

Lecture 4

Tapered CMOS Inverter stages

Dynamic properties

Additional material w more details

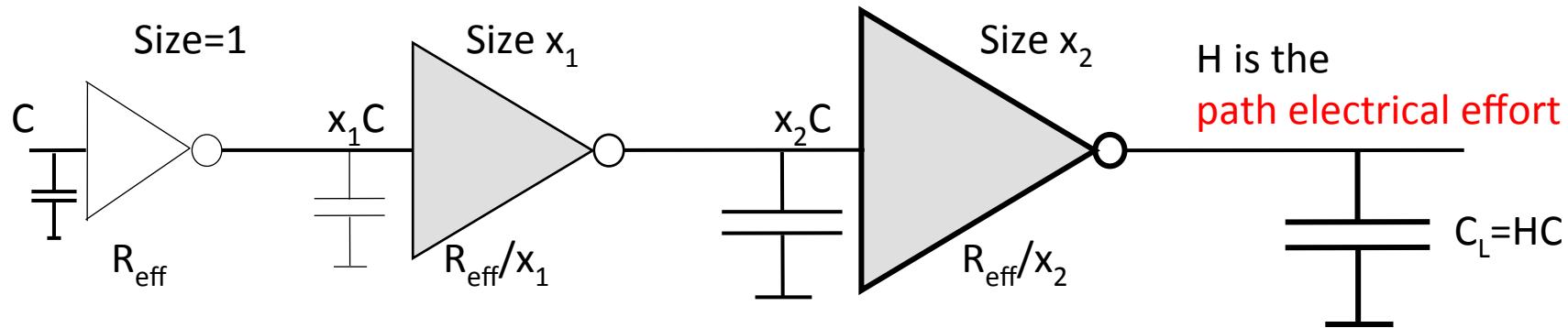
Introduction

- The tapered buffer is analyzed in detail in terms of path electrical effort H , and stage electrical effort h .
- A stage electrical effort, or fanout, of four is shown to be very close to the optimal solution for minimum delay.
- An H-tree clock distribution network is used to show how branching affects the fanout of a critical timing path. The path fanout, F , becomes the product of the path branching, B , and the path electrical effort, H !
- Conclusion $F=BH$ and stage fanout $f=\sqrt[N]{F}$!

The tapered buffer

Please note that H is the path electrical effort while h is the stage electrical effort.

Reference inverter . . . and two inserted buffer inverters



With two intermediate buffer inverters we obtain a normalized delay relative to tau:

$$D = (p_{\text{inv}} + h_1) + (p_{\text{inv}} + h_2) + (p_{\text{inv}} + h_3)$$

where we have defined the **stage electrical efforts**, or fanouts, h .

Here $h_1 = x_1$, $h_2 = x_2/x_1$, and $h_3 = x_3/x_2$.

Only h_1 and h_2 are independent variables, the third h_3 becomes $h_3 = H/h_1 h_2$.

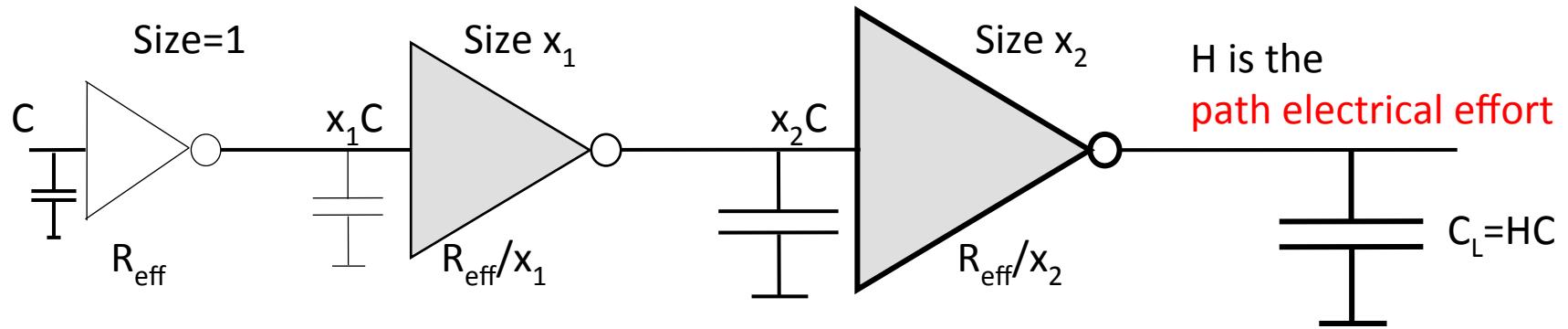
TASK: Show that minimum delay is obtained for $h_1 = h_2 = h_3 = h = \sqrt[3]{H} \ggg D = 3(p_{\text{inv}} + \sqrt[3]{H})$

