

Sampling and spectra

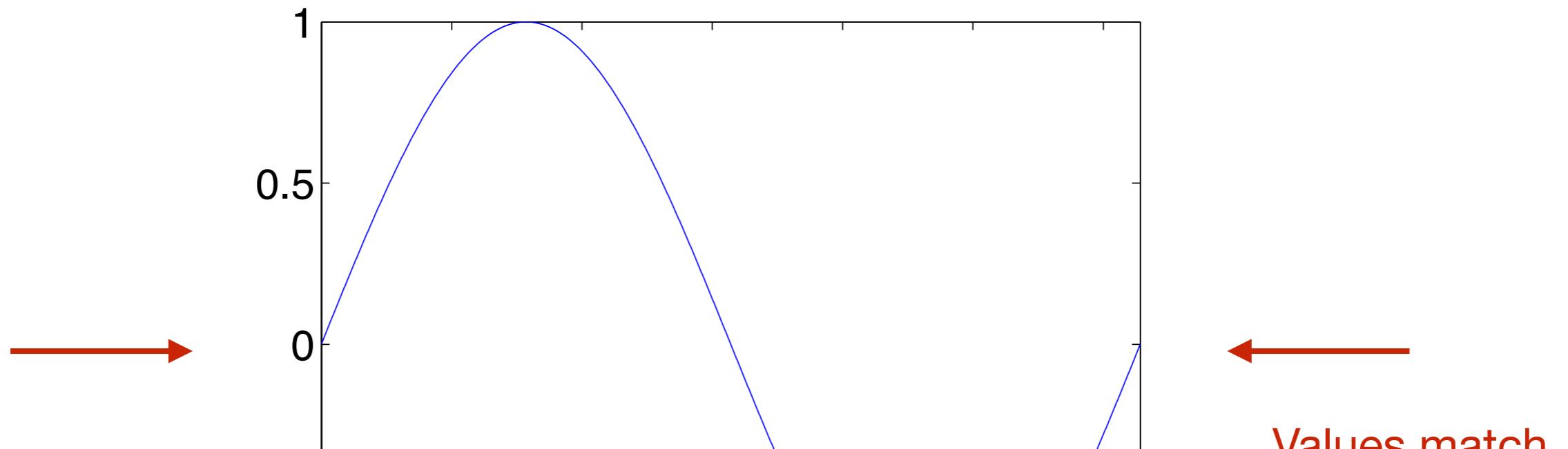
DAT116, Nov 5, 2018

larssv@chalmers.se

Goal

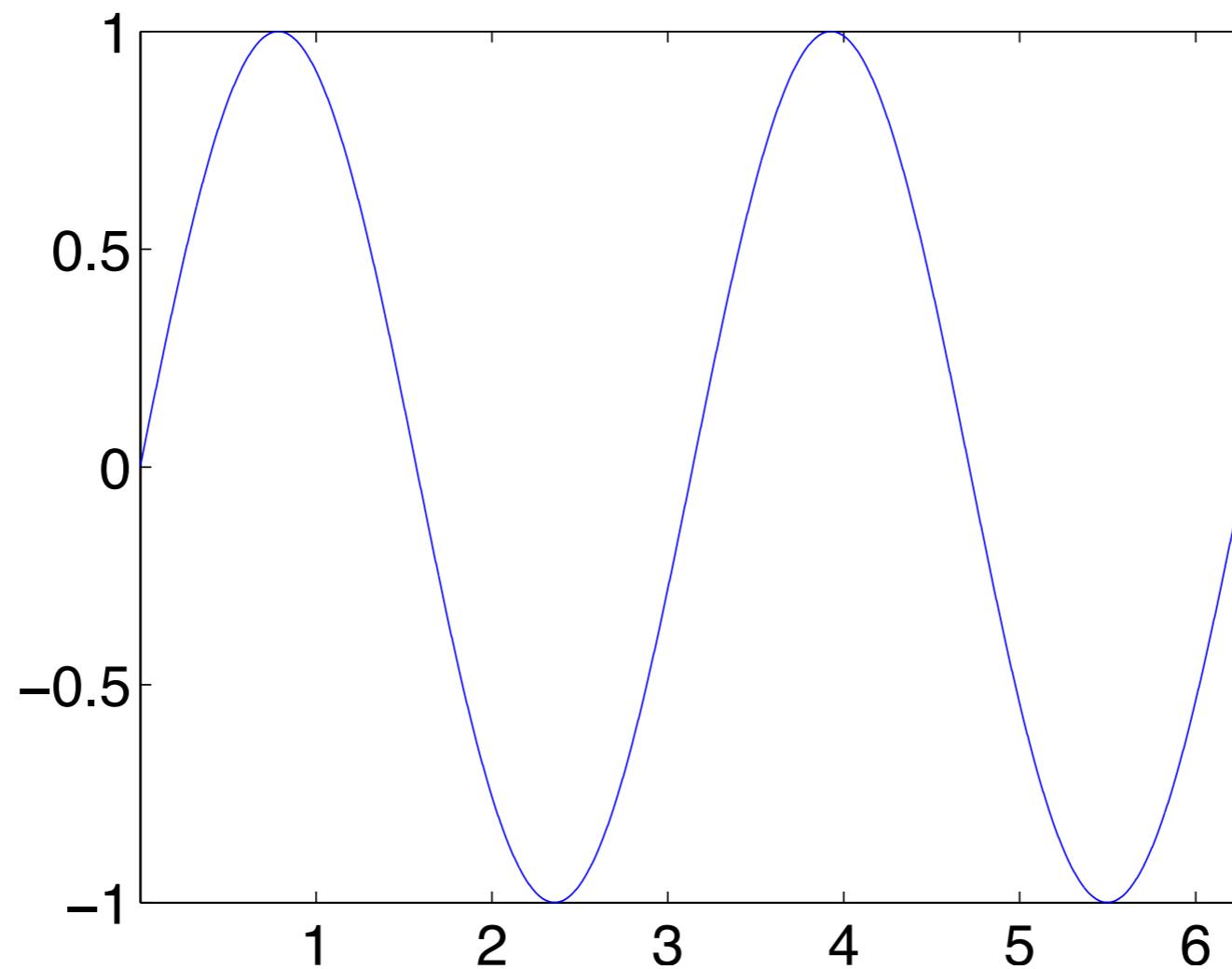
- Refresh some fundamental signal relations
 - Not intended as definitive treatment!
 - Investigate discretization of signals in time (“sampling”)
 - Refer to Maloberti, Chapter 1
 - See reading directions

