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Administrivia

• Oral timeslot Doodle has been posted

• Most students have grabbed a slot


• Need to arrange sit-down signup as well (upcoming) 

• Come prepared to labs! 


• In particular lab 4.  

• Low # of reflection submissions (24, 17, 17)


• Common reasons, or just coincidence? 
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Conversion phenomena
• Ideal


• # bits


• Sample rate, aliasing


• Non-ideal


• noise


• jitter


• nonlinearities
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Manifestations

• Desired signal


• Thermal noise


• Quantization noise


• Sampling jitter


• Harmonics (2f, 3f, …)


• Other stuff…

Pin (dB)

Pout

(dB)

SNR
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Limits
• Small end


• Noises 


• Big end 


• Nonlinearities 


• All over 


• Jitter 


• Reading: Maloberti Ch. 2
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Performance 
measures
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Signal to Noise Ratio (SNR)

• Ratio of signal power to noise power (in dB): S / N 

• Typically assumes single-sinewave input

• Must specify input level, frequency, and bandwidth! 

• Most often, largest value across input levels is given 

Pin (dB)

Pout

(dB)

SNR
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ADC example

• SNR vs signal frequency at several amplitudes 

 8 [Maloberti]

Resolution?

20 dB

≥11 bits
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Signal-to-Noise-and-Distortion 
Ratio (SNDR, SINAD)

• Explicitly include harmonics: SNDR = S / (N + D) 

• Sloppy terminology. “SNR” may include D too. Careful!


• Varies with level and frequency, just as SNR does

• Note: SNDR may shrink with increased power level!

• Beware measurement bandwidth!  

Pin (dB)

Pout

(dB) SNDR
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ADC example

• SNR vs frequency for several amplitudes

 10 [Maloberti]
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ADC example

• SINAD vs frequency for several amplitudes

 11 [Maloberti]

INL

Jitter?

Distortion?


Raw-gain limit?

20 dB / dec
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Effective # of bits (ENOB)

• Relate total noise and distortion to a 
hypothetical “perfect” converter 


• ENOB = (SINADdB – 1.76) / 6.02 


• Should be close to actual # of bits 


• May be difficult, esp. at high speeds


• See previous slide! 
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Compression point

• Maximum “useful” input level

Pin (dB)

Pout

(dB)

1 dB
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Ex: CP for hard clipping

• Single sinewave clipped at 0dB
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Image from a Lab3 report…

• SNR reduction mostly due to distortion rise
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Figure 4: SNR vs Input power

As a means of explaining the sudden decrease in SNR when input power �
0 dB, m and s-m from equation 3 are shown together with the SNR in figure
5. The figure displays how the input signal level stops increasing while the
noise power continues to increase. It is probable that the signal has reached
the end of its dynamic range, thus halting its linear increase.
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Figure 5: Amplitude of the SNR, max(ARF) and sum(ARF) - max(ARF)
vs Input power
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Intercept point (IP)

• IP2, IP3 etc (per harmonic) 

• IP3 typically the most critical one


• With CP, relates Hn to fundamental

Pin (dB)

Pout

(dB)
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High IP is good!

Pin (dB)

Pout

(dB)

IP2IP2
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• Suppress harmonic n by x dB


• IPn increases by x / (n – 1) dB
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High-f distortion?
• Pure harmonic falls outside band of interest!  

• More important: 3rd-order intermodulation (IM)


(sin(2πf1t) + sin(2πf2t))3 =  

  = sin3(2πf1t) + 3 sin2(2πf1t) sin(2πf2t) + …


• With f2 ≈ f1,  2f1– f2 ≈ f1 

• Intermodulation products close to input signals!

• Can’t be removed by frequency-selective filter!

• Magnitudes characterized by IP3

 18

3f1 f1 2f1 dc 2f1±f2f2

😫



181203 LJS

Balance

• Useful dynamic range often limited by 
H3, jitter


• Strive to make neither error much 
worse than the other 

Pin (dB)

Pout

(dB)
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Spurious-Free Dynamic Range 
(SFDR) 

• Signal vs. worst harmonic 

• Always numerically higher than SNDR


• Important in e.g. telecom systems 

Pout

(dB)

f

 20

Note: 

not power diagram
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Example

• Radio modem (baseband, DAC, transmitter)


• Spectrum mask for transmitted signal


• Specifies max transmitted power vs frequency


• High power in intended band/channel, low elsewhere


• DAC SFDR may limit power outside intended band 


• Often given in dBc (relative to carrier, i.e. the  
intended signal) 

DAC TXBB

 21
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Additional specs
• Power


• Electrical levels


• Temperature stability 


• Drift 


• Latency


• Timing 


• …

 22

Converter data 

sheets 

The internet is full of 

them
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Converter vs. system

• Same specification terminology useful for 
full interface system! 