The tapered buffer

Please note that H is the path electrical effort while h is the stage electrical effort.

Reference inverter . . .

and two inserted buffer inverters



With two intermediate buffer inverters we obtain a normalized delay relative to tau:
 $D = (p_{inv} + h_1) + (p_{inv} + h_2) + (p_{inv} + H/h_1 h_2)$.

Taking partial derivatives wrt h_1 and h_2 we obtain

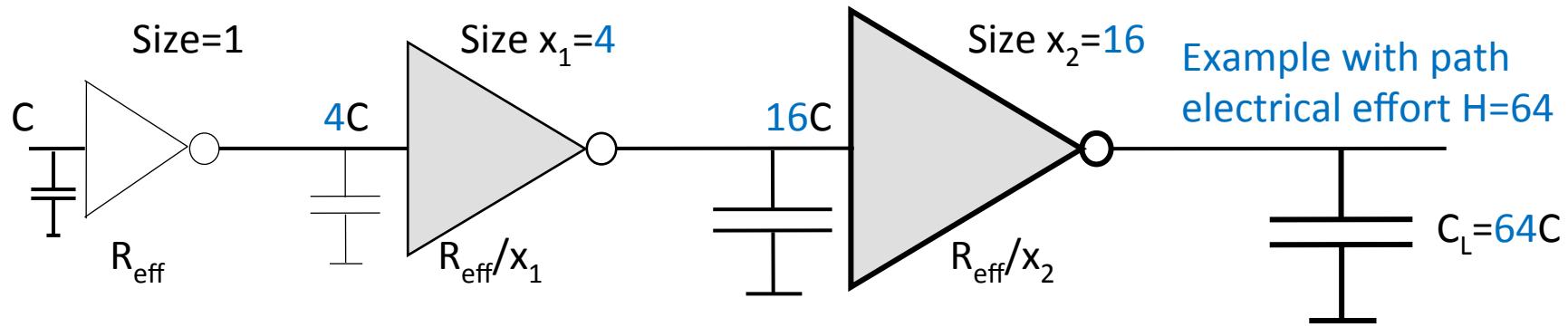
$$\frac{d}{dh_1} D(h_1, h_2) = 1 - \frac{H}{h_1^2 h_2} = 0, \text{ and } \frac{d}{dh_2} D(h_1, h_2) = 1 - \frac{H}{h_1 h_2^2} = 0$$

This yields $h = h_1 = h_2$ and $H = h^3 \rightarrow h = \sqrt[3]{H}$

The tapered buffer

Reference inverter . . .

