

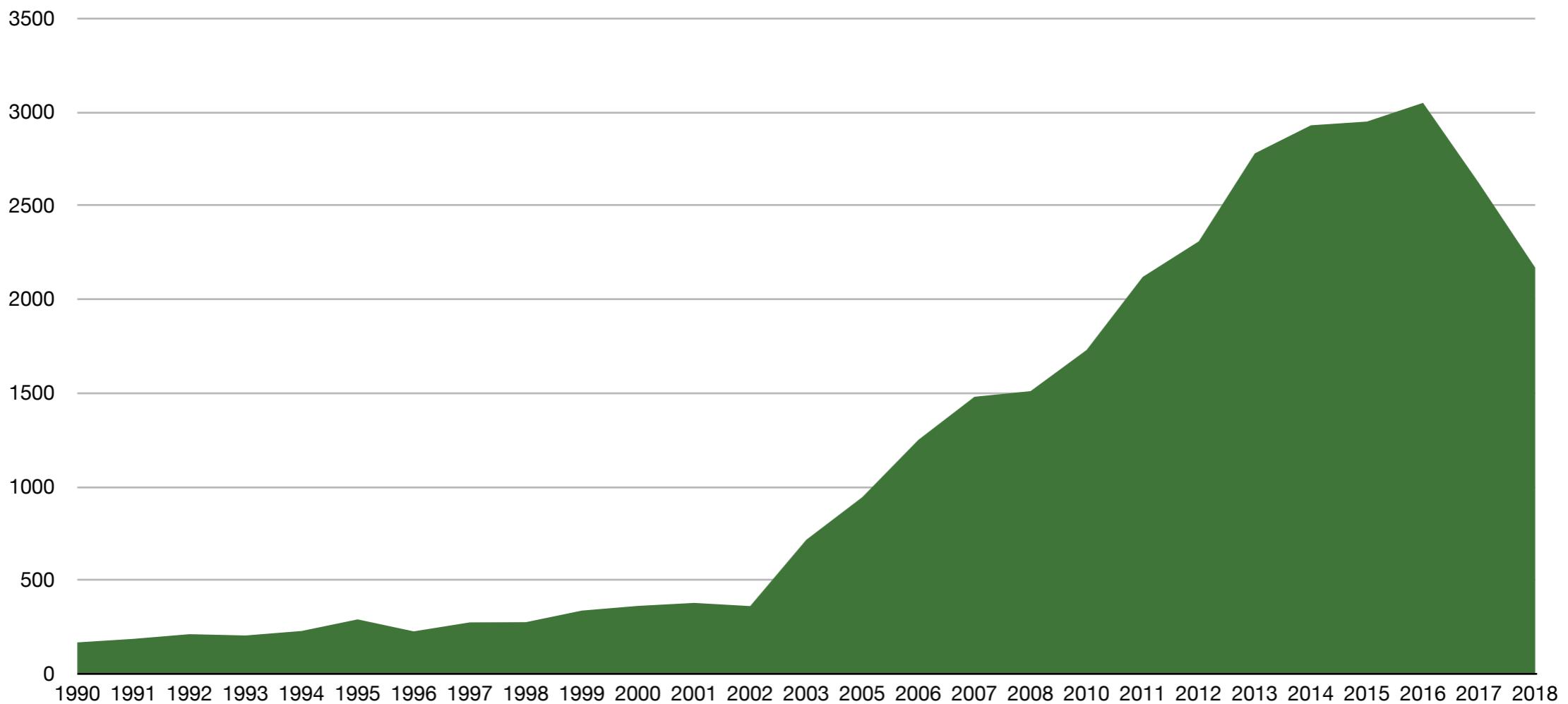
Variability and matching

DAT116, Nov 12 2018

Lena Peterson
Lars Svensson

Preliminary version!

New problem on horizon!?



- Number of hits in Google Scholar for keywords **vlsi variability** vs. year of publication

Naah. Old news.

- **Analog** design was ever such!
 - Parameter spread of active components:
 - Transistors
 - Amplifiers
 - ...
 - Temperature, aging, ...
- Lately, also a problem for **digital** design
 - => Renewed interest!

Dimensions of variability

- Time **independent** vs time **dependent**
 - Time scales
- **Global** variations vs **local** variations
 - Space scales
- **Deterministic** vs **random**

Division of topic

- Monday Nov 12
- Variability and **matching**
 - Transistors, resistors and capacitors
- Thursday Nov 15 (8-10! due to DATE-IT)
 - Variability and **feedback**

Matching - motivation

Digital-to-analog conversion DAC - resistors

Resistors are R and $2R$ (which can be implemented as $R+R$)
How to select R ?

