

Time-continuous filters: an overview (II)

DAT116, Nov 29, 2018
lenap@chalmers.se

Monday recap

- Characteristics of filters
- Lowpass filters
- Pole/zero placement (classical methods)
 - Butterworth, Chebyshev, Elliptic filters etc...
 - Holds for **all** types of implementations!
- Cascades of first/second order links (often called biquads)
- Active-RC implementations

Muddy 2018

- How do we know what the purple boxes are?
- Any examples of different filter types that suits different implementations? For example: when is it critical to have a flat pass-band etc.?
- Relationship between Q and poles.
- If Q means “quality” is higher Q always better?
- Q connected to poles.
- The order of the second-order sections in the 10-pole filter.
- What does “sensitive” mean for higher order?
- Biquad diagram - what is it about?
- Transconductor?

An example - anti-aliasing filter

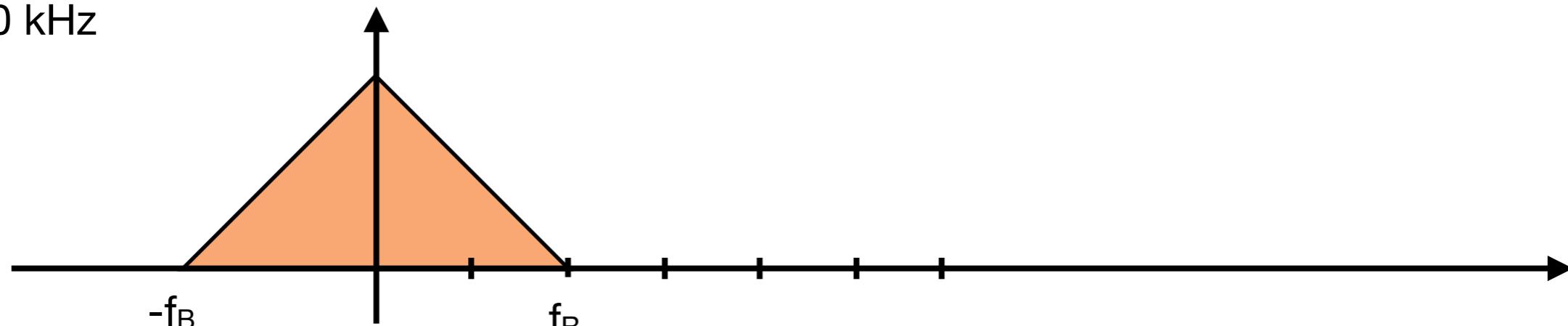
- Assume we are to AD convert an audio signal.
- It has signal of interest up to 20 kHz.
- How do we select f_s ?
 - $f_s \geq 40$ kHz according to Nyquist.
- Three choices
 - $f_s = 40$ kHz, $f_s = 50$ kHz, $f_s = 60$ kHz

Complete diagrams

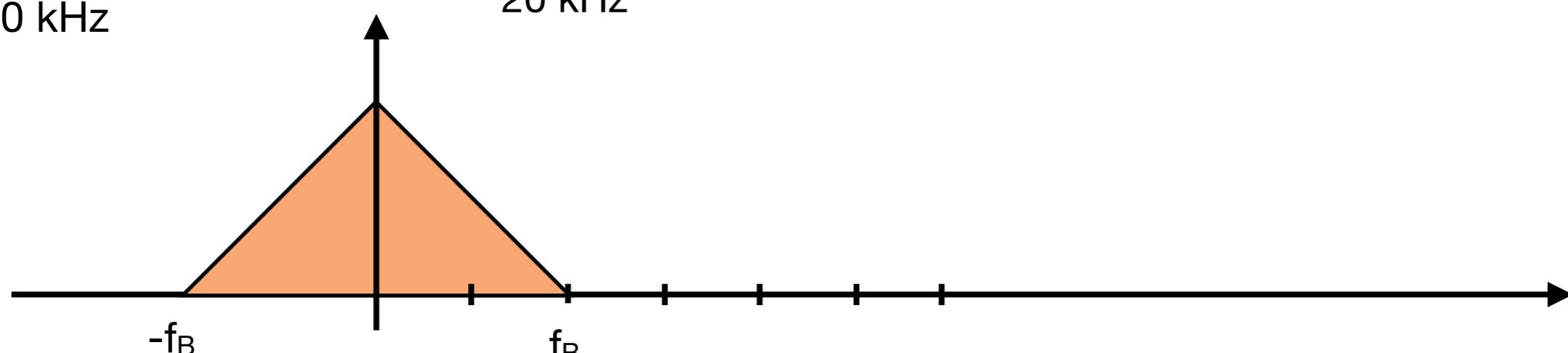
Band on interest: $0 - f_B$

Add f_s , $f_s/2$, draw alias of band of interest, filter spec boxes

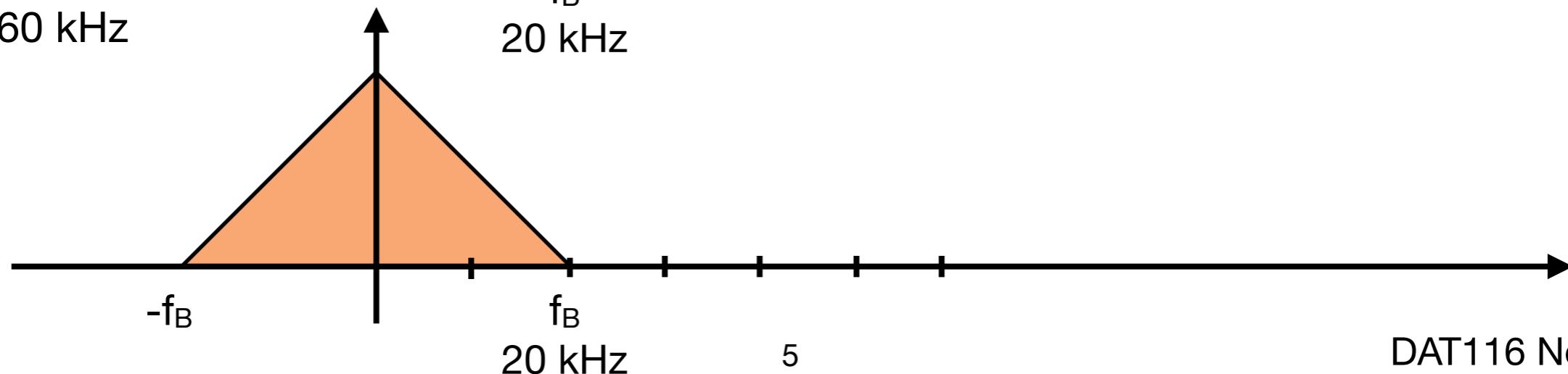
$f_s = 40 \text{ kHz}$



$f_s = 50 \text{ kHz}$



$f_s = 60 \text{ kHz}$

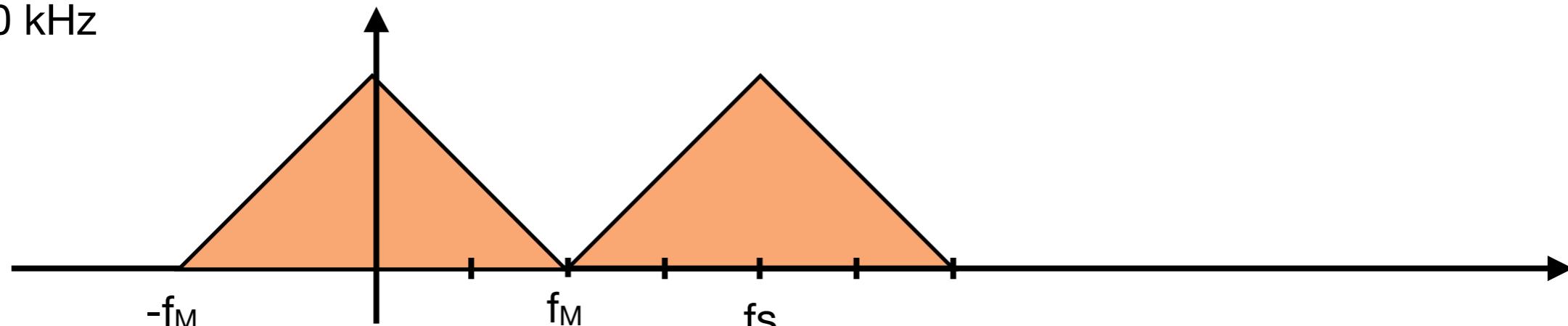


Complete diagrams

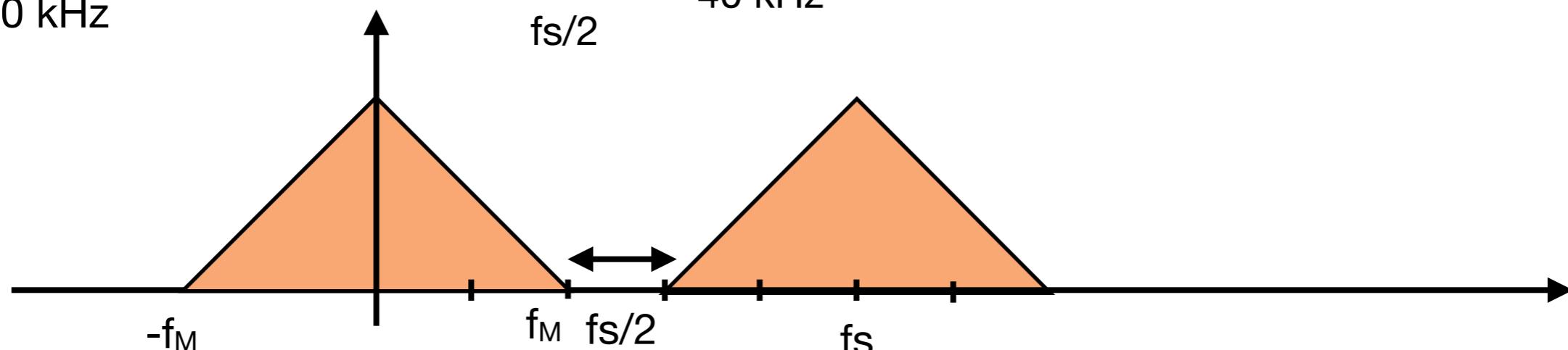
Band of interest: $0 - f_M$

Add f_s , $f_s/2$, draw alias of band of interest, filter spec boxes

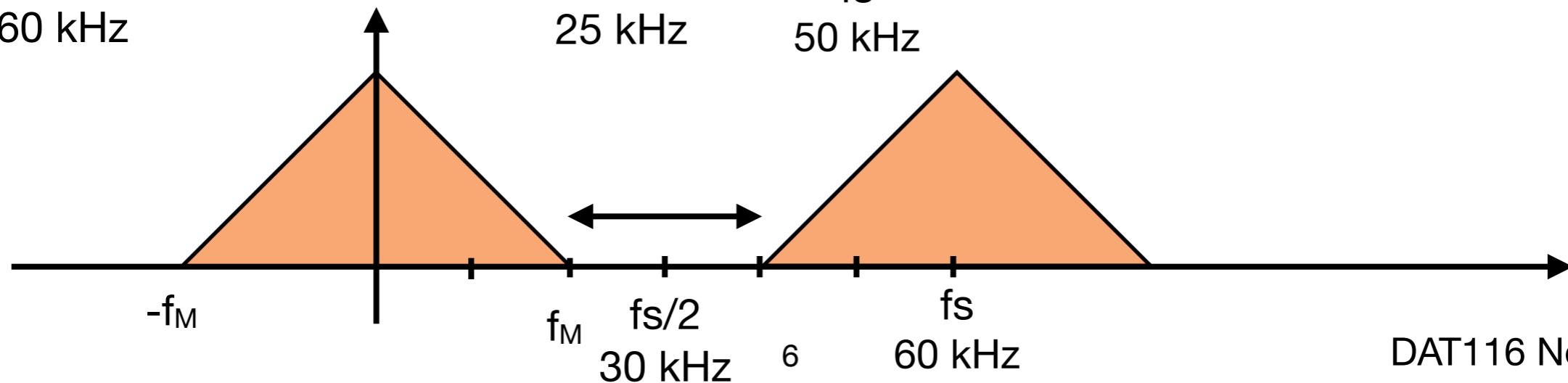
$f_s = 40 \text{ kHz}$



$f_s = 50 \text{ kHz}$



$f_s = 60 \text{ kHz}$

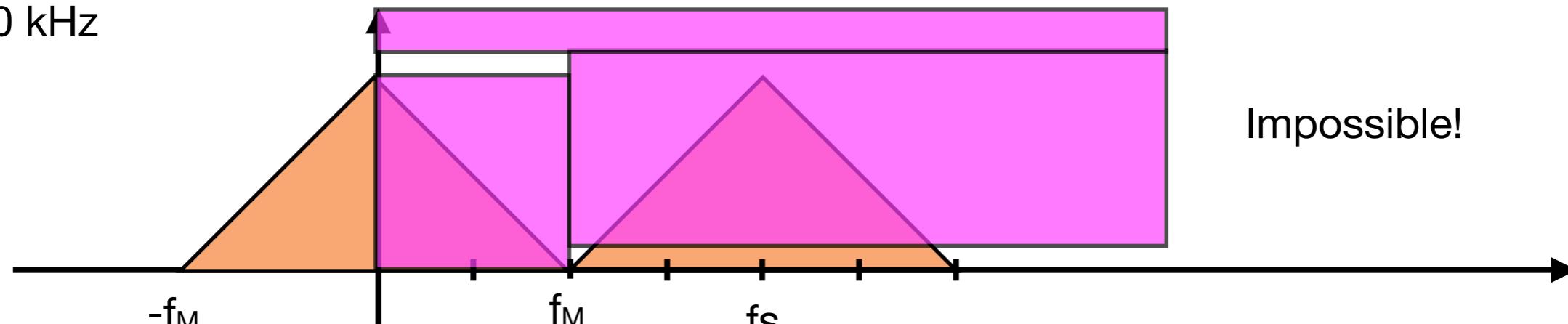


With filter specs

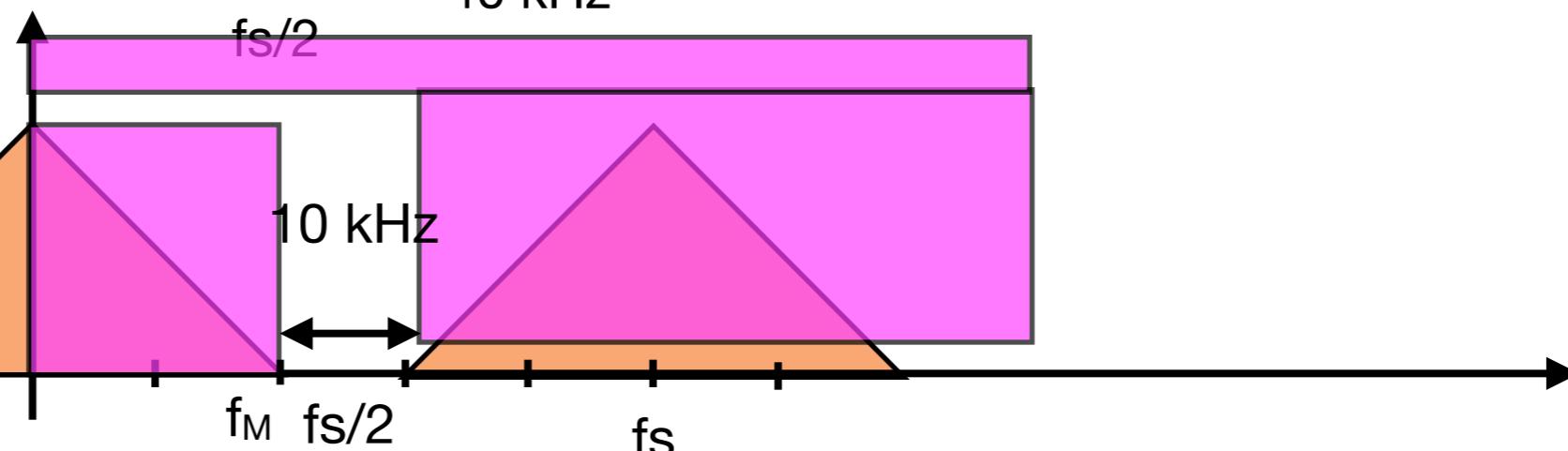
Band of interest: $0 - f_M$

Add f_s , $f_s/2$, draw alias of band of interest, filter spec boxes

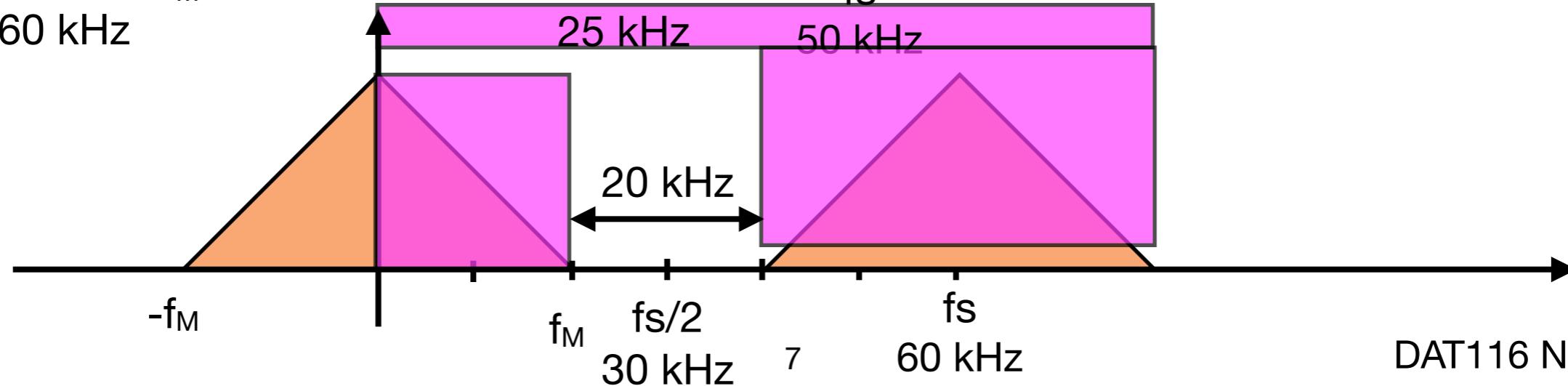
$f_s = 40 \text{ kHz}$



$f_s = 50 \text{ kHz}$



$f_s = 60 \text{ kHz}$



Pole zero demonstrator

- [https://www.youtube.com/watch?
v=PybGMXKTp7c](https://www.youtube.com/watch?v=PybGMXKTp7c)

Q for the poles

- Q for filters/poles : A measure of the angle that describes the pole pair
- $Q = 1/(2\cos \psi)$ where ψ is angle

Design example (more Monday)