and two inserted buffer inverters

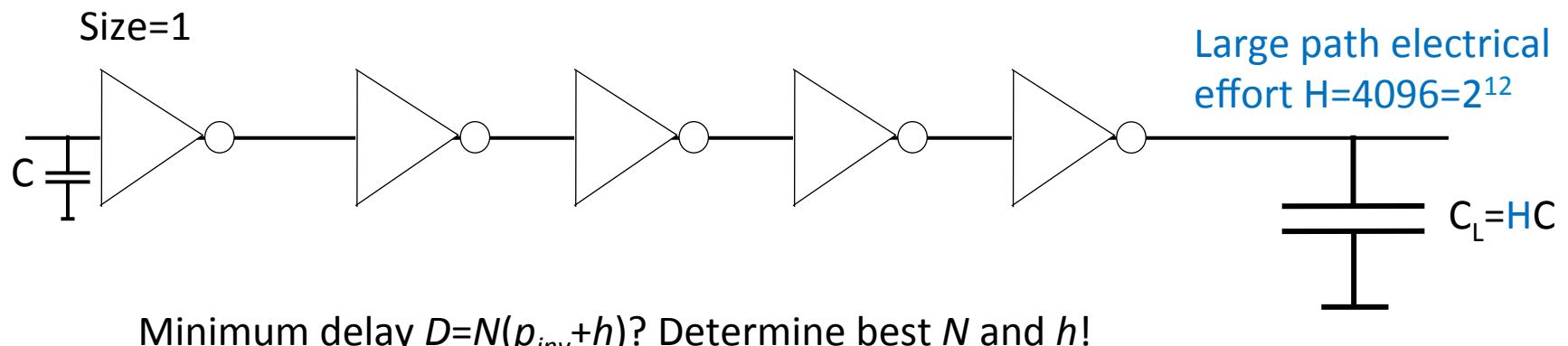


Sharing the load equally between the inverters yields equal stage fanouts $h = \sqrt[3]{64} = 4$

The total delay is then equal to 3 FO4 delays, i.e. $15\tau = 75$ ps (assuming $p_{\text{inv}} = 1$).

The Tapered Buffer

- What if the path electrical effort, for some reason, is very large, e.g. $H=4096$.
- How many inverters, N , are needed to minimize the delay?



The Tapered Buffer

Solving this problem we start by accepting that minimum delay occurs when stage electrical efforts, h , are equal.

Hence path propagation delay is given by $D = N(p_{inv} + h)$

Furthermore, $h = \sqrt[N]{H}$, i.e. $H = h^N$.

Taking natural logarithms we obtain number of inverters $N = \frac{\ln H}{\ln h}$

We rewrite path delay equation as $D = \frac{p_{inv} + h}{\ln h} \ln H$

Looking for minimum path delay by taking derivatives of D wrt h

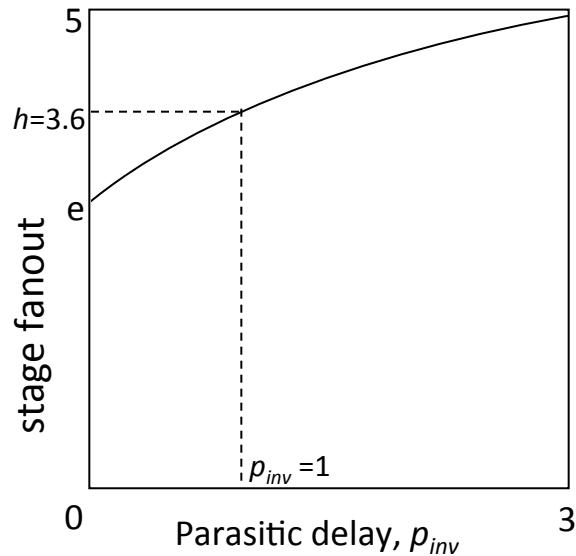
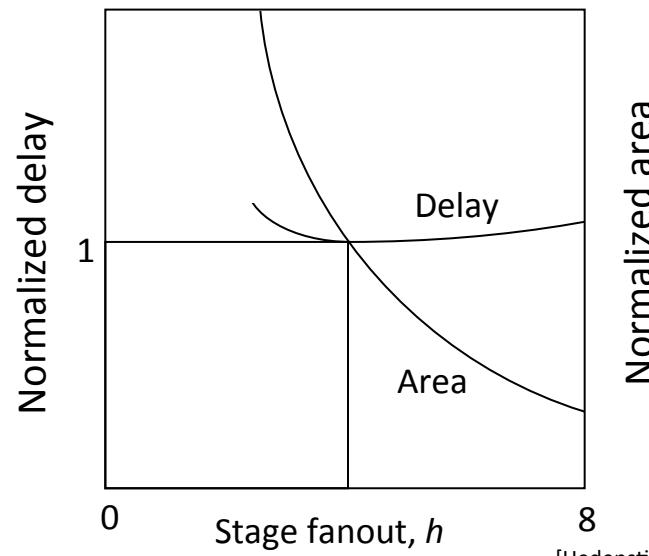
we obtain $\ln H \frac{\ln h - (p_{inv} + h)/h}{(\ln h)^2} = 0$, i.e. $\ln h = \frac{p_{inv} + h}{h}$

