
Interac(ve	adder	exercises	

Studion	
Exercise	2	
2018	

Purpose	of	today’s	lecture	
•  Learn	how	to	design	a	32-bit	adder/subtractor	where	all	sum	cells	

have	received	their	incoming	carry	signals	aFer	only	5	AND-OR	
delay	units!		
–  Will	be	synthesized	in	Methods	course.	
–  Compare	this	delay	to	the	delay	of	a	ripple-carry	adder:	31	AND-OR	unit	

delays,	see	figure	below.	
–  Or	a	ripple-carry	lookahead	adder	with	17	AND-OR	unit	delays.	

October 16 2018 Introduction to Integrated Circuit Design 2

+	+	+	+	

a8:1 b8:1 a16:9 b16:9 a24:17 b24:17 a32:25 b32:25

Sum8:1 Sum16:9 Sum24:17 Sum32:25

cin cout

From	exercise	1	
Ripple-carry	adder	

We	assume	that	you	have	completed	the	first		
ripple-carry	adder	in	the	excel	template.	

October 16 2018 Introduction to Integrated Circuit Design 3

ADD/SUBTRACT ADD=0 1 A= -100 <<<<<ENTER	TWO	NUMBERS
CONTROL	SIGNAL:	 1 SUB=1 1 B= -120 <<<<<	-128<NUMBER<128

SUM= 20
SUM	result	converted	back	to	decimal:	 20 Both	sums	are	equal?	 YES OVERFLOW? NO

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1
1 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1

← 1 ←CIN
SUM	LOGIC

SUM8 SUM7 SUM6 SUM5 SUM4
0 0 0 1 0
1 1 1 1 1 1 1 1

FF FF FF
SUM3 SUM2 SUM1
1 0 0

FF FF FF FF FF

From	exercise	1	
Ripple-carry	(ming	

And	that	you	are	familiar	with	the	(ming	of	such	
a	ripple-carry	adder.	

October 16 2018 Introduction to Integrated Circuit Design 4

ADD/SUBTRACT ADD=0 1 A= -100 <<<<<ENTER	TWO	NUMBERS
CONTROL	SIGNAL:	 1 SUB=1 1 B= -120 <<<<<	-128<NUMBER<128

SUM= 20
SUM	result	converted	back	to	decimal:	 20 Both	sums	are	equal?	 YES OVERFLOW? NO

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1
1 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1

1
SUM	LOGIC

←

SUM2 SUM1
FF FF FF FF FF FF FF FF

SUM8 SUM7 SUM6 SUM5 SUM4 SUM3

1
1

0 0 0 1 0 1 0 0
1

1
1

1
1

1

TI
M
IN
G

From	exercise	1	
Propagate/generate	setup	

•  Redesigned	adder	with	G	and	P	setup	to	get	less	complex	carry	
cell.	
–  Also	task	in	hand-in	problem	set	2.	

•  Note:	delay	for	seXng	up	bit-G	and	bit-P	signals	is	denoted	tpg	in	
Weste	&	Harris.	
–  Other	books	use	other	nota(on.	

October 16 2018 Introduction to Integrated Circuit Design 5

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1
1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0
G8 P8 G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1
1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0

to	be	left	blank	until	exercise	#3!
← 0 ←CIN

SUM	LOGIC

FF FFFF FF FF FF FF FF

1 0
SUM8 SUM7 SUM6 SUM5 SUM4 SUM3 SUM2 SUM1
1 0 0 1 1 0

1 0 01 1 1 1 1

From	exercise	1	
Propagate/generate	setup	

•  Redesigned	the	8-bit	adder	block	with	G	and	P	setup	logic	to	
get	a	less	complex	carry	cell!	=>	Use	AO21	gate.	
–  That	is:	your	simplified	carry	cell	from	hand-in	problem	set	2.	

•  Added	a	block-propagate	output.	(n=8)	
•  Block	propagate	is	available	aFer	delay	of	(n-1)tAND.	

