
Lecture 4
The CMOS Inverter

Dynamic properties



Outline
• Definitions

– Static properties (dV/dt=0 ) vs. dynamic properƟes (dV/dt≠0)
– Rise time and fall time
– Propagation delay: Rise delay and fall delay

• Propagation delay estimation
– Step response model

• Charging and discharging the load capacitor
– Ramp response model

• Introducing the MOSFET effective resistance
• Inverter capacitances
• Normalizing the inverter delay wrt =0.7RC
• Inverter pair delay
• The fanout‐of‐four (FO4) delay
• The tapered buffer
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Definitions
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tr tf
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80%

0

Input signal definitions: rise and fall times

Falling edge Rising edge 



Definitions
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VIN

Time, t

100%

tpdf

50%

0

Propagation delay definitions: rise and fall delays

VOUT

Time, t

100%

50%

0

tpdr

Propagation delays are defined at the 50% level! 



Step‐response model
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Time, t
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tpdf
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0
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Time, t
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Output fall delay Output rise delay 



Step‐response model
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VDD

VSS

VIN

1. Charging the load capacitor through the p‐channel MOSFET
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Output rise delay 

VIN goes LOW

VOUT goes HIGH
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pMOS current flow in detail

,
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dVI C
dt
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VOUT



Step‐response model

2017‐09‐06 Lecture 4: CMOS Inverter dynamics 7

VDD

VSS

CL

VIN VOUT

2. Discharging the load capacitor through the n‐channel MOSFET

OFF

ON

VIN=HIGH

,

/ 2DD
pdf L

DSAT N

Vt C
I

Output fall delay 

,
OUT

DSAT N L
dVI C
dt

 

VDDVDD/2

IDS,N

VOUT

nMOS current flow in detail

IDSAT,N

VIN goes HIGH

VOUT goes LOW



Step response model accuracy

• How good is the step response model?
• Real world input voltages are not step functions
• They are output voltages from other gates
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Step response model accuracy

• Experience and hundreds of circuit simulations 
show that propagation delay are about 40% 
longer in designs where input and output edge 
rates are equal
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Ramp input – output trace
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Effective resistances: 65 nm MOSFETs
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Reff=VDD/IDSAT,max 

Reff=VDD/IDSAT,max

RN,eff=2 km RP,eff=4 km

IDSAT,max =

600 A/m

VDD=1.2 V

N‐channel device P‐channel device

IDSAT,max =

300 A/m

VDD=1.2 V

IDS

VDS

IDS

VDS
VDD VDD

0.7 DD
pd L

DSAT

Vt C
I

 0.7pd eff Lt R C



RC delay
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0.7pd eff Lt R C

VOUT

VSS

CLVDD

Reff

This RC circuit has an output voltage delay given by



Ramp input – output response
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The two curve forms are not the same, but they yield the same delay!



The inverter and its electrical model
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Replace the MOSFETs with their equivalent electrical circuits!

VIN VOUT

VSS

VDD

NMOS

 2

2
N

DSN IN TN
kI V V 

VIN VOUT

VSS

CGN CDN

VSS

IDSN IDSN

 2

2
N

DSP IN DD TP
kI V V V  

PMOS

VDD

CGP CDP

VDD

IDSP
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Place all capacitor to signal ground! Both rails are constant voltages, no dV/dt

VIN VOUT

VSS

VDD

 2

2
N

DSN IN TN
kI V V 

VIN VOUT

VSSVSS

IDSN IDSN

 2

2
N

DSP IN DD TP
kI V V V  

VDDVDD

IDSP

CG=CGN+CGP

Inverter input capacitance: CG=CGN+CGP; MOSFET gate capacitances add!
Inverter parasitic output capacitance: CD=CDN+CDP. Drain caps also add!

The inverter and its electrical model

CD=CDN+CDP



The inverter and its electrical model
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Eliminate VDD rail by inserting power supply to signal ground!

VIN VOUT

VSSVSS

IDSN

Inverter input capacitance: CG=CGN+CGP; MOSFET gate capacitances add!
Inverter parasitic output capacitance: CD=CDN+CDP. Drain caps also add!

VIN VOUT

VSS

VDD

CG=CGN+CGP CD=CDN+CDPIDSP
VDD



The inverter and its electrical model
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Replace MOSFET constant‐current sources with their effective resistances!

VIN VOUT

VSSVSS

RN,eff

Inverter input capacitance: CG=CGN+CGP; MOSFET gate capacitances add!
Inverter parasitic output capacitance: CD=CDN+CDP. Drain caps also add!

VIN VOUT

VSS

VDD

CG=CGN+CGP CD=CDN+CDPRP,eff
VDD

RN,eff=2 km RP,eff=4 km



The inverter and its electrical model
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To cumbersome to have different rise and fall delays!
Replace effective resistances with one average effective resistance!

VIN VOUT

VSSVSS

Inverter input capacitance: CG=CGN+CGP; MOSFET gate capacitances add!
Inverter parasitic output capacitance: CD=CDN+CDP. Drain caps also add!

VIN VOUT

VSS

VDD

CG=CGN+CGP CD=CDN+CDPVDD

RN,eff=2 km RP,eff=4 km

Reff=3 km



The inverter and its electrical model
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To cumbersome to have different rise and fall delays!
Replace effective resistances with one average effective resistance!

VIN VOUT

VSSVSS

RN,eff=2 km

Inverter input capacitance: CG=CGN+CGP; MOSFET gate capacitances add!
Inverter parasitic output capacitance: CD=CDN+CDP. Drain caps also add!