Analytical solution is possible only for $p_{inv} = 0$:

$$h = e = 2.72 \text{ which gives } N = \ln H$$

The Tapered Buffer

- For $p_{inv} \neq 0$ the equation has to be solved numerically



[Hedenstierna & Jeppson 1987]

For typical values of p_{inv} the optimum tapering factor is between 3.6 and 5. Typically a FO4!

Please, note that the propagation delay minimum is rather flat, while total inverter area on the silicon decreases rapidly when larger stage fanout is used.

Silicon real estate (=cost) can be saved for relatively little loss of speed!

The tapered buffer – area comparison

So for a path electrical effort $H=4096=4^6$, minimum delay is obtained for $N=6$ inverters with a stage fanout of four!!

Minimum normalized path delay $D=6(p_{inv}+4)=30$, and $t_{pd}=150 \text{ ps}$

What if we choose $N=4$? That is $h=8$.

What would be the propagation delay?

Normalized path delay $D=4(p_{inv}+8)=36$, and $t_{pd}=180 \text{ ps}$.

At the same time the inverter area would be reduced from

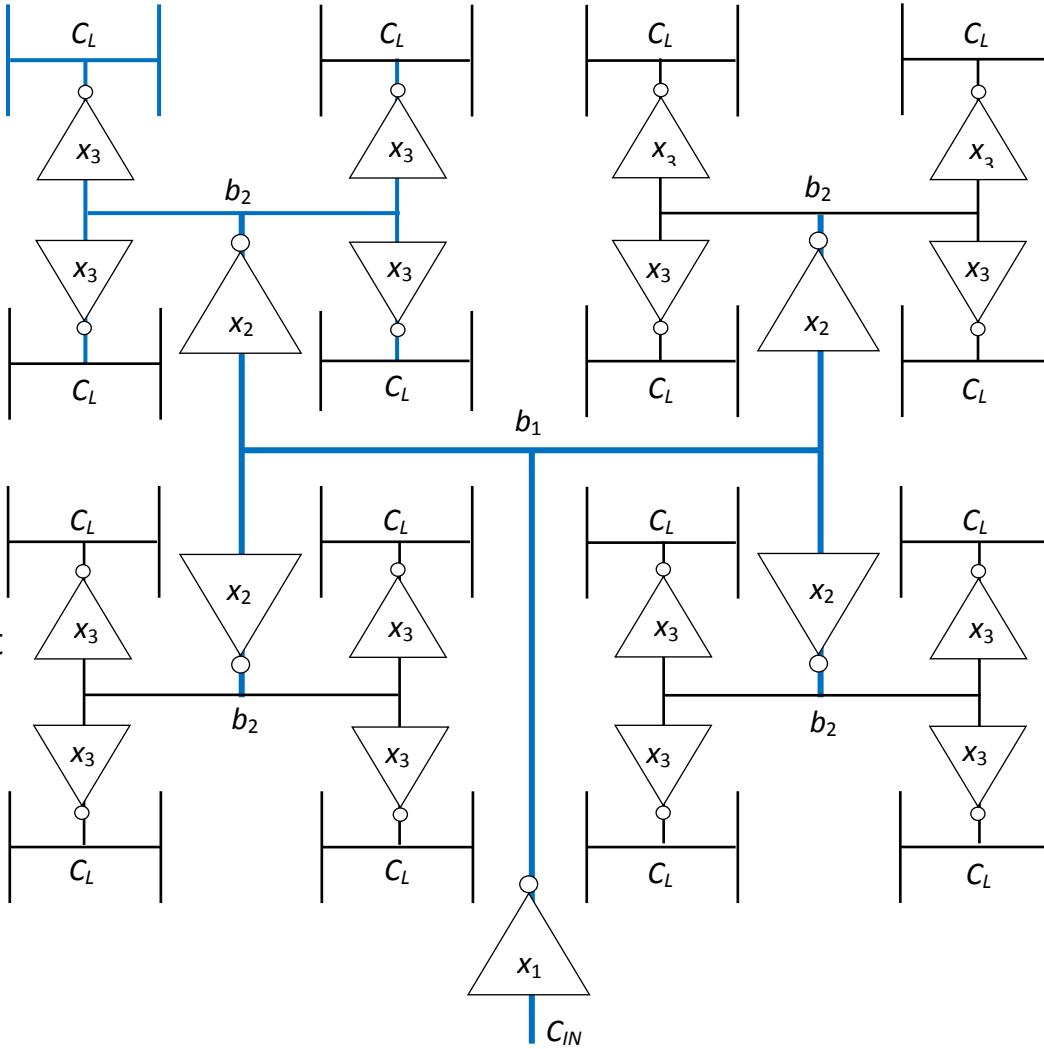
$A=1+4+16+64+256+1024=1365 \text{ units}$ to