Periodic signal



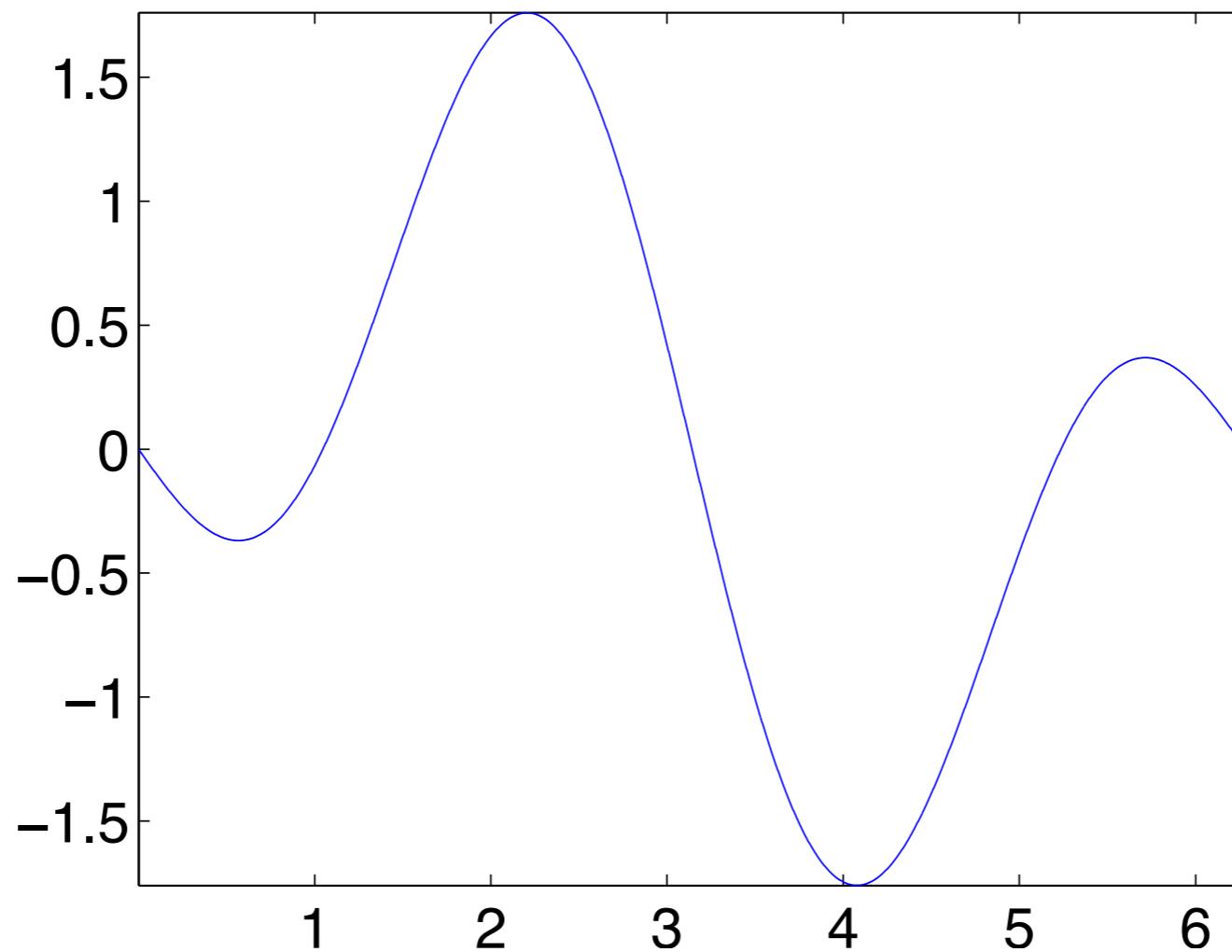
$$y = \sin(x)$$

Periodic signal



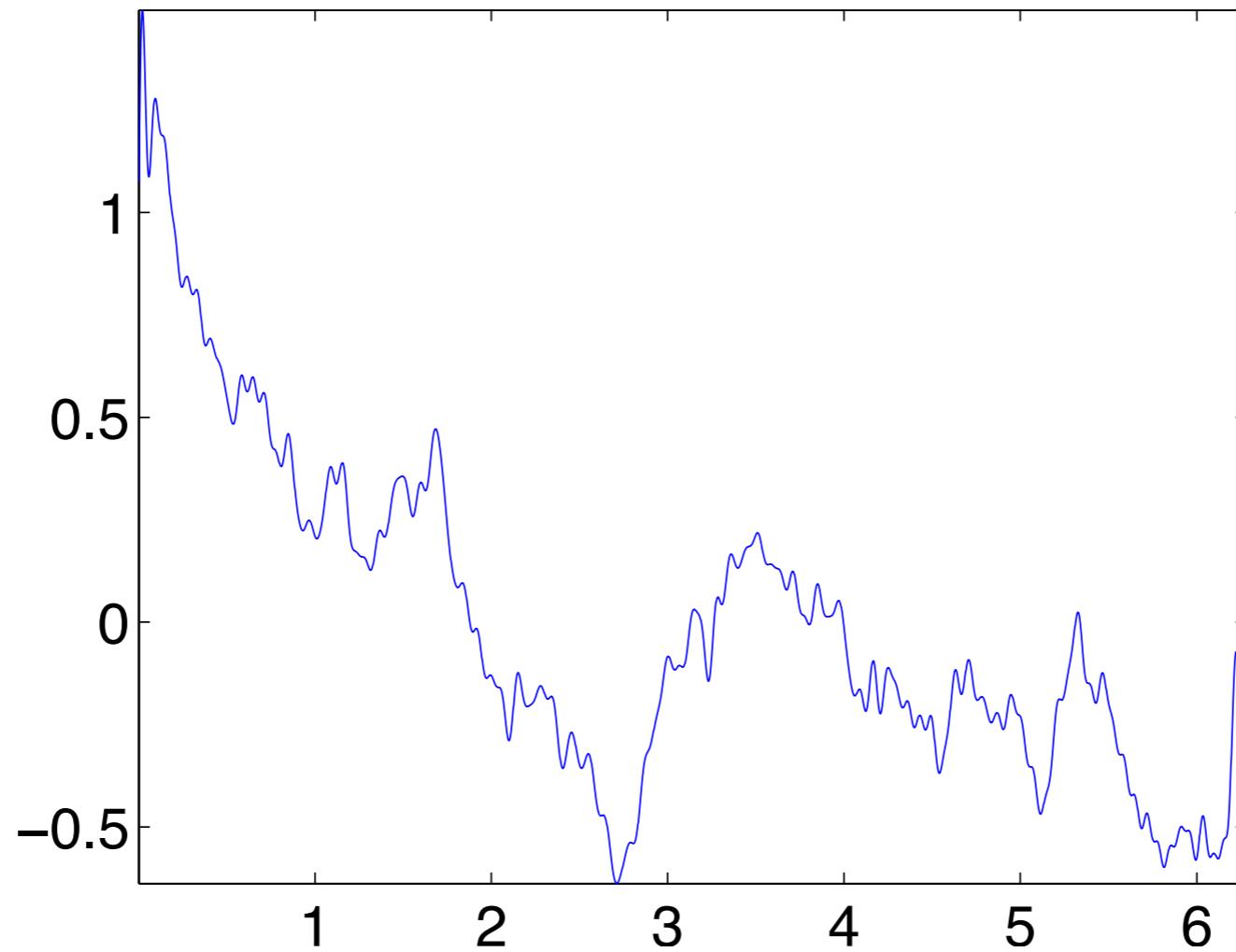
$$y = \sin(2x)$$

Periodic signal



$$y = \sin(x) - \sin(2x)$$

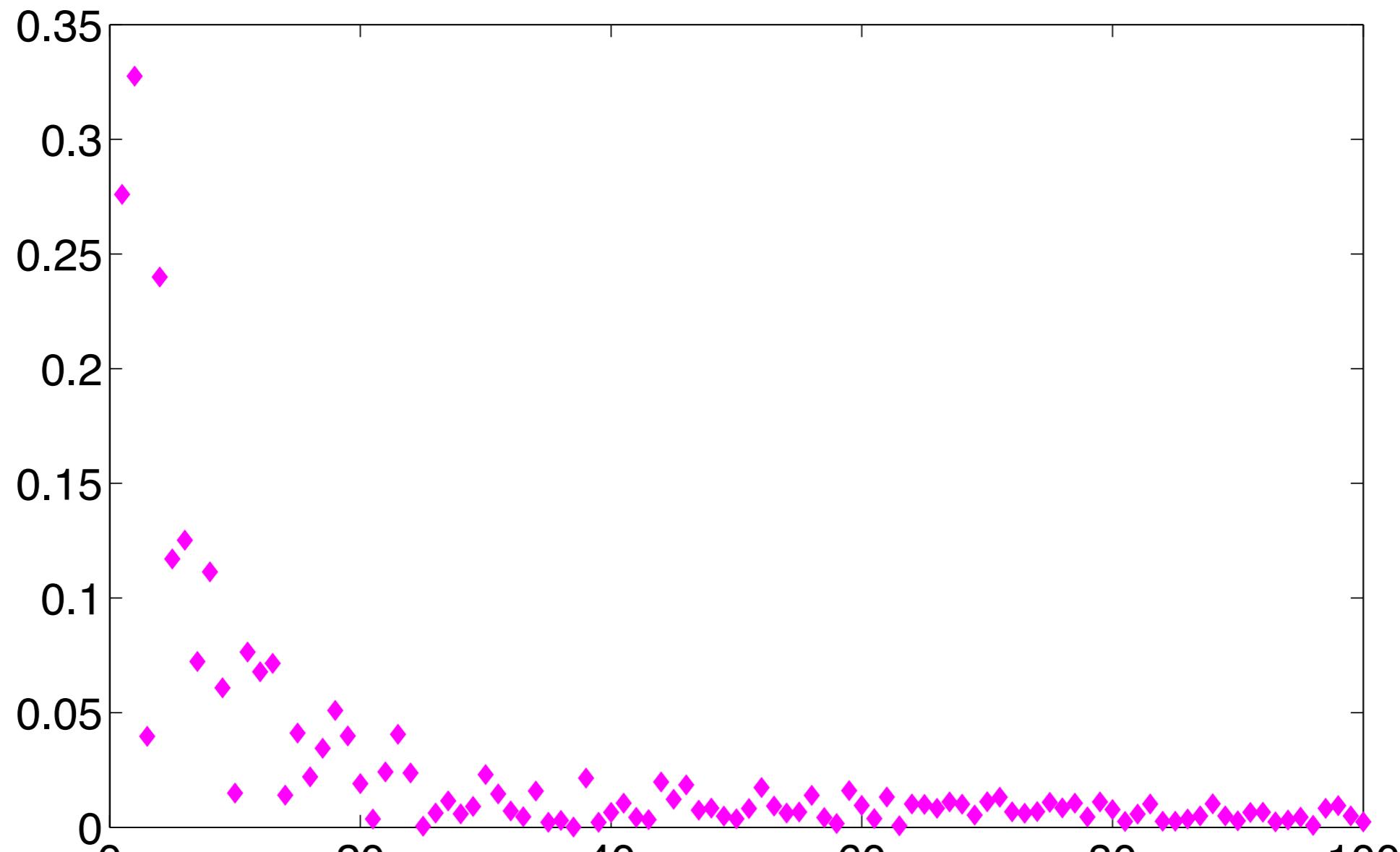
Periodic signal



$$y = \sum_{n=1}^{100} C_n \sin(n x + \phi_n)$$

random coeffs

C_n coefficients



$$C_n, 1 \leq n \leq 100$$

Fourier series

- Any 2π -periodic function $f(x)$ can be expressed as sum of sines/cosines:

$$f(x) = \frac{a_0}{2} + \sum_1^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx$$