VIN VOUT

VSS

VDD

CG=CGN+CGP CD=CDN+CDPVDD

Or even better! 
Design the inverter for equal effective resistances, RN,eff=RP,eff, 
by making p‐channel MOSFET twice as wide as the n‐channel 

MOSFET to compensate for the lower hole mobilityW=2

W=1



Inverter capacitances
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VIN VOUT

VSS

VDD

VIN VOUT

VSSVSS

CG=3.6 fF/m CD=pinvCGVDD

W=2

W=1

Task: Calculate CG and CD! 

Answer: Assuming L=60 nm and Cox=20 fF/m2we obtain CGN=1.2 fF/m and CGP=2.4 fF/m. Hence CG=3.6 fF/m. 
Concerning CDwe assume CD=pinvCG=3.6 fF/m with pinv=1.

RN,eff=2 km



Inverter pair delay
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Reff

VDD

Task: Calculate the inverter pair delay!



Inverter pair delay
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CG

Reff

VDD

Put on your “two‐port glasses” and look towards the loading inverter!
You will only see the input capacitance of the loading inverter



Inverter pair delay
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Reff

CD

VDD

CD

Have your “two‐port glasses” on and look towards the driving inverter!
You will see a voltage source with a certain source resistance, and you will see 

the parasitic capacitance of the loading inverter



Inverter pair delay
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Reff

VDD

The propagation delay becomes    0.7 0.7 1 5 ps 2 10 pspd eff D G eff G invt R C C R C p      

All delay calculations are made wrt to this technology time constant tau 

   0.7 0.7 2 k μm 3.6 / μm 5 pseff GR C fF      

In an ideal inverter the time constant tau is really what the name says, a constant, 
and that is independent of inverter size (as long as WP/WN=2).

CGCD



FO4 delay vs. feature size
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1 m 1/4 m 0.13 m 65 nm 22 nm0.5 m 32 nm



Inverter FO4 delay
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The FO4 propagation delay becomes    
τau

0.7 4 0.7 4 5 ps 5 25 pspd eff D G eff Gt R C C R C p      


X1

X1

Reff

CD

VDD

X1X1

X1

CG

CG

CG

CG



Inverter Size

• In most vendor cell libraries, inverters and other logic 
gates comes in a number of different varieties 
concerning their driving capability (Reff) and input 
capacitance (CG).

• In the following all inverters and logic gates of a 
certain size, e.g. size X=8, will have the same input 
capacitance, and, as an example, this input 
capacitance will be only half the input capacitance of 
a gate of size X=16.
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The tapered buffer
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Reff/x1

Reference inverter . . .  and two inserted buffer inverters

Reff Reff/x2
CL=HC

C x1C x2C

With two intermediate buffer inverters we obtain a normalized delay relative to tao:
d=(pinv+h1)+(pinv+h2)+(pinv+H/h1h2)

where we have defined the electrical efforts, or fanouts, h, where h1=x1, h2=x2/x1
(and h3=H/h1h2)

Show that minimum delay is obtained for h1=h2=3√H  >>> d=3(pinv+3√H)

Size x1Size=1 Size x2 H is the 
path electrical effort

   1 2 1 2
1 2

3
1 2 3 1 2 1 2 3

Hint: , 0,  and , 0

yields  and /   =

d dd h h d h h
dh dh

h h h H h h h h h h H

 

     



The tapered buffer
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Reff/x1

Reference inverter . . .  and two inserted buffer inverters

Reff Reff/x2
CL=64C

C 4C 16C

With two intermediate buffer inverters we obtain a normalized delay relative to tao:
d=(pinv+h1)+(pinv+h2)+(pinv+H/h1h2)

where we have defined the electrical efforts, or fanouts, h, where h1=x1, h2=x2/x1
(and h3=H/h1h2)

Minimum delay is obtained for h1=h2=3√64=4  >>> d=3(pinv+4)=15 for pinv=1

Size x1=4Size=1 Size x2=16 Example with path 
electrical effort H=64



The Tapered Buffer

• What if the path electrical effort, for some 
reason, is very large, e.g. H=4096.

• How many inverters, N, are needed to 
minimize the delay?
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CL=HC
C

Size=1 Large path electrical 
effort H=4096=212

Minimum delay d=N(pinv+h)? Determine best N and h!



H‐tree clock distribution
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H‐tree clock distribution

• What is the timing path electrical effort?
• What sizes to choose for inverters in the H‐tree?
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Summary
• We defined rise and fall delays at the 50% level (VDD/2)
• We defined rise and fall times between 20% and 80% levels
• We calculated propagation delay in response to a square‐wave input signal assuming 

MOSFETs being saturated during delay
• We improved the delay model by adding 40%

– assuming a ramp input signal and 
– assuming equal input and output edge rates 

• We ”heard a bell ring” and replaced saturation current sources by effective 
resistances 

• We made the p‐channel MOSFET twice as wide to compensate for lower hole 
mobility

– Both MOSFETs now have the same effective resistance of 2 km
– However, p‐channel device now has twice the input capacitance of the n‐channel MOSFET

• We have obtained an electrical two‐port model of the inverter for delay calculations
– we know what this model looks like seen from the input port, and seen from the output port

• Finally, we calculated the FO4 delay, and we found the ReffCG product being 
independent of the inverter size (as long as we keep same ratio between WP and WN)
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