October 16 2018 Introduction to Integrated Circuit Design 6

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
G8 P8 G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

1 1 1 1 1 1 1 1
← 0 ←CIN

SUM	LOGIC

FF FFFF FF FF FF FF FF
SUM8 SUM7 SUM6 SUM5 SUM4 SUM3 SUM2 SUM1

0 0
1 1 1
0

1 1 1 1 1
0 0 0 0 0

From	exercise	1	
32-bit	carry-skip	adder	

•  Determine	worst-case	propaga(on	delay	for	32-bit	adder.	
–  For	N-bit	adder	built	with	k	n-bit	blocks!	
–  Our	case:	N=32,	k=4,	n=8	

October 16 2018 Introduction to Integrated Circuit Design 7

cout	

+	

ADD/SUB	logic	
Bit	P,	G	

P8:1	

cin	
+	

ADD/SUB	logic	
Bit	P,	G	

P16:9	

+	

ADD/SUB	logic	
Bit	P,	G	

P24:17	

+	

ADD/SUB	logic	
Bit	P,	G	

P32:25	

a8:1												b8:1	a16:9									b16:9	a24:17								b24:17	a32:25									b32:25	

Sum8:1	Sum16:9	Sum24:17	Sum32:25	

1
	
	
0

1
	
	
0

1
	
	
0

1
	
	
0

() ()2 1 1skip pg AO mux XORt t n t k t t= + − + − +
Determine the worst case delay!

tpg	

()1 AOn t− ()1 AOn t−

Carry	lookahead	adders	
•  Next	step:	add	a	block	generate	output!	

–  Will	not	do	this	part	in	class,	but	you	have	it	in	the	excel	file	from	execise	1.	
•  Block-G	is	available	tpg(n)=(n-1)tAO	aFer	bit-P	and	bit-G	setup.	
•  Again,	build	a	32-bit	adder	with	4	instances	of	this	8-bit	block	

October 16 2018 Introduction to Integrated Circuit Design 8

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1
G8 P8 G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

← 0 ←CIN
SUM	LOGIC

SUM8 SUM7 SUM6 SUM5 SUM2
FF FF FF FF FF

0 0 00
SUM1
FF

1

FF
SUM4

0
1 1 1 1 1 1 1
0

SUM3
FF

0 0

32-bit	carry-lookahead	adder	

October 16 2018 Introduction to Integrated Circuit Design 9

cout	

+	

cin	

a8:1									b8:1	a16:9						b16:9	

Sum8:1	

+	

a24:17				b24:17	

Sum24:17	

+	

a32:25									b32:25	

Sum32:25	

+	

Sum16:9	

0
	
	
1

0
	
	
1

0
	
	
1

0
	
	
1

ADD/SUB	logic	
Bit	P,	G	

P8:1	
G8:1	

ADD/SUB	logic	
Bit	P,	G	

ADD/SUB	logic	
Bit	P,	G	

P32:25	
G32:25	

ADD/SUB	logic	
Bit	P,	G	

P16:9	
G16:9	

P24:17	
G24:17	

DELAY	=	tpg(n) = (n-1)×tAO where n=8	

DELAY	through	k	MUXES	=	(k-1)×tmux where k=4	

() ()() 1 1cla pg pg n AO mux XORt t t n t k t t= + + − + − +
Determine the worst case delay!

tpg	

Carry	lookahead	adders	
•  Today’s	goal:	reduce	the	(me	for	obtaining	block-P	and	block-

G	by	obtaining	them	from	a	binary	tree.	
•  Then	delay	will	increase	as	log2(N)	for	an	N-bit	adder	

October 16 2018 Introduction to Integrated Circuit Design 10

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
a8 b8 a7 b7 a6 b6 a5 b5 a4 b4 a3 b3 a2 b2 a1 b1
1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1
G8 P8 G7 P7 G6 P6 G5 P5 G4 P4 G3 P3 G2 P2 G1 P1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0
0 1 0 1 0 1 1 0
0 1 1 0

