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Goal	
• Refresh some fundamental signal 

relations

• Not intended as definitive treatment!


• Investigate discretization of signals in 
time (“sampling”)


• Refer to Maloberti, Chapter 1 

• See reading directions 
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Periodic signal
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Periodic signal
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Periodic signal
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Periodic signal

1 2 3 4 5 6
−0.5

0

0.5

1

y =
100∑

n=1

Cnsin(nx + φn)

random coeffs



181105 LJS

Cn coefficients
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Fourier series
• Any 2π-periodic function f(x) can be 

expressed as sum of sines/cosines:

f(x) =
a0

2
+

∞∑

1

(ancos(nx) + bnsin(nx))

an =
1

π

∫ 2π

0

f(x)cos(nx)dx

bn =
1

π

∫ 2π

0

f(x)sin(nx)dx

ancos(nx) + bnsin(nx) = Cnsin(nx + φn)
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Spectrum
• Describes a signal in the frequency domain 


• One-to-one mapping from time domain


• We often use “power spectrum”: square 
amplitudes, ignore phases


• Many-to-one mapping


• Esp. useful when studying Linear and Time-
Invariant (LTI) systems 


• …which approximate many practical systems 
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Aperiodic signals?

• Multiply with window function 
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Sampling
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Nyquist-Shannon  
sampling theorem

• Exact reconstruction of continuous signal 
from equidistant samples is possible if no 
spectral components with f ≥ fs / 2 


• Nyquist sampling frequency
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Nyquist violation
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Nyquist violation
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Aliases
• Infinite number of continuous-time 

signals coincide with the same sampled-
time version!


• Nyquist criterion selects one of these 


• Note: possible (and sometimes useful) to 
select others 


• 2nd, 3rd etc. “Nyquist band”
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Sampled-domain spectrum 

• Discrete-time Fourier transform (DFT)

• FFT is a (class of) implementation(s) of the DFT


• Same number of components (N) as signal has 
samples

• Sk is complex-valued


• We are often interested in power spectrum, |Sk|2 

• |Sk|2 is real-valued, ≥ 0, all k

• Symmetric when s is real; consider lower half 

Sk =

N−1∑

n=0

sn · e
−i2π

k

N
n
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Spectrum example
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Sampling inaccuracies 

1. Spectrum aliasing 


2. Aperture window


3. Non-uniform sampling (next lecture)
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1. Spectrum aliasing

fs 2fs
• Any discrete-time signal can correspond to many 

continuous-time signals


• Indistinguishable in sampled domain!  


• CT spectra “mirrored” around multiples of fs
 19

f

P



181105 LJS

How get 1-1 mapping?

• Ensure CT signal contains only one of 
“equivalent” mirror images


• Most often, a low-pass filter is used 


• CT to ST: anti-aliasing filter 


• ST to CT: reconstruction filter  
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Noise folding
Continuous time

noise

signal
fs

Discrete time

• Undesired signals (“noise”) corrupt desired signal


• Added to the desired signal


• Once sampled, out-of-band noise is 
indistinguishable from desired signal!
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Anti-alias filter
Continuous time

noise

signal

fs

Discrete time

• Use frequency-selective filter to suppress out-of-band 
noise, before sampling and thus before aliasing


• Low-pass filter (here) selects first mirror image; band-
pass for other image
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Reconstruction filters

• Images in CT (general rolloff with frequency)


• Rolloff rate depends on conversion details


• Again, filter selects one image
 23
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Continuous-time filters 

• Choices in pole/zero placement; examples…

• Suppression never complete in linear filters of 

limited order!

• Increased suppression at a cost ($, W)

4th order Chebyshev 4th order Cauer

[Wikipedia]
 24
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kernel

2. Aperture window
• Consider simple sample / hold circuit: 


• Output follows input (filtered by RC) …


• … until switch opens at ts

vin vsamp

Cs

ts

R

vsamp(t) =
�

�(⇥)vin(t� ⇥)d⇥
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• With Dirac kernel, sampling is ideal:


• O/w, convolution of input signal with a 
window function


• “Aperture window”


• In example S+H, window is an RC decay

Sampling, ideal and not

vsamp(t) =
�

�(⇥)vin(t� ⇥)d⇥ = vin(t)
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Convolution 

• Lowpass example


• Output is weighted sum of recent inputs
 27
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Somewhat more  
realistic sampler…

• When is the input value actually 
sampled? 

Vin Vsamp

Cs

MOS switch

tx

r
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gswitch(t)

t

g = r –1

tx

• When switch opens, r approaches infinity, 
so g = r –1 approaches 0


• Gradual switching over interval tx
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Aperture window limits accuracy

• Switch resistance r grows gradually over tx


• Window differs from RC response! 
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But why does this matter?

• Aperture window duration must be 
smaller than sample interval, so therefore 
the integration time is small enough not 
to affect sampled value much?  Right?  


• No.  Not if undersampling is used. 


• fsig > fS / 2 


• Higher Nyquist band! 
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Aperture window summary
• Aperture window low-pass-

filters the signal 


• Especially significant when 
undersampling 


• Also, switch is never really 
linear 


• Aperture window function 
depends on voltage!  Distortion!
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Summary
• Sampling intended to give one-to-one mapping 

from continuous to discrete domain


• Frequency aliasing may defeat this intention


• Anti-alias filters suppress out-of-band signals 
(but not perfectly) 


• Aperture window acts as low-pass filter 


• Switch non-linearities cause distortion
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Next lecture:  
non-uniform sampling 

(jitter) 


