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Goal

» Refresh some fundamental signal
relations

« Not intended as definitive treatment!

» Investigate discretization of signals in
time (“sampling”)

- Refer to Maloberti, Chapter 1
« See reading directions

181105 LJS 2



Periodic signal
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Periodic signal

y = sin(x) — sin(2x)



Periodic signal
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Fourier series

» Any 2mt-periodic function f(x) can be
expressed as sum of sines/cosines:

flz) = % + Z(ancos(n:c) + b, sin(nx))
Ay, = %/0 ' f(x)cos(nx)dx

1 27
by, = — ' d
7T/o f(x)sin(nx)dx

ancos(nx) + by sin(nz) = Cysin(nz + @n)
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Spectrum

Describes a signal in the frequency domain
One-to-one mapping from time domain

We often use “power spectrum”: square
amplitudes, ignore phases

Many-to-one mapping

Esp. useful when studying Linear and Time-
Invariant (LTIl) systems

...which approximate many practical systems
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Nyquist-Shannon
sampling theorem

spectral components with f > fs / 2

» Nyquist sampling frequency
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Nyquist violation
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y = sin(33x),0 < x < 27



Nyquist violation
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Allases

» Infinite number of continuous-time
signals coincide with the same sampled-

time version!

* Nyquist criterion selects one of these

» Note: possible (and sometimes useful) to
select others

» 2nd, 3rd etc. “Nyquist band”
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Sampled-domain spectrum

N—1
S, = Z s, - o 12T RN
n=0
Discrete-time Fourier transform (DFT)
FFT is a (class of) implementation(s) of the DFT

Same number of components (N) as signal has
samples

Sk is complex-valued

We are often interested in power spectrum, |Sk|2
ISk|? is real-valued, = 0, all k
Symmetric when s is real; consider lower half
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Sampling inaccuracies

1. Spectrum aliasing

2. Aperture window

3. Non-uniform sampling (next lecture)
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1. Spectrum aliasing

P 4
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* Any discrete-time signal can correspond to many

continuous-time signals

» Indistinguishable in sampled domain!

« CT spectra “mirrored” around multiples of fs
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How get 1-1 mapping?

Ensure CT signal contains only one of
“equivalent” mirror images

Most often, a low-pass filter is used
« CT to ST: anti-aliasing filter

« ST to CT: reconstruction filter
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Noise folding

4 COmntoraebrus e
signal

T

- Undesired signals (“noise”) corrupt desired signal

» Added to the desired signal

« Once sampled, out-of-band noise is
indistinguishable from desired signal!
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Anti-alias filter

+ COmntoraebrus e
signal

T

Use frequency-selective filter to suppress out-of-band
noise, before sampling and thus before aliasing

Low-pass filter (here) selects first mirror image; band-
pass for other image
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Reconstruction filters

T CDrcreteifimene
fs 2fs

» Images in CT (general rolloff with frequency)

» Rolloff rate depends on conversion details

» Again, filter selects one image
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Continuous-time filters
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« Choices in pole/zero placement; examples...

« Suppression never complete in linear filters of
limited order!

| More j, ther,
» Increased suppression at a cost ($, W) ©4
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2. Aperture window

Consider simple sample / hold circuit:

Vin — |_>Y J_ Vsamp

Output follows input (filtered by RC) ...

Vsamp () = /a(T)vm(t — 7)dT

... until switch opens at ts
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Sampling, ideal and not

»  With Dirac kernel, sampling is ideal:

Vsamp(t) = / () vin (t — T)dT = vin (1)

-  O/w, convolution of input signal with a
window function

“*Aperture window”

In example S+H, window is an RC decay
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Convolution
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- Lowpass example

» Qutput is weighted sum of recent inputs
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Somewhat more
realistic sampler...

t

X

”\ MOS switch
r_L_
V — J_ Vsamp
=T

» When is the input value actually
sampled?
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Oswitch(t)

g=r-1

‘ﬁ

tx t

» When switch opens, r approaches infinity,
so g =r -1 approaches 0

» Gradual switching over interval tx
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Aperture window limits accuracy

»  Switch resistance r grows gradually over tx

- Window differs from RC response!

Ideal and realistic aperture window

1

weight of signal just before switching

weight of signal long ago

weight adjusted
for increasing r
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But why does this matter?

» Aperture window duration must be
smaller than sample interval, so therefore
the integration time is small enough not
to affect sampled value much? Right?

No. Not if undersampling is used.
° fsig > fS / 2

Higher Nyquist band!
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Aperture window summary

» Aperture window low-pass-
filters the signal

Especially significant when
undersampling

» Also, switch is never really
linear

»  Aperture window function
depends on voltage!
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Summary

- Sampling intended to give one-to-one mapping
from continuous to discrete domain

» Frequency aliasing may defeat this intention

» Anti-alias filters suppress out-of-band signals
(but not perfectly)

»  Aperture window acts as low-pass filter

« Switch non-linearities cause distortion
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Next lecture:
non-uniform sampling
(jitter)