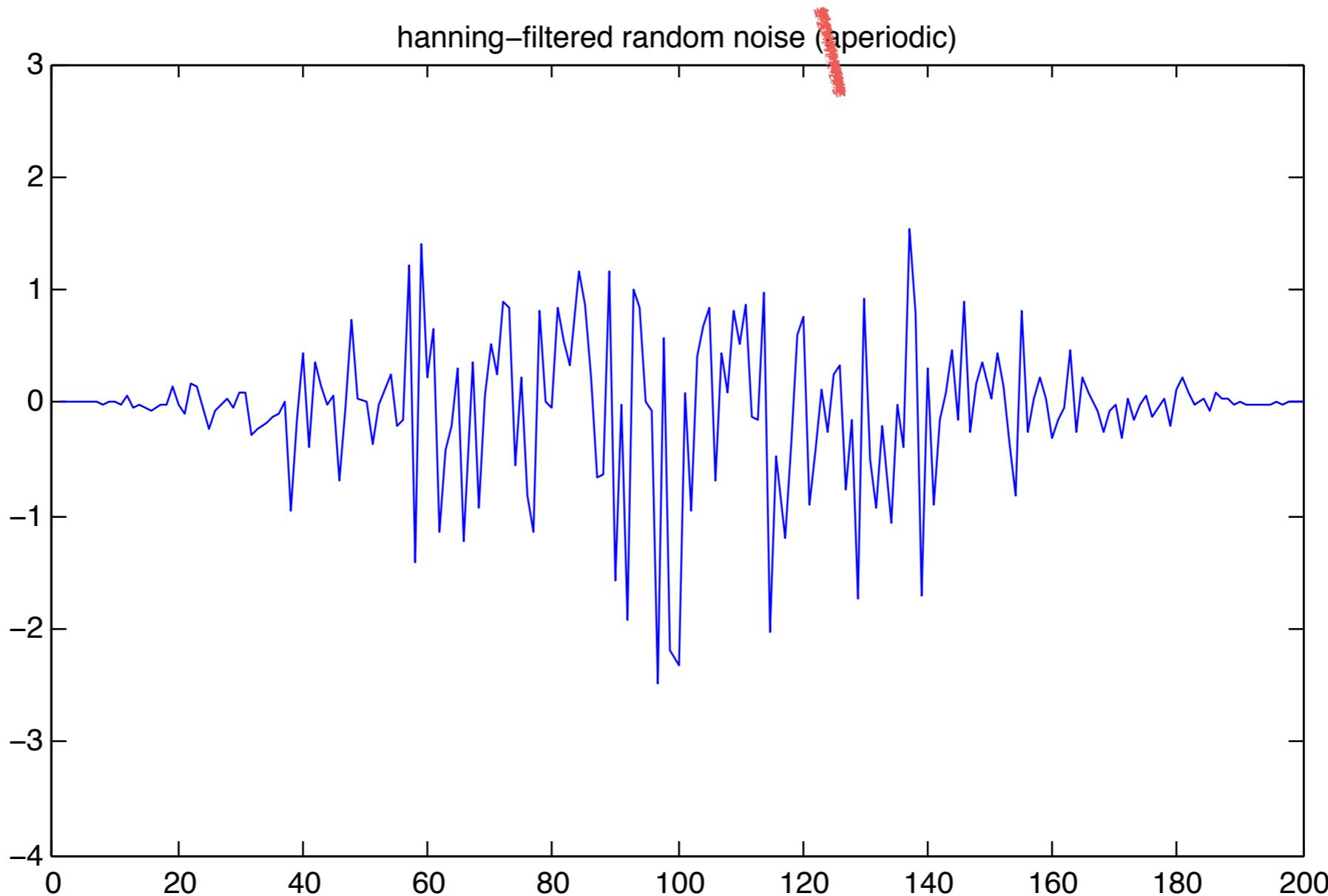
$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx$$

$$a_n \cos(nx) + b_n \sin(nx) = C_n \sin(nx + \phi_n)$$

Spectrum

- Describes a signal in the frequency domain
 - One-to-one mapping from time domain
 - We often use “power spectrum”: square amplitudes, ignore phases
 - Many-to-one mapping
 - Esp. useful when studying Linear and Time-Invariant (LTI) systems
 - ...which approximate many practical systems

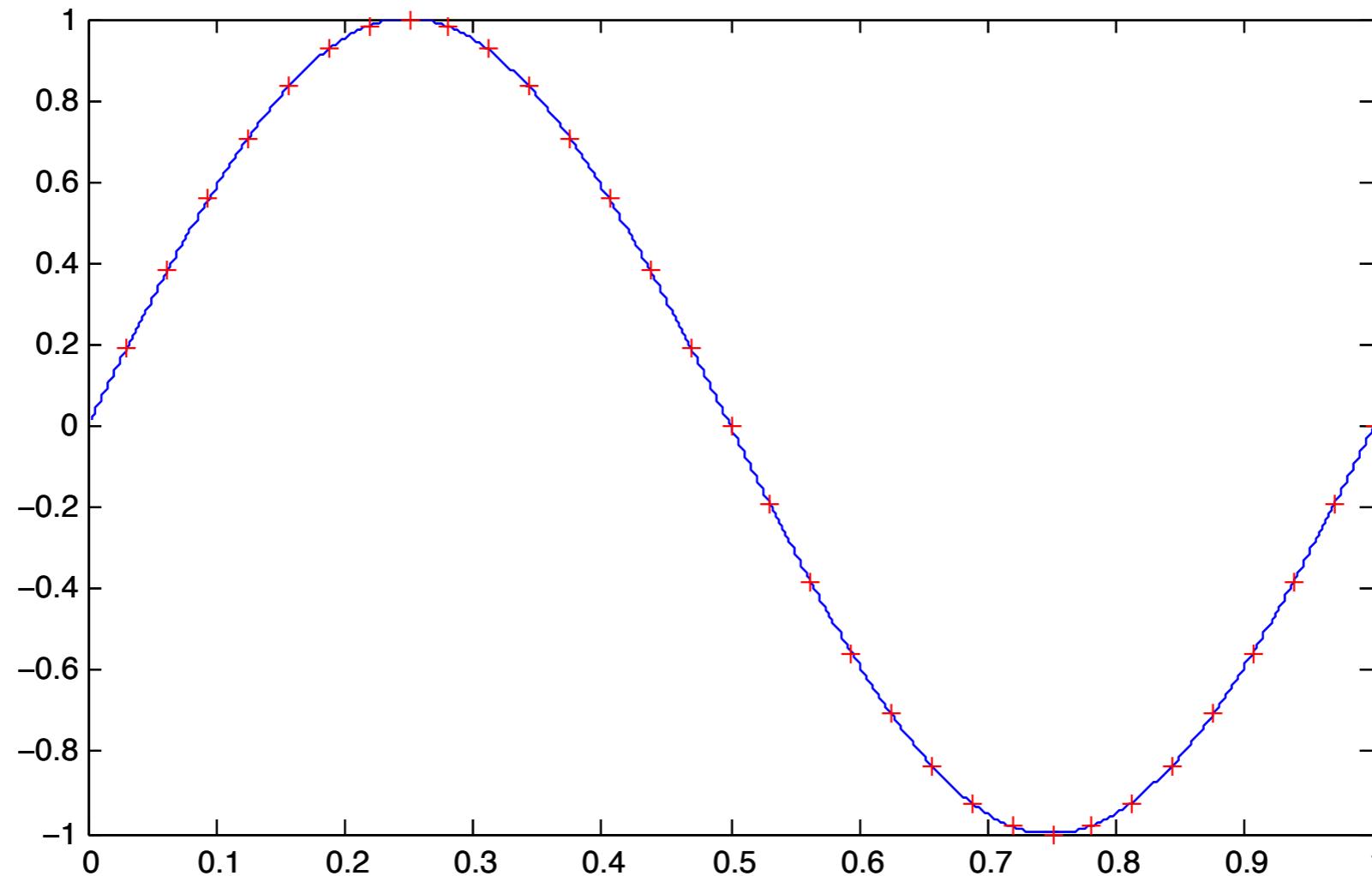
Aperiodic signals?