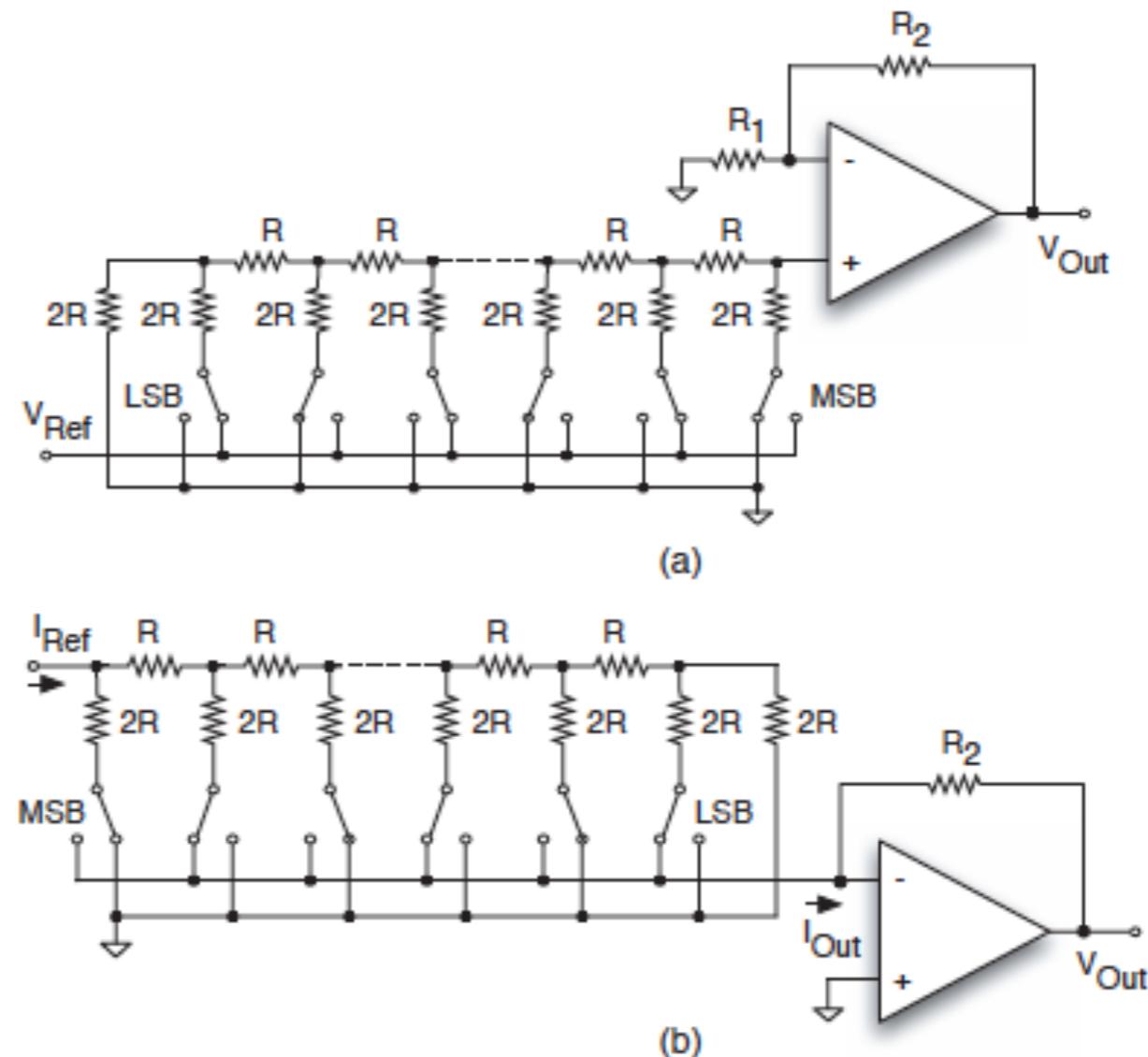


Figure 3.17. (a) Use of the voltage-mode R-2R ladder network. (b) Use of the current-mode R-2R ladder network in an output voltage DAC.

Source: Maloberti Ch. 3

Matching - motivation

Digital-to-analog conversion DAC - capacitors

The spread in C values is due to the number of bits. How large must the unit capacitor C_u be?