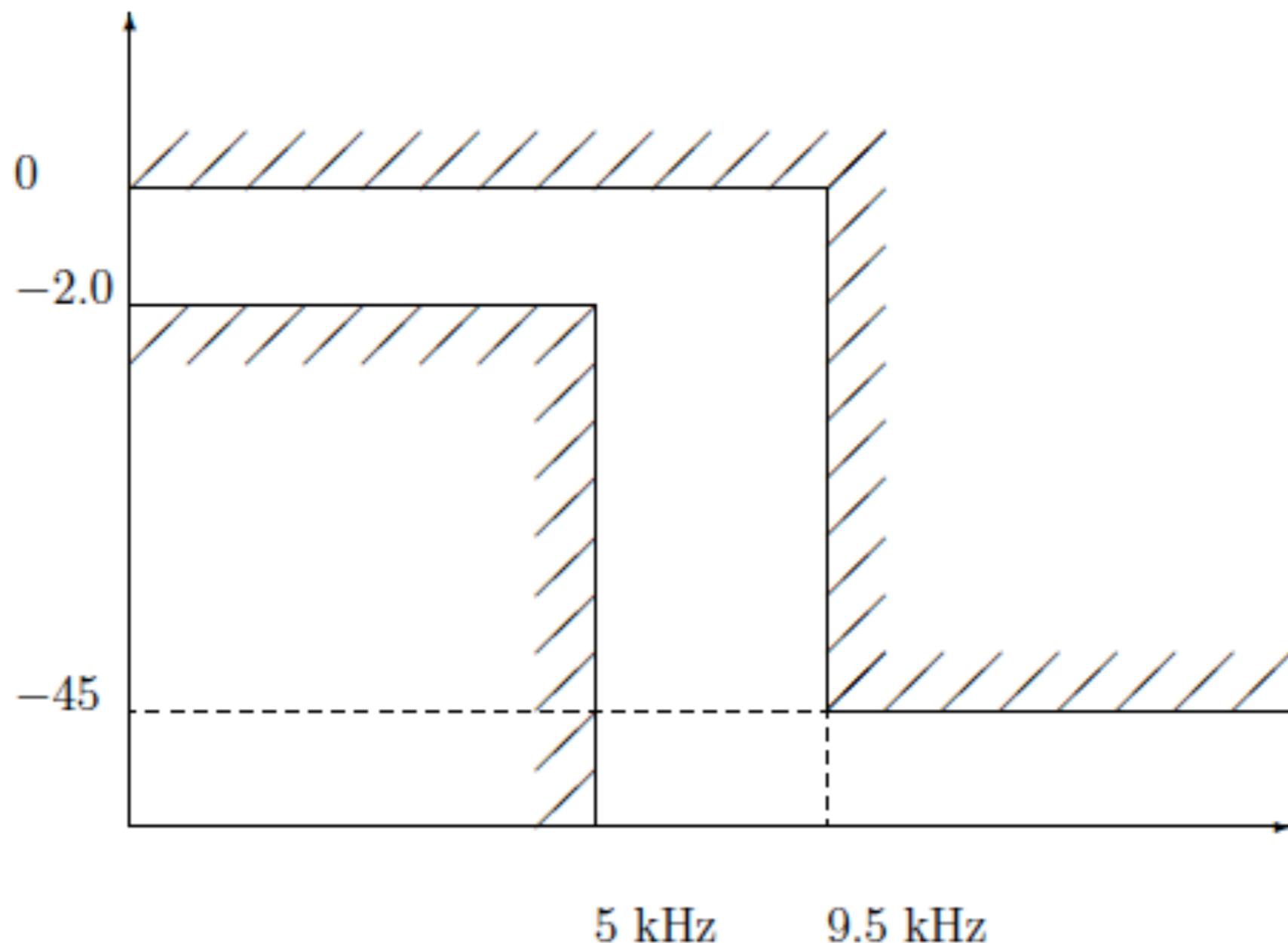
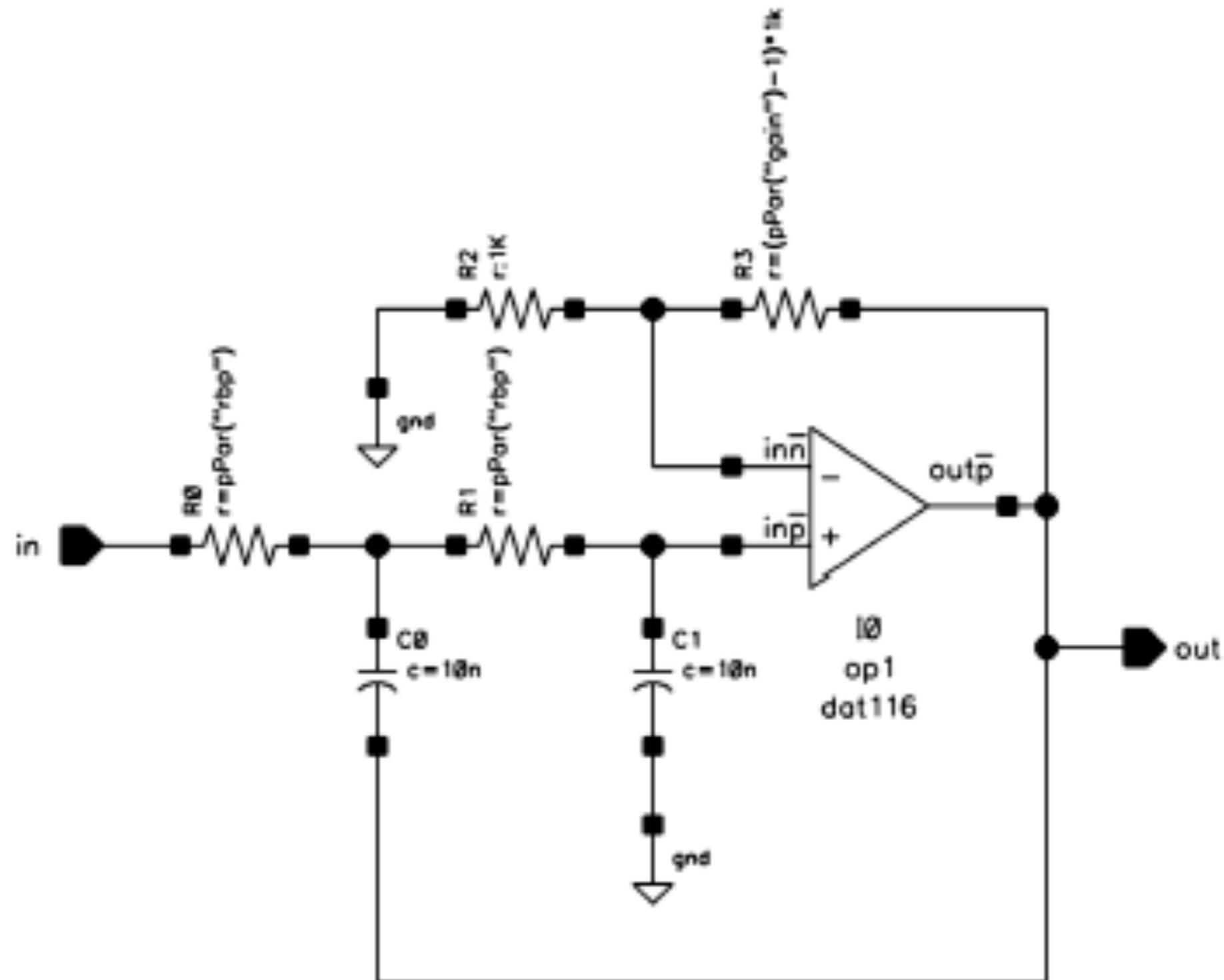


Figure 1: Low-pass filter specification (magnitude values in dB).



Butterworth example - order

`buttord(Wp, Ws, Rp, Rs, 's')` gives the required order of a continuous-time Butterworth filter with passband edge at W_p , stopband edge at W_s , passband ripple of R_p dB, and stopband ripple of R_s dB. Example:

```
n = buttord(2 * pi * 5e3, 2 * pi * 9.5e3, 2, 35, 's') ;  
n
```

n =

7

Butterworth example - order 2

With two output arguments, also gives the nominal cutoff frequency Wn of the Butterworth filter that fulfills the spec:

```
[n , Wn] = buttord(2 * pi * 5e3, 9.5e3 * 2 * pi, 2, 35, 's') ;
```

n

n =

7

Wn

Wn =

3.3567e+04

Butterworth example: poles

You may then use these parameters to let the function butter() actually calculate the pole positions for the filter:

```
[z, p, k] = butter(n, Wn, 'low', 's') ;
```

```
p
```

```
p =
```

```
1.0e+04 *
```

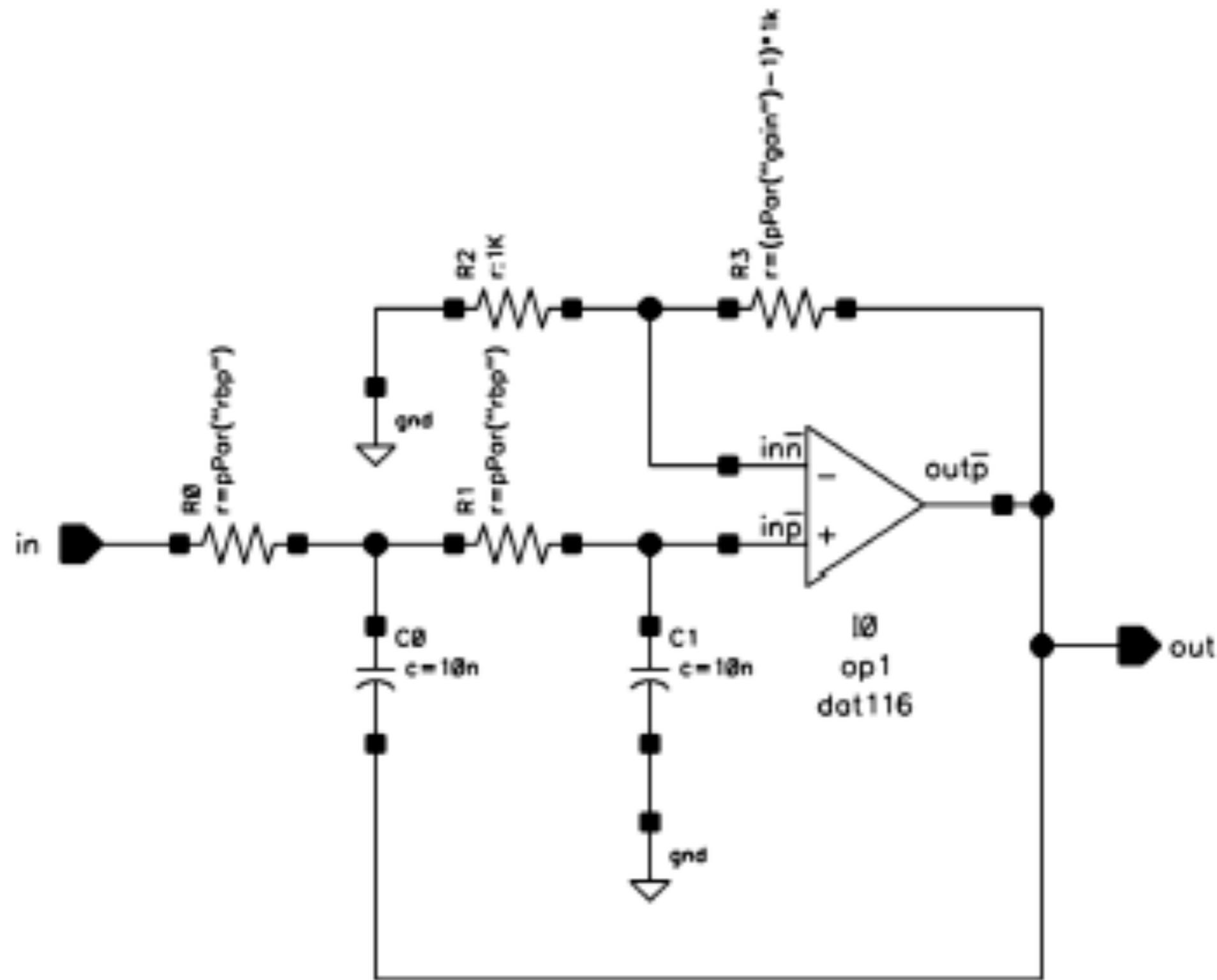
```
-0.7469 + 3.2725i
-0.7469 - 3.2725i
-2.0929 + 2.6244i
-2.0929 - 2.6244i
-3.0243 + 1.4564i
-3.0243 - 1.4564i
-3.3567 + 0.0000i
```

Analog Butterworth filters have no zeros:

```
z
```

```
z =
```

Empty matrix: 0-by-1



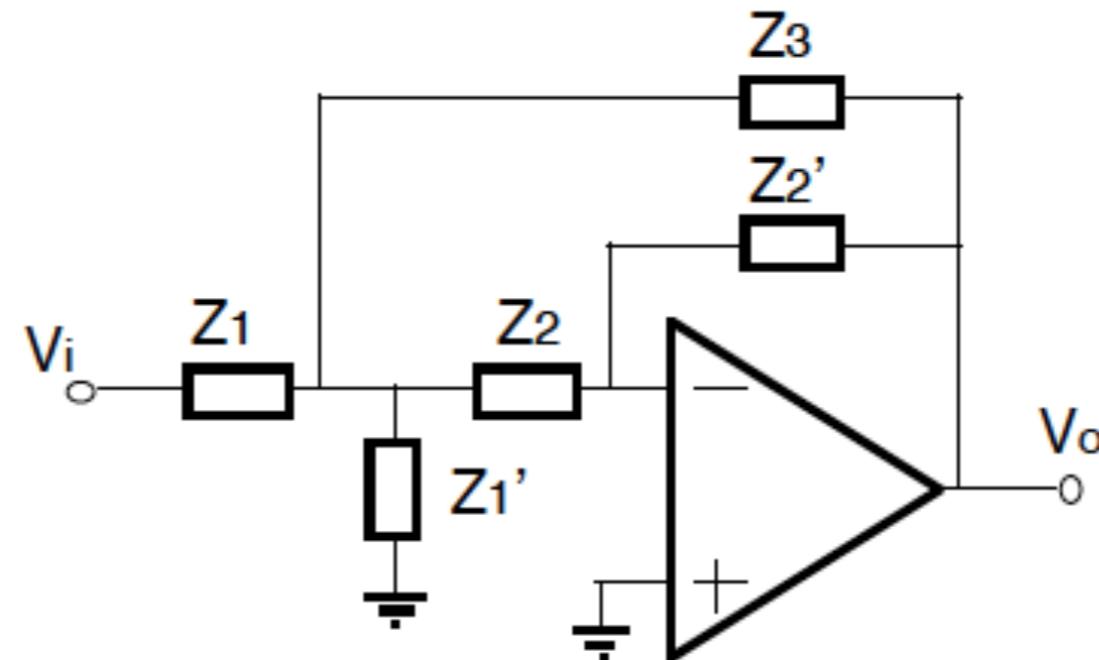
Poles -> R:s and C:s

- Each pole pair separately.
 - One biquad = biquadratic cell
 - Identify R's and C's

For example (not Sallen-Key this time)

Single-Opamp Biquad

Rauch Biquadratic cell



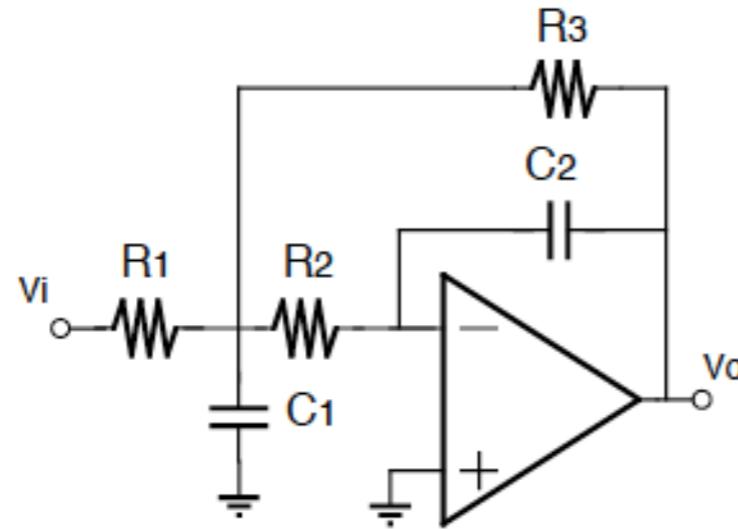
$$H(s) = \frac{v_o(s)}{v_i(s)} = -\frac{1}{\frac{Z_1}{Z_3} + \frac{Z_2}{Z_2'} \cdot \left(1 + \frac{Z_1}{Z_1'} + \frac{Z_1}{Z_2} + \frac{Z_1}{Z_3} \right)}$$

Figure from A. Baschirotto presentation : “Analog filters for Telecommunications”

Transfer function LP

Rauch Biquadratic cell

Lowpass Frequency Response



In the passband, a current flows into the resistors

$$Z_1 = R_1$$

$$Z_2 = R_2$$

$$Z_3 = R_3$$

$$Z_1' = 1/s \cdot C_1$$

$$Z_2' = 1/s \cdot C_2$$

$$H(s) = \frac{1}{s^2 \cdot R_1 \cdot R_2 \cdot C_1 \cdot C_2 + s \cdot C_2 \cdot \left(R_1 + R_2 + \frac{R_1 \cdot R_2}{R_3} \right) + \frac{R_1}{R_3}}$$

Transfer function with two poles is:

$$H(s) = \frac{k}{s^2 + s(-p_1 - p_2) + p_1 p_2}$$

Identify terms!

Figure from A. Baschirrotto presentation : “Analog filters for Telecommunications”

More freedom with more opamps

Multi-opamp biquad cell

Kerwin-Huelsman-Newcomb (KHN) Biquadratic cell

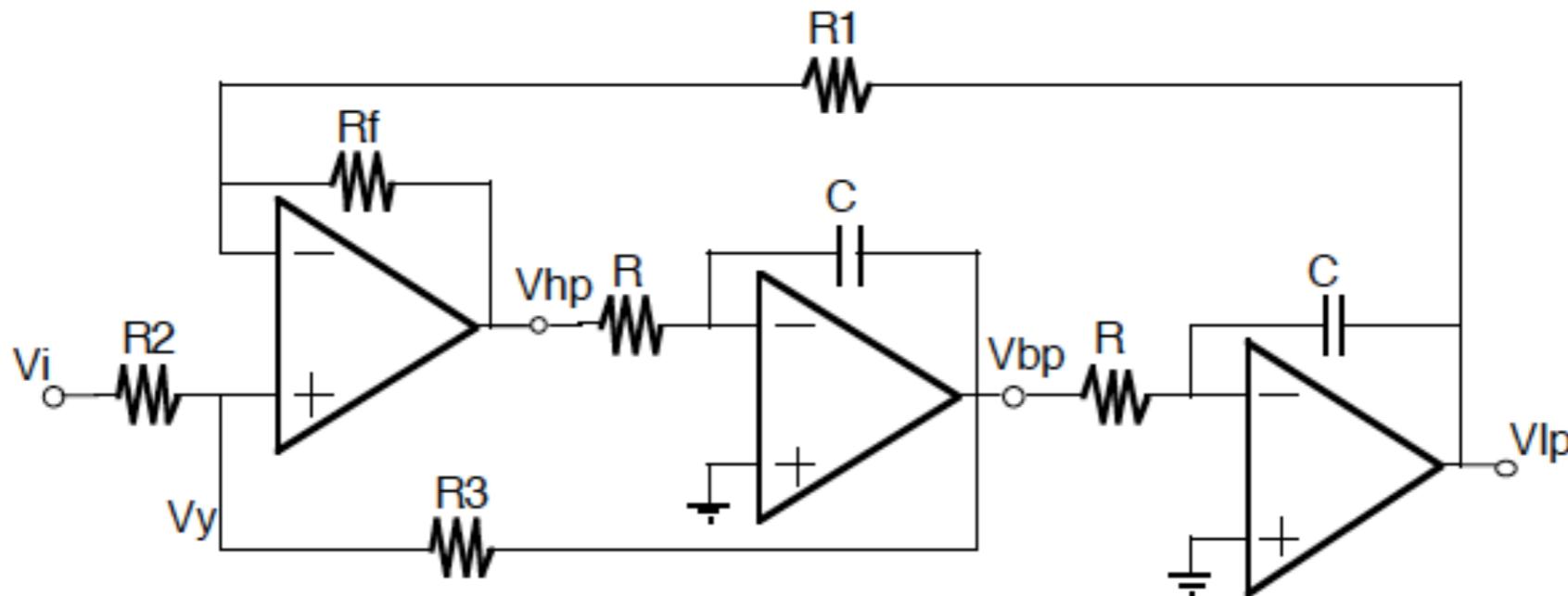
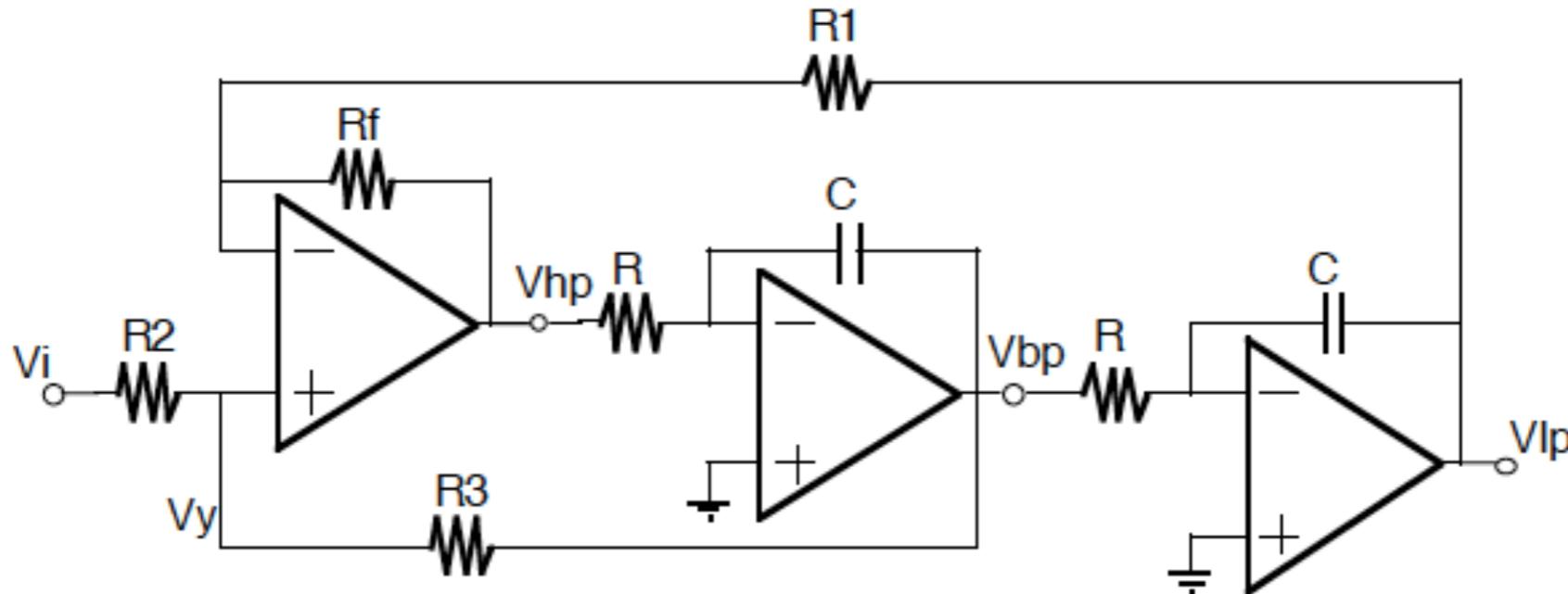


