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Monday recap
• Characteristics of filters


• Lowpass filters


• Pole/zero placement (classical methods)

• Butterworth, Chebysjev, Elliptic filters etc...


• Holds for all types of implementations! 


• Cascades of first/second order links 
(often called biquads)


• Active-RC implementations
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Muddy 2018
• How do we know what the purple boxes are?

• Any examples of different filter types that suits different 

implementations? For example: when is it critical to have a 
flat pass-band etc.?


• Relationship between Q and poles.

• If Q means “quality” is higher Q always better?

• Q connected to poles.

• The order of the second-order sections in the 10-pole filter.

• What does “sensitive” mean for higher order?

• Biquad diagram - what is it about?

• Transconductor?
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An example - anti-
aliasing filter

• Assume we are to AD convert an audio signal.


• It has signal of interest up to 20 kHz.


• How do we select fs? 


• fs >=40 kHz according to Nyquist.


• Three choices


• fs = 40 kHz, fs = 50 kHz, fs = 60 kHz
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Complete diagrams
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Complete diagrams
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With filter specs
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Pole zero demonstrator 

• https://www.youtube.com/watch?
v=PybGMXKTp7c

8

https://www.youtube.com/watch?v=PybGMXKTp7c


DAT116 Nov 29 2018

Q for the poles

• Q for filters/poles : A measure of the 
angle that describes the pole pair


• Q = 1/(2cos ψ) where ψ is angle
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Design example (more Monday)
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Butterworth example - order

12

buttord(Wp, Ws, Rp, Rs, 's’) gives the required order of a 
continuous-time Butterworth filter with passband edge at Wp, 
stopband edge at Ws, passband ripple of Rp dB, and stopband 
ripple of Rs db.  Example: !
!
n = buttord(2 * pi * 5e3, 2* pi * 9.5e3, 2, 35, 's’) ; !
n!
!
n =!
!
    7!
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Butterworth example - order 2
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With two output arguments, also gives the nominal cutoff frequency 
Wn of the Butterworth filter that fulfills the spec: !
!
[n , Wn] = buttord(2 * pi * 5e3, 9.5e3 * 2 * pi, 2, 35, 's’) ; !
!
n !
!
n =!
!
    7!
!
Wn!
!
Wn =!
!
  3.3567e+04
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Butterworth example: poles
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You may then use these parameters to let the function butter( ) actually calculate the 
pole positions for the filter: !
!
[z, p, k] = butter(n, Wn, 'low', 's') ; !
p!
!
p =!
!
  1.0e+04 *!
!
 -0.7469 + 3.2725i!
 -0.7469 - 3.2725i!
 -2.0929 + 2.6244i!
 -2.0929 - 2.6244i!
 -3.0243 + 1.4564i!
 -3.0243 - 1.4564i!
 -3.3567 + 0.0000i!
!
Analog Butterworth filters have no zeros: !
!
z!
!
z =!
!
  Empty matrix: 0-by-1
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Poles -> R:s and C:s

• Each pole pair separately.


• One biquad = biquadratic cell


• Identify R’s and C’s
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For example (not Sallen-Key this time)
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Figure from A. Baschirotto presentation : “Analog filters for Telecommunications” 
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Transfer function LP
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H(s) =
k

s2 + s(�p1 � p2) + p1p2

Transfer function with two poles is:

Identify terms!

Figure from A. Baschirotto presentation : “Analog filters for Telecommunications” 
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More freedom with 
more opamps

19
Figure from Baschirotto: “Analog filters for Telecommunications” 
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Figure from Baschirotto: “Analog filters for Telecommunications” 



DAT116 Nov 29 2018

Topics for today 
• More about OPamp-RC integrators


• How good OPamps is required?


• LP.  What about HP / BP / BS ? 


• Passive filters 


• Ladder filters 


• Components


• Balanced implementations
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Taxonomy of analog filters

• X

22

Wanhammar: Analog filters using MATLAB

X
X

X
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Passive components

• Resistor


• Capacitor


• Inductor
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OPamp-RC integrator 
(Miller integrator)

+

–

R

A

X

Y

W

I

C
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OPamp-RC integrator 
(Miller integrator)

• Y = ∫ I dt / C ≈ - ∫ X dt / (R · C) 


• Perfect integrator has infinite DC gain 


• Real integrator limited by OPamp gain and 
dominant pole!

+

–

R

A

X

Y

W

I

C
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OPamp-RC integrator 
(Miller integrator)

+

–
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Y

W

I

C
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Perfect integrator: H(s) = 1/s𝜏

Imperfect integrator with loss q: H(s) =
1

s⌧ + q
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Goals

27

Show the effects of the OP amplifier  
limited LF gain, A0, and   

dominant pole frequency (or GBW) on the  
the integrator non-idealities (loss). 

