

Technology parameters 0.13- μm process 2011

Note: The design rules and electrical parameters presented in this document are representative for a 0.13- μm CMOS process, and are intended for teaching purposes only. $V_{DD} = 1.2\text{V}$ normally.

LL Transistors					
	Transistor type			Unit	
	nMOS	pMOS			
Gain factor low V_{GS} & $L < 10 \mu\text{m}$	$k'_n(\mu_n C_{ox})$	275	$k'_p(\mu_p C_{ox})$	75	$\mu\text{A}/\text{V}^2$
Threshold voltage (W/L=10/10)	V_{t0n}	0.29	V_{p0n}	-0.37	V
Threshold voltage (W/L=10/0.13)	V_{t0n}	0.44	V_{p0n}	-0.39	V
Body-effect factor	γ_n	0.4	$2\gamma_p$	0.4	$\sqrt{\text{V}}$
Surface potential ($\phi_B \approx 2 \cdot \phi_f$)	$2\phi_{fn}$	0.9	$2\phi_{fp}$	0.9	V
Early-voltage factor (W/L = 1/1)	$V'_{An} = r'_{dsn} = 1/\lambda'$	10	V'_{Ap}	20	$\text{V}/\mu\text{m}$
Early-voltage factor (W/L = 10/10)	V'_{An}	3	V'_{Ap}	20	$\text{V}/\mu\text{m}$
Drain-source breakdown voltage		1.32		1.32	V
Saturation current ($L = 0.13, W > 0.8 \mu\text{m}$)	I_{DSATn}	0.53	I_{DSATp}	0.24	$\text{mA}/\mu\text{m}$

Capacitances (layer to substrate)		
	Area $f\text{F}/\mu\text{m}^2$	Perimeter $f\text{F}/\mu\text{m}$
gate oxide capacitance	C_{ox}	12
gate-diff (S/D) overlap		C_{gso} 0.18
n+ diff (0 V)	C_{j0n}	C_{jswn} 0.04
n+ diff (0 V) - gatewall		C_{jgwn} 0.4
p+ diff (0 V)	C_{j0p}	C_{jswp} 0.03
p+ diff (0 V) - gatewall		C_{jgwp} 0.3

Sheet resistance		
Layer	Ω/\square	
poly	R_{sp}	10
metal1-4	R_{sm1-4}	0.075
metal5	R_{sm5}	0.06
metal6	R_{sm6}	0.02
n+ diff	R_{sdn}	10
p+ diff	R_{sdp}	10
n-well	R_{snw}	750

Max current density with $W > 1\mu\text{m}$		
Layer	$\text{mA}/\mu\text{m}$	
poly	J_p	?
metal1	J_{m1}	5.4
metal1-4	J_{m2-5}	7.8
metal6	J_{m6}	21

Contact resistance	
Layer-layer	Ω / cnt
metal1-n+ diff	R_{cdn} 15
metal1-p+ diff	R_{cdp} 15
metal1-poly	R_{cp} 15
metalln-metalln+1, via1-4	R_{via1-4} 1
metal5-metal6, via5	R_{via5} 0.5

Max contact current	
Layer-layer	mA/cnt
metal1-poly,diff	I_{cp} 0.6
via1-4	I_{via1-4} 0.9
via5	I_{via5} 3.1

Diffusion cap voltage-dep. parameters				
		nMOS	pMOS	
Bottom junction pot.	V_{jb}	0.47	0.65	V
Bottom grading coeff.	m_{jb}	0.26	0.3	
Sidewall junction pot.	V_{jsw}	0.55	3.1	V
Sidewall grading coeff.	m_{jsw}	0.22	0.06	
Gate sidew. junction pot.	V_{jg}	0.97	0.6	V
Gate sidew. grading coeff.	m_{jg}	0.7	0.9	

Latch-up prevention

1. All wells must have at least one contact to VDD.
2. Place well and substrate contacts wherever possible.
3. Max distance between and well/substrate contact is $30 \mu m$.