- Multiply with window function

Hanning
window

Sampling



$$f_s = 32$$

$$y = \sin(2\pi \cdot t), 0 < t \leq 1$$

$$y = \sin(2\pi \cdot t_k), t_k = (k / f_s), k = 0, 1, \dots$$

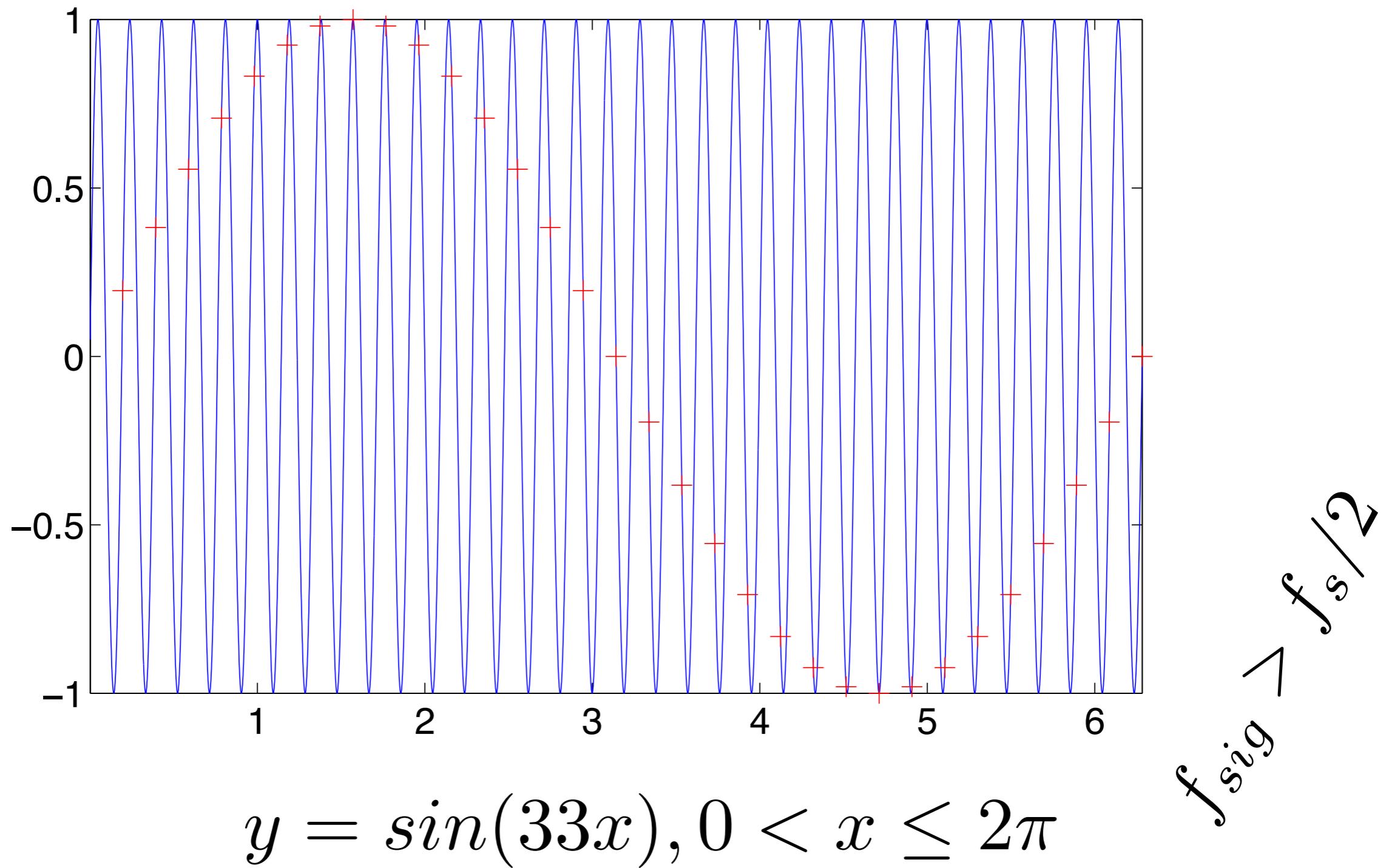
Nyquist-Shannon sampling theorem

~~Approximate~~

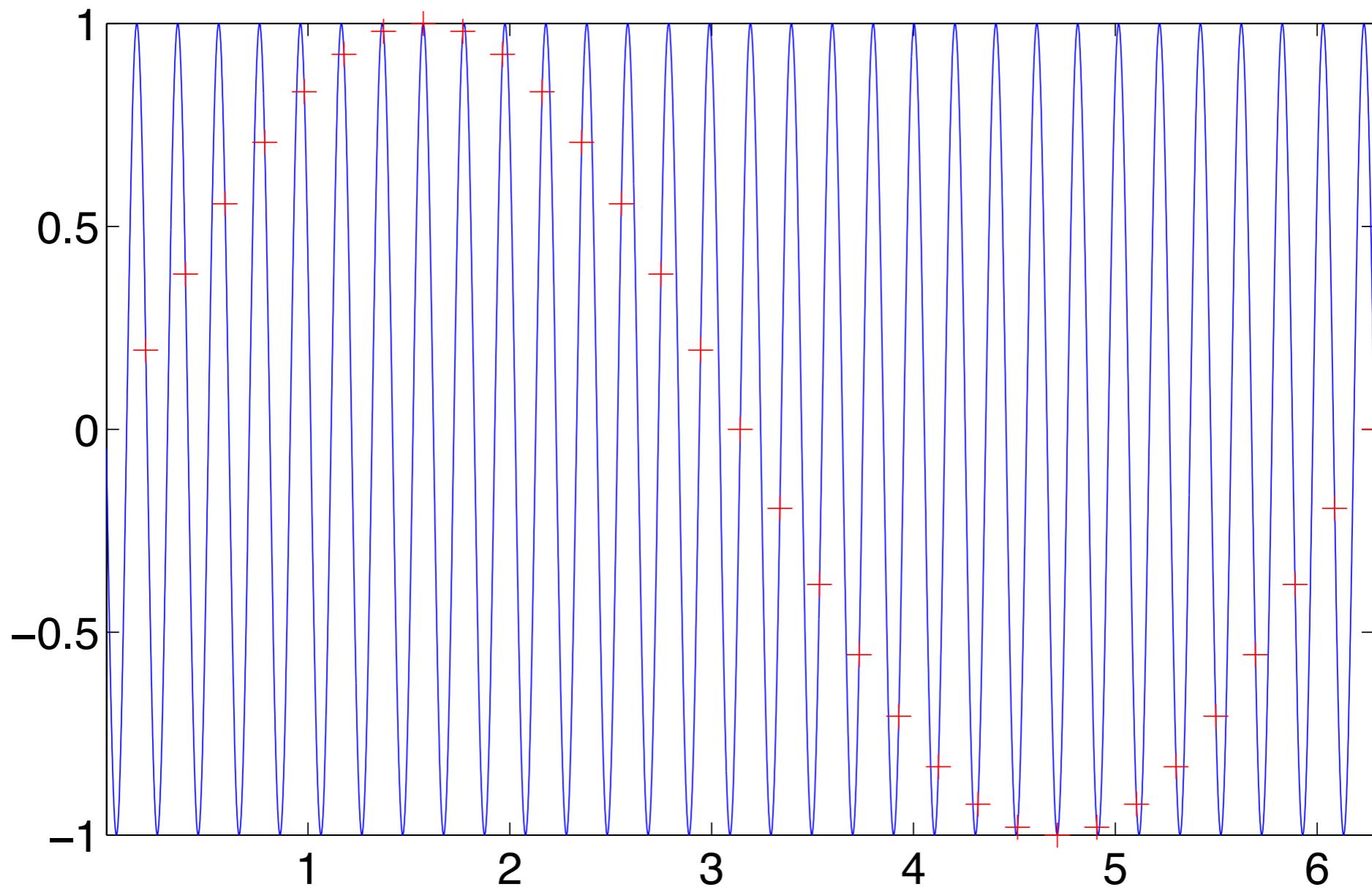
- Exact reconstruction of continuous signal from equidistant samples is possible if no spectral components with $f \geq f_s / 2$ ~~small~~
- Nyquist sampling frequency

~~Practical case...~~

Nyquist violation



Nyquist violation



$$y = -\sin(31x), 0 < x \leq 2\pi$$

Aliases

- Infinite number of continuous-time signals coincide with the same sampled-time version!
- Nyquist criterion selects one of these
- Note: possible (and sometimes useful) to select others
 - 2nd, 3rd etc. “Nyquist band”

Sampled-domain spectrum

$$S_k = \sum_{n=0}^{N-1} s_n \cdot e^{-i2\pi \frac{k}{N} n}$$

- Discrete-time Fourier transform (DFT)
 - FFT is a (class of) implementation(s) of the DFT
 - Same number of components (N) as signal has samples
 - S_k is complex-valued
 - We are often interested in power spectrum, $|S_k|^2$
 - $|S_k|^2$ is real-valued, ≥ 0 , all k
 - Symmetric when s is real; consider lower half