Figure from Baschirotto: “Analog filters for Telecommunications”

Multi-opamp biquad cell

Kerwin-Huelsman-Newcomb (KHN) Biquadratic cell



$$DEN(s) = s^2 + s \cdot \frac{R_2 \cdot (R_f + R_1)}{C \cdot R \cdot R_1 \cdot (R_2 + R_3)} + \frac{R_f}{C^2 \cdot R^2 \cdot R_1} = s^2 + s \cdot \frac{\omega_o}{Q} + \omega_o^2$$

$$\omega_o = \frac{1}{C \cdot R} \cdot \sqrt{\frac{R_f}{R_1}}$$

$$Q = \left(1 + \frac{R_3}{R_2}\right) \cdot \frac{\sqrt{R_f \cdot R_1}}{R_f + R_1}$$

Figure from Baschirotto: “Analog filters for Telecommunications”

Topics for today

- More about OPamp-RC integrators
 - How good OPamps is required?
- LP. What about HP / BP / BS ?
- Passive filters
- Ladder filters
- Components
- Balanced implementations

Taxonomy of analog filters

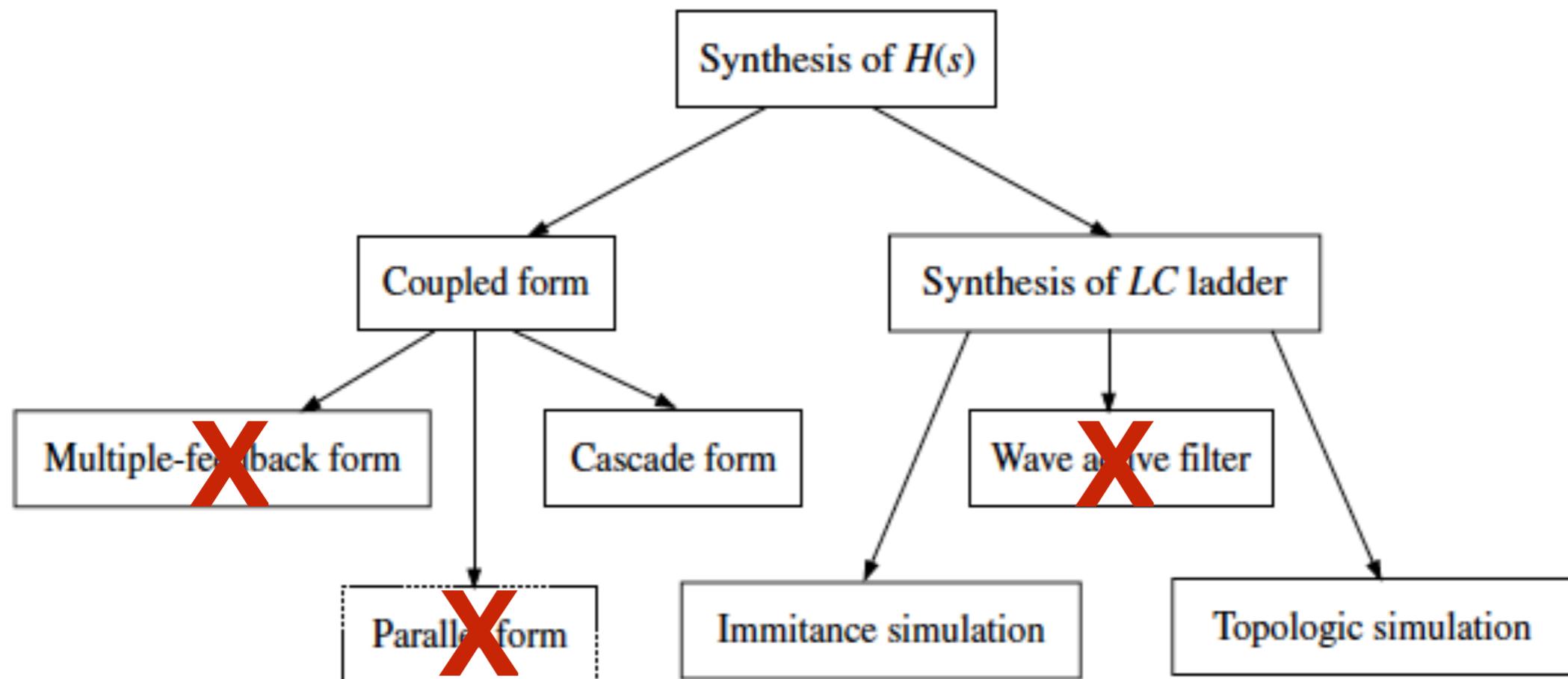


Fig. 7.1 Taxonomy for analog filter structures

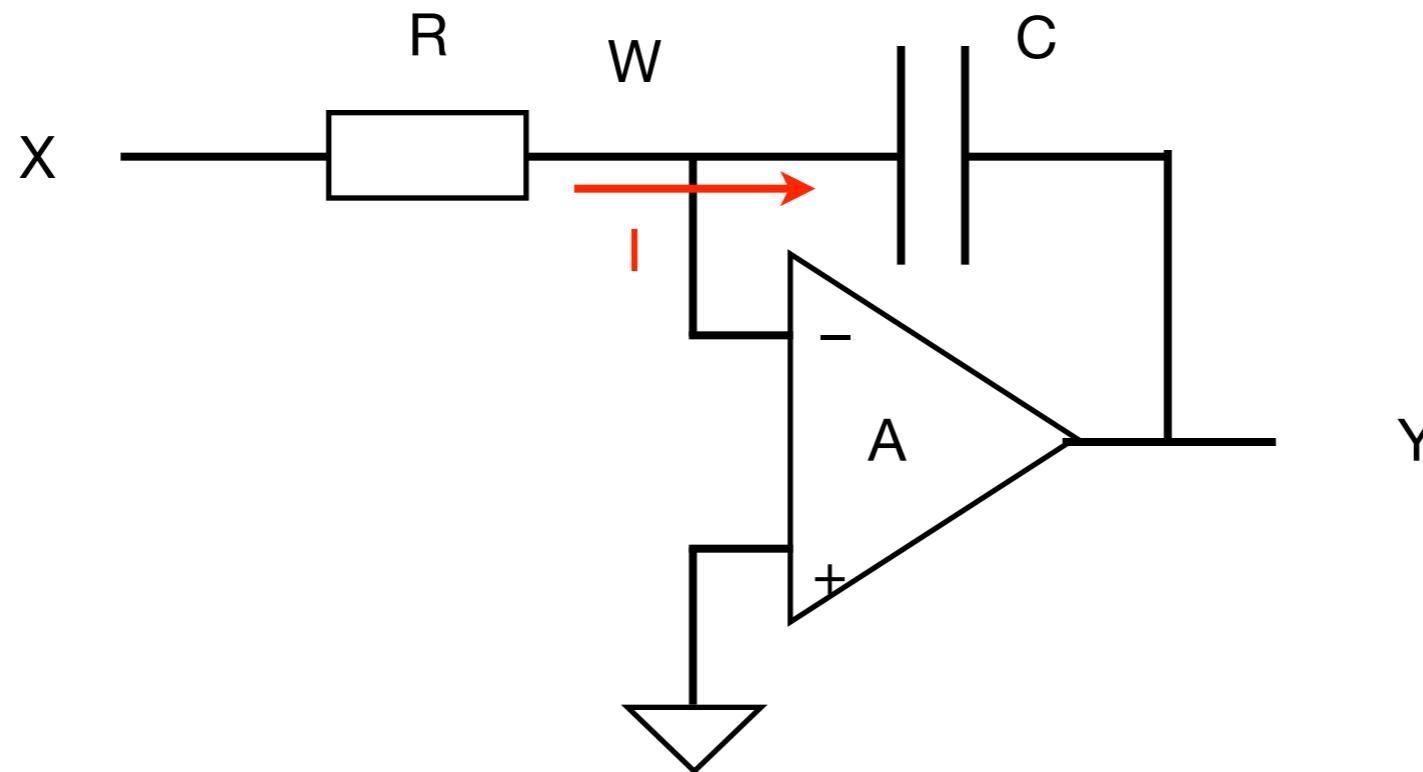
Passive components

- Resistor
- Capacitor
- Inductor

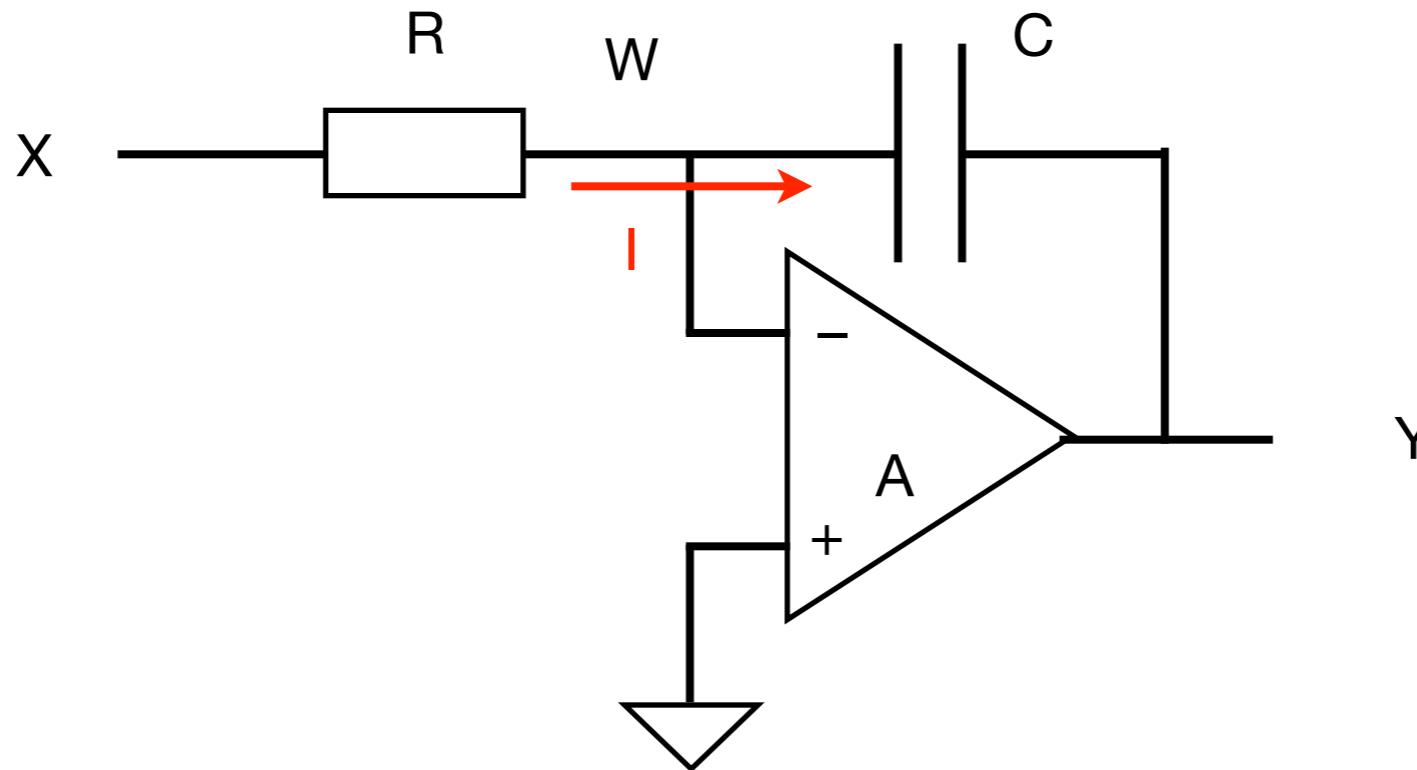
$$I = C \frac{dV}{dt}$$

$$V = L \frac{dI}{dt}$$

OPamp-RC integrator (Miller integrator)

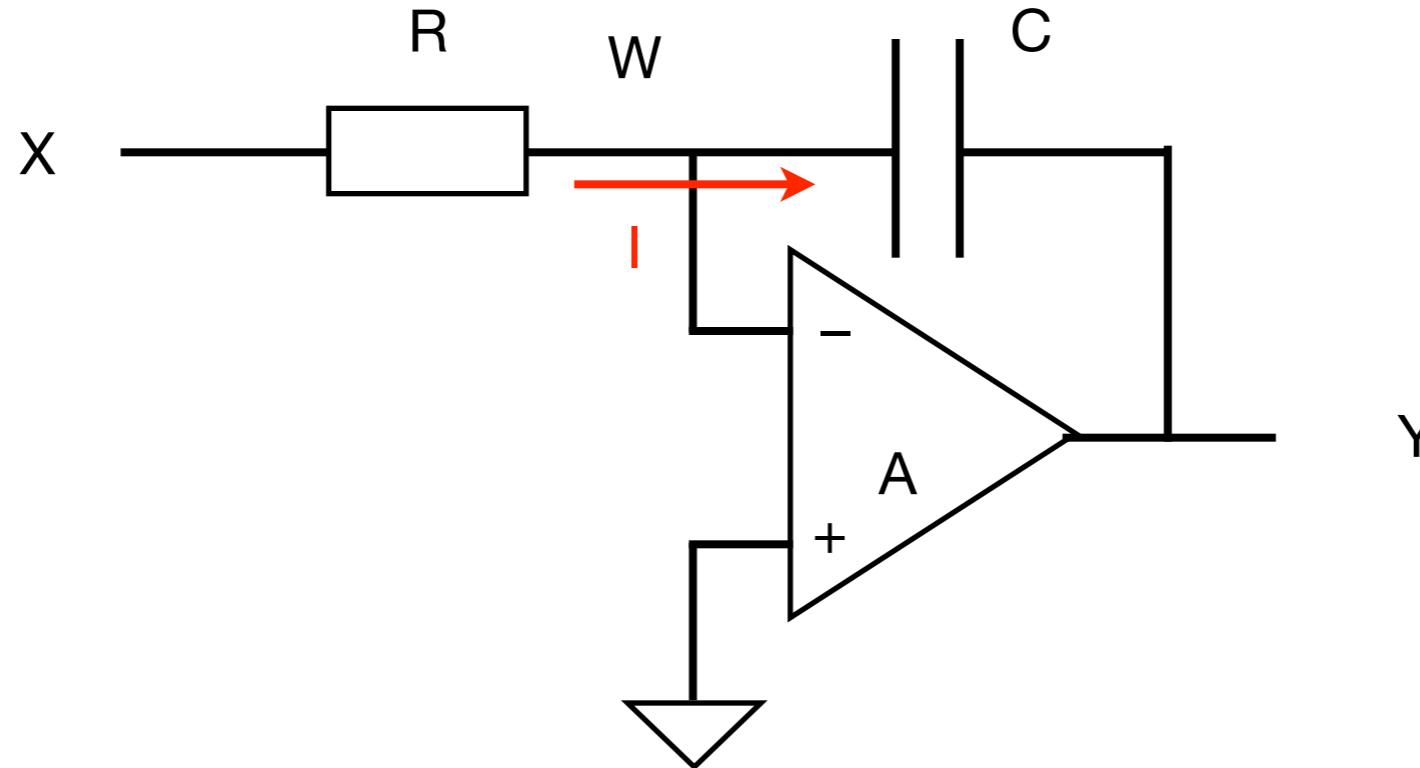


OPamp-RC integrator (Miller integrator)



- $Y = \int I dt / C \approx - \int X dt / (R \cdot C)$
- Perfect integrator has infinite DC gain
- Real integrator limited by OPamp **gain** and **dominant pole**!