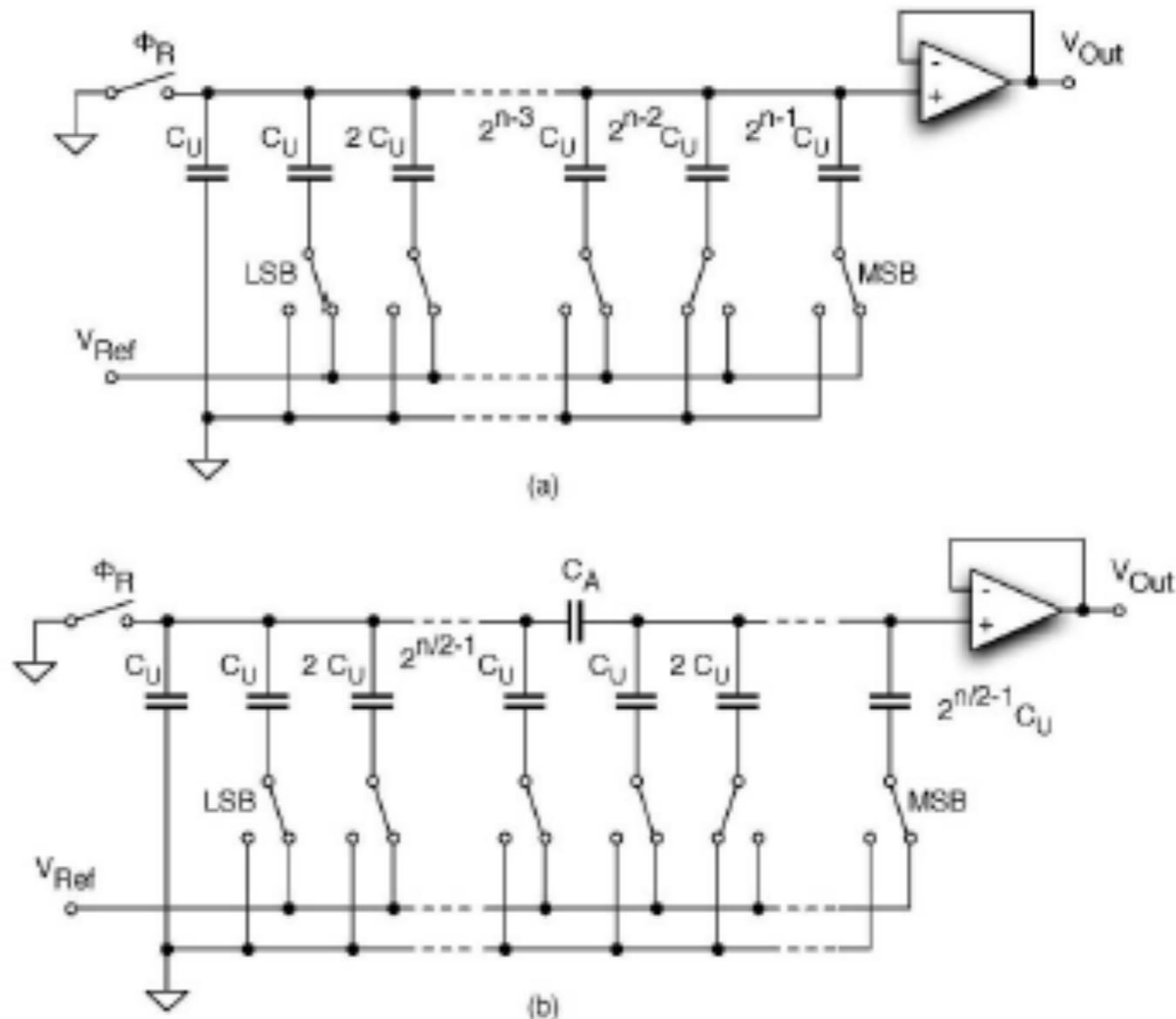


Figure 3.28. (a) n-bit Capacitive divider DAC. (b) The use of an attenuator in the middle of the array reduces the capacitance spread.

Source: Maloberti Ch. 3

Matching - motivation

Digital-to-analog conversion DAC - current sources

All current sources identical -
how large must I_u be?

The MOS transistor can be used as a current source.

How large (physically) to make the transistors.