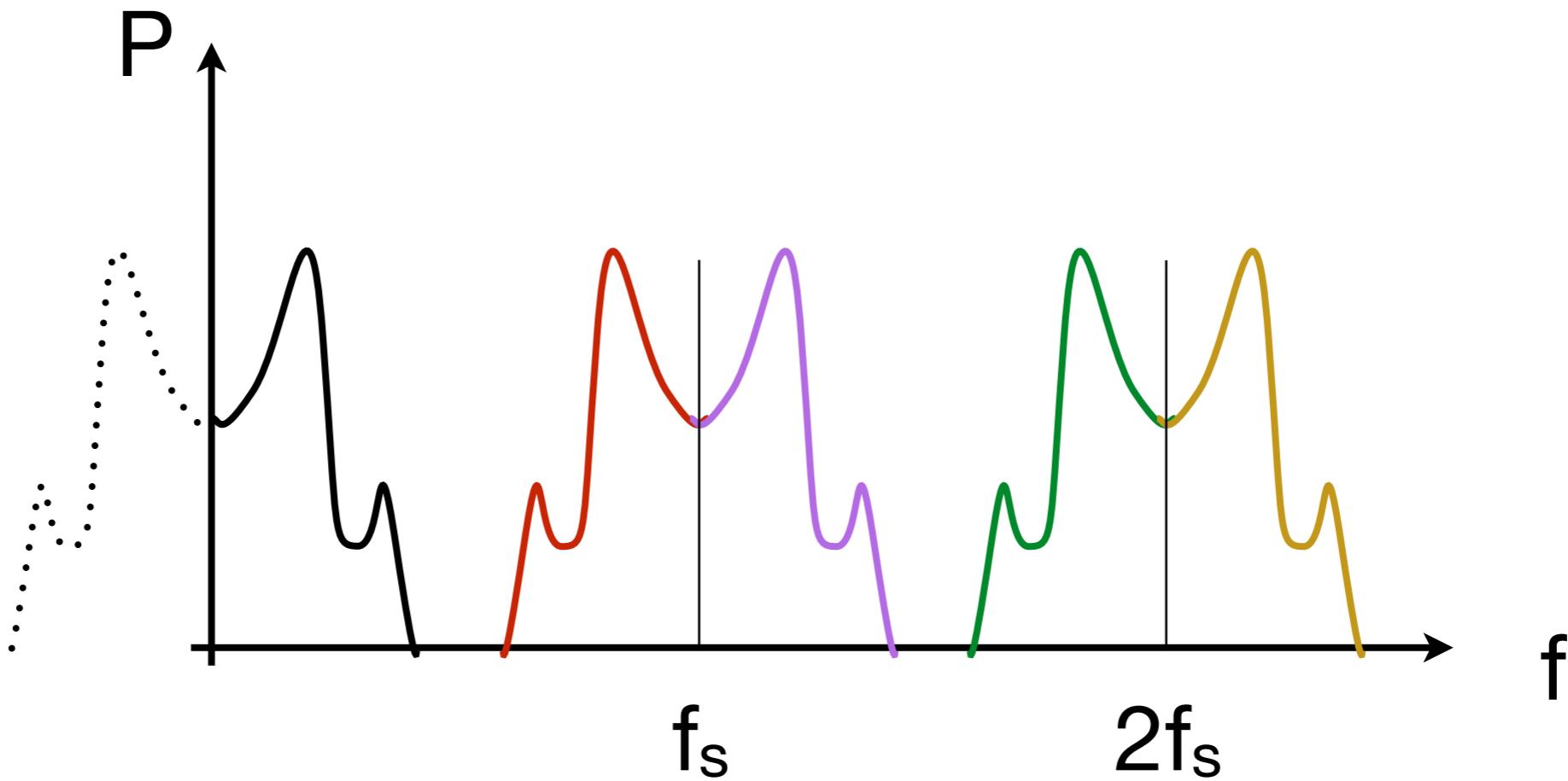
Snectrum example



Sampling inaccuracies

1. Spectrum aliasing
2. Aperture window
3. Non-uniform sampling (next lecture)

1. Spectrum aliasing

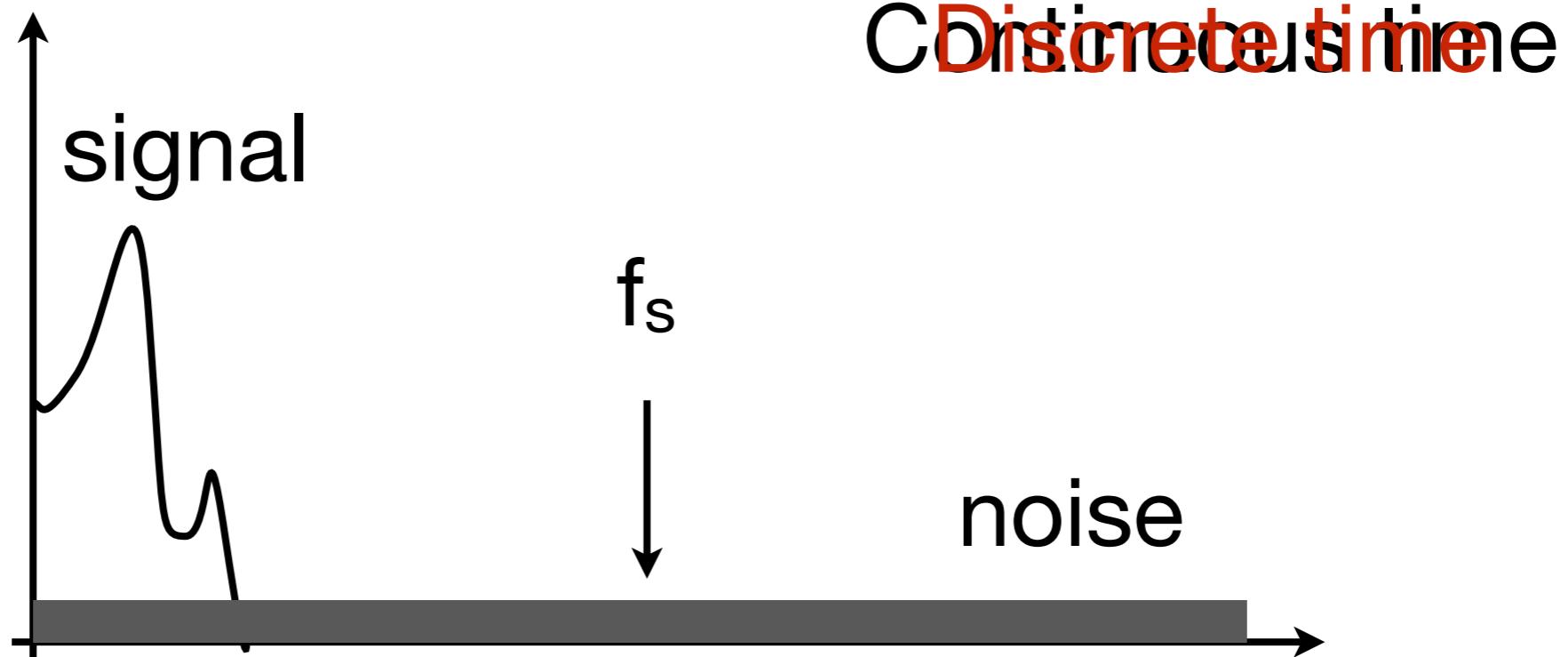


- Any discrete-time signal can correspond to many continuous-time signals
 - Indistinguishable in sampled domain!
 - CT spectra “mirrored” around multiples of f_s

How get 1-1 mapping?

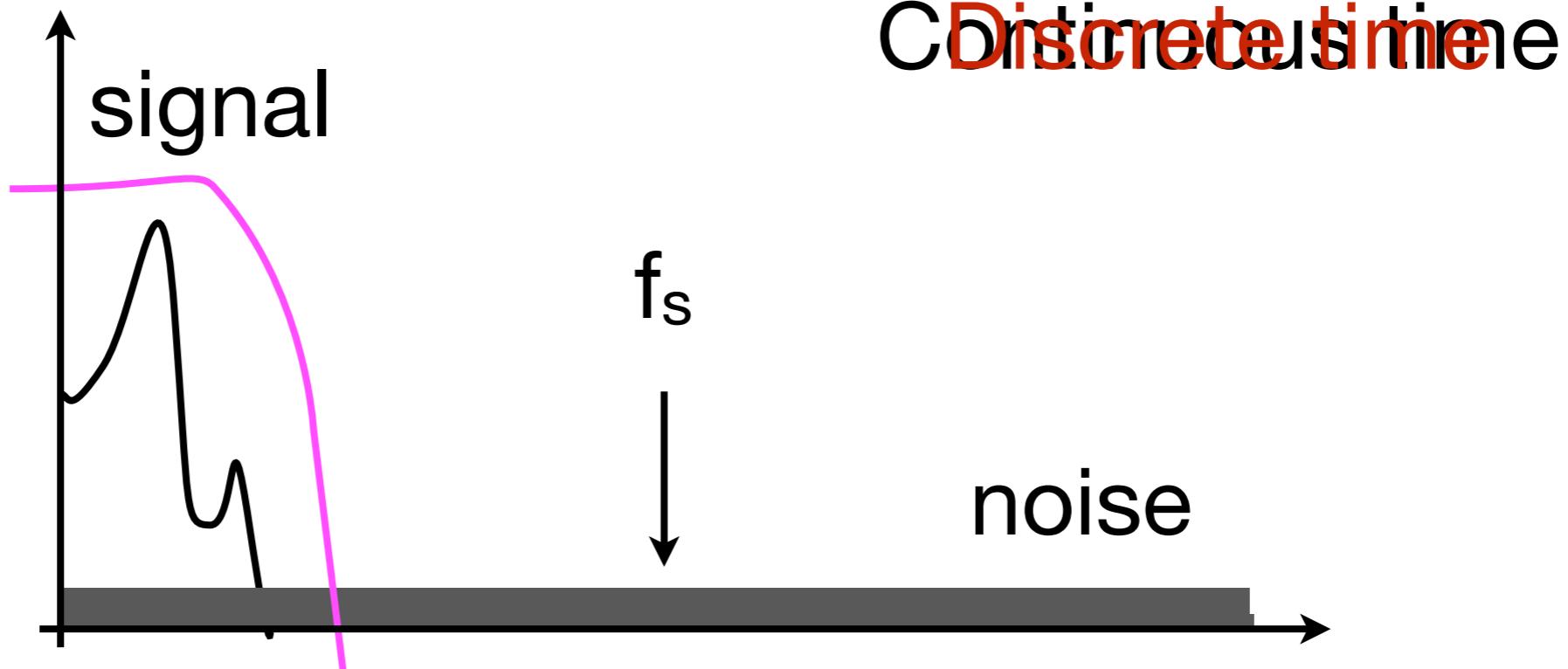
- Ensure CT signal contains only one of “equivalent” mirror images
- Most often, a low-pass filter is used
 - CT to ST: anti-aliasing filter
 - ST to CT: reconstruction filter

Noise folding



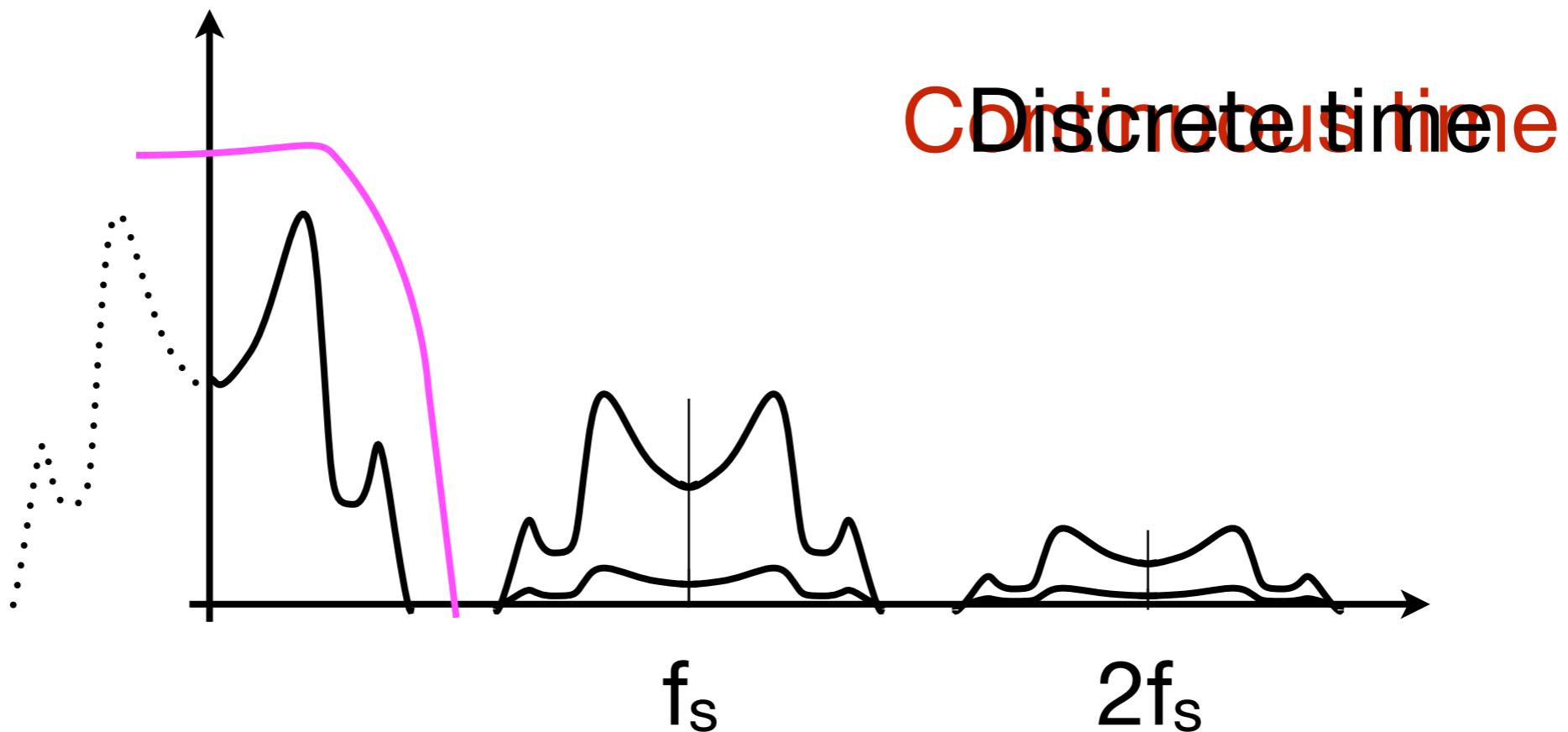
- Undesired signals (“noise”) corrupt desired signal
 - Added to the desired signal
 - Once sampled, out-of-band noise is indistinguishable from desired signal!