OPamp-RC integrator (Miller integrator)



Perfect integrator: $H(s) = 1/s\tau$

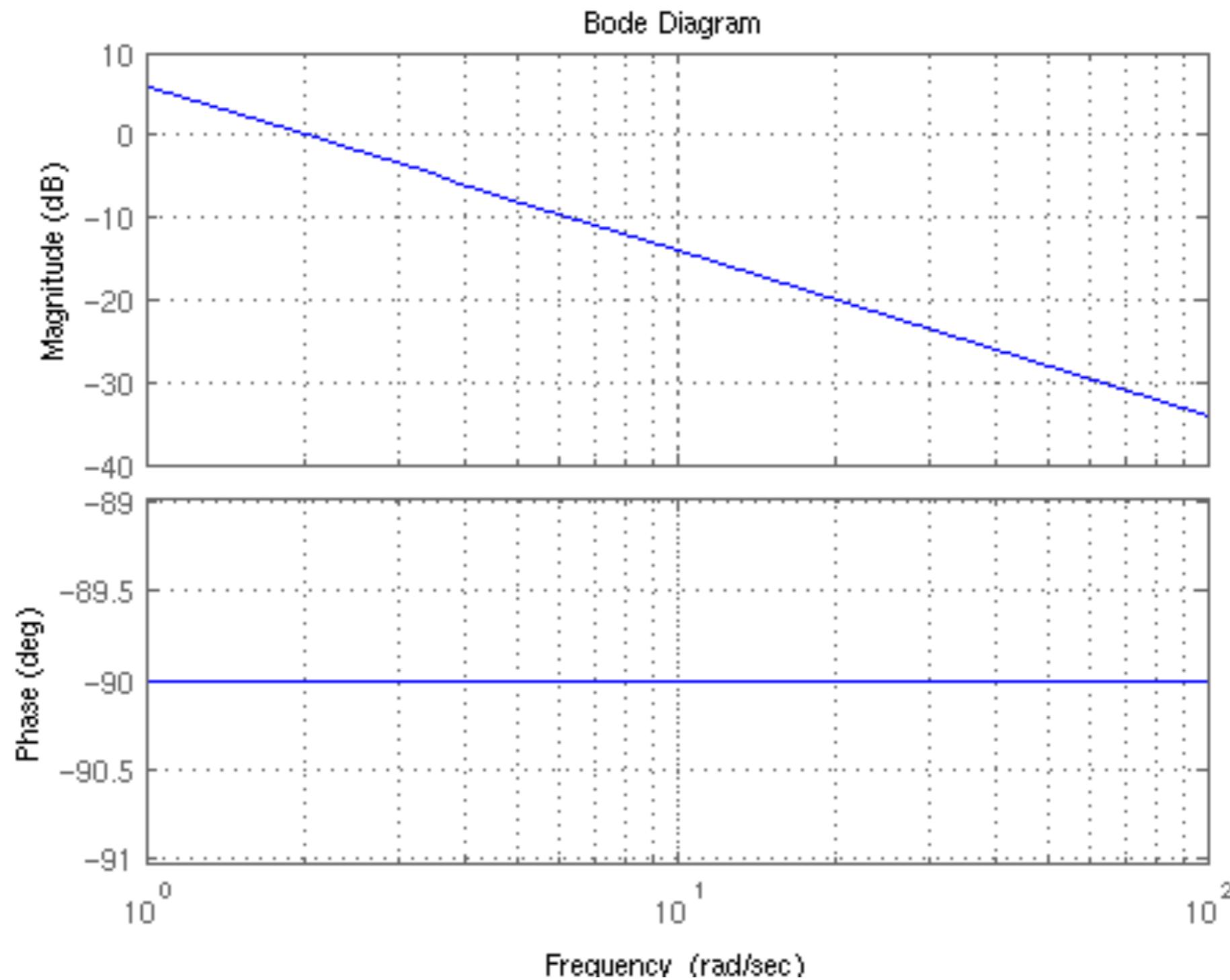
Imperfect integrator with loss q: $H(s) = \frac{1}{s\tau + q}$

Goals

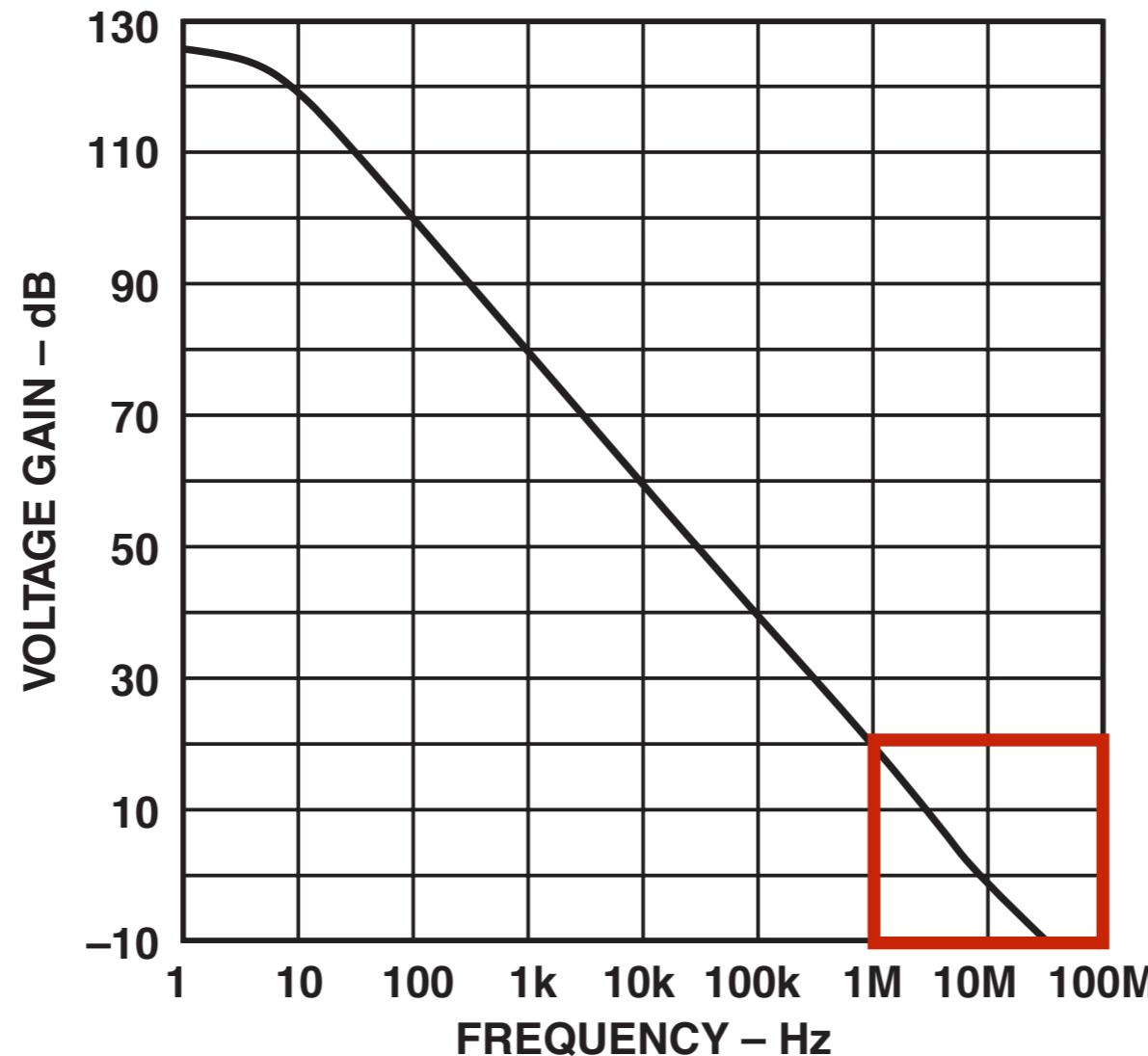
Show the effects of the **OP amplifier** limited LF gain, A_0 , and dominant pole frequency (or GBW) on the the **integrator** non-idealities (loss).

Show the requirement on the **integrator** quality (Q_{int}) from the desired **filter Q** (Q_{ideal}).

Perfect integrator Bode plot



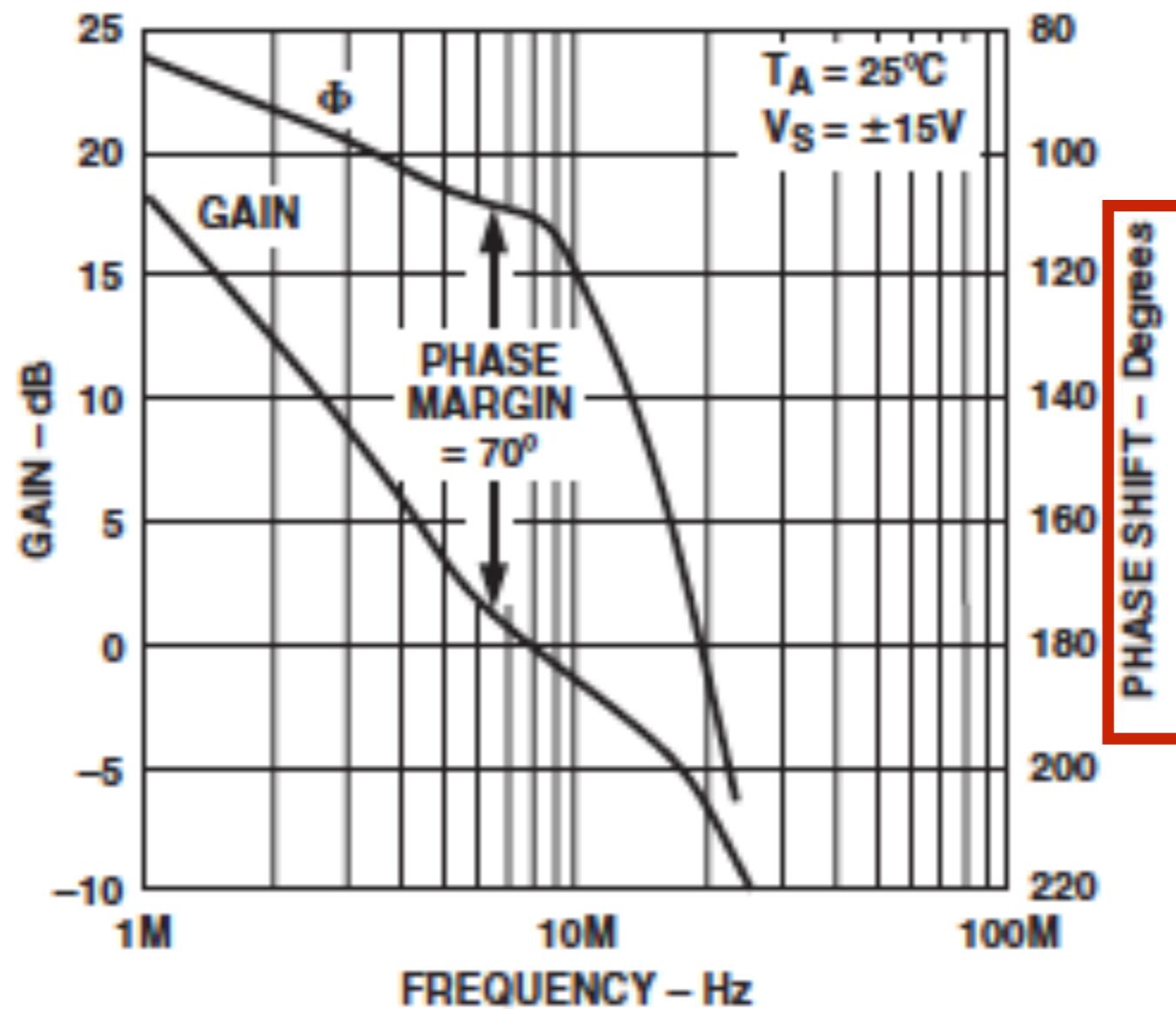
OP-amps from week 2...



*TPC 16. Open-Loop Gain vs.
Frequency*

And what about
the phase?
How would that
look?

Phaseshift closeup



TPC 18. Gain, Phase Shift vs. Frequency

OPamp RC integrator limitations

$$H_{ideal}(s) = -\frac{1}{sRC}$$

OPamp transfer function (assuming one dominant pole):

$$H_{OPamp}(s) = \frac{A_0}{1 + s\tau}$$

Closed-loop integrator transfer function?

So good integrator requires:
high LF gain (Ao) & high GBW

$$H_{CL_{real}}(s) = -\frac{A_0}{(1 + sRC A_0)(1 + s\tau/A_0)}$$

Intended pole! Extra pole

Note that $Ao/\tau = GBW$!

Limitations of OPamp-RC integrator

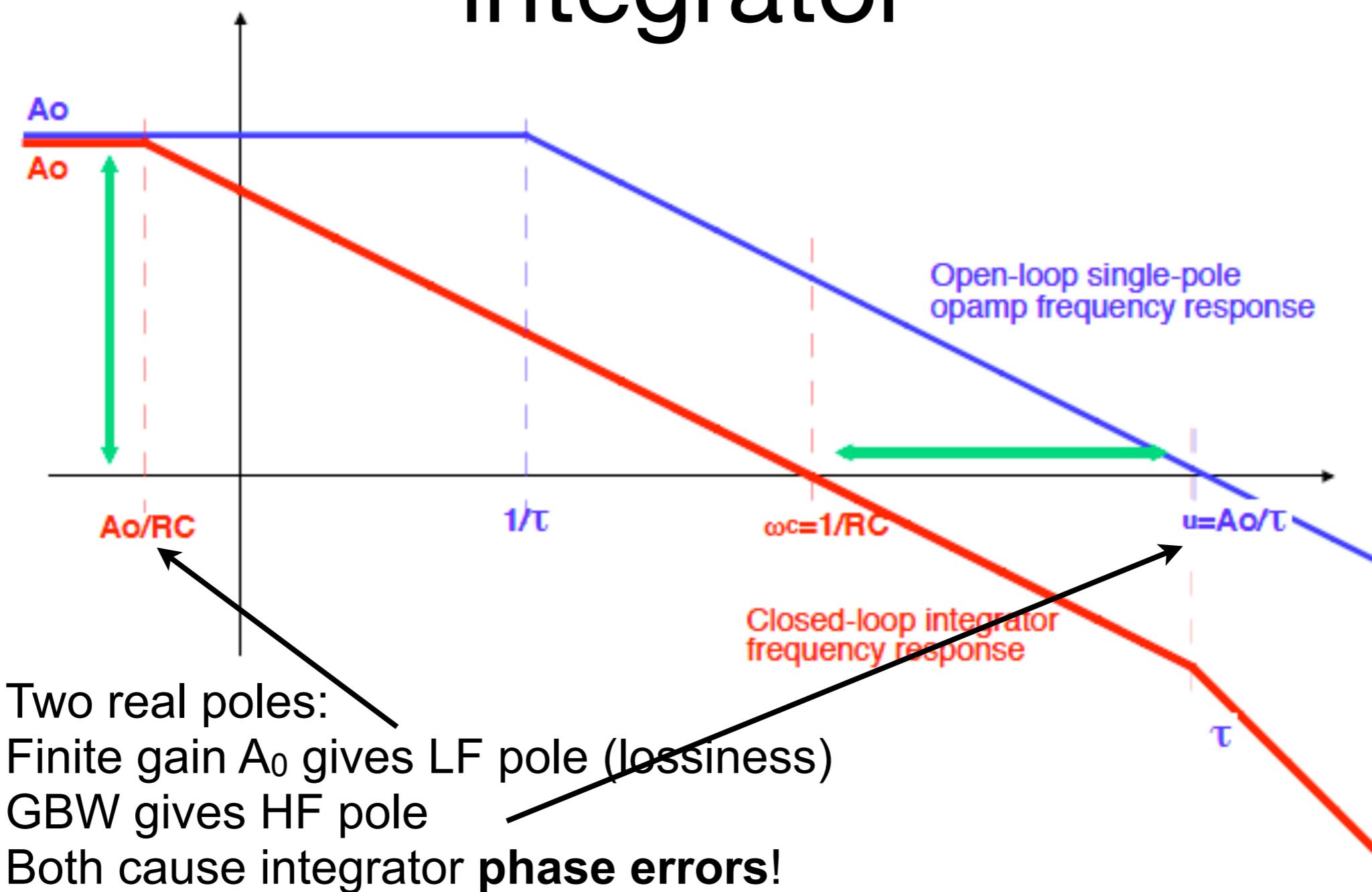
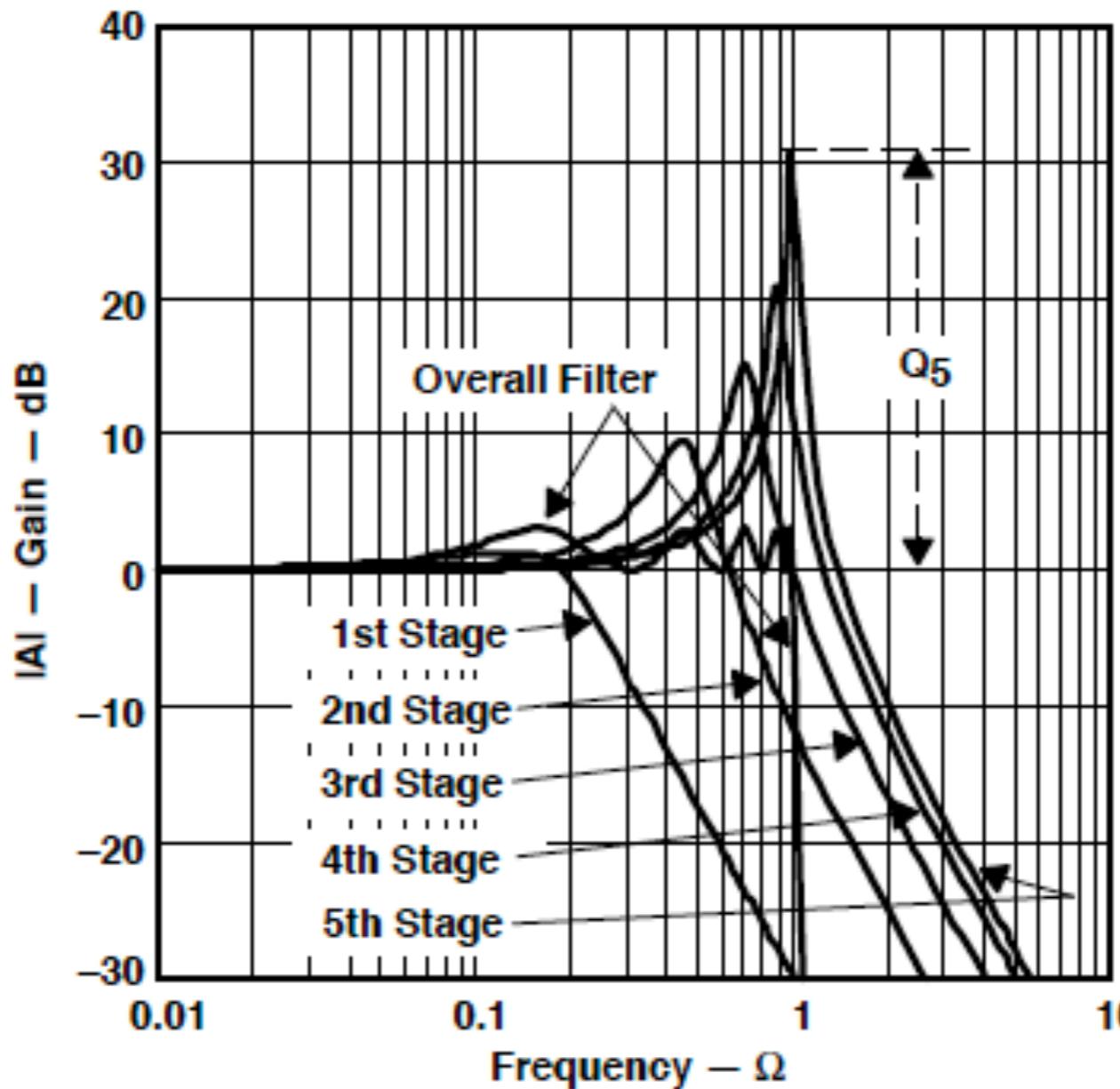


Figure from Baschirotto: "Analog filters for Telecommunications"

(recap) Higher Q for higher order filter



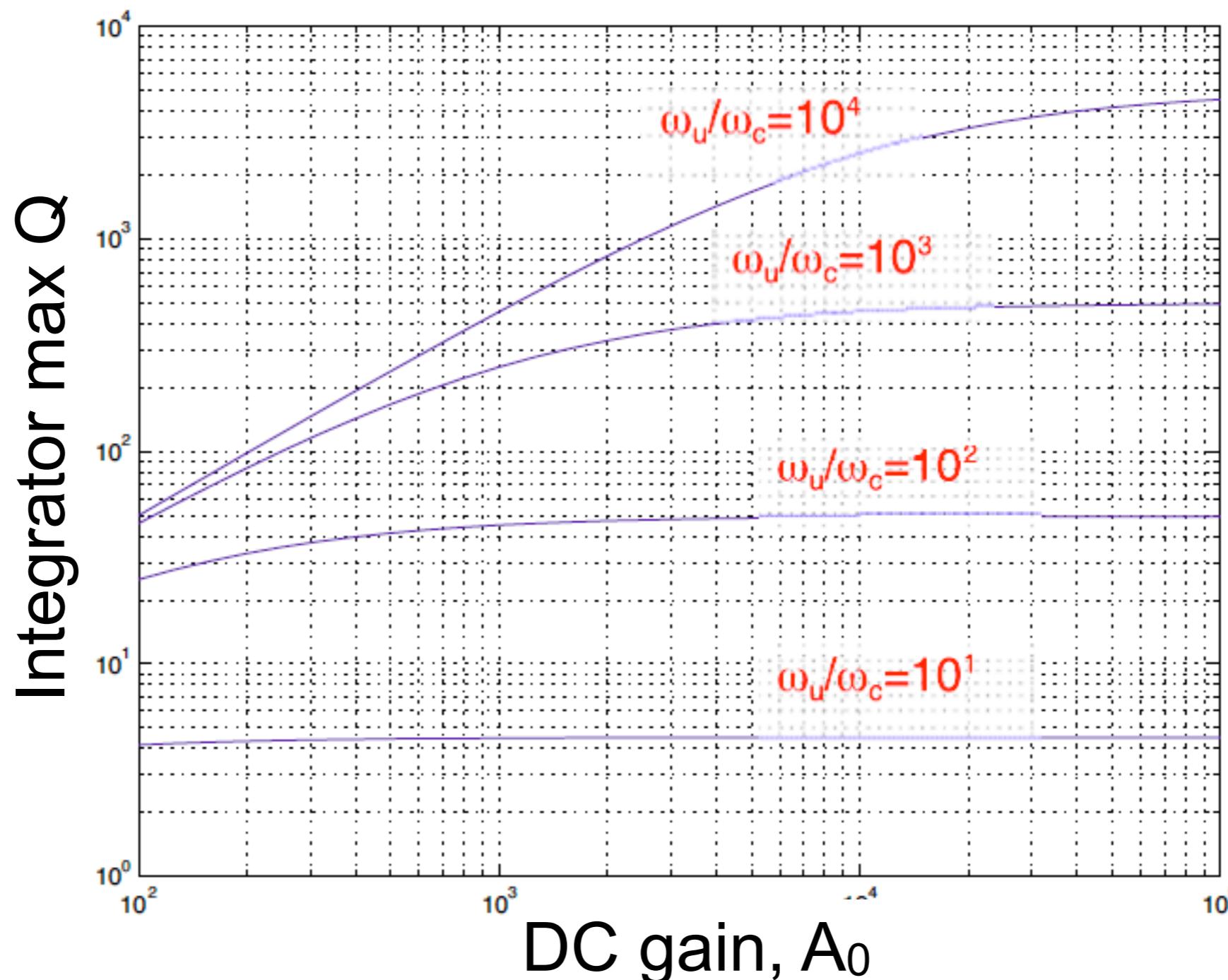
Example: 10th order Chebyshev filter.
How much phase error can we tolerate?