← 1 0
0 ←CIN

SUM	LOGIC
11 1 1 1 1 1 1

0 0 0 0 0 0 0
SUM2 SUM1
0

SUM4
FF FF FF

SUM8 SUM7 SUM6 SUM5
FF FF FF FF FF

SUM3

Carry-lookahead	adder	
Assume	we	can	use	binary	tree	instead	of	ripple	computa(on	for	

block	P	and	block	G	

October 16 2018 Introduction to Integrated Circuit Design 11

cout	

+	

cin	

a8:1									b8:1	a16:9						b16:9	

Sum8:1	

+	

a24:17				b24:17	

Sum24:17	

+	

a32:25									b32:25	

Sum32:25	

+	

Sum16:9	

0
	
	
1

0
	
	
1

0
	
	
1

0
	
	
1

ADD/SUB	logic	
Bit	P,	G	

P8:1	
G8:1	

ADD/SUB	logic	
Bit	P,	G	

ADD/SUB	logic	
Bit	P,	G	

P32:25	
G32:25	

ADD/SUB	logic	
Bit	P,	G	

P16:9	
G16:9	

P24:17	
G24:17	

DELAY	=	tpg(n) = log2(n)×tAO= 3tAO for n=8	

DELAY	through	k	MUXES	=	(k-1)×tmux where k=4	

() ()() 1 1cla pg pg n AO mux XORt t t n t k t t= + + − + − +
Determine the worst case delay!

tpg	

&	

≥1	
&	

≥1	
&	

≥1	

Carry-lookahead	adder	
Use	AO	gate	rather	than	mux	

October 16 2018 Introduction to Integrated Circuit Design 12

cout	

+	

ADD/SUB	logic	
Bit	P,	G	

G8:1	
P8:1	

cin	

a8:1									b8:1	a16:9						b16:9	

Sum8:1	

+	

ADD/SUB	logic	
Bit	P,	G	

a24:17				b24:17	

Sum24:17	

+	

ADD/SUB	logic	
Bit	P,	G	

G32:25	
P32:25	

a32:25									b32:25	

Sum32:25	

+	

ADD/SUB	logic	
Bit	P,	G	

G16:9	
P16:9	

Sum16:9	

&	

≥1	
G24:17	
P24:17	

DELAY	=	tpg(n) = log2(n)×tAO= 3tAO for n=8	

DELAY	through	k	”MUXES”	=	(k-1)×tAO where k=4
Use	of	AO	gates	possible	because	block	P	and	block	G	are	never	true	at	the	same	(me!	

() ()() 1 1cla pg pg n AO XORt t t n k t t= + + − + − +⎡ ⎤⎣ ⎦

Determine the worst case delay!

Tree	adders	
•  Fundamental	problem:	to	know	Ci	we	need	Ci-1	

–  Solu(on:	look	ahead	over	mul(ple	levels	to	figure	out	carry.	
–  Called	“Prefix	computa(on”	–		

•  Time	dependence	from	linear	in	N	to	logarithmic	in	N	

•  Nota(on:	
–  Xi:j	means	the	signal	“X”	for	the	ith	to	jth	posi(on	
–  P	=	Propagate	(A	⊕	B)	
–  G	=	Generate	(AB)	

•  Note	about	Numbering:	
–  Weste	&	Harris	use	numbers	N	to	1	for	the	adder	itself	and	
posi(on	0	for	the	CIN	signal	to	the	adder.	

–  Note!	Many	other	books	use	N-1	to	0	for	the	adder.	