Anti-alias filter



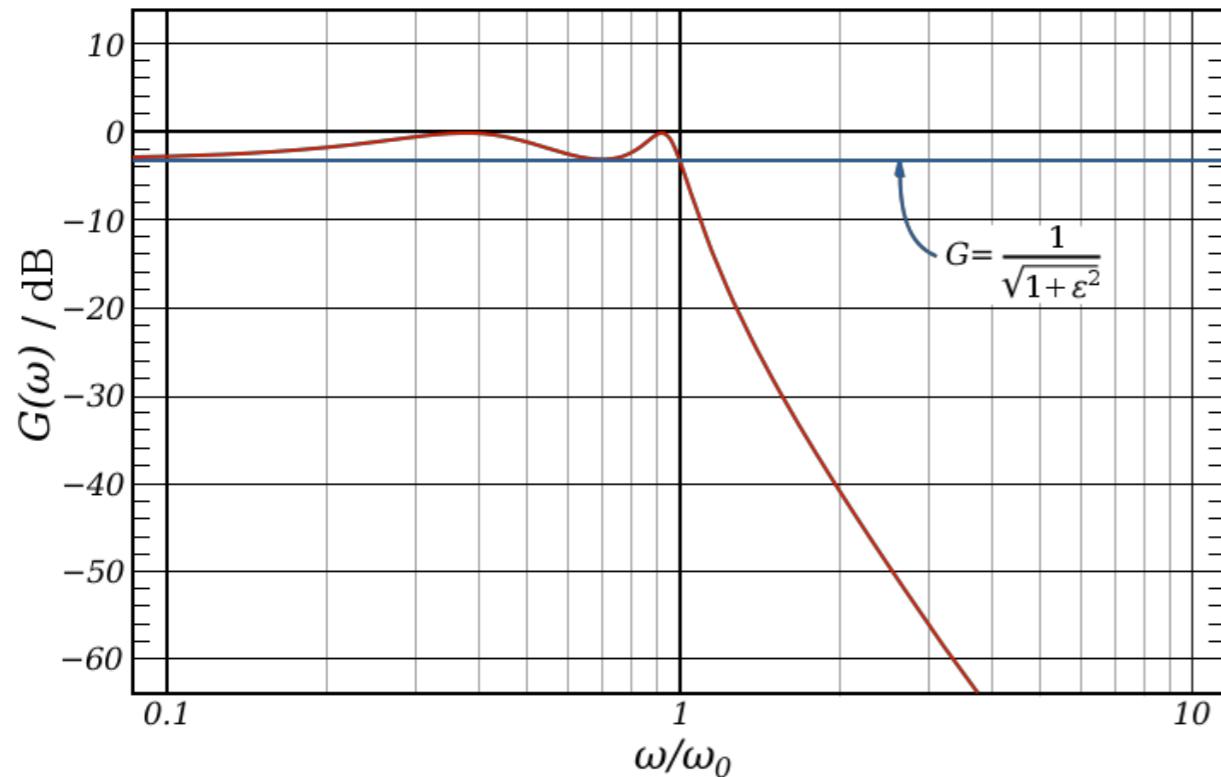
- Use frequency-selective filter to suppress out-of-band noise, before sampling and thus before aliasing
- Low-pass filter (here) selects first mirror image; band-pass for other image

Reconstruction filters

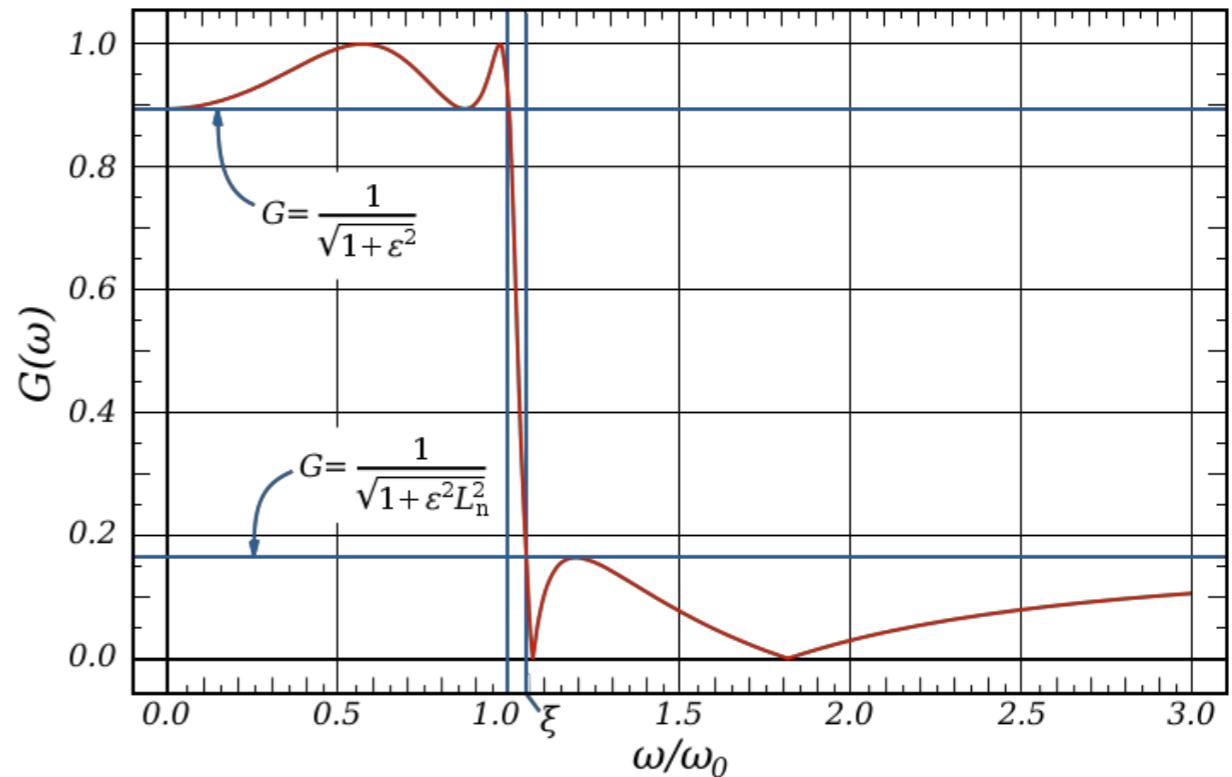


- Images in CT (general rolloff with frequency)
 - Rolloff rate depends on conversion details
 - Again, filter selects one image

Continuous-time filters



4th order Chebyshev



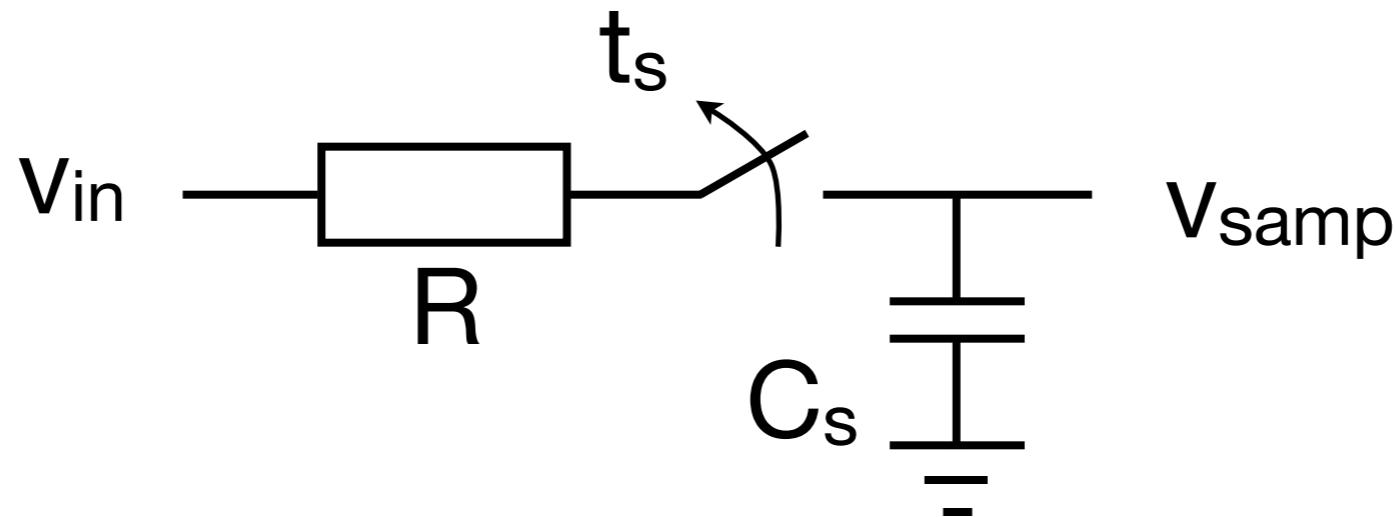
4th order Cauer

- Choices in pole/zero placement; examples...
- Suppression never complete in linear filters of limited order!
 - Increased suppression at a cost (\$, W)