Q limitations

- If q is the loss in the integrator: $H(s) = \frac{1}{s\tau + q}$
- Then Q of integrator is $Q_{int} = \frac{\omega RC}{q}$
- The integrator Q : how close we can get to Q_{ideal} .
- The 2 Q :s are “in parallel”:

$$\frac{1}{Q_{real}} = \frac{1}{Q_{int}} + \frac{1}{Q_{ideal}}$$

OPamp parameters related to Q for integrator, A_0 and GBW (ω_u)



ω_c is integrator frequency = $1/RC$

So, the higher integrator Q you want the higher the GBW has to be and A_0 also has to be high

Q limitations (cont)

Parallel connection of Q's:

$$\frac{1}{Q_{real}} = \frac{1}{Q_{int}} + \frac{1}{Q_{ideal}}$$

Can be expressed as a **requirement on integrator** to achieve (almost) ideal Q:

$$\frac{1}{Q_{int}} = \left(\frac{\Delta Q}{Q_{ideal} + \Delta Q} \right) \frac{1}{Q_{ideal}}$$

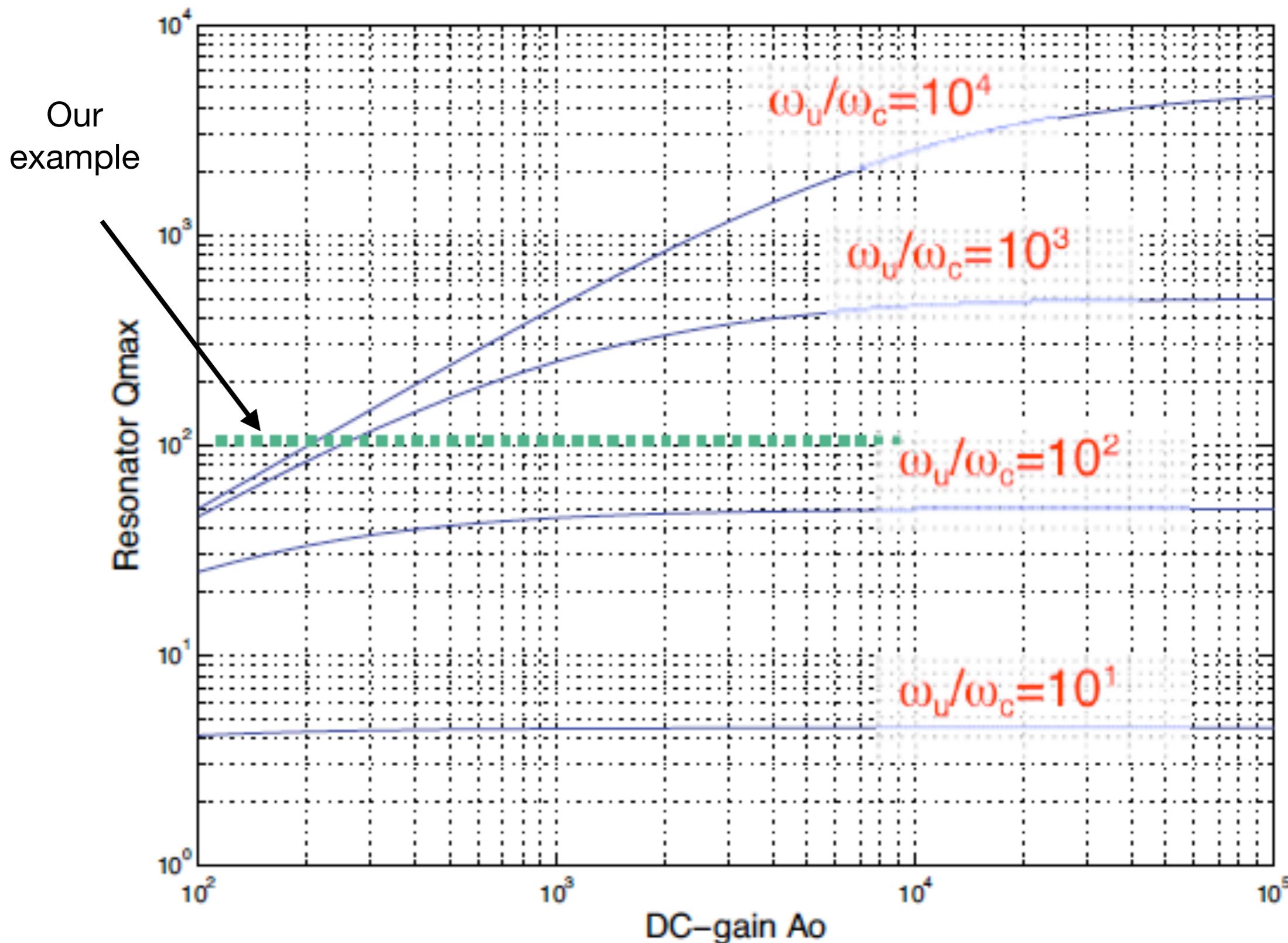
$$\frac{1}{Q_{int}} \approx \left(\frac{\Delta Q}{Q_{ideal}} \right) \frac{1}{Q_{ideal}}$$

How good an integrator is required?

Conclusion

- You need really good OPamps to implement active filters (integrators)
 - High A_0 and high GBW
- In conclusion: Harder to implement higher cut-off frequencies and higher filter Q.

Requirements on integrator



Other filter types?

- LP filters dominate literature
 - Practically important in mixed-signal interfaces
 - Other frequency selective filters may be designed by transforming LP filter
 - Poles/zeros or implementation
 - All-pass filters are a special case...

Create HP from LP

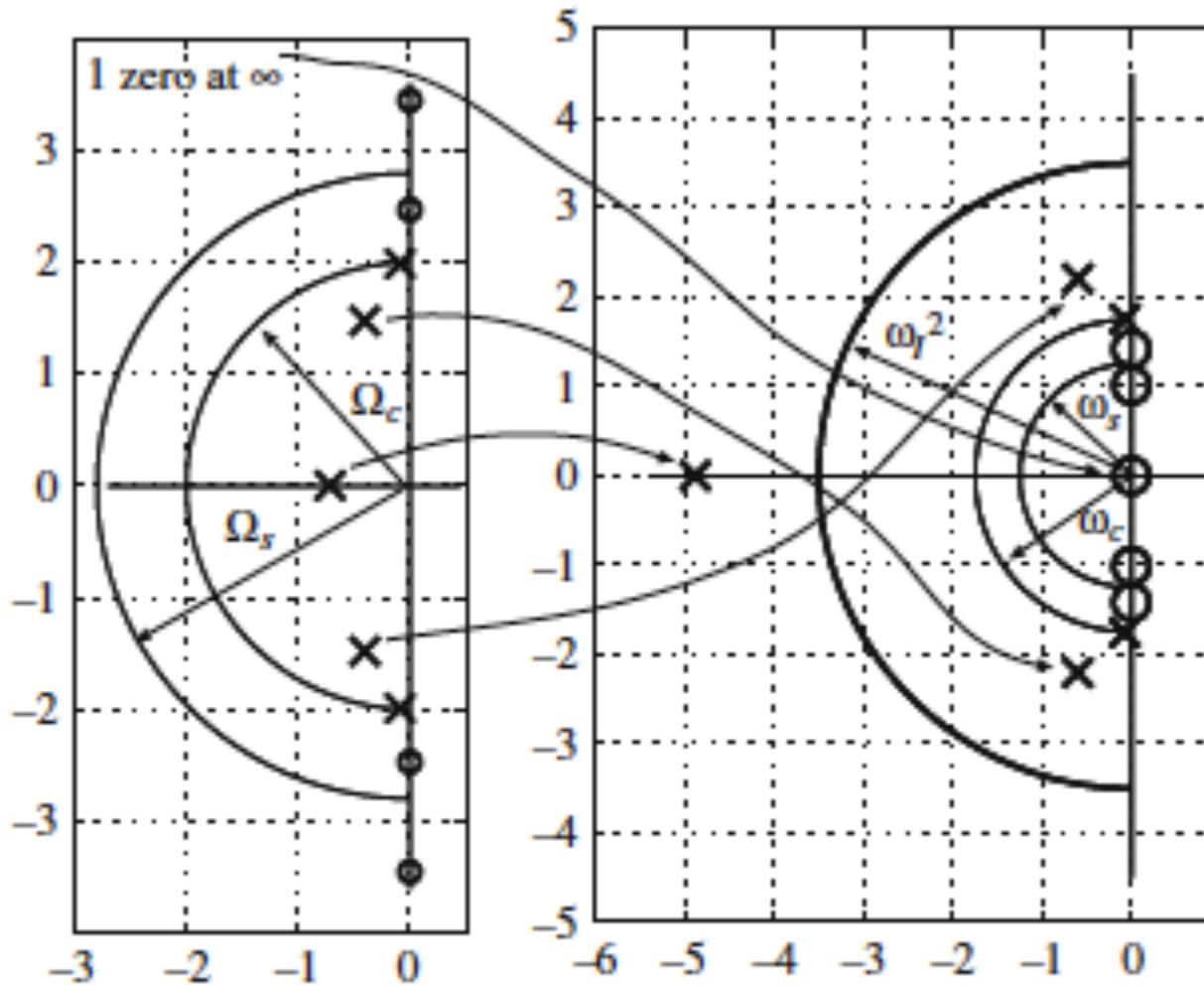


Fig. 2.50 LP-HP transformation of poles and zeros

- Invert s values for poles and zeros !
 - Will fit a “mirror image” of specification

BP from LP

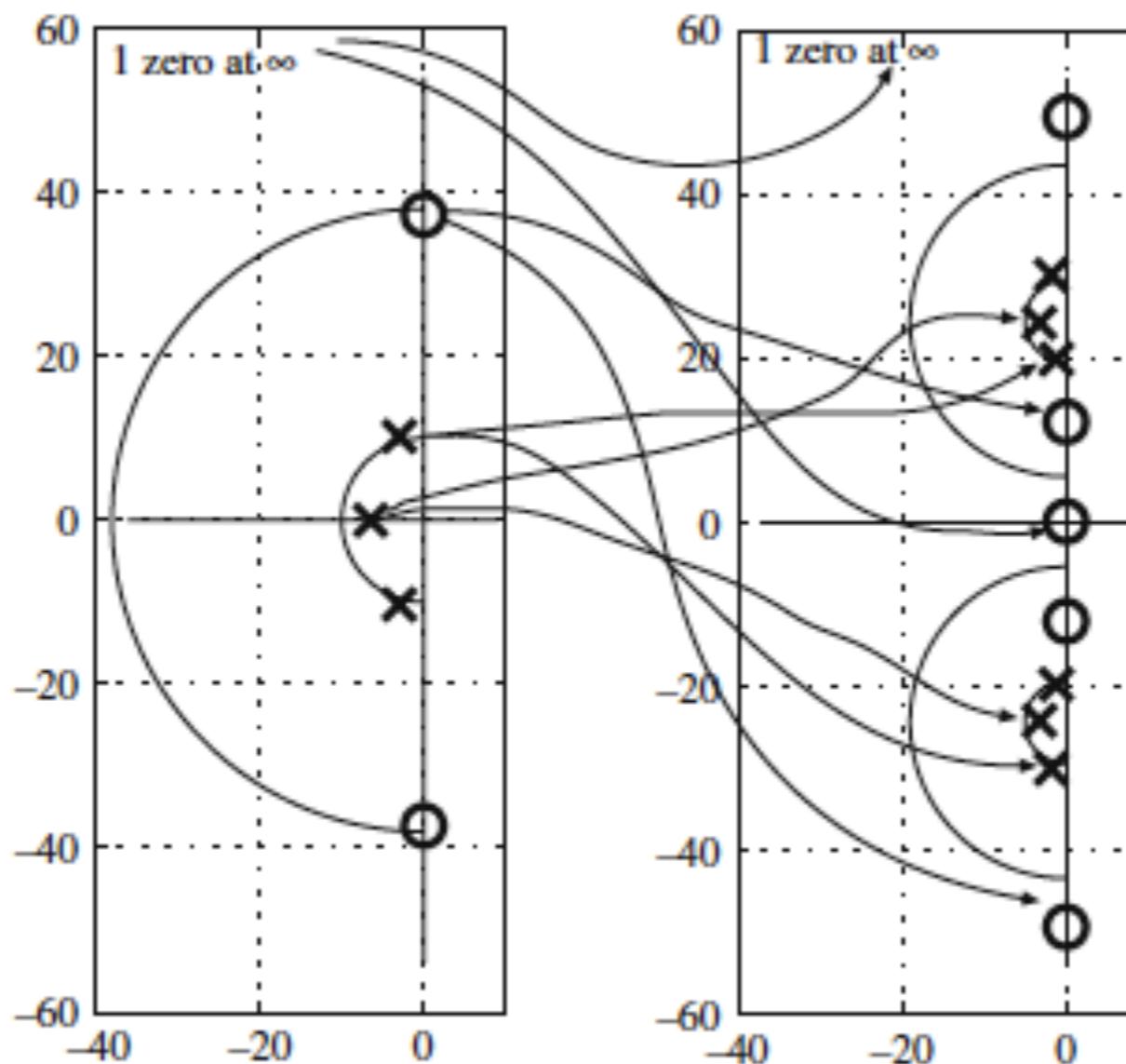


Fig. 2.56 LP-BP transformation of poles and zeros

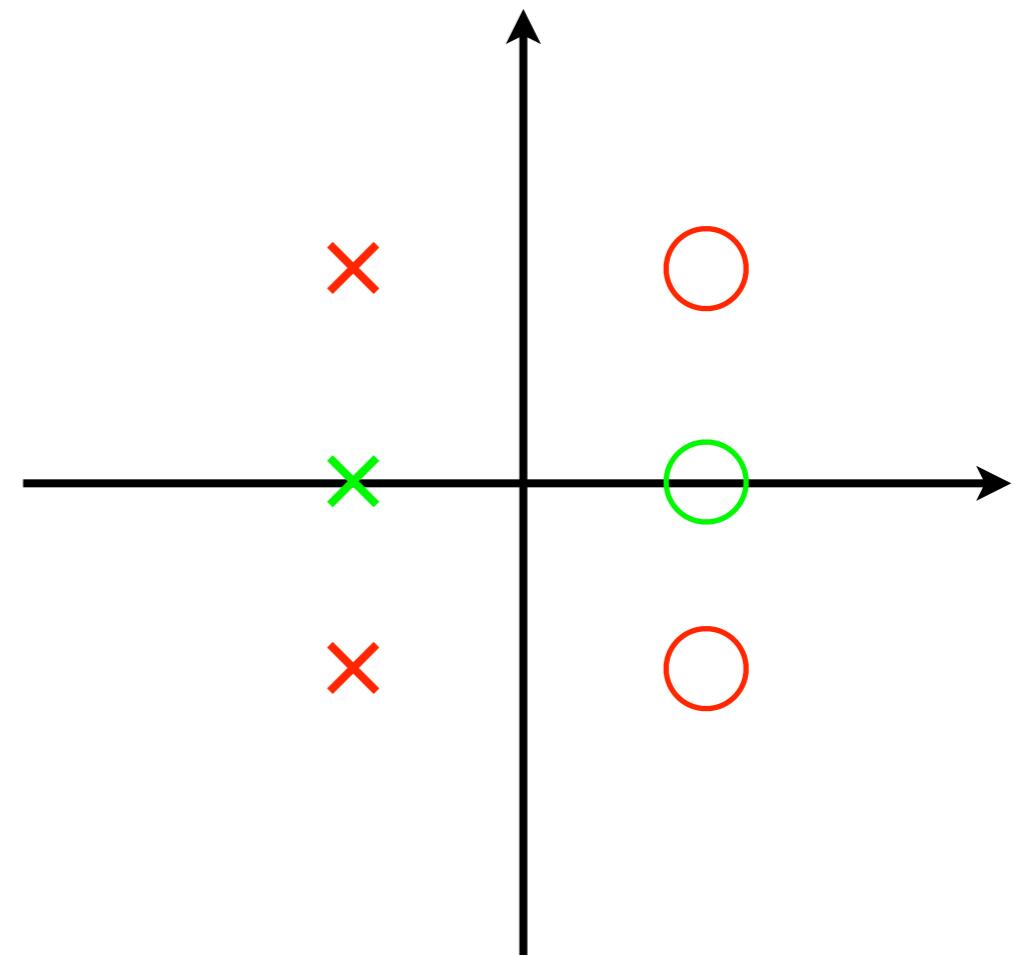
- Similar idea (simple); not as general

Implementation

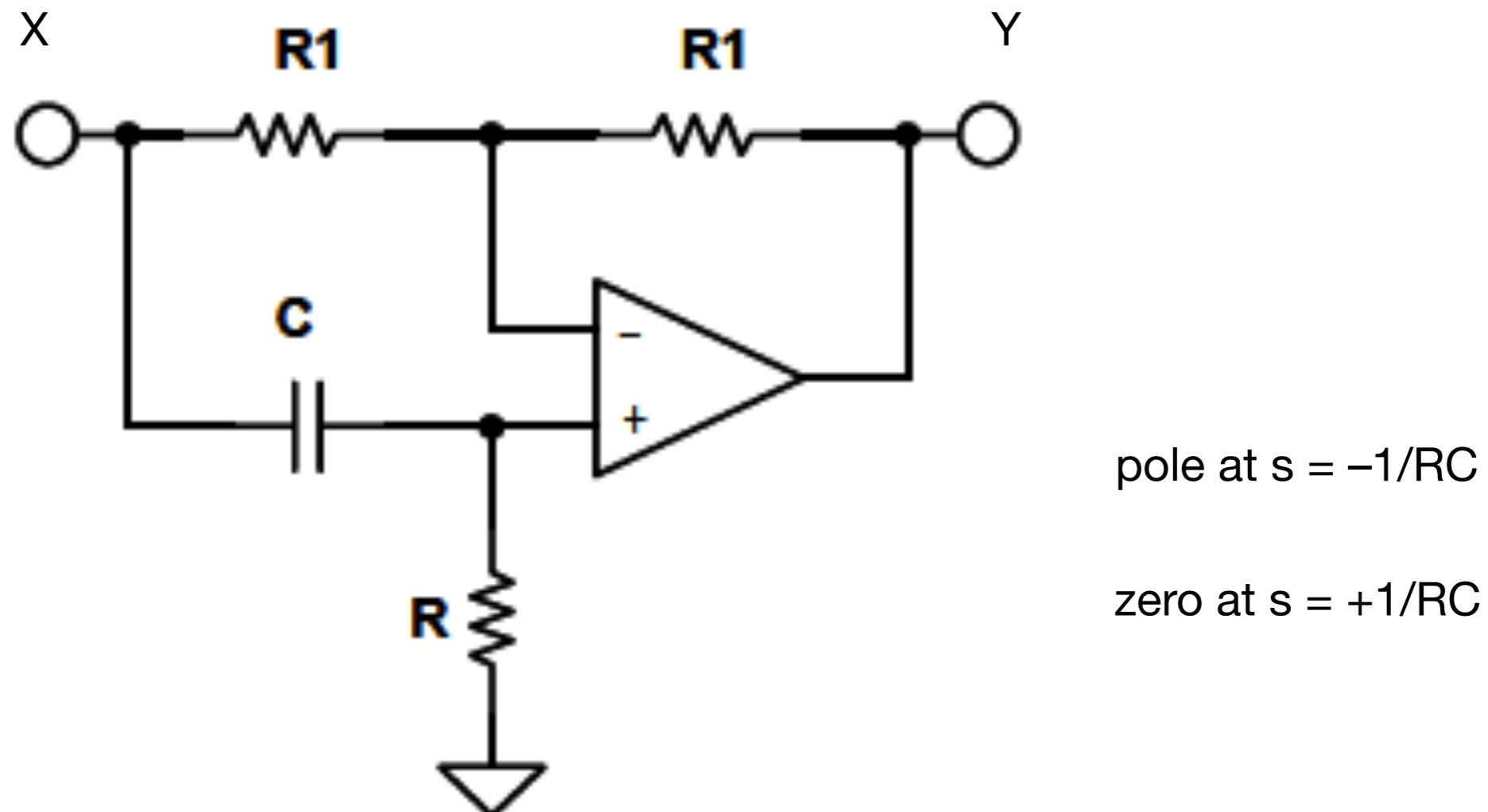
- HP: can use “mirrors” of LP second-order links (such as Sallen-Key, etc)
- BP/BS: consider less sensitive structures
 - E.g. ladder filters; later today