October 16 2018 Introduction to Integrated Circuit Design 13

8-bit	binary	tree	for	calcula(ng	G,P	

October 16 2018 Introduction to Integrated Circuit Design 14

8-bit	binary	tree	for	calcula(ng	G,P	

October 16 2018 Introduction to Integrated Circuit Design 15

The	“dot	operator”	/	PG	cell	

October 16 2018 Introduction to Integrated Circuit Design 16

g(i:j)=g(i:k)+p(i:k)g(k:j)		
p(i:j)=p(i:k)p(k:j)		

g(i:k)		

p(i:k)		

g(k:j)		

p(k:j)		
“Lower block”

“Upper block”

where i >= k > j

Generate for combined block =
The upper block has generate
OR
The upper block has propagate AND the lower block has generate

Binary	trees	

October 16 2018 Introduction to Integrated Circuit Design 17

G7		P7		 G5		P5		 G4		P4		 G3		P3		 G2		P2		 G1		P1		G8		P8		 G6		P6		

G2:1		 P2:1		G6:5		 P6:5		 G4:3		 P4:3		G8:7		 P8:7		

G4:1		 P4:1		G8:5		 P8:5		

G8:1		 P8:1		

&	

&	

&	

P5		P6		

&	

P7		P8		

P6:5		P8:7		

&	

&	

&	

P2		P4		 P1		P3		

P2:1		P4:3		

P4:1		P8:5		

P8:1		

g(i:j)=g(i:k)+p(i:k)g(k:j)		
p(i:j)=p(i:k)p(k:j)		

g(i:k)		
p(i:k)		

g(k:j)		
p(k:j)		

The	“dot	operator”	

Show	that	 () () ()()4:3 4:3 2:1 2:1 4 4 3 3 2 2 1 4 3 2 1, , ,G P G P G P G P G PG P PP P• = + + +

Sklansky	adder	

October 16 2018 Introduction to Integrated Circuit Design 18

16:0		15:0		14:0		13:0		12:0	11:0	10:0		9:0			8:0			7:0				6:0			5:0				4:0			3:0				2:0			1:0				0:0	

16					15					14				13					12					11				10						9							8							7							6						5							4							3							2							1					CIN	

Do you see the tree?

Sklansky	adder	

October 16 2018 Introduction to Integrated Circuit Design 19

16:0		15:0		14:0		13:0		12:0	11:0	10:0		9:0			8:0			7:0				6:0			5:0				4:0			3:0				2:0			1:0				0:0	

16					15					14				13					12					11				10						9							8							7							6						5							4							3							2							1					CIN	

Here the forward tree is marked in red.

The other cells are needed to make sure all carries exist so that
all sums can be computed.

Reverse tree: different prefix adders use different solutions.

Sklansky	adder	

October 16 2018 Introduction to Integrated Circuit Design 20

16:0		15:0		14:0		13:0		12:0	11:0	10:0		9:0			8:0			7:0				6:0			5:0				4:0			3:0				2:0			1:0				0:0	

16					15					14				13					12					11				10						9							8							7							6						5							4							3							2							1					CIN	

()tree pg pg n XORt t t t= + +

[]() 2logpg n AOt N t=

Determine the worst-case delay!

Sklansky	adder	

October 16 2018 Introduction to Integrated Circuit Design 21

16:0		15:0		14:0		13:0		12:0	11:0	10:0		9:0			8:0			7:0				6:0			5:0				4:0			3:0				2:0			1:0				0:0	

16					15					14				13					12					11				10						9							8							7							6						5							4							3							2							1					CIN	

()tree pg pg n XORt t t t= + +

[]() 2logpg n AOt N t=

Determine the worst-case delay!

Summary	
AFer	this	interac(ve	lecture	you	will	know	about	
•  Carry-skip	adders,	carry-lookahead	adders	and	prefix-tree	

adders	like	Sklansky	adders,	etc.	
•  You	can	iden(fy	the	worst-case	propaga(on	delay	for	N-bit	

carry-skip	and	carry-lookahead	adders	built	from	k	n-bit	blocks	
•  You	can	iden(fy	the	worst-case	delay	for	prefix-tree	adders	like	

Sklansky	adders.	
•  Using	the	same	principles,	you	should	also	be	able	to	do	so	for	

the	unknown	prefix-tree	adder	in	home	assignment	3.	
•  Using	the	same	principles,	you	should	also	be	able	to	do	so	for	

some	of	the	other	prefix-tree	adders	like	Brent-Kung	and	
Ladner-Fischer.	

October 16 2018 Introduction to Integrated Circuit Design 22