$A=1+8+64+512=585 \text{ units}$.

That is a reduction by more than 55%.

H-tree clock distribution

Problem: To distribute a clock signal across the chip area so that it arrives simultaneously to all chip corners, i.e no clock skew, and with sharp clock edges!

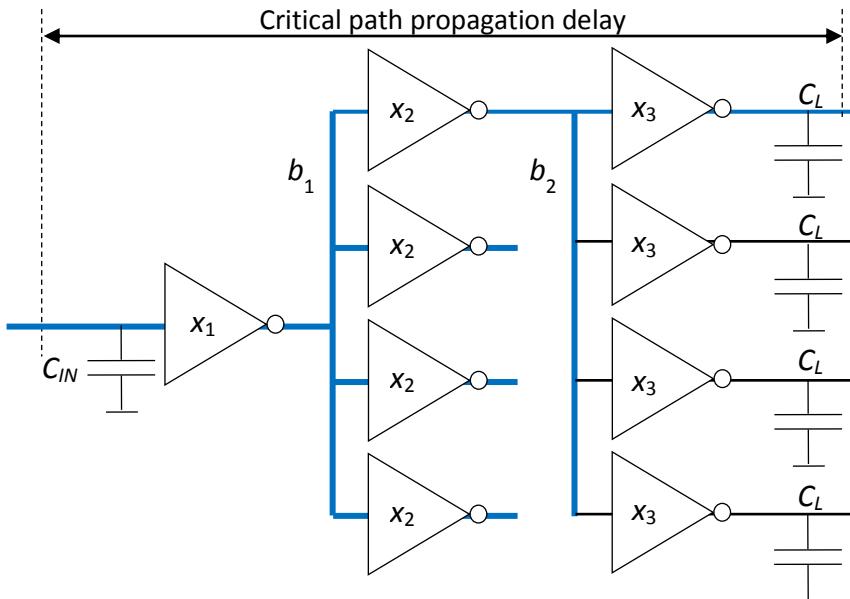


One approach is to use balanced H-trees!

The load capacitances C_L are due to the input capacitances of all clocked register cells.

