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• Introduction

• Interconnect Modeling

– Wire Resistance

– Wire Capacitance

• Wire RC Delay

• Elmore delay model (in separate videos)



Introduction
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• Chips are mostly made of wires called interconnect

– In stick diagram, wires set size

– Transistors are little things under the wires

– Many layers of wires

• Wires are as important as transistors

– Speed

– Power

– Noise

• Alternating layers run orthogonally

Odd metal wires
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Choice of metals

September 2014 Introduction to Integrated Circuit Design 4

• Until 180 nm generation, most wires were aluminum

• Contemporary processes normally use copper

– Cu atoms diffuse into silicon and damage FETs

– Must be surrounded by a diffusion barrier

Metal Bulk resistivity (mW•cm)

Silver (Ag) 1.6

Copper (Cu) 1.7

Gold (Au) 2.2

Aluminum (Al) 2.8

Tungsten (W) 5.3

Titanium (Ti) 43.0



Layer stack
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• AMS 0.35 mm process has 3 metal layers
– M1 for within-cell routing

– M2/M3 for vertical/horizontal routing between cells

• Modern processes use 6-10+ metal layers
– M1: thin, narrow (< 1.5*minimum feature size)

• High density wiring in cells

– Mid layers: thick, wide
• Global interconnect

– Top layers: THICK, WIDE
• For VDD, GND, clk



Wire geometry
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Old technology Modern technology

w>>t

Pitch = w + s

t

w

Today: pack in many skinny wires!

For long skinny wires resistance cannot be neglected since cross sectional area 

shrinks with feature size, wire length stays the same or increases. 

Hence: wire resistances can no longer be neglected!



Wire geometry

• Long skinny wires 

– wire resistance cannot be neglected

• Wire length is increasing with large chips

• Wire cross sectional area shrinks with feature size

• Wires can no longer be modeled as capacitances alone

• We need improved wire models that considers wire 
resistance along with wire capacitance!

• Model must be distributed between at least two circuit
nodes!
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Wire resistance
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All wires in certain layer has 
the same thickness, t, hence
sheet resistivity is a convenient measure
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If we assign a certain width, W0, to all wires in certain layer
they will all have the same resistance per unit length, r=RS/W0



• Estimate the sheet resistance of a 220 nm thick copper 
wire if the resistivity of the thin copper film is 22 nW.m.

• Find the total resistance if the wire is 0.125 mm wide and 1 
mm long.  (Ignore the barrier layer)

• Wires 125 nm wide have a resistivity per unit length of 
800 W/mm
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Wire capacitance
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Parallel-plate capacitance equation
• Cpp = eA/h, where top/bottom area A=W×L

• e=ke0, e0=8.85.10-12 F/m in vacuum

• SiO2 permittivity is k≈4

• low-kappa materials have k<3 

W - H/2H

+

(a)

(b)

Note: Cap is per unit length

layer n+1

layer n-1

layer n

substrate

insulator

Parallel plate capacitance

Wires have a capacitance c per unit length

• to neighbors in the same layer

• to layers above and below

and fringing-field capacitance



Metal2 Capacitance Data
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• Wires typically have capacitances about ~ 0.2 fF/mm, i. e. 200 fF/mm

• Compare with the 1.2 fF/mm for the MOSFET gate capacitances

Wire has capacitance c per unit length

• to neighbors in the same layer

• to layers above and below

layer n+1

layer n

layer n-1

metal 3 plane

metal 1 plane

metal 2
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Wire RC delay
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• Wire RC product increases as L2 with wire length L

• For our 1 mm example wire, the RC product was 160 ps

– r is wire resistance per unit length ~800 W/mm (0.8 kW /mm)

– c is wire capacitance per unit length ~200 fF/mm

• In comparison, the RC time constant of an inverter with a 
FO4 was previously found to be 36 ps (5×7.2 ps) 
– FO4 delay = 0.7×36 = 25 ps

2RC = rcL



Modern interconnect

September 2018 Introduction to Integrated Circuit Design 13

Metal 6

Metal 5

Metal 4

Metal 3

Metal 2

Via 5-6

Metal 1

Local Tungsten interconnect

Via 1-2



Wire delay scaling – Local wires

• For local wires crossing the same amount of circuitry

– Resistance stays roughly constant
• Aspect ratio does not change
• Sheet resistivity does not change if wire height stays large

and/or change material to copper

– Capacitance decreases by scaling factor
• Cap/unit length stays constant, while length decreases

• Hence, wire delay tracks gate delay ~1/S
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From Mark Horowitz at Design Automation Conference 2000

( ) /oxC WC L S=

stays constant

/
,  

/
S S

L S
R R R

W S t


= =

stays constant

Wire
length L, 
width W

Wire
length L/S, 
width W/S

S=√2

1/S

1/S



Wire delay scaling – Global wires

• For global wires crossing the whole chip

– Resistance grows linearly (with scaling factor)

– Capacitance stays fixed
• Cap/unit length stays constant, as does wire length

• Two opposite trends:

– Wire delay increases (~S ) - gate delay decreases (~1/S)
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( )oxC WC L=
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From Mark Horowitz at Design Automation Conference 2000
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Modern Interconnect
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Step-response to a rising input voltage along an 
RC wire as a function of time and wire length
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Summary

We have

• discussed the importance of accurate wire modeling
considering not only wire capacitance but also wire resistance
as wires get longer and skinnier

• defined the concept of sheet resistance in ohms per square

• had a look at typical on-chip wire length distributions

• had a look at wire capacitance dependence on the 
surrounding wiring on top, below, and along sidewalls
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Thanks a lot for listening!
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