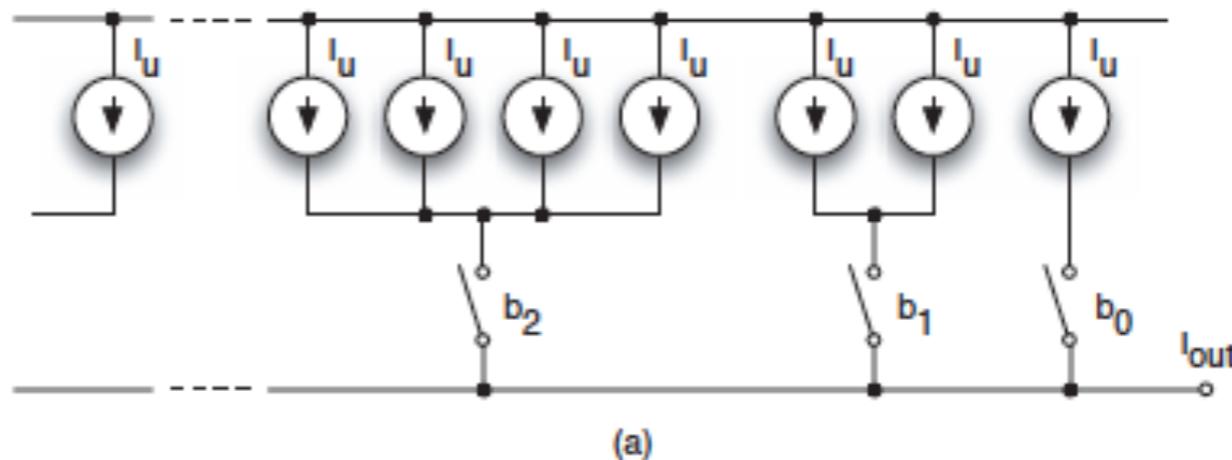
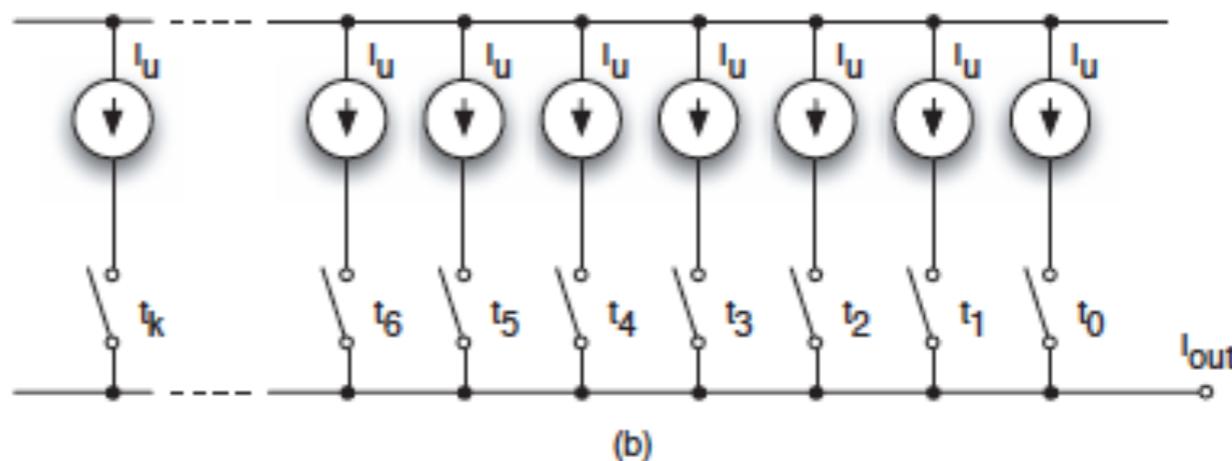


Figure 3.32. (a) Binary weighted control. (b) Unary weighted control.

MOS transistor as current source

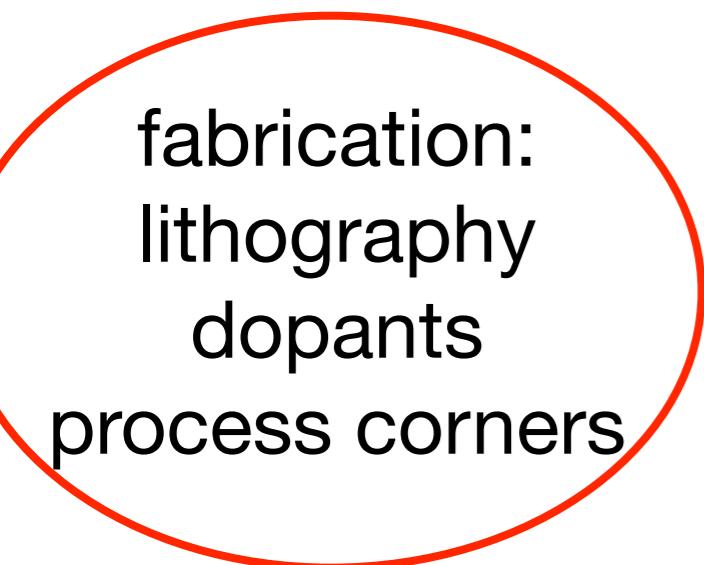
- ON or OFF
 - The threshold voltage, V_T , determines the state
 - When fully ON how much the current you get is determined by this equation:

$$I_{DSAT} = \beta (V_{DD} - V_T)^2$$

$$\beta = \mu C_{ox} \frac{W}{L}$$

Time scales

Max current CPU clock frequency: 4 GHz => period: 250 ps



IR drop
temperature
gradients

IR drop
clock jitter
HF noise
(thermal)