More in theme 4

2. Aperture window

- Consider simple sample / hold circuit:



- Output follows input (filtered by RC) ...

$$v_{samp}(t) = \int \alpha(\tau) v_{in}(t - \tau) d\tau$$

- ... until switch opens at t_s

kernel

Sampling, ideal and not

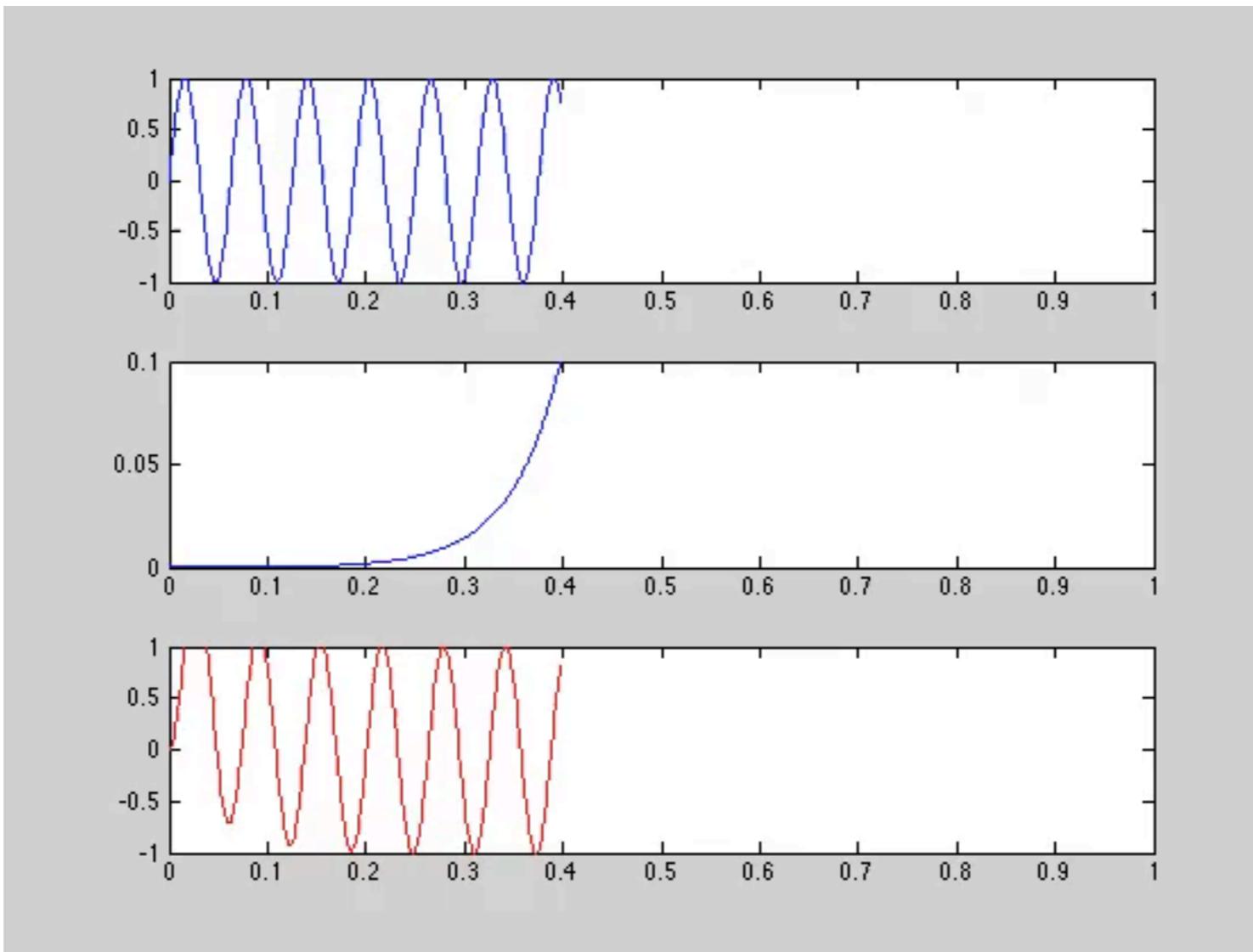
- With Dirac kernel, sampling is ideal:

$$v_{samp}(t) = \int \delta(\tau) v_{in}(t - \tau) d\tau = v_{in}(t)$$

- O/w, convolution of input signal with a window function
 - “Aperture window”
 - In example S+H, window is an RC decay