Allpass filters

- Amplitude function independent of frequency
 - Purpose is phase shift / delay
 - Symmetric pole/zero placement



One implementation



What is the result?

$$Y = A \left(\frac{XR}{R + \frac{1}{sC}} - \frac{X + Y}{2} \right)$$

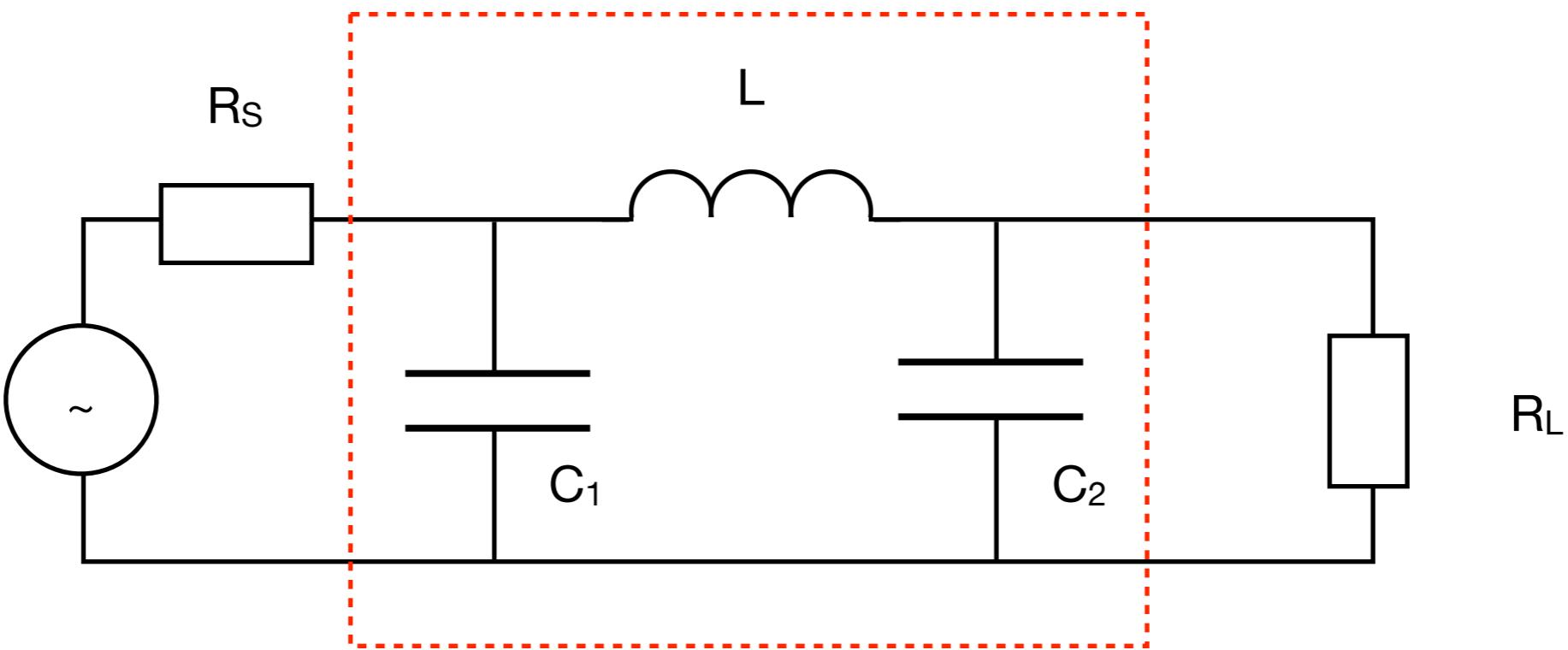
$$Y \left(1 + \frac{A}{2} \right) = X A \left(\frac{R}{R + \frac{1}{sC}} - \frac{1}{2} \right)$$

$$H(s) = \frac{Y}{X} = \frac{A \left(\frac{R}{R + \frac{1}{sC}} - \frac{1}{2} \right)}{\left(1 + \frac{A}{2} \right)} = \left(\frac{A}{2 + A} \right) \frac{sRC - 1}{sRC + 1}$$

Passive filters

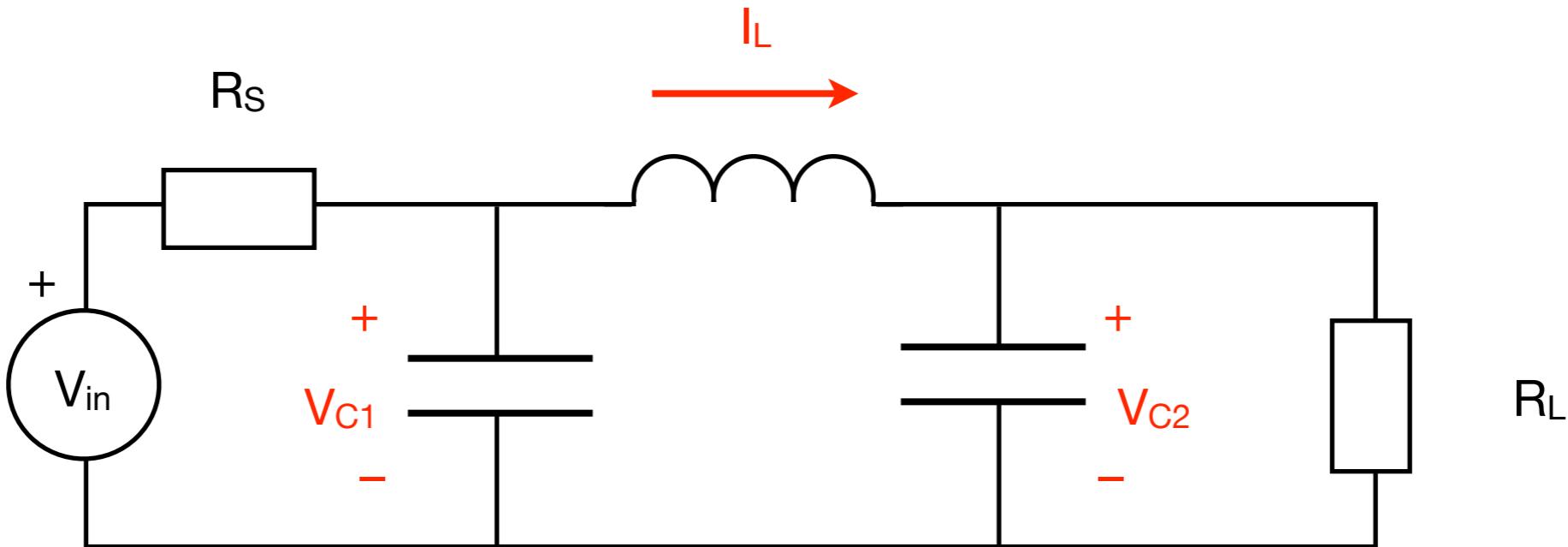
- In practice, used in high-frequency (on-chip) and high-power (off-chip) applications
- Large body of theory
- Many forms highly parameter-insensitive
 - Typically only in passband...
- Useful as “mental model” for active filters
 - “Prototype filter”

Example: LP LC filter



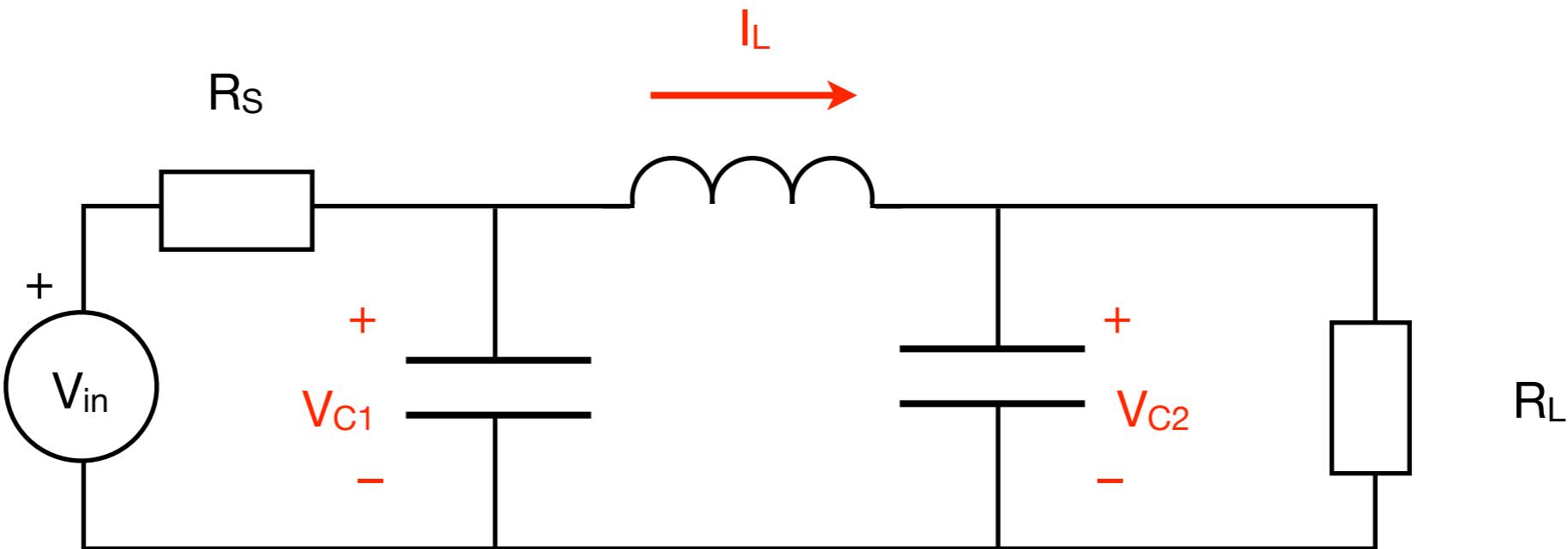
- 3rd order all-pole filter (zeros at ∞)
- Each reactive component is an integrator
- Zero attenuation at DC

State variables



- L currents, C voltages are state variables
- Write equation system for these

Equations



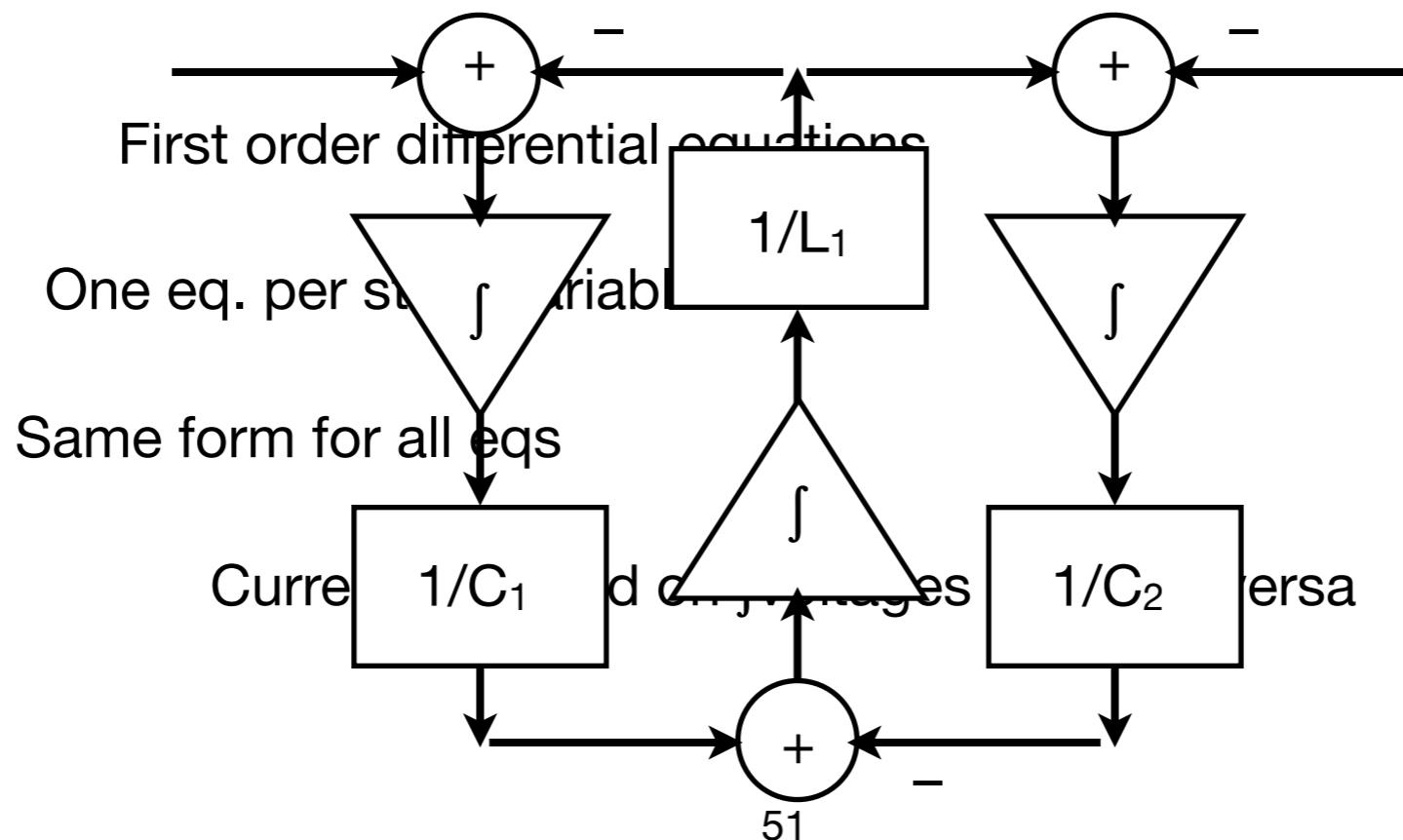
- $I_{RS} = (V_{in} - V_{C1}) / R_S$
- $V_{C1} = \int (I_{RS} - I_L) dt / C_1$
- $I_L = \int (V_{C1} - V_{C2}) dt / L_1$
- $V_{C2} = \int (I_L - I_{RL}) dt / C_2$
- $I_{RL} = V_{C2} / R_L$

Observations

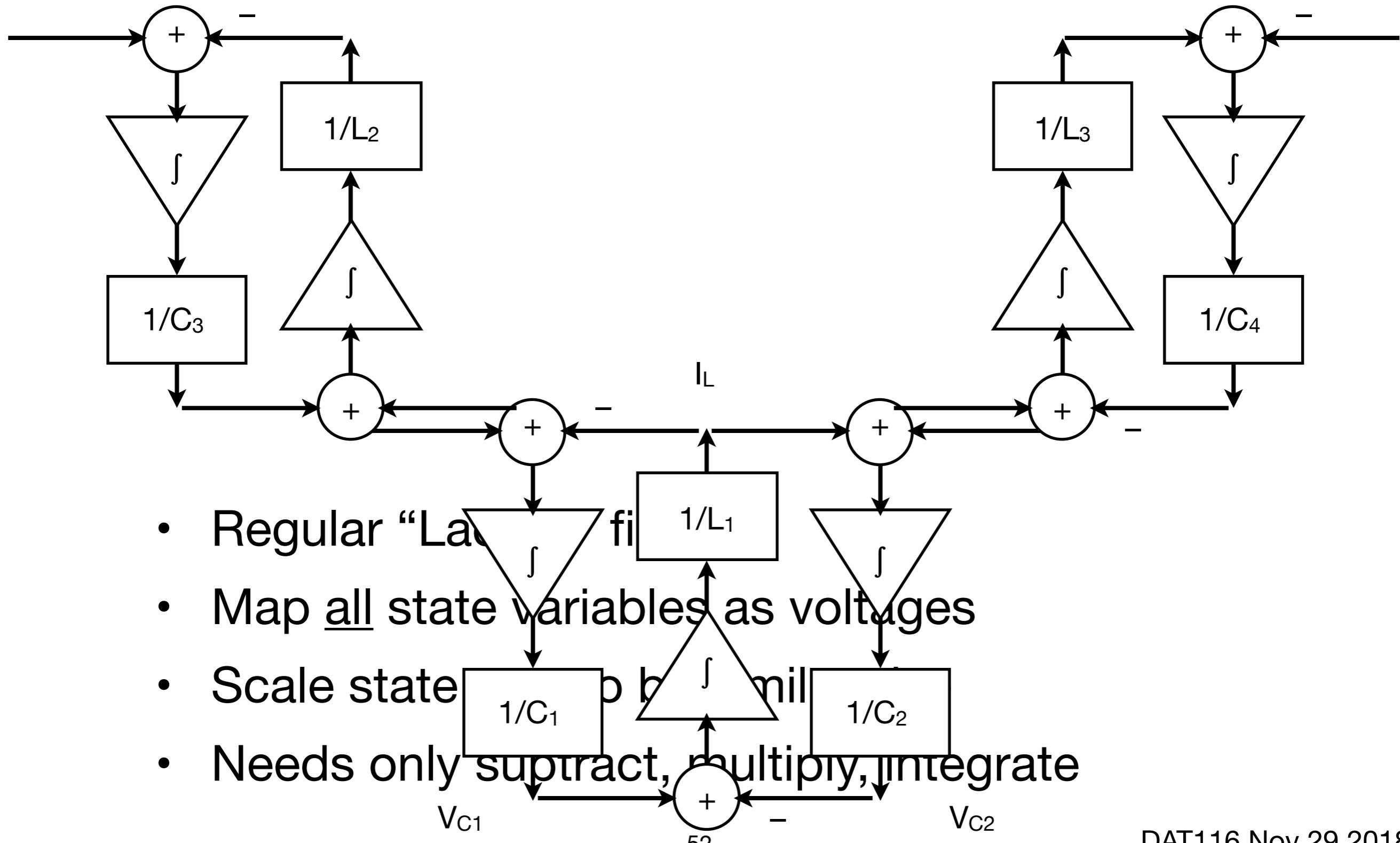
- $I_{RS} = (V_{in} - V_{C1}) / R_S$
- $V_{C1} = \int (I_{RS} - I_L) dt / C_1$
- $I_L = \int (V_{C1} - V_{C2}) dt / L_1$
- $V_{C2} = \int (I_L - I_{RL}) dt / C_2$
- $I_{RL} = V_{C2} / R_L$

Observations

- $I_{RS} = (V_{in} - V_{C1}) / R_S$
- $V_{C1} = \int (I_{RS} - I_L) dt / C_1$
- $I_L = \int (V_{C1} - V_{C2}) dt / L_1$
- $V_{C2} = \int (I_L - I_{RL}) dt / C_2$
- $I_{RL} = V_{C2} / R_L$



Emulate!