• Converter, filters, amplifiers, etc 


• Useful for DACs as well as for ADCs 


• From full specs, derive specs for blocks 


• Assign “noise/distortion budgets”  
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Larger example

• Gigabit Ethernet signalling (twisted-pair 
copper wire) 


• Issues:


• Compatibility w/ 100Mb/s signaling


• Cable properties


• Error probabilities 
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Twisted-pair cable

• Four pairs, twisted at different #turns / m 


• Cabling standard states length ≤100m
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100Mb/s signalling

• Use one pair per direction 


• Two pairs unused!


• Three voltage levels (+1, 0, –1) 


• Apply channel coding to avoid DC 
transmission 


• Essentially a filter with 0 at DC 
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1GB/s signalling
• As 100MB/s, but…


• … use all 4 pairs…


• … and each in both directions…


• … and 5 levels (±2, ±1, 0)


• … and better coding  


• Figures from Roo et al (uploaded)
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tion. However, aRer signal processing, the  eye diagram shows 5 dis- 
tinct discrete levels, a PAM5 signal. The spaces between the discrete 
levels in the  eye diagram indicate tha t  sufficient SNR remains to 
ensure l o w  BER. The test results show tha t  the mixed-signal process- 

transmission over CAT-5 cables. Transceiver measured performance is 

19.7.7. Internal rey la t ion  allows for operation with a single 3.3V 
power supply The chip is fully compliant with IEEE Standard 802.3ab 

.................................... T r a n s c e i v e r  
ing circuits remove all the  channel impairment associated with data 

summarized in  Table 19.7.1, and a chip micrograph is shown in Figure 

Tr.mmiiWr~ CAT-5 Crblcs 

_j 

specified for 1000Base-T [61. 

P"F.mnn ... ,..,.. ........ 
Ill "Physical Laycr Parameters and Speeilications for 1000 Mus Operation 
Over 4-Pair of Catewm 5 Balanced Caomr Cablinz. lboe 10WBase~T. IEEE .. ..... 
std. 802.3ab, 1999." . 
I21 He. R.. et al.. "A DSP-Based Roceiver for Gigabit Ethemet over CAT~S 
Cables," lSSCC Digest ofTochniea1 Papers. Feb. 2001. 
131 ISSCC99 Short Course on Gigabit Ethernet over CAT~5 cabling. 1999. 
141 Grecorian. R. and 0. C. Tomes. Analoe MOS lntezrated Circuits for Simal . .  ~" ~, ~~. ~~ " 
prxeS$ing. N~~ Y W ~ :  ~ ~ ~ ~ y - ~ ~ t e n ~ i ~ ~ ~ ~  ~ ~ l r i i ~ ~ t i o ~ ,  pp 2~0.276. 1986 
161 Lewis, S., -A Piwlined 9-stage Video-rate Analog-Lo-Digital Converter." 
WEE J. Solid-State Circuits, ~01.27, pp.351-358. March 1992. 
I61 University of New Hampshire InterOperability Lab Report, June 20W. 

R'Xi'iW.\ .................................... 

Figure 19.7.1: Gigabil transceiver System block diagram. 
~. ... .~ .~ ..~~. ~. .- . ~ ~.~~~ ~ 

........................................................... 
Analog Front-end j j Digital Signal Process ing  

,"e rrmhmrXlLix,a, 
Figure 19.7.2: Single channel block diagram. , , ,-.. ~, ~ _ ~ _ _ _  

......... 

Finure W 1 . 4 :  Transmit Simal before active echo cancellation and receive 

I 

I 

I I I 
I~ ~ 

~ . ~~ d 
signal alter echo cancellation. 

. __ Figure 19.7.3: Transminer with replica driver tor active echo cancellation. 
~ . -  

Cmrihzrred on Papc 455 

Bidirectional signalling?

• Transmitter drives each line

• A receiver listens to the same line  

• Must subtract transmitted signal from received signal

 28
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Echo

• Received signal also contains delayed version 
of transmitted signal 


• Echo depends on cable, contacts, etc 

• Transceiver must adapt to whatever is 

plugged in 

TX

RX

 29
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More echos

• All 4 near-end transmitters cause echo!

TX

RX

TX

RX

 30

“Crosst
alk”

 echoes 


have lower p
ower
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to be ignored :-(
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PHY architecture

• Transmitted signal subtracted twice 


• Analogly(?) + digitally
 31
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Transmitted data
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How specify ADC, DAC?
• Cable standard specifies frequency response, 

echo, allowable voltage, external noise


• Calculate worst-case power loss @ max length


• Derive worst-case (weakest) signal power at 
receiver input


• Allowable bit error rate set by Ethernet standard 


• Derive necessary SNR, thence ADC ENOB etc.


• Simulate to verify!

 32
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DAC accuracy

• DAC-ADC path must cancel digital path


• High DAC accuracy needed, despite only 5 levels!
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Summary
• Many ways to specify data conversion / 

mixed-signal performance 


• Most specification styles are related 


• Often possible to estimate one from the 
other 


• Questionable accuracy… 


• Preferred performance measure  
application dependent 
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Summary, cont.

• At system level, digital processing helps 
reduce requirements for ADC/DAC 


• May also help improve ADC/DAC 


• Digital correction 


• Randomization 


• Look forward to Theme 7!  
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