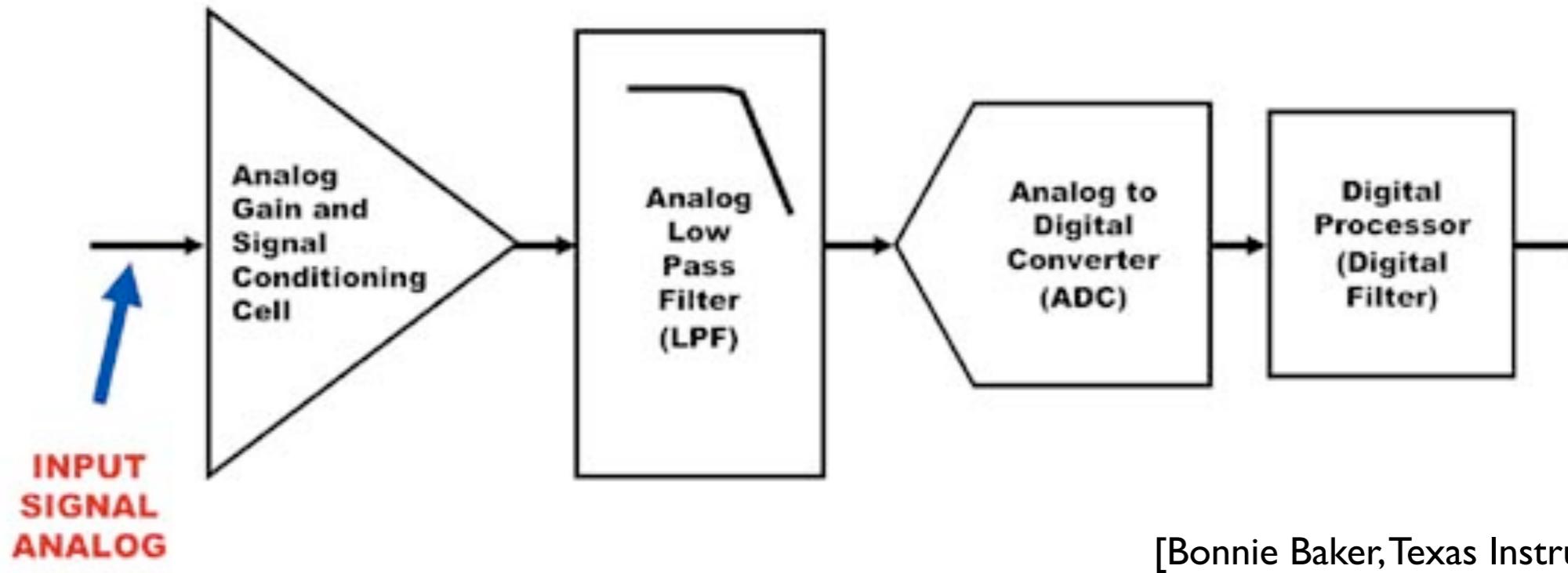


Welcome to DAT116 (Mixed-Signal System Design)

Lars Svensson
larssv@chalmers.se


Why?

- In embedded systems, analog and mixed-signal circuits are mainly *interface* technologies
- Used to give the system information about its environment, and to affect same
 - Includes incoming / outgoing signals such as sound, light, voltages etc.
 - Condition and convert signals to and from digital form

Why a course?

- Mixed-signal interface often determines achievable system performance!
 - Sets limits on accuracy, power, noise, etc.
- Embedded-system designer needs to understand MSSD limitations.

Classic signal acquisition

[Bonnie Baker, Texas Instruments]

- D/A conversion similar but backwards...
- What parameters to decide upon?

What?

- From syllabus: “The course is intended to give insight into how analog and mixed-mode subsystems (particularly A/D and D/A converters and surrounding circuitry) are specified and implemented, and how they affect the performance of the systems they are part of.”

How?

- Self-studies
- Lectures
 - Mon 13–15, Thu 10–12
- “Exercises”
 - Mon 15–17
- Labs
 - Tue 13–17, Wed 8–12

But note exceptions.

Who?