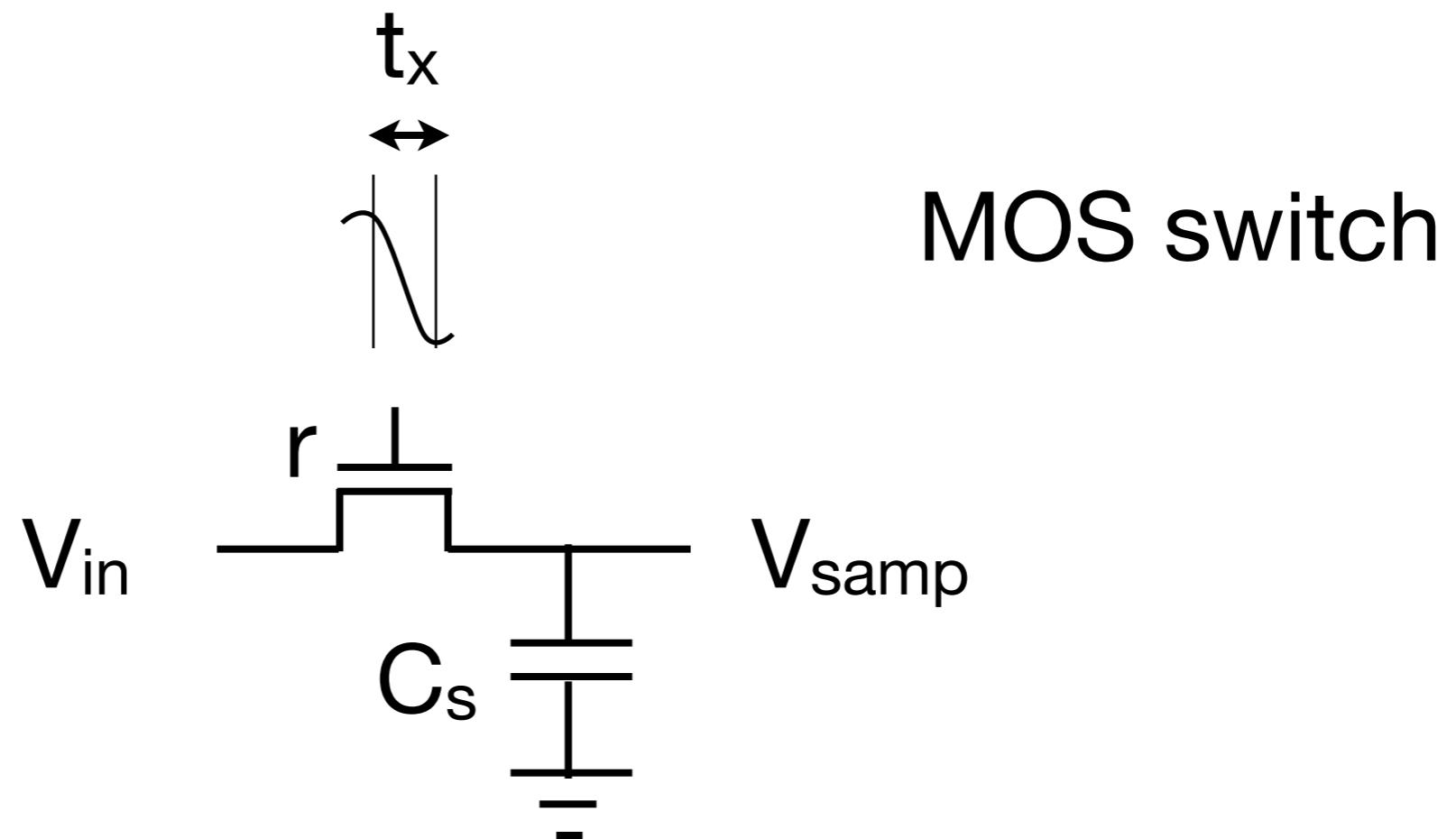
Convolution

in
kernel
out



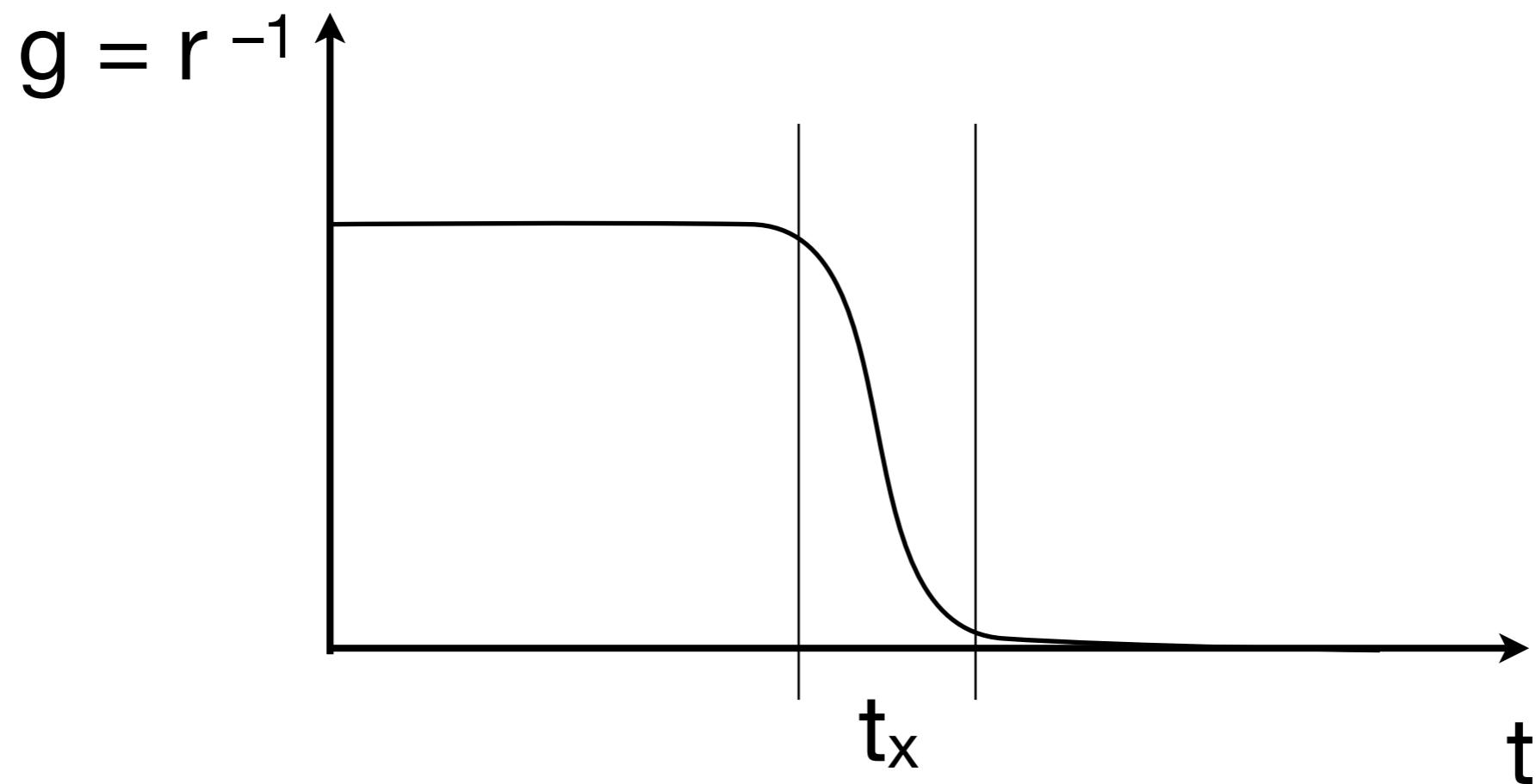
- Lowpass example
- Output is weighted sum of recent inputs

Somewhat more realistic sampler...



- When is the input value actually sampled?

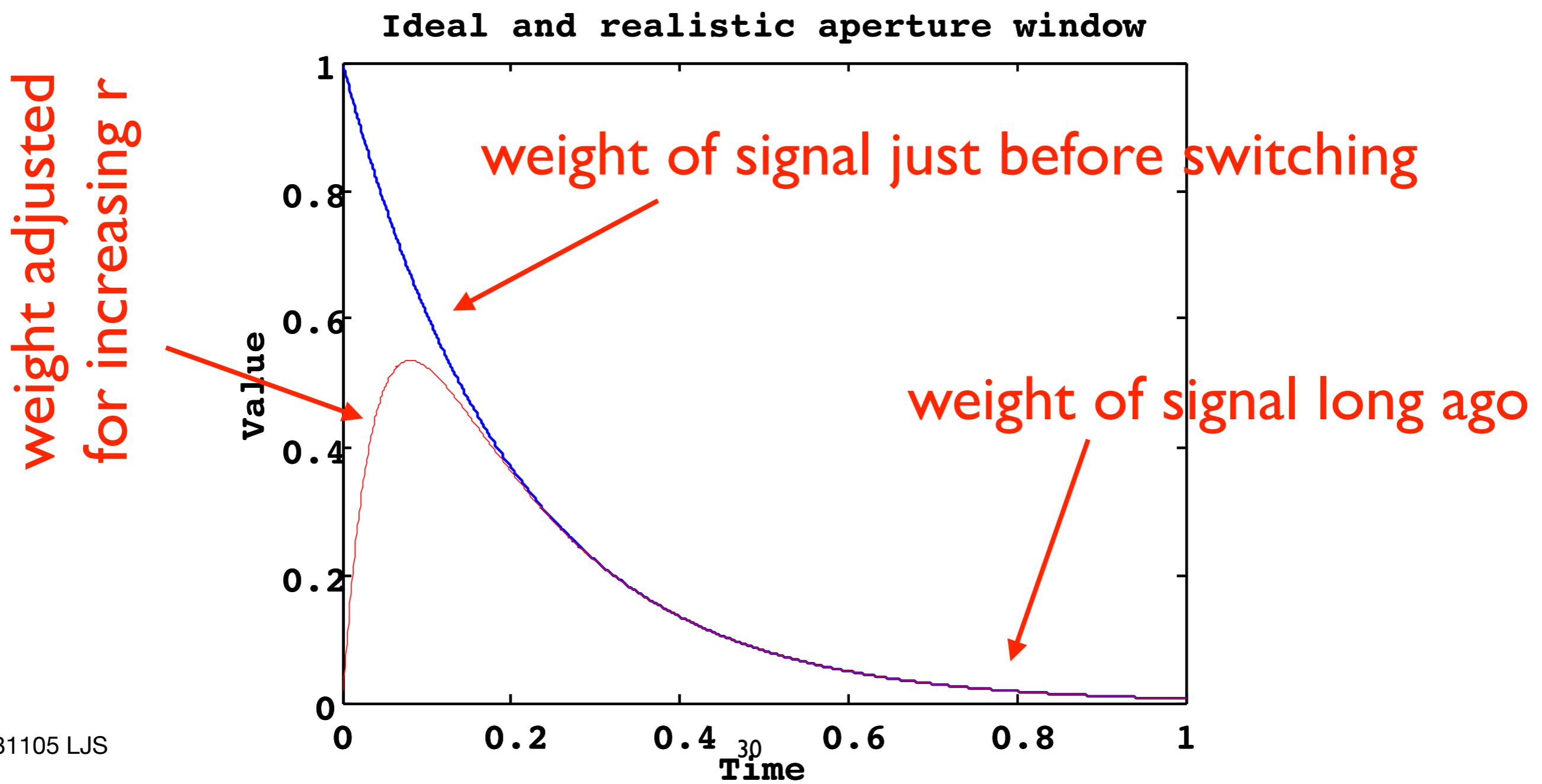
$g_{\text{switch}}(t)$



- When switch opens, r approaches infinity, so $g = r^{-1}$ approaches 0
- Gradual switching over interval t_x

Aperture window limits accuracy

- Switch resistance r grows gradually over t_x
- Window differs from RC response!

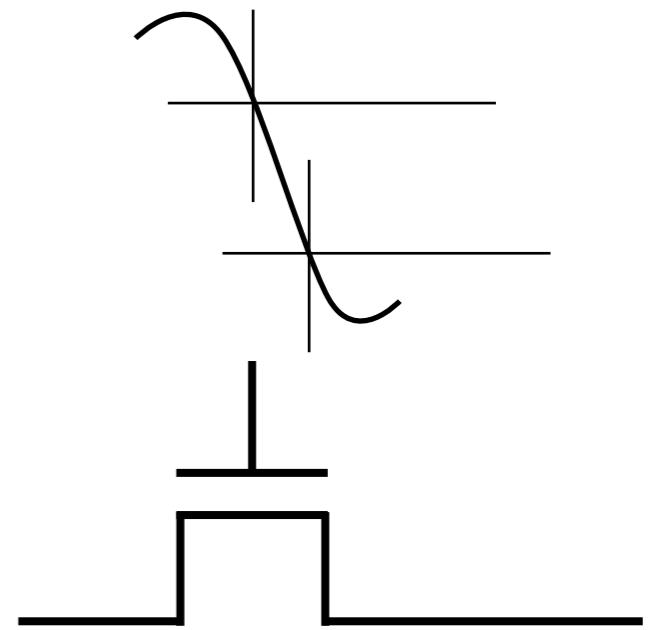


But why does this matter?

- Aperture window duration must be smaller than sample interval, so therefore the integration time is small enough not to affect sampled value much? Right?
- No. Not if undersampling is used.
 - $f_{sig} > f_s / 2$
 - Higher Nyquist band!

Aperture window summary

- Aperture window low-pass-filters the signal
- Especially significant when undersampling
- Also, switch is never really linear
 - Aperture window function depends on voltage!



Distortion!

Summary

- Sampling intended to give one-to-one mapping from continuous to discrete domain
 - Frequency aliasing may defeat this intention
 - Anti-alias filters suppress out-of-band signals (but not perfectly)
- Aperture window acts as low-pass filter
- Switch non-linearities cause distortion

Next lecture:
non-uniform sampling
(jitter)