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Why study jitter?
• Sampled representation typically assumes 

uniform sample intervals


• Assumption often unspoken


• In practice, sampling never perfectly 
uniform!


• Inaccuracy limits performance


• Accuracy improvement may be expensive


• Designer awareness important
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Why error estimation?
• Balanced designs require distribution of 

requirements across subdesigns


• Need to be able to compare influence 
of different non-idealities 


• Avoid costly overdesign 


• Jitter used as first example today


• Principle will reoccur during course 
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Sampling inaccuracies
• Ideally (uniform sampling): 
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yk = sin(xk), xk = (2π/fs) · k

 4



181108 LJS

Non-uniform sampling

yk = sin(xk), xk = (2π/fs) · k + φk

Varying

(random?) 

phase
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Closeup
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• Uniform-sampling assumption makes non-
uniform sampling appear to cause additive 
noise
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Jitter causes?
• Here are some: 


• Supply voltage noise 


• Sampler nonlinearity


• Other signal coupled into sample clock 


• Digitally generated sample clock 


• Random phase noise (in all oscillators)


• …


• Avoid over-engineering to remove one cause!  
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Example: sample clock level

• Capacitive coupling from other signals or 
coupling from supply may affect level of 
clock signal 


• Will affect sample instance 


• Fast sample edge helps, but $, W 
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Deterministic jitter
• Ex: sample clock generated by flip-flop to 

get 50% duty cycle 


• FF asymmetry delays every other edge 

Purely random jitter
• Ex: Oscillator phase noise 


• Unavoidable; needs $, W to reduce 
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Error estimation

• SNR: signal to noise ratio (also SNDR, etc)


• Ratio of signal power to error power : 
SNR = Psig / Perr


• Express ratio in dB 


• Log scale:  SNRdB = 10 · log10(SNR)


• Ex: 1mW is 30 dB below 1W 
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Why error power?
• …rather than, say, maximum or average error? 


• Power of a sum is sum of powers (if signals 
uncorrelated)

• Handle composed signals by parts (easier!)

• Cf. linearity:  P(ax + b) = a2 P(x) + P(b) 


• Covers practically important phenomena such 
as additive Gaussian noise 

• No maximum error, but 


		 	 power still well-defined 
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Why a power ratio? 
• SNR unchanged by scaling


• Same SNR before and after (ideal) amplifier

• Allows us to represent power with square of 

voltage, disregarding R (cf. lab 0!) 

• Psig = Vsig2 / R ; Pn = Vn2 / R ; Psig / Pn = Vsig2 / Vn2


• Often good (not perfect) predictor for 
“performance” 

• Sensory (sight, hearing) masking 

• Telecommunication bit-error rates

• …

 12



181108 LJS

Why dB scale? 
• Ubiquitous in signal processing 


• Actual ratios (SNRs, gains) often numerically big


• Gain A = 1000000 is easy to misread


• Cf. A = 120 dB 


• Mental add/sub is easier than mul/div (for most 
people)


• Example: two-stage amp; need gain            
Atot =   A1 · A2; if A2 given, then A1 = Atot / A2
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Jitter-limited SNR
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Recall:
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• Non-uniform sampling with uniform 
assumption causes additive noise! 
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t’

Quantitatively:

• Nominally: sample at t, get v 


• Actually: sample at t’, get v’ 


• At small ∆t = t’ – t, then ∆v = v’ – v ≈ ∆t · ∂v/∂t

t

v
v’

signal

∆v

∆t
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∂v/∂t estimate
• Time derivative, i.e. rate-of-change, of 

signal v 


• Signal dependent…


• Assume simple sine wave “test” signal


v = A sin (2πf · t) 


∂v / ∂t = A · 2πf cos (2πf · t)
Magnitude grows with A, f
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Error power estimate
• ∆v ≈ ∆t · ∂v/∂t = ∆t · A· 2πf cos (2πf · t)

• (∆v)2 = (∆t)2 · (∂v/∂t)2 


 = (∆t)2 · A2 · (2πf)2 cos2(2πf · t)

• Perr = avg((∆v)2) 


      ≈ avg((∆t)2) · avg(A2 · (2πf)2 cos2(2πf · t))

      = avg((∆t)2) · A2 · (2πf)2 avg(cos2(2πf · t))