- Alexandra Angerd (lab TA)
- Lena Peterson (lecturer, examiner)
- Lars Svensson (lecturer, examiner, occasional lab TA)
- Victor Åberg (lab TA)

Organization

- Weekly “themes”
- Introduce theme on Thursday in week $n - 1$
- 2 lectures + self-studies in week n
- Exercise + lab in week $n + 1$

Themes

1. Sampling
2. Variability
3. Quantization
4. Continuous-time filtering
5. Dynamic range
6. Discrete-time filtering
7. Digital assist

Learning outcomes

1. Sampling
 - select sample rates and converter resolutions which make the required system performance attainable
2. Variability
3. Quantization
4. Continuous-time filtering
5. Dynamic range
6. Discrete-time filtering
7. Digital assist

Learning outcomes

1. Sampling
2. Variability
3. Quantization
4. Continuous-time filtering
5. Dynamic range
6. Discrete-time filtering
7. Digital assist

- Estimate the influence of the converter imperfections on converter and system performance

Learning outcomes

1. Sampling
 - Identify requirements on analog interface components for a given converter solution
2. Variability
3. Quantization
4. Continuous-time filtering
5. Dynamic range
6. Discrete-time filtering
7. Digital assist

Learning outcomes

1. Sampling
2. Variability
3. Quantization
4. Continuous-time filtering
5. Dynamic range
6. Discrete-time filtering
7. Digital assist

- Starting from process specifications, assess achievable cost and performance of analog subsystems, based on examples and calculations

Learning outcomes

1. Sampling
2. Variability
3. Quantization
4. Continuous-time filtering
5. Dynamic range
6. Discrete-time filtering
7. Digital assist

LBS

- Model a mixed-signal subsystem using software tools in order to verify assumptions and hand calculations

Schedule

			Lab	
			Lecture	
L	U	N	C	H
Lecture				
Exercise	Lab			

- Rooms: EF (Lecture + Exercise), ED4220 (lab)
- Exceptions in TimeEdit

Schedule

Lecture	
C	H

		Lab		
			Lecture	
L	U	N	C	H
Lecture	Lab			
Exercise				

L	U	
Lecture	Lab	
Exercise		

- Themes overlap across weeks!

Self-studies

- Theme starts with **video “teaser”** to watch, e.g., on Thursday after lecture
 - Reading directions for **self-studies** on PP
 - Topics covered in **lectures** in following week
 - Come prepared to these “real” lectures!
 - **Exercise** on Monday in the week after that
 - Then, **lab** on Tuesday / Wednesday

Exercises

- Focused on practice rather than theory
 - Previous lab
 - Next lab
 - Problem solving
- ... but also open discussion, Q + A
- Bring problems and questions!

Labs

- Lab sessions based on software simulations
 - Come prepared!
 - Several tools (MATLAB, Simulink, Cadence)
 - Note: Cadence runs on Linux only!
 - Note: need to hear CAD tool lecture
 - Work in pairs (ad-hoc this week, then we assign pairs)
 - Room 4220 (in most cases)
- ➡ *Compulsory (including Lab 0)*

Lab reports?

- Yes (except for Lab 0)
- Two parts:
 - Group/pair submission of report on lab work
 - Individual submission of response to *reflection question(s)* at end of lab PM
- Two phases:
 - *Voluntary* submission by midnight on Friday following the lab to get *feedback*
 - *Compulsory* handin of *omnibus* report at end of course

Lab reports, cont.

- During course: *Feedback*
 - Improve writing and understanding
 - Submit by deadline or don't bother
 - No resubmissions until...
- ...end of course: *Assessment*
 - Check that you have understood the topic

Lab 0?