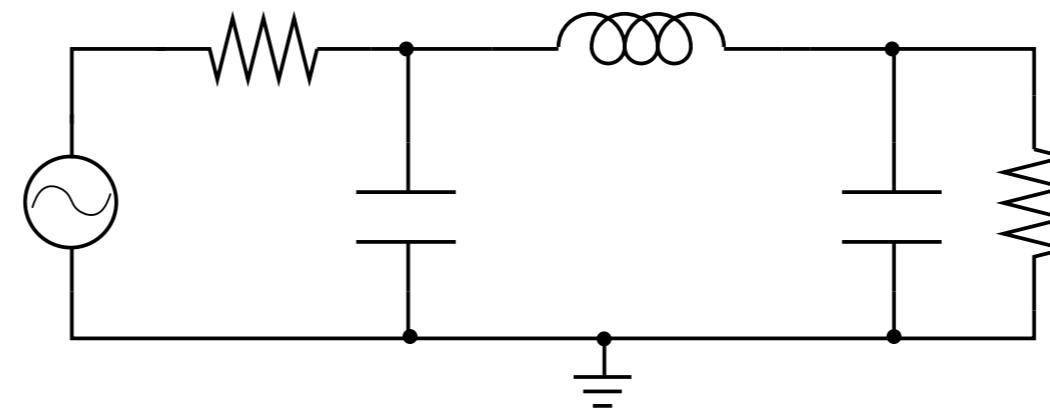
Ladder filters

- One of several “emulations” of different passive filters
- Only gains as design parameters
 - Good for matching!
- Low sensitivity to gain tolerances
 - Variations don’t bring instability
 - Each pole and zero depends on all gains

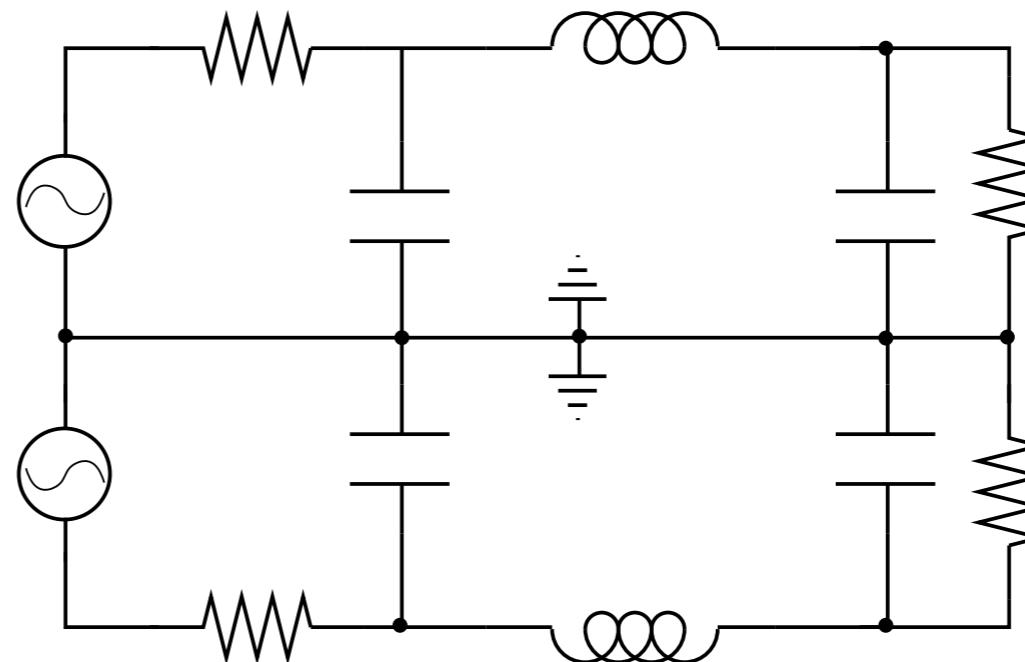
Operations

- Subtraction
 - Doable with invert + add
 - Gain
 - Yes, we know how to do that
 - Integrator?

In practice: differential implementation
used (at least on chip)

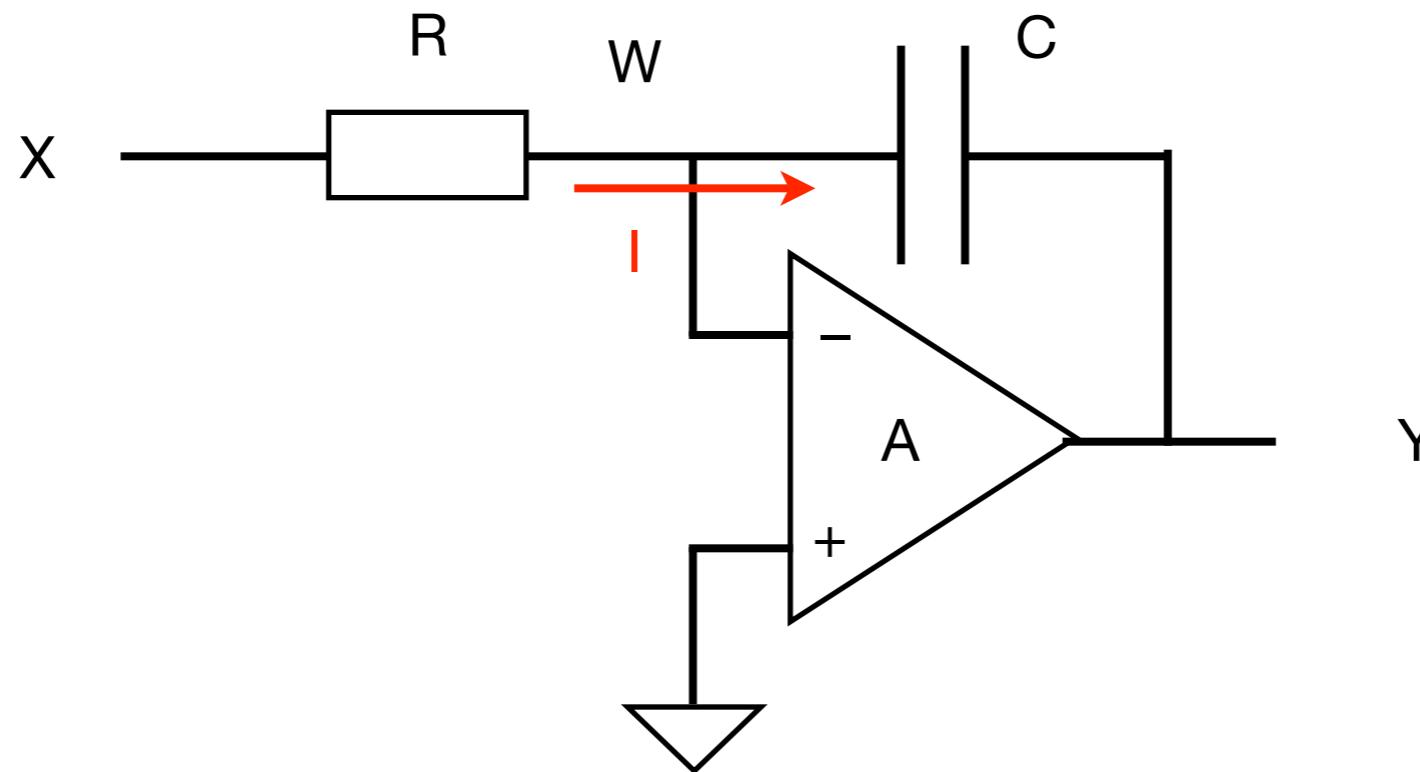


becomes



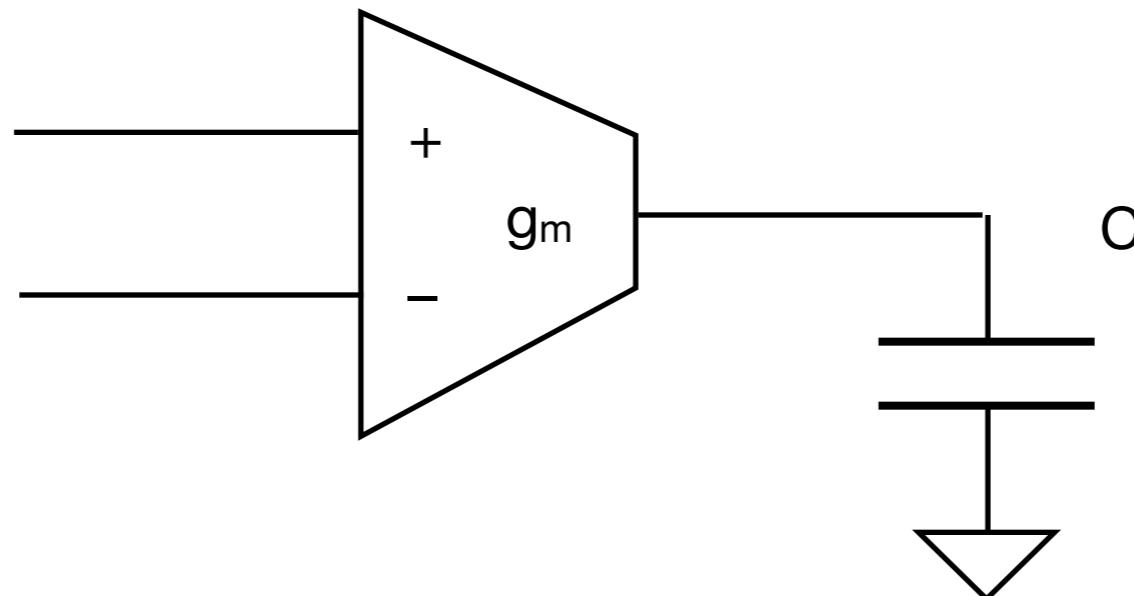
Subtraction trivial =
switching two wires

Integrator #1



- $Y = \int I \, dt / C \approx - \int X \, dt / (R \cdot C)$
- Perfect integrator has infinite DC gain
- Real integrator limited by A and opamp pole

Integrator #2

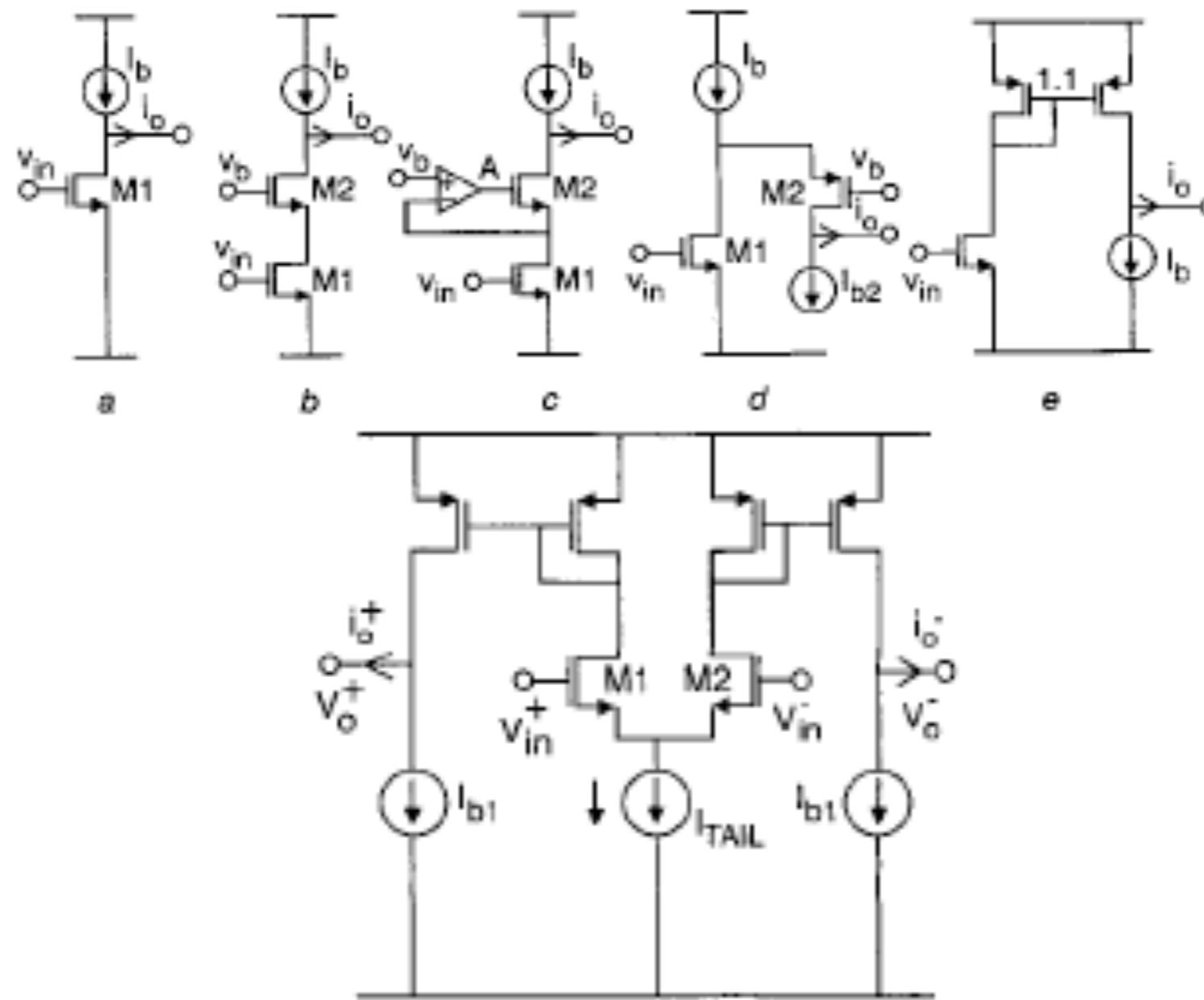


- Operational transconductance amp (OTA)
 - As opamp, but current output
 - $V_C = (g_m / C) \int(V_+ - V_-) dt$
- No R!
- ... but needs g_m / C to be well controlled

gm-C filters

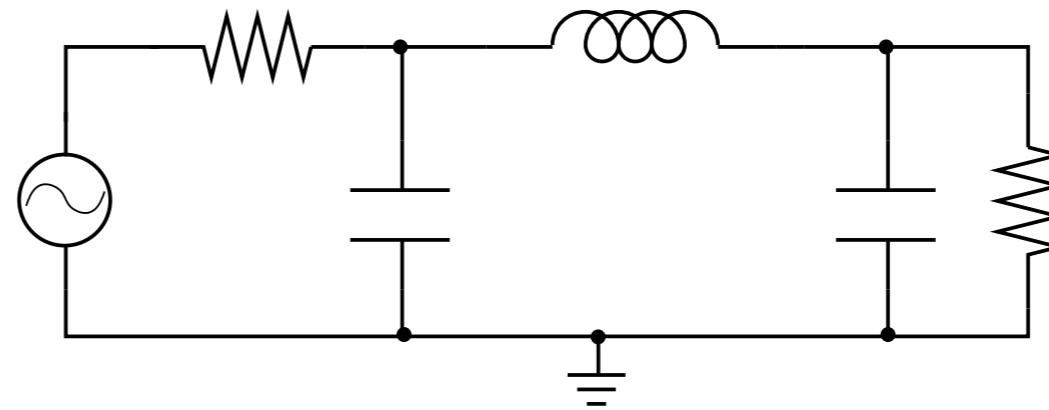
- g_m may be dynamically controlled!
 - gm-C filters electronically tunable!
 - C can track g_m quite well if built using transistor gate oxides
 - Very low power level achievable
 - No feedback!

Transconductor examples

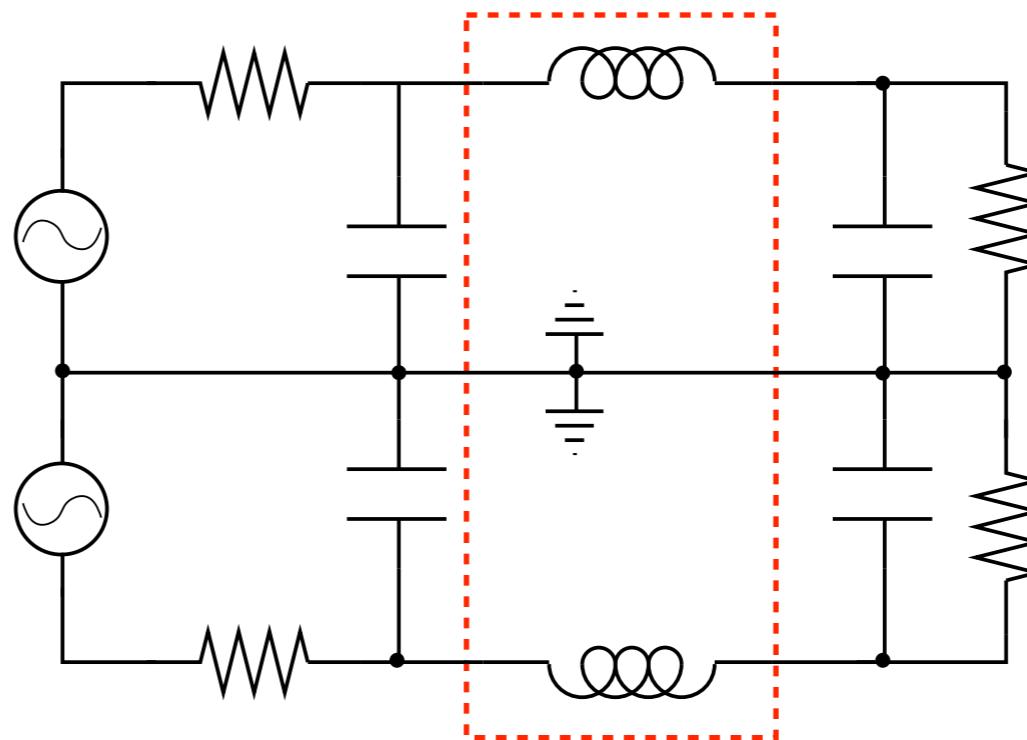


Figures from: Sanchez-Sinencio & Silva Martinez: CMOS transconductance amplifiers, architectures and active filters: a tutorial, IEE Proceedings 2000
 DAT 1996 Nov 24 2016