= avg((∆t)2) · A2 · (2πf)2 / 2 

• Assumption: ∆t uncorrelated with v 
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Signal power, SNR
• v = A sin (2πf · t)


• v2 = A2 sin2 (2πf · t)


• Psig = avg(v2) = A2 avg(sin2(2πf · t)) = A2 / 2


• SNR:  (A2 / 2) / (avg((∆t)2) · A2 · (2πf)2 / 2) 


• In dB: –10 log((2πf)2 · avg((∆t)2))


• Maloberti: –20 log(2πf · sqrt(avg((∆t)2))) =                             
–20 log(2πf · ∆tRMS) 
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Observations
• SNR in dB: –10 log((2πf)2 · avg((∆t)2)) 


• Jitter error proportional to ∂v/∂t

• Grows with signal amplitude and frequency


• Jitter-induced SNR independent of signal 
amplitude

• Error power grows with signal power


• What practical signal yields worst-case ∂v/∂t? 
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• Full-range sine of highest in-band 
frequency! 


• Typical “test case” for jitter testing
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f1 
≠ f

2

Two sinewaves 
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• v = A1 sin (2πf1 · t) + A2 sin (2πf2 · t)


• ∂v / ∂t = A1 2πf1 cos (2πf1 · t) + 


+ A2 2πf2 cos (2πf2 · t)


• (∂v / ∂t)2 = (A1 2πf1 cos (2πf1 · t))2 + 


+ 2 A1 2πf1 cos (2πf1 · t) ·


   · A2 2πf2 cos (2πf2 · t) + 


+ (A2 2πf2 cos (2πf2 · t))2


• avg((∂v / ∂t)2) = A12 (2πf1)2 / 2 + A22 (2πf2)2  / 2 
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N sinewaves
• Two sines: 


avg((∂v / ∂t)2) = A12 (2πf1)2 / 2 + A22 (2πf2)2  / 2 


• Generalized: 


avg((∂v / ∂t)2) = 2π2 ∑ (Aifi)2


• Sum of powers scaled by square frequencies


• “Any” signal can be represented as sum of 
sinewaves…


• …so jitter error power for general signal spectrum 
follows a high-pass-filtered version of signal 
power
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Jitter spectrum
• Jitter-induced error power clearly depends 

on jitter and on signal 


• Likewise with spectrum of error signal


• Jitter error spectrum useful!


• Identify cause of insufficient SNR


• Possibly remove noise by linear filtering


• Will illustrate principles with simple 
examples
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1. “Random” jitter

• “White” jitter / phase-noise 

• Constant power in all frequency bands 


• No correlation from ∆ti to ∆ti+1 

• Expect no correlation from ∆vi to ∆vi+1


• Spectrally, should expect “white” noise 
added to signal 
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White Gaussian jitter

• ∆t has Gaussian distribution


• White “noise floor” under single sine wave
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Amplitude distribution?

• Green: ∆t uniformly distributed (same avg((∆t)2)


• Large-scale spectral behavior unaffected!  
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2. Non-random jitter
• Assume the sample time error 


 ∆t ~ sin(2π fj t) , fj ≠ fsig


• Then, 


∆v ~ ∆t · ∂v / ∂t ~ sin(2π fj t) · cos(2π fsig t) ~ 


sin(2π (fj + fsig) t) + sin(2π (fj – fsig) t)


• Frequency sum and difference!
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fsig sampled with white + sine jitter

• Sine jitter yields “noise tones” 


• Tone separation, noise level follows fsig
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“Modulation”

• Sine component at fj in jitter causes signal band 
to be mirrored around fj


• Higher signal frequencies emphasized


• Distinguishable from fS aliasing!

fj fS/2
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3. Signal-correlated jitter

• ∆t ~ [random] + v 


• ∆v ~ v ; shows as harmonic distortion (2nd)
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Summary

• SNR applicable for many kinds of errors 


• Useful tool for trading off requirements 


• Variations such as SNDR also used 


• Signal to Noise and Distortion Ratio


• Explicitly include harmonics in error 
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Summary, cont. 
• Sample jitter significant source of errors 


• Error grows with signal frequency 


• Especially bad for high-performance 
systems 


• Jitter characteristics reflected in error 
spectrum 


• Enables diagnostic analysis!  

 32


