Interactive adder exercises

Studion

Exercise 2
2018

Purpose of today’s lecture

e Learn how to design a 32-bit adder/subtractor where all sum cells
have received their incoming carry signals after only 5 AND-OR
delay units!

— Will be synthesized in Methods course.

— Compare this delay to the delay of a ripple-carry adder: 31 AND-OR unit
delays, see figure below.

— Or aripple-carry lookahead adder with 17 AND-OR unit delays.

d3z2:05 03505 Aoy17 Doyq7 d46:9 D169 dg.4 bg 4

SuMsy.o5 SuMyy.47 SuMyg.g Sumg,

October 16 2018 Introduction to Integrated Circuit Design 2

From exercise 1
Ripple-carry adder

We assume that you have completed the first
ripple-carry adder in the excel template.

ADD/SUBTRACT ADD=0 A= -100 |<<<<<ENTER TWO NUMBERS
CONTROL SIGNAL| 1 | SUB=1 B= [-120|<<<<< -128<NUMBER<128
SUM= 20
SUM result converted back to decimal: 20 Both sums are equal? ' YES OVERFLOW? NO

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
a8 b8 a7 b7 ab b6 a5 b5 ad b4 | a3 b3 a2 b2 al bl

< 1 1 1 1 1 1 1 1 1 <CIN
0 0 0 1 0 1 0 0 [sumLoaic
SUMS SUM7 SUM6 SUMS SUM4 SUM3 SUM2 suM1
FF FF FF FF FF FF FF FF

October 16 2018 Introduction to Integrated Circuit Design

From exercise 1
Ripple-carry timing

And that you are familiar with the timing of such
a ripple-carry adder.

Bil Position

(75 74 33 3z i1 0 8 = = = — 3 B ; D ADD/SUBTRACT ADD=0 A= -100 [<<<<<ENTER TWO NUMBERS
L CONTROL SIGNAL| 1 | SUB=1 B= |-120|<<<<< -128<NUMBER<128
Jjﬁ SUM= 20
SUM result converted back to decimal: 20 Both sums are equal? ' YES OVERFLOW? NO
T FF | FF | FF | FF [FF | FFE [FF | FF [FF | FE [FF | FF | FF | FF | FF | FF
a8 | b8 | a7 | b7 | a6 | b6 | a5 | b5 | a4 | b4 | a3 | b3 | a2 | b2 | al | bl
— 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1
_ 1
o o T
C1 = 7
-
— 1
L 1
o
a — 1
= 1
Le] 1
o 0 0 0 1 0 1 0 0
|15:-:l 14:0 130 1220 11:0 100 &0 B0 70 &0 50 40 30D 20 1:0 0 | SUMS oLl SUMG SUNS SUM4 SUMS SUMZ StV
FF FF FF FF FF FF FF FF

FIGURE 11.15 Carmy-ripple adder group PG nebwork

October 16 2018 Introduction to Integrated Circuit Design 4

From exercise 1
Propagate/generate setup

Redesigned adder with G and P setup to get less complex carry

cell.
— Also task in hand-in problem set 2.

Note: delay for setting up bit-G and bit-P signals is denoted ¢, in
Weste & Harris.
— Other books use other notation.

FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF [FF [FF [FF
a8 | b8 | a7 | b7 | a6 | b6 | a5 | b5 | a4 | b4 | a3 | b3 | a2 | b2 | al | bl
1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0
G8 | PB | G7 | P7 | G6| P6 | G5 | P5 | G4 | P4 | G3 | P3| G2 | P2 | G1 | P1
1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0
to be left blank until exercise #3!

< 1 1 1 1 1 1 0 0 0 ¢CIN
1 0 0 1 1 0 1 0 |sumLoaic
SUMS SUM7 SUM6 SUMS SUM4 SUM3 SUM2 SUM1
FF FF FF FF FF FF FF FF

October 16 2018 Introduction to Integrated Circuit Design 5

From exercise 1
Propagate/generate setup

 Redesigned the 8-bit adder block with G and P setup logic to
get a less complex carry celll => Use AO21 gate.
— That is: your simplified carry cell from hand-in problem set 2.
 Added a block-propagate output. (n=8)
* Block propagate is available after delay of (n-1)t,, .

of1lo]lar1]lo]l1]lofl1fofaflo]1]o]a1]o]1 1
1 1 1 1 1 1 1 1
< 0 0 0 0 0 0 0 0 0 <«CIN
1 1 1 1 1 1 1 1 |sumLOGIC
SUM8 SUM7 SUM6 SUMS SUMA4 SUM3 SUM2 suM1
FF FF FF FF FF FF FF FF

October 16 2018 Introduction to Integrated Circuit Design

32-bit carry-skip adder

From exercise 1

 Determine worst-case propagation delay for 32-bit adder.
— For N-bit adder built with k n-bit blocks!
— Our case: N=32, k=4, n=8

out

d3.25 D355

ADD/SUB logic
BitP, G

October 16 2018

skip

d4:17 0,4.17
| |

d16:9 b6
| |

ADD/SUB logic
BitP, G

ADD/SUB logic
BitP, G

ADD/SUB logic
BitP, G

SuMy,.45

SUMy6

Determine the worst case delay!