!
Show the requirement on the integrator quality (Qint) 

from the desired filter Q (Qideal).
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Perfect integrator Bode plot

28
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OP-amps from week 2...
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And what about 
the phase? 

How would that 
look?
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Phaseshift closeup

30
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OPamp RC integrator limitations

31

OPamp transfer function (assuming one dominant pole):

HOPamp(s) =
A0

1 + s⌧

Closed-loop integrator transfer function?

Hideal(s) = � 1

sRC

HCLreal(s) = � A0

(1 + sRCA0)(1 + s⌧/A0)

Note that Ao/𝜏 = GBW!
Intended pole!

So good integrator  
requires: 

high LF gain (Ao) & 
high GBW

Extra pole
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Limitations of OPamp-RC 
integrator

32
Figure from Baschirotto: “Analog filters for Telecommunications” 

Two real poles:  
Finite gain A0 gives LF pole (lossiness) 
GBW gives HF pole 
Both cause integrator phase errors!
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(recap) Higher Q for 
higher order filter

33

Example: 10th order Chebysjev filter. 
How much phase error can we tolerate?
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• If q is the loss in the integrator: 


• Then Q of integrator is


• The integrator Q: how close we can get 
to Qideal.


• The 2 Q:s are “in parallel”:


Q limitations

34

1

Qreal
=

1

Qint
+

1

Qideal

H(s) =
1

s⌧ + q

Qint =
!RC

q



DAT116 Nov 29 2018

OPamp parameters related to Q for 
integrator, A0 and GBW (ωu)

35

In
te

gr
at

or
 m

ax
 Q

DC gain, A0
From Baschirotto: “Analog filters for Telecommunications” 

ωc is integrator 

frequency = 


1/RC

So, the higher 

integrator Q 


you want

 the higher the GBW 


has to be

and Ao also has 


to be high
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Q limitations (cont)

36

1

Qreal
=

1

Qint
+

1

Qideal

Parallel connection of Q’s: 

Can be expressed as a requirement on integrator 
to achieve (almost) ideal Q:

1

Qint
= (

�Q

Qideal +�Q
)

1

Qideal

1

Qint
⇡ (

�Q

Qideal
)

1

Qideal

How good an  

integrator  

is required?
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Conclusion

• You need really good OPamps to 
implement active filters (integrators)


• High A0 and high GBW


• In conclusion: Harder to implement 
higher cut-off frequencies and higher 
filter Q.

37
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Requirements on integrator
Our 


example
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Other filter types? 
• LP filters dominate literature


• Practically important in mixed-signal 
interfaces


• Other frequency selective filters may be 
designed by transforming LP filter 


• Poles/zeros or implementation


!

• All-pass filters are a special case…

39
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Create HP from LP 

• Invert s values for poles and zeros !


• Will fit a “mirror image” of specification
40
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BP from LP 

• Similar idea (simple); not as general

41
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Implementation

• HP: can use “mirrors” of LP second-order 
links (such as Sallen-Key, etc) 


• BP/BS: consider less sensitive structures 


• E.g. ladder filters; later today 

42
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Allpass filters 
• Amplitude 

function 
independent of 
frequency 


• Purpose is 
phase shift / 
delay 


• Symmetric pole/
zero placement 

43

Not shown in class
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One implementation

pole at s = –1/RC

zero at s = +1/RC

44

YX

Not shown in class
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What is the result?

45

Y = A(
XR

R+ 1
sC

� X + Y

2
)

Y (1 +
A

2
) = XA(

R

R+ 1
sC

� 1

2
)

H(s) =
Y

X
=

A( R
R+ 1

sC
� 1

2 )

(1 + A
2 )

= (
A

2 +A
)
sRC � 1

sRC + 1

Not shown in class
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Passive filters 
• In practice, used in high-frequency (on-chip) 

and high-power (off-chip) applications 


• Large body of theory


• Many forms highly parameter-insensitive 


• Typically only in passband… 


• Useful as “mental model” for active filters 


• “Prototype filter” 

46
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Example: LP LC filter

• 3rd order all-pole filter (zeros at ∞)


• Each reactive component is an integrator


• Zero attenuation at DC


C1 C2

LRS

RL~

47
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State variables 

• L currents, C voltages are state variables 


• Write equation system for these 

RS

RL

IL

VC2

+

–
VC1

+

–
Vin

+

48
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Equations

• IRS = (Vin – VC1) / RS 

• VC1 = ∫ (IRS – IL) dt / C1 

• IL = ∫ (VC1 – VC2) dt / L1 

• VC2 = ∫ (IL – IRL) dt / C2 

• IRL = VC2 / RL 

RS

RL

IL

VC2

+

–
VC1

+

–
Vin

+

49
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Observations

• IRS = (Vin – VC1) / RS 

• VC1 = ∫ (IRS – IL) dt / C1 

• IL = ∫ (VC1 – VC2) dt / L1 

• VC2 = ∫ (IL – IRL) dt / C2 

• IRL = VC2 / RL 

50
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Observations
• IRS = (Vin – VC1) / RS 