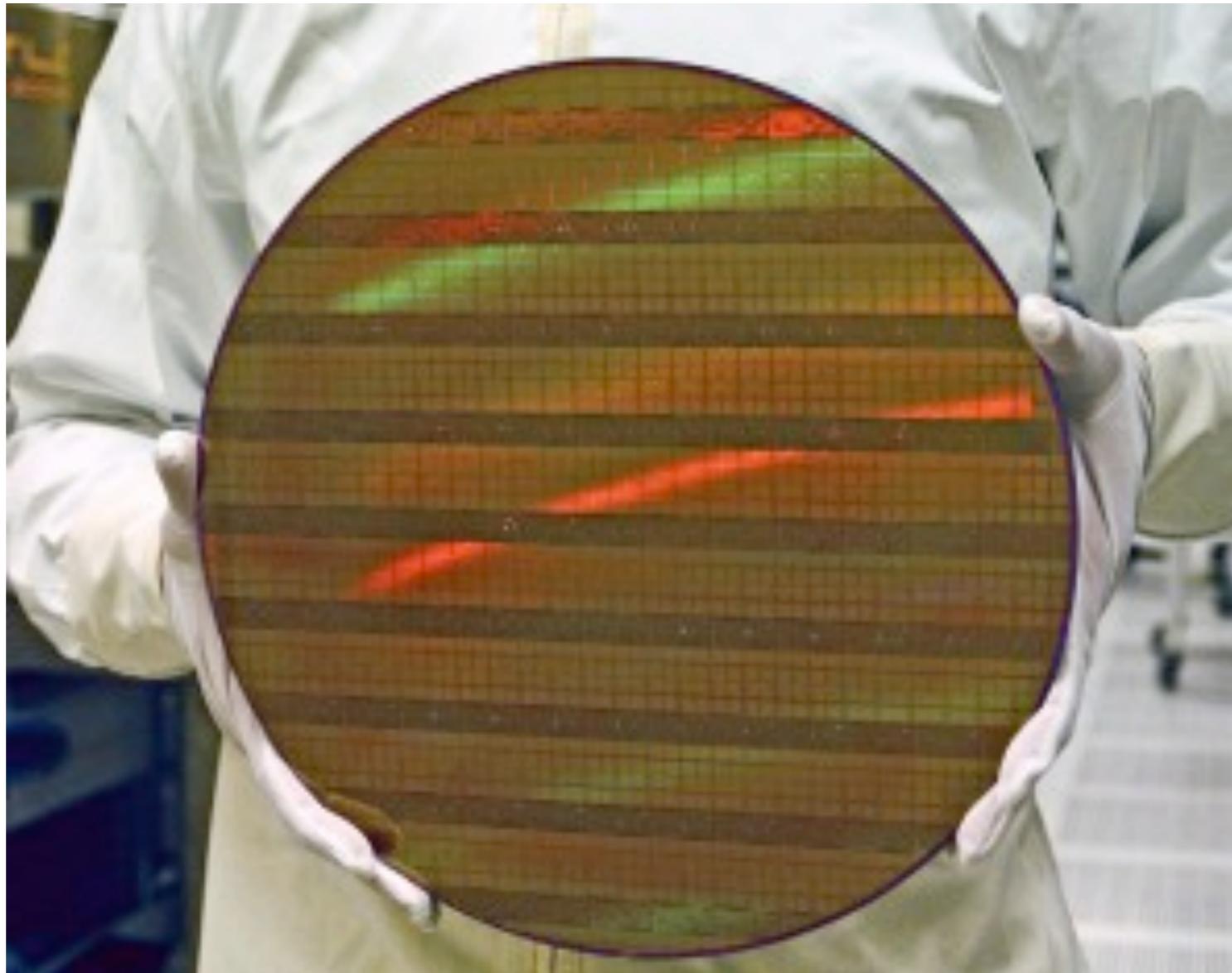
power supplies
temperature
LF noise (1/f)

static seconds = microseconds = 250 picoseconds =
 10^0 10^{-3} ps 10^{-12}
 billions of clock cycles millions of clock cycles less than one clock cycle

Static variability