=1, +2(n—l)l‘A0 +(k—1>tmux +xor

Introduction to Integrated Circuit Design

A

Carry lookahead adders

* Next step: add a block generate output!
— Will not do this part in class, but you have it in the excel file from execise 1.

 Block-G is available t,

a(n)

=(n-1)t,, after bit-P and bit-G setup.

e Again, build a 32-bit adder with 4 instances of this 8-bit block

FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF

a8 | b8 | a7 | b7 | a6 | b6 | a5 | b5 | a4 | b4 | a3 | b3 | a2 | b2 | al | bl

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

G8 | PB| G7| P7| G6| P6 | G5 | P5 | G4 | PA | G3 | P3| G2 | P2 | G1 | P1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0

1 0 1 1 0 1 0 1 1 0 1 0 1 0
& 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0

SUMS8 SUM7 SUM6 SUM5 SUM4 SUM3 SUM2 SUM1

FF FF FF FF FF FF FF FF

October 16 2018

Introduction to Integrated Circuit Design

0 <CIN
SUMLOGIC

out

32-bit carry-lookahead adder

DELAY =t =

pg(n) —

(n-1)xt,o Wwhere n=8

d37.25 D355
| |

ADD/SUB logic
BitP, G

417 D1y
| |

ADD/SUB logic

'l_Gaz:zs

P32:25

- L’

Sums,.ps

October 16 2018

d16.9

b16:9

BitP, G

ADD/SUB logic

P16:9

lI_ Gigo

-

Bit P, G
| |
224:17
v | 24:17
// //
+
Sum,,.q5

V

+

Sumyg.q

DELAY through kK MUXES = (k-1)xt,. . Where k=4
Determine the worst case delay!
Liw =ty + 10 H(n=1)t 0 +(k=1)1,. +1 10

Introduction to Integrated Circuit Design

dg.1 bg.
| |
ADD/SUB logic
Bit P, G
| < ¢
p pg
G8:1
v | 8:1
// //
Cin
+
Sumg,,

Carry lookahead adders

* Today’s goal: reduce the time for obtaining block-P and block-
G by obtaining them from a binary tree.

* Then delay will increase as log,(N) for an N-bit adder

FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF | FF
a8 | b8 | a7 | b7 | a6 | b6 | a5 | b5 | a4 | b4 | a3 | b3 | a2 | b2 | al | bl
1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1
G8 | PB| G7| P7| G6| P6 | G5 | P5 | G4 | P4 | G3 | P3| G2 | P2 | G1 | P1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0
0 1 0 1 0 1 1 0
0 1 1 0
& 1 0
1 1
0 0
SUMS8 SUM7 SUM6 SUM5 SUM4 SUM3 SUM2 SUM1

0 <CIN
SUMLOGIC

Carry-lookahead adder

Assume we can use binary tree instead of ripple computation for
block P and block G

DELAY =t) = l0g,(n)*t,o= 3t,o for n=8

d37.25 D355 417 D1y d169 DPigg dg.q bg.q
| | | | | | | |
ADD/SUB logic ADD/SUB logic ADD/SUB logic ADD/SUB logic
Bit P, G Bit P, G Bit P, G Bit P, G
| | | | | | | | «—— t
P32:25 224:17 216:9 28:1 pg
0l{ |_ 32:25 0|4 |_ 24:17 0|+ |_ 16:9 ol + |_ 8:1
C pd A A A A A pd pd
out C
1 \/ 1 \/ 1 \ 1 \/ m
+ + + +
Sums,.ps Sum,,.q5 Sumyg.q Sumg.,

DELAY through k MUXES = (k-1)xt,. ., Where k=4

Determine the worst case delay!
b =g ¥ +(n=1)1 0 +(k=1)1,. + 100

October 16 2018 Introduction to Integrated Circuit Design 11

Carry-lookahead adder

Use AO gate rather than mux

DELAY =t) = l0g,(n)*t,o= 3t,o for n=8

p
d33.25 D325 417 D2a17 d169 Digg dg.1 bg.
| | | | | | | |
ADD/SUB logic ADD/SUB logic ADD/SUB logic ADD/SUB logic
Bit P, G Bit P, G Bit P, G Bit P, G
I I I I I I I I
— > : G3y.05 >1 G417 >1 Gigo >1 Gg.,
Cout 2:25 [[M24:17 6:9 Ps.1
A A A A A A A A

V

+

Sums,.ps

V

+

Sum,,.q5

V

+

Sumyg.q

V

+

Sumg,,

DELAY through k ”"MUXES” = (k-1)xt,, Where k=4

Use of AO gates possible because block P and block G are never true at the same time!
Determine the worst case delay!

tua =1og FLogim + [(n -1)+(k —1)] t o+ o

October 16 2018 Introduction to Integrated Circuit Design 12

Tree adders

* Fundamental problem: to know C, we need C.
— Solution: look ahead over multiple levels to figure out carry.

