: .\ X4 @%\ A
p=7,g=0.5 b N
: A\ XOR2
N\ X4
b,

It is starting to get complicated

4y+12

UE e

=Ep+l(x_+2+4y_+3+2
X y

20 2

18 October 2018
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y

) 1(8x4+20 )

A

A

N

A\

2,

AN
%

A

\\\
s

<

N\

Very flat minimum, but x=11 and y=12 seems
to minimize delay (if not by very much).

Integrated Circuit Design - Adder wrap up
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Sklansky Adder Propagation Delay

What if we add wire capacitances? Xy 8 9 10 1 12 u

7 864 857 856 861 870 896
8 850 839 835 836 842 8,61
9 844 831 824 8,22 825 8,38

t d 10 845 829 820 8,16 817 8,26
< P =: 11 850 832 8,21 816 814 8,20

]
X4 X11 X12 1 X4 12 858 8,39 8,27 820 817 8,19
! 14 882 860 846 8,36 831 8,29

hl=2x+8 A _4y+12 8x4+20

4 2 hg= 1

X
Y

1 ao21 A A — A
| “\ N — N,
SN || XOR2 | )\ A
N\
A A

AO21 gate: .\ X4 “

N

= = ©
N\ X4 @\ A
b, %
It is starting to get complicated O%\ A
1(x+2  y+3 52 3 A
D= Yo A |- B pe32542734216= 3 pes 14 N\ XOR2

N\ X4

Very flat minimum, but x=11 and y=12 seem
to minimize delay (if not by very much).
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Summary

Q&A
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