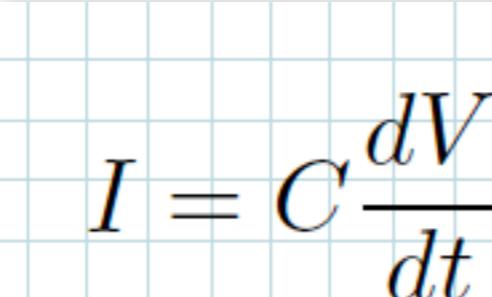
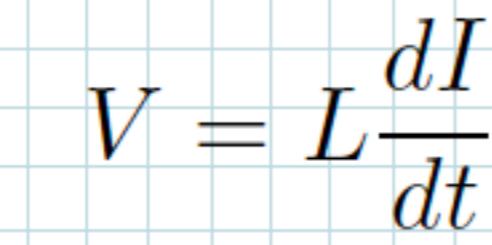
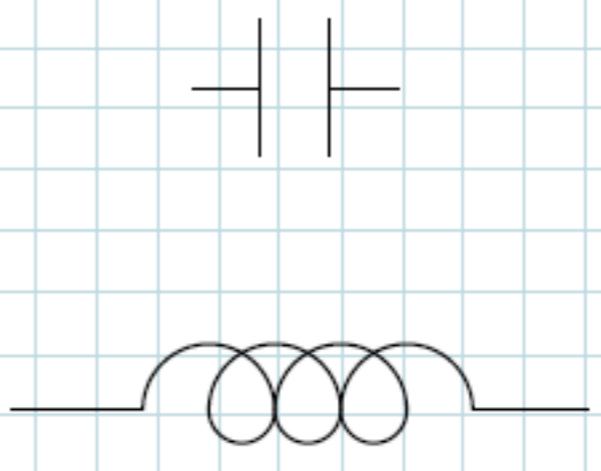
Implement passive filters by element replacement



= Another way of
building
gm-C filters



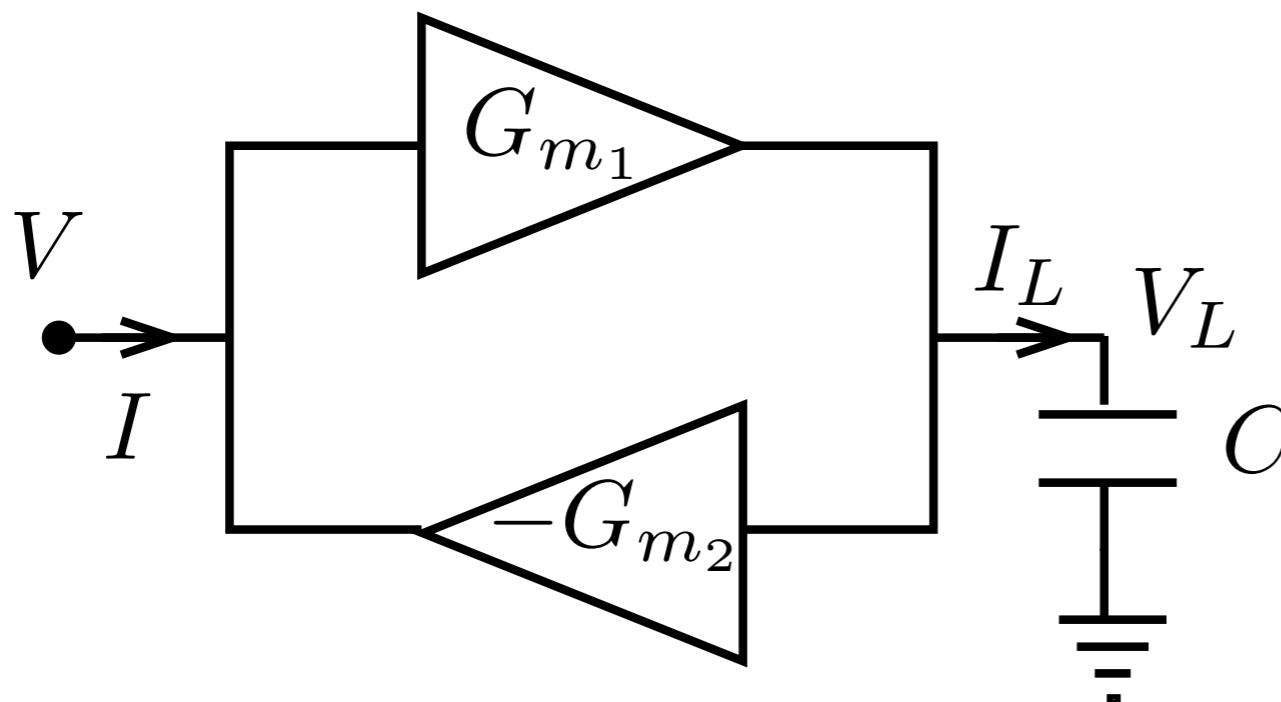
Simulated inductor

$$I = C \frac{dV}{dt}$$

$$V = L \frac{dI}{dt}$$


Idea: If we could switch current and voltage a capacitor could act as an inductor!

A transconductor does this one way =>
Use two!

Active grounded inductor



$$I_L = G_{m_1} V$$

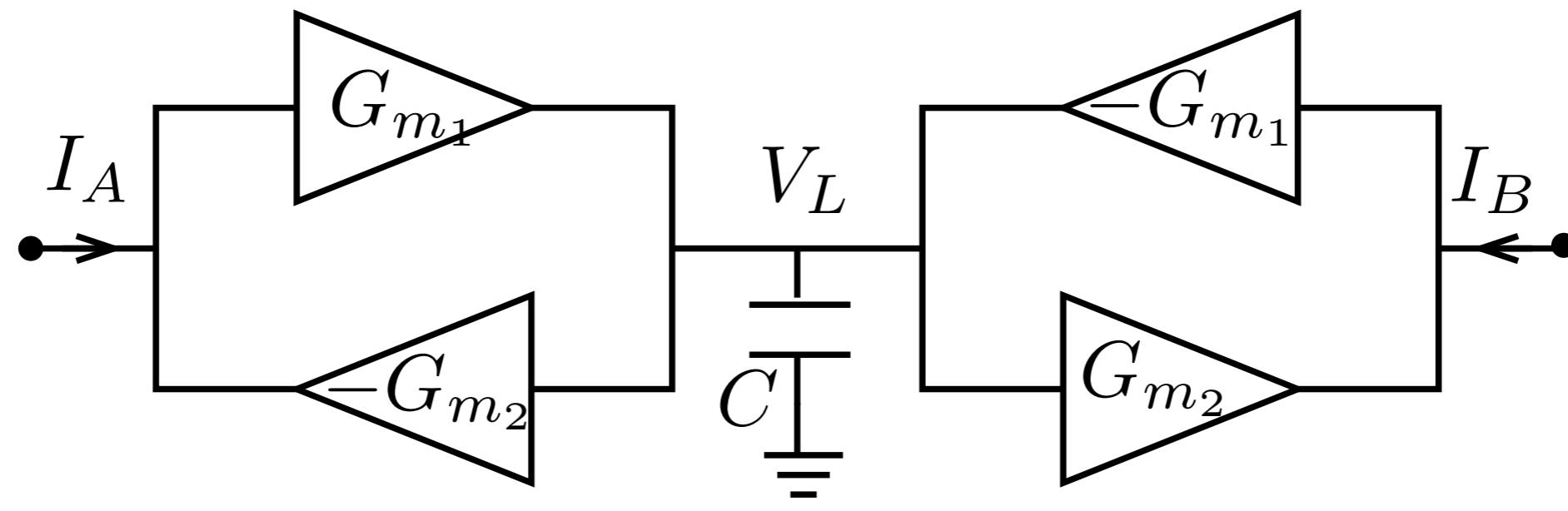
$$V_L = \frac{I_L}{sC}$$

$$I = G_{m_2} V_L$$

$$Z = \frac{V}{I} = \frac{sC}{G_{m_1} G_{m_2}}$$

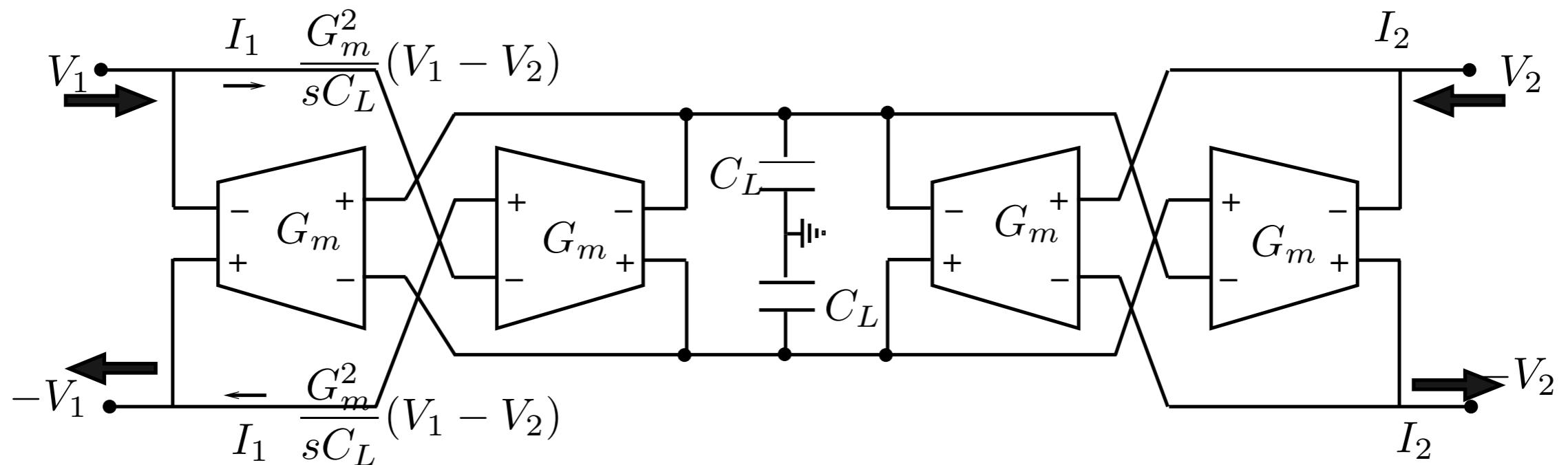
$$L_{gyr} = \frac{C}{G_{m_1} G_{m_2}}$$

Active floating inductor



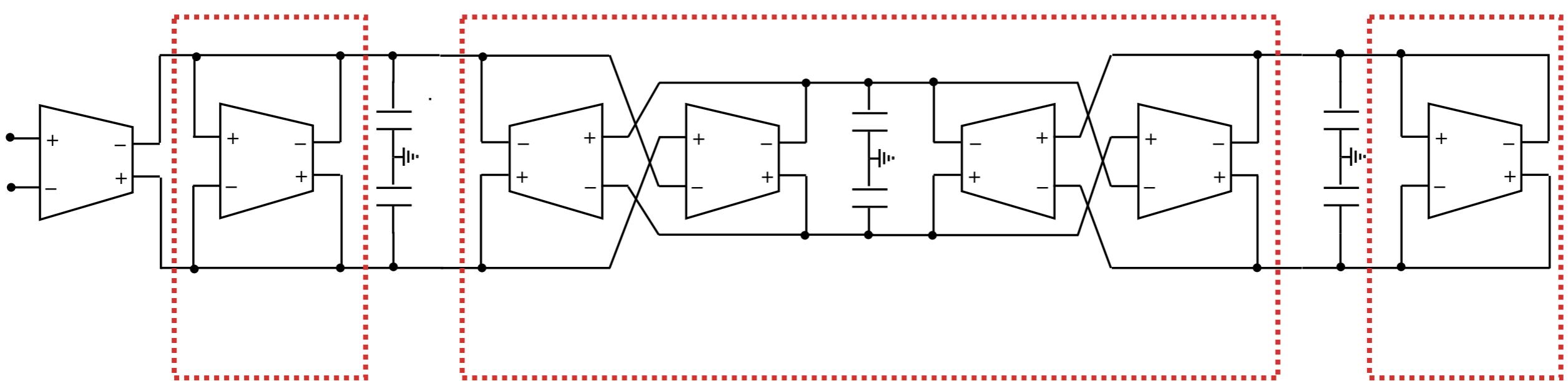
Same idea applied to both ends of inductor

Symmetric active floating inductor



Not shown in class

3rd-order differential filter w. active inductor



Integration issues

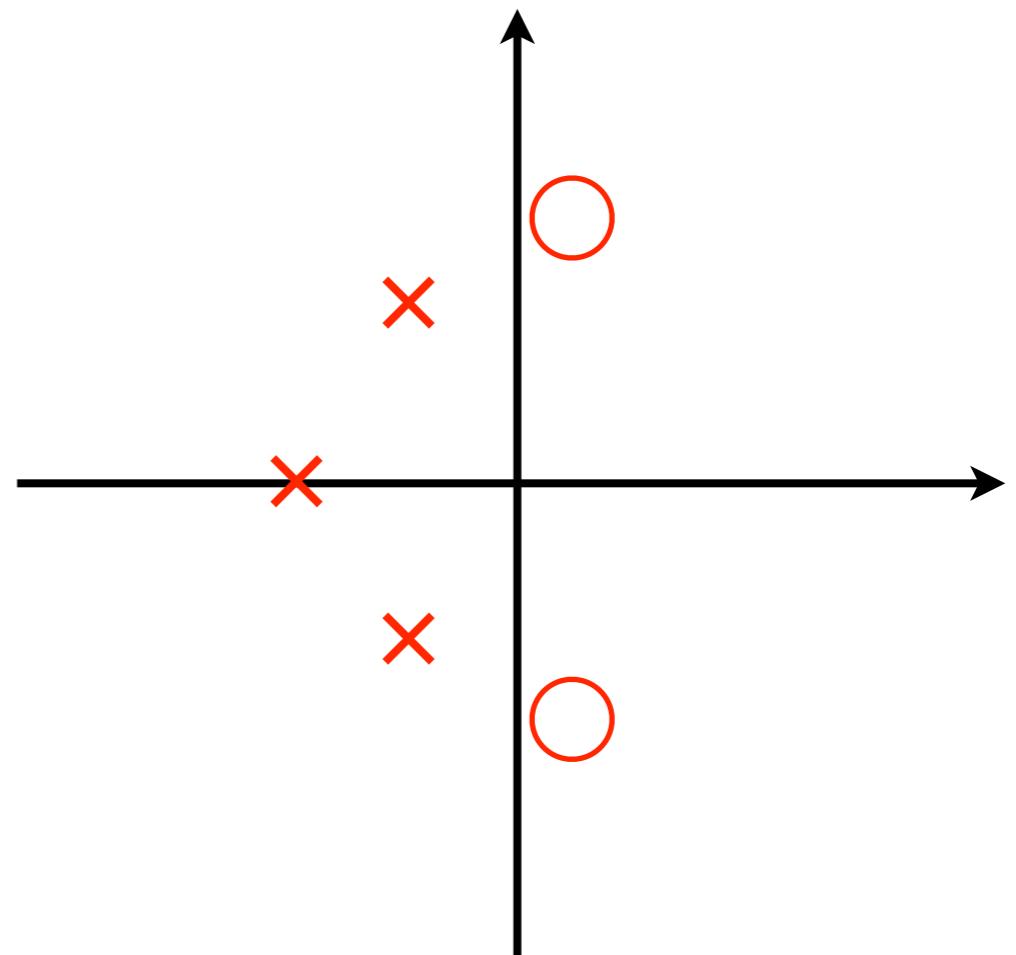
- Circuit variations move poles and zeros
 - May break specifications!
- Ladder filters: good matching properties
 - Design parameters are all gains

Matching

- Best matching reached with small-integer parameter ratios (5 : 4 : 2, etc)
 - Unit resistances / capacitances
 - Restrictions for pole / zero placement
- Thus, may reach certain accuracy with smaller capacitances
 - Lower power per stage
 - Higher-order filter may offer lower power!

Tuning

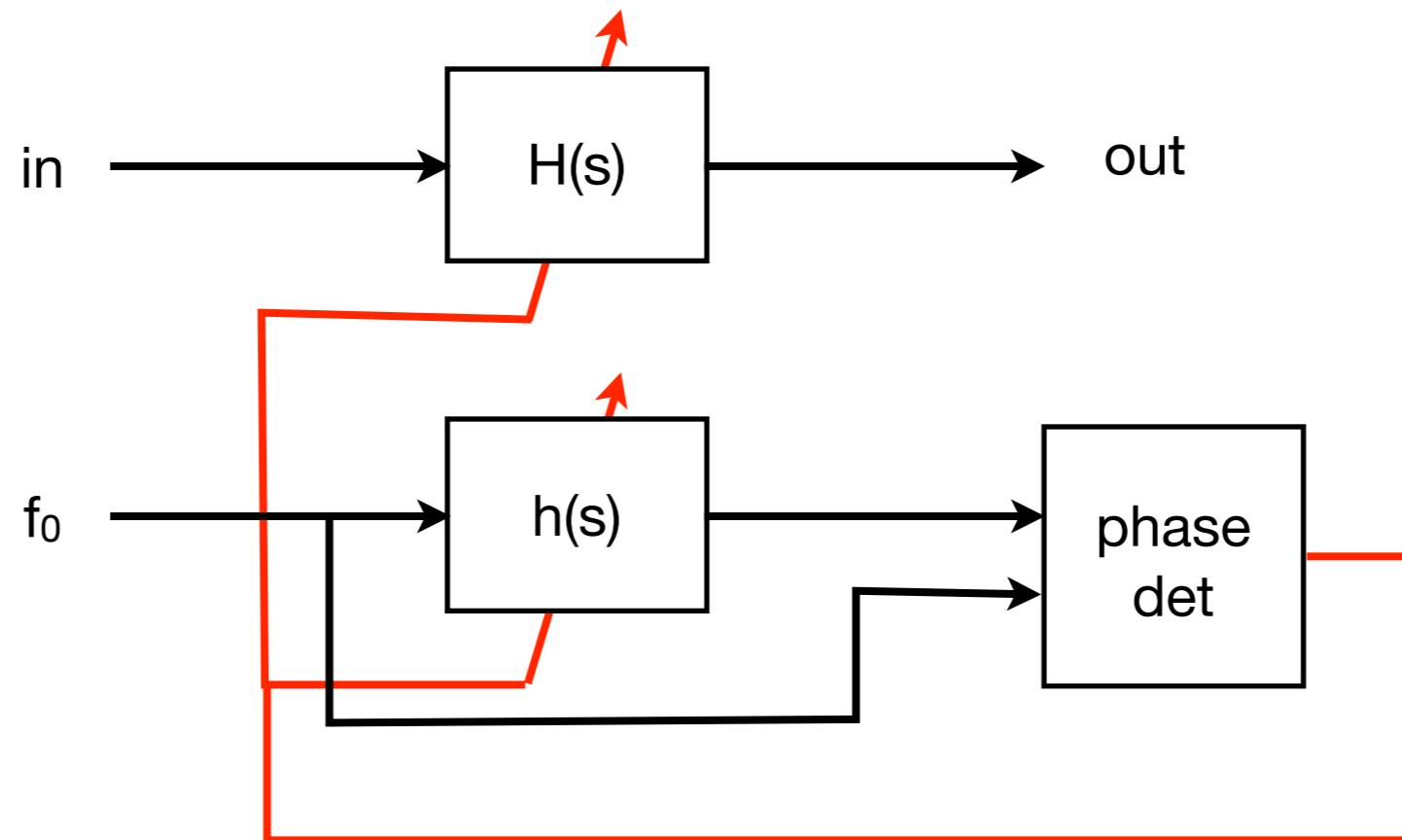
- Relative component matching can be quite good
- Absolute accuracy troublesome
 - Time/frequency scale for filter may be off



Tuning strategy outline

- Include small auxiliary filter which tracks main filter parameters
 - Control both filters with same voltage
 - Aux filter designed to have phase $\pi/2$ at some f_0
 - Apply f_0 to aux filter; steer V_{ctrl} s.t. phase is $\pi/2$

Tuning example



- Control feedback loop needs consideration...

Summary

- High requirements on OPamps for integrators
 - Especially if the desired filter Q is high
- Transformations useful in filter design
 - Re-use LP results for HP, BP, ...
 - Re-use passive results for active filters
- Two main design styles
 - Cascade of second-order sections
 - Ladder / Lattice / etc
- Sensitivity influenced by design style!