— Called “Prefix computation” —
* Time dependence from linear in N to logarithmicin N

* Notation:
— X;;means the signal “X” for the ith to jth position
— P =Propagate (A © B)
— G = Generate (AB)

* Note about Numbering:

— Weste & Harris use numbers N to 1 for the adder itself and
position O for the C,, signal to the adder.

— Note! Many other books use N-1 to O for the adder.

8-bit binary tree for calculating G,P

8 7 6 5 4 3 2 1

G8, P8 G7, P7, G6, P6 G4, P4 G3, P3

G8:7, PB:7 G6:5, P6:5 G4:3, P4:3 G2:1, P2:1

G8:5, P8:5 G4:1, P41

G8:1, P8:1

October 16 2018 Introduction to Integrated Circuit Design 14

8-bit binary tree for calculating G,P

8 7
G8, P8 G7,P G6, P6
G8:7, P8:7 G6:5, P6:5

Y
(G8:5, P8:5

= 3 2 1

5
‘ji;;/ G4, P4 G3, P G2, P2

G4:3, P4:3 G2:1, P2:1

G4:1, P4:1

cs:1, Ps:1 [

October 16 2018 Introduction to Integrated Circuit Design 15

The “dot operator” / PG cell

glizkk) |

“Upper block” . — g(ij)=g(i:k)+p(i:k)g(k:j)
pii) | @ L i=pipte

“Lower block” glkil) where i >= k > |
p(k:j)

Generate for combined block =
The upper block has generate

OR
The upper block has propagate AND the lower block has generate

October 16 2018 Introduction to Integrated Circuit Design

16

Binary trees

The “dot operator”

ik L g(i:j)=g(i:k)+p(i:k)g(k:j)
i((li:k))—_ ® p(i:j)=p(i:k)p(k:j)

g(k:j
p(k:j)

P8 P7 P6 P5 P4 P3 P2 P1 G8 P8 G7P7 G6P6 G5P5 G4 P4 G3P3 G2P2 G1lP1

|| || |

& & & & o ® ® @
|—' l—l ‘—‘ H G8:7| |P8:7 G6:5| | P65 Ga:3| | Pa3 G2:1| | P21
P8:7 P6:5 P4:3 P2:1

& & ® ®

pg.s | | b2l G8:5 P8:5 G4:1 P4:1

G8:1| |P8:1
Show that (G4:33P4:3) * (G2:1’1)2:1) =G, + P, (G3 +F, (Gz + F,G,))9})41)3])21)1

October 16 2018 Introduction to Integrated Circuit Design

Sklansky adder

[16151413121110987654321CIN]

n e

N
1

‘11

16:0 15:0 14:0 13:0 12:011:010:0 9:0 8.0 7:0 6:0 5.0 4.0 3:0 2:0 1:0 0:0

FIGURE 11.29 Tree adder PG networks

Do you see the tree?

October 16 2018 Introduction to Integrated Circuit Design

Sklansky adder

[16151413121110987654321CIN]

oW K

N
11

‘11

16:0 15:0 14:0 13:0 12:011:010:0 9:0 80 7.0 6:0 5.0 4.0 3:0 2:0 1:.0 0:0
FIGURE 11.29 Tree adder PG networks

Here the forward tree is marked in red.

The other cells are needed to make sure all carries exist so that
all sums can be computed.

Reverse tree: different prefix adders use different solutions.
October 16 2018 Introduction to Integrated Circuit Design 19

Sklansky adder

[16151413121110987654321CIN]

‘an's N n e
N
n

" N
1 1

o
l\ﬂ

11

16:0 15:0 14:0 13:0 12:011:010:0 9:0 80 7:0 6:0 5.0 4:0 3:0 2:0 1:0 0:0

FIGURE 11.29 Tree adder PG networks

‘11

/

n
n
"

Determine the worst-case delay!

ttree = t + tpg(n)

pg(n) [10g2 N]

+ tXOR

October 16 2018 Introduction to Integrated Circuit Design

Sklansky adder

[16151413121110987654321CIN]

‘an's N n e
N
n

" N
1 1

o
l\ﬂ

11

16:0 15:0 14:0 13:0 12:011:010:0 9:0 80 7:0 6:0 5.0 4:0 3:0 2:0 1:0 0:0

FIGURE 11.29 Tree adder PG networks

‘11

/

n
n
"

Determine the worst-case delay!

ttree = t + tpg(n)

pg(n) [10g2 N]

+ tXOR

October 16 2018 Introduction to Integrated Circuit Design

Summary

After this interactive lecture you will know about

* Carry-skip adders, carry-lookahead adders and prefix-tree
adders like Sklansky adders, etc.

* You can identify the worst-case propagation delay for N-bit
carry-skip and carry-lookahead adders built from k n-bit blocks

* You can identify the worst-case delay for prefix-tree adders like
Sklansky adders.

* Using the same principles, you should also be able to do so for
the unknown prefix-tree adder in home assignment 3.

e Using the same principles, you should also be able to do so for

some of the other prefix-tree adders like Brent-Kung and
Ladner-Fischer.