• VC1 = ∫ (IRS – IL) dt / C1 

• IL = ∫ (VC1 – VC2) dt / L1 

• VC2 = ∫ (IL – IRL) dt / C2 

• IRL = VC2 / RL 

First order differential equations

One eq. per state variable

Same form for all eqs 

Currents depend on ∫voltages and vice versa
∫

1/L1

+ –

∫

1/C2

+ –

∫

1/C1

+ –

51
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Emulate!

• Regular “Ladder” filter 

• Map all state variables as voltages 

• Scale state vars to be similar size 

• Needs only subtract, multiply, integrate 

IL

∫

1/L1

+ –

∫

1/C2

+ –

∫

1/C1

+ –

VC2VC1

∫

1/L2

+ –

∫

1/L3

+ –

∫

1/C3

+ –

∫

1/C4

+ –

52
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Ladder filters
• One of several “emulations” of different 

passive filters 


• Only gains as design parameters 


• Good for matching!  


• Low sensitivity to gain tolerances


• Variations don’t bring instability


• Each pole and zero depends on all gains

53
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Operations

• Subtraction 


• Doable with invert + add 


• Gain 


• Yes, we know how to do that 


• Integrator? 

54
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In practice: differential implementation 
used (at least on chip)

55

becomes

Subtraction trivial = 
switching two wires
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Integrator #1

• Y = ∫ I dt / C ≈ - ∫ X dt / (R · C) 


• Perfect integrator has infinite DC gain 


• Real integrator limited by A and opamp pole

+

–

R

A

X

Y

W

I

C

56
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Integrator #2 

• Operational transconductance amp (OTA)


• As opamp, but current output


• VC = (gm / C) ∫(V+ – V–) dt 


• No R!  


• … but needs gm / C to be well controlled

gm

+

–
C

57
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gm-C filters 

• gm may be dynamically controlled!  


• gm-C filters electronically tunable!  


• C can track gm quite well if built using 
transistor gate oxides 


• Very low power level achievable


• No feedback!

58
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Transconductor examples

Figures from: Sanchez-Sinencio & Silva Martinez: CMOS transconductance amplifiers, 
architectures and active filters: a tutorial, IEE Proceedings 2000

Not shown in class
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Implement passive filters by 
element replacement

60

= Another way of 

building


gm-C filters

Not shown in class
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Simulated inductor

61

Idea: If we could switch current and voltage a 

capacitor could act as an inductor!


!
A transconductor does this one way =>


Use two!


Not shown in class
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Active grounded inductor

62

Lgyr =

C

Gm1
Gm2

V

I

IL

C

Gm1

−Gm2

VL

IL = Gm1
V

I = Gm2
VL

VL =

IL

sC

Z =

V

I
=

sC

Gm1
Gm2

Not shown in class
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Active floating inductor

63

Same idea applied to both ends of inductor

IA IB

C

VL

Gm1
−Gm1

−Gm2
Gm2

Not shown in class
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Symmetric active floating 
inductor

64
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+ −
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m

sCL
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−V1
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CL
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I2

Not shown in class
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3rd-order differential filter 
w. active inductor

65
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Not shown in class
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Integration issues

• Circuit variations move poles and zeros 


• May break specifications! 


• Ladder filters: good matching properties 


• Design parameters are all gains

66
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Matching
• Best matching reached with small-integer 

parameter ratios (5 : 4 : 2, etc)


• Unit resistances / capacitances


• Restrictions for pole / zero placement 


• Thus, may reach certain accuracy with 
smaller capacitances 


• Lower power per stage 


• Higher-order filter may offer lower power!

67



DAT116 Nov 24 
2016

Tuning 

• Relative component 
matching can be quite 
good 


• Absolute accuracy 
troublesome


• Time/frequency 
scale for filter may 
be off 

68
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Tuning strategy outline
• Include small auxiliary filter which tracks 

main filter parameters 


• Control both filters with same voltage


• Aux filter designed to have phase π/2 at 
some f0 


• Apply f0 to aux filter; steer Vctrl s.t. phase 
is π/2

69
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Tuning example

• Control feedback loop needs 
consideration…

H(s)

h(s)f0 phase

det

in out

70
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Summary
• High requirements on OPamps for integrators


• Especially if the desired filter Q is high


• Transformations useful in filter design 

• Re-use LP results for HP, BP, …

• Re-use passive results for active filters


• Two main design styles

• Cascade of second-order sections 

• Ladder / Lattice / etc 


• Sensitivity influenced by design style!


71