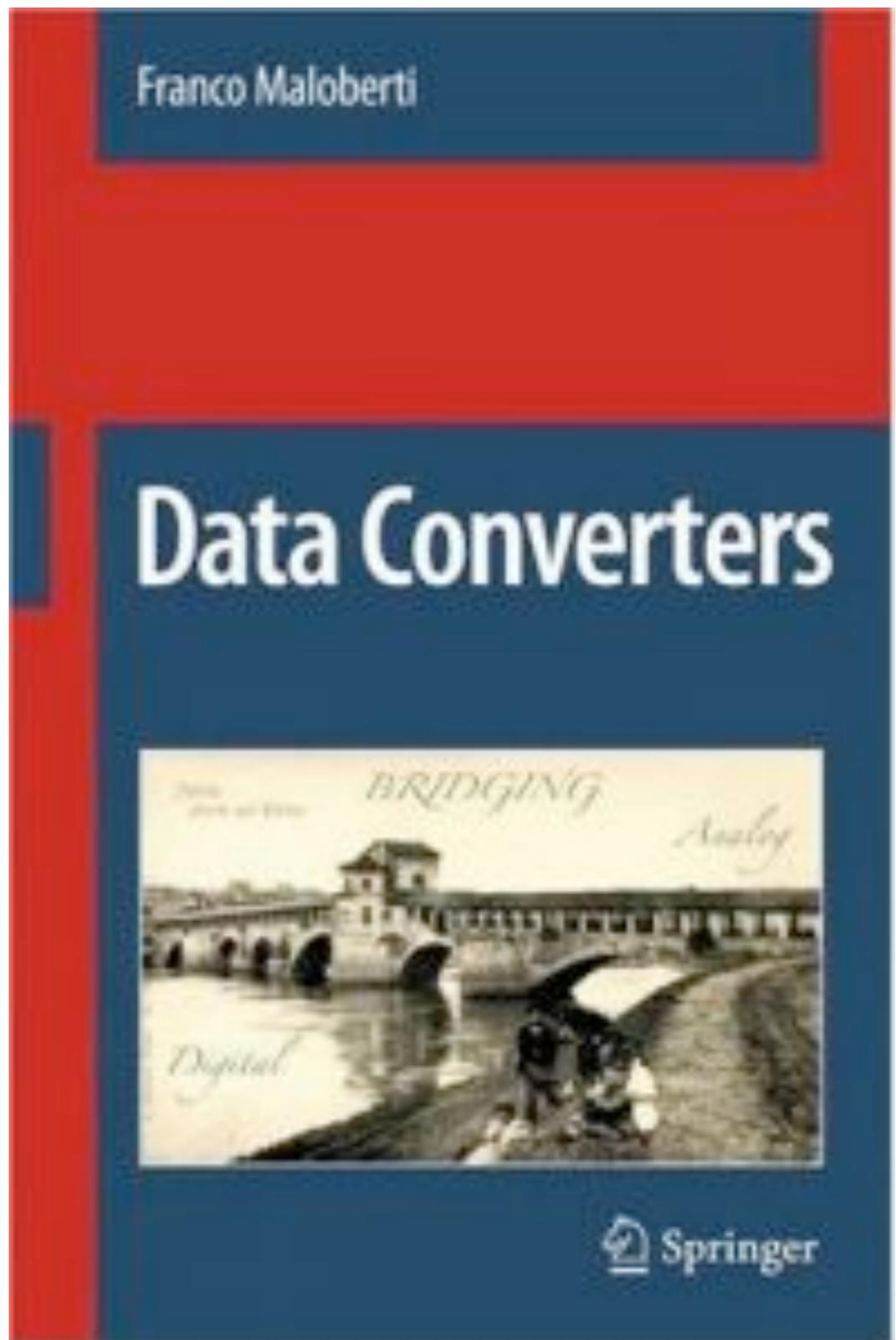
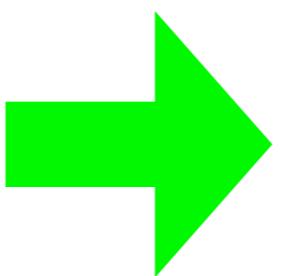
- Brush-up / primer on MATLAB / Simulink
- Compensate for varying backgrounds
- Easy if you are already familiar with tools
- Necessary for the rest of you
- No report

Examination

- To pass:
 - Attend labs and do the work.
 - Submit acceptable omnibus lab report at end of course; pass individual oral with teachers.
 - If report or oral *not* passed, then may pass by sitting for written exam.
- Grade:
 - 3 if you have passed.
 - Bonus points for omnibus + oral (may yield a 4).
 - Written exam needed for 5.

Exact rules in Course PM

Omnibus handin



- Deadline: Thursday Jan 11, 2018 (midnight)
- *Must submit on time!*
- Earned bonus points (if any) valid for one year

Timing at end of course

- Jan 11, midnight: lab report handin
- Jan 14 – 17: individual oral w/ teachers
(book timeslot w/ Doodle!)
- Jan 18: Sit-down exam
 - Signup by Dec 20 (info will be forthcoming)
 - Open-book

Literature

- Main textbook:
Maloberti
- Not at Cremona
- In E-library
- Supplemented w/
research papers,
book excerpts, E-
library chapters

Homepage etc

- In PingPong
- If you have registered for the course, you should have access
 - Not registered? See me immediately
 - Also, if you have no lab room access by Monday, let us know
- For email: include “DAT116” in Subject:

Urkund

- We use the Urkund system to detect “borrowed” text in all submissions.
- Don’t do it.

Assumed background

- Feedback systems
 - Frequency dependent (RC feedback)
 - Poles, zeros in Laplace (s) plane
- Bode plots
- Signal spectra
 - Representation in time and frequency
 - Parseval's theorem

Assumed background

- Signal statistics
 - Addition of uncorrelated signals
- Decibel calculations
 - Voltages, powers
- Basic circuit theory
 - Ohm, Kirchhoff, conductance, gain etc

Random course reps

- Snehal Manoj Chhapanimohan
- Wenqian Han
- Christian Krizan
- Nakul Raja Badarinath
- Ming Xu

Changes since last year

- Adjusted the reading directions
- Moved the Cadence labs to a central server
- Most changes based on student feedback
 - Respond to poll after end of course!

Summary

- Check access to PingPong site!
- Brush up those old skills!
- Select Tuesday or Wednesday lab slot!
 - Doodle poll shown in PingPong.
- Go to the lab this Tuesday / Wednesday!