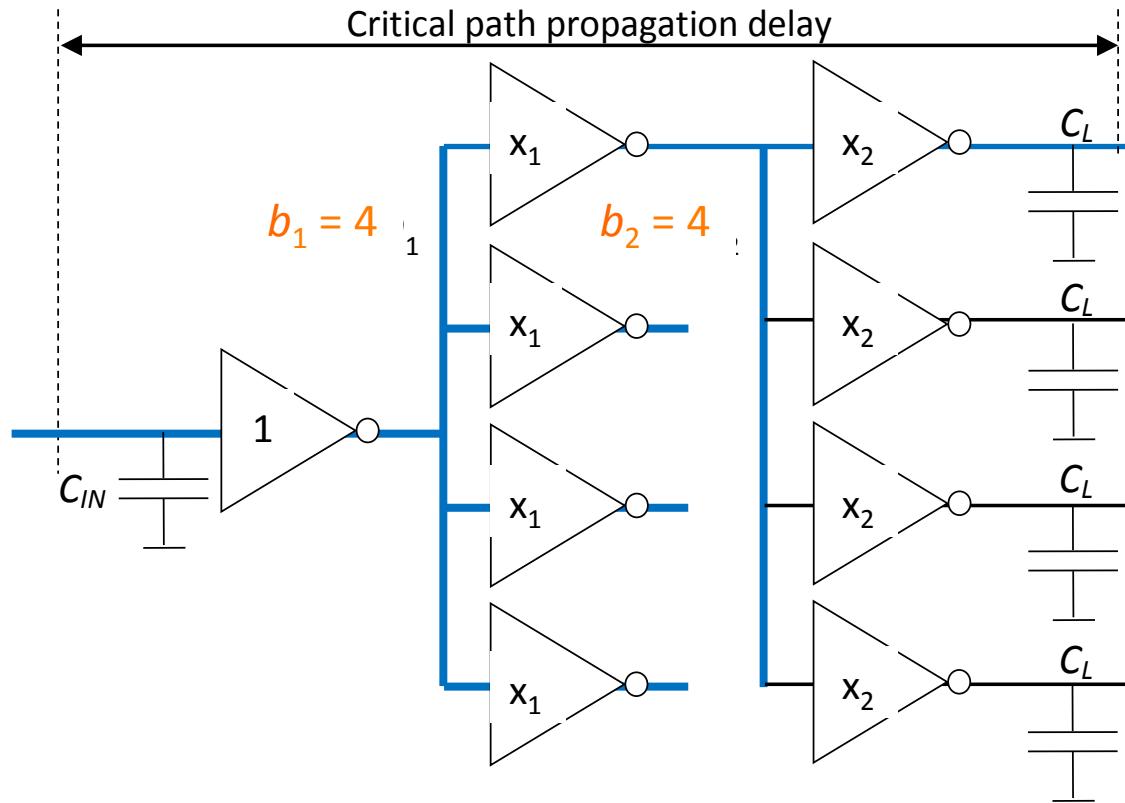
H-tree clock distribution

- What is the electrical effort of the timing paths considering also the branching?
- What sizes to choose for the inverters of the H-tree?



H-tree clock distribution

Note: Here we change the inverter sizes to match the problem in slides 3-5



H-tree clock distribution

As before, assume stage fanouts but now call them f_1, f_2, f_3

Path delay is then given by $D = (p_{inv} + f_1) + (p_{inv} + f_2) + (p_{inv} + f_3)$

Define them as: $f_1 = b_1 x_1, f_2 = b_2 \frac{x_2}{x_1}, f_3 = \frac{C_L}{x_2 C_{IN}} = \frac{H}{x_2}$

Now we have: $f_1 f_2 f_3 = b_1 x_1 b_2 \frac{x_2}{x_1} \frac{H}{x_2} = b_1 b_2 H$

Let us introduce the path branching effort $B = b_1 b_2$!

The path fanout is now $F = B H$, and stage fanout $f = \sqrt[3]{F}$.

In an example with $B=16$ and $H=256$ we obtain $F=4096=16^3$

Branching effort definitions

Stage branching effort b :

$$b = (C_{\text{onpath}} + C_{\text{offpath}})/C_{\text{onpath}}$$

Path branching effort B :

$$B = b_1 \times b_2 \times \dots \times b_N$$

More about these concepts next week

Example solution for $C_L=256 C_{IN}$!

H-tree clock distribution

