
 
3 

 

Chapter 1: Start-up lecture 

A. Course introduction 
Course startup. Teacher presentations. Overall goals, aims, and learning outcomes. Course PM. 
Design flow and EDA tools. 
Course organization. 

 Lectures: CMOS theory on Tuesdays, adder design on Thursdays 
 Exercises on Thursdays 
 Home assignments. One hand-in per week. 
 Hands-on lab sessions 

The aim of the first chapter is to show how CMOS logic gates can be designed for functionality based 

on very simple assumptions concerning the basic MOSFET design element which can be regarded as a 

simple ON-OFF switch.  

Background knowledge required for this session: Boolean truth tables, Karnaugh maps, min terms, 
max terms, prime implicants, sum-of-products (SOP), product-of-sums (POS), de Morgan’s theorem, 
and bubble shuffling. If you feel uncertain, please consult the short summary of the most basic Boolean 
logic presented in Appendix 1. 

B. Design of CMOS logic gates 
Since CMOS is a complementary technology, logic gates must be designed by using both a pull-up 

network of p-type switches that are ON for zero input voltages, and a complementary pull-down network 

of n-type switches that are ON for positive input voltages. The two networks are not allowed to be ON 

at the same time, but must be complementary – one being ON, the other one being OFF - thereby pulling 

the output node to the corresponding rail voltage (VDD or VSS) to which the ON network is connected. 

The design principle is illustrated in figure 1.1 using 2-input NAND and NOR gates as design examples.  

 
Some of the most common logic gates, that we will learn how to design at the MOSFET level in this 

session, are shown in Fig. 1.2. Both inverting and non-inverting gates are shown in this figure. One of 

our first observations is that basic CMOS gates are by nature always inverting. Non-inverting gates like 

AND, OR, and AND-OR gates always use output inverters to get the output logic correct. The AND 

gate, for instance, consists of a NAND gate and an output inverter. The logic symbols used in Fig. 1.2, 

and in American text books, are, just, American. The corresponding European AND, OR and XOR 

symbols are shown in Fig. 1.3. 
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Fig. 1.1. CMOS logic gate design principle using pull-up and pull-down networks.  
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As already stated above, the basic idea when designing static CMOS gates is to use two networks: 

one pull-up network of PMOS-transistors connected to the supply voltage (VDD), and one pull-down 

network of NMOS-transistor connected to ground (VSS). When the Boolean function is true, the pull-up 

network pulls the gate output up to VDD, and when the Boolean function is false the pull-down network 

pulls the output down to VSS. It was also mentioned in the introduction above that CMOS gates are 

inverting. Examples of inverting gates are the NAND, NOR, AND-OR-INVERT (AOI), and OR-AND-

INVERT (OAI) gates. Non-inverting logic gates, like AND, OR, AND-OR and OR-AND gates, need 

an inverter at the output to get the output logic correct. 

 
Fig. 1.2. Basic inverting and non-inverting logic gates. 

 
The only MOSFET model we need to make a correct gate implementation of a logic function is a simple 

switch model. In CMOS, the n-channel MOSFET can be modeled by an n-type switch; i.e. a switch that 

is ON when its control input is high, and OFF when its control input is low. This simple model is 

sufficient to build the n-type pull-down network. Conversely, the p-channel MOSFET can be modeled 

by a p-type switch; i.e. a switch that is ON when its control input is low, and OFF when its control input 

is high. This simple model is sufficient to build the p-type pull-up network. An example where the 

Boolean function Z=AB+CD is implemented by p- and n-switches is shown in Fig. 1.4. 

Most often Boolean functions are given as sums of products (SOP). The Boolean function F=AB+CD 

is one such example. In my view, the simplest way of implementing any Boolean function of non-

inverted inputs in CMOS, is to start with the pull-down network, and to use the Boolean expression to 

combine n-switches accordingly. Once the corresponding pull-up network is in place, this gate will 

produce the inverted output function, F AB CD  . The output inverter will then invert this signal, 

and produce the correct output logical function. 

Any Boolean function can be inverted by using de Morgan´s theorem. In this example, the Boolean 

function is given as a sum of products. The inverse of our Boolean function can then be written as a 

product of sums (POS), i.e.    .F A B C D    Hence, the pull-up network can be implemented by 
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Fig. 1.3. European logic gate symbols. 
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two parallel p-switches representing A B , in series with two parallel p-switches representingC D . 

The complete solution of this 2+2 AND-OR logic gate was shown in fig. 1.4. 

A little bit more complicated is the implementation of the XOR and XNOR gates since they are both 

functions of inverted as well as non-inverted input signals. A ten MOSFET XOR implementation is 

shown in Fig. 1.5. 

Fig. 1.5. XOR and XNOR logic gate implementations.  

Exercise 1. Try to implement the design methodology outlined above for realizing the following CMOS 

logic gates: NAND4, NOR3, and XOR2! 

Exercise  2.  Try to implement the design methodology outlined above for realizing the following 

compound CMOS logic gates: a) AOI31, b) OAI21, c) OAI22, d) AO22, e) 211AOA or (AB+C)D, f) 

212 OAO or (A+B)C+DE.  

Exercise 3. Show that the XOR2 gate illustrated in Fig. 1.5 only requires 10 MOSFETs!  

Exercise 4. Multiplexer logic: Determine the multiplexer inputs for 

realizing the following logic functions:  

a) NAND2, b) NOR2, c) XOR2, d) XNOR2, e) AND2. 

Exercise 5. Design an eight-bit zero-detect-circuit having a high output 
signal if and only if all inputs are zeroes. The circuit shall be designed as 
an iterative logic array! 

Pre‐lab assignment #1: Design at the transistor level a static compound CMOS logic cell comparing 
two bits a and b. The output signal Zout is to be equal to a logic one if (and only if) a>b. The cell shall 
also have input state bits with the result from any previous comparison of more or less significant bits. 
The cell shall be designed to fit into an N-bit iterative logic array (ILA) so that two N-bit words A and 
B can be compared. Discuss whether it is best to perform the comparison starting from the most or 
from the least significant bit.  
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Fig. 1.4. General logic gate design using pull-up and pull-down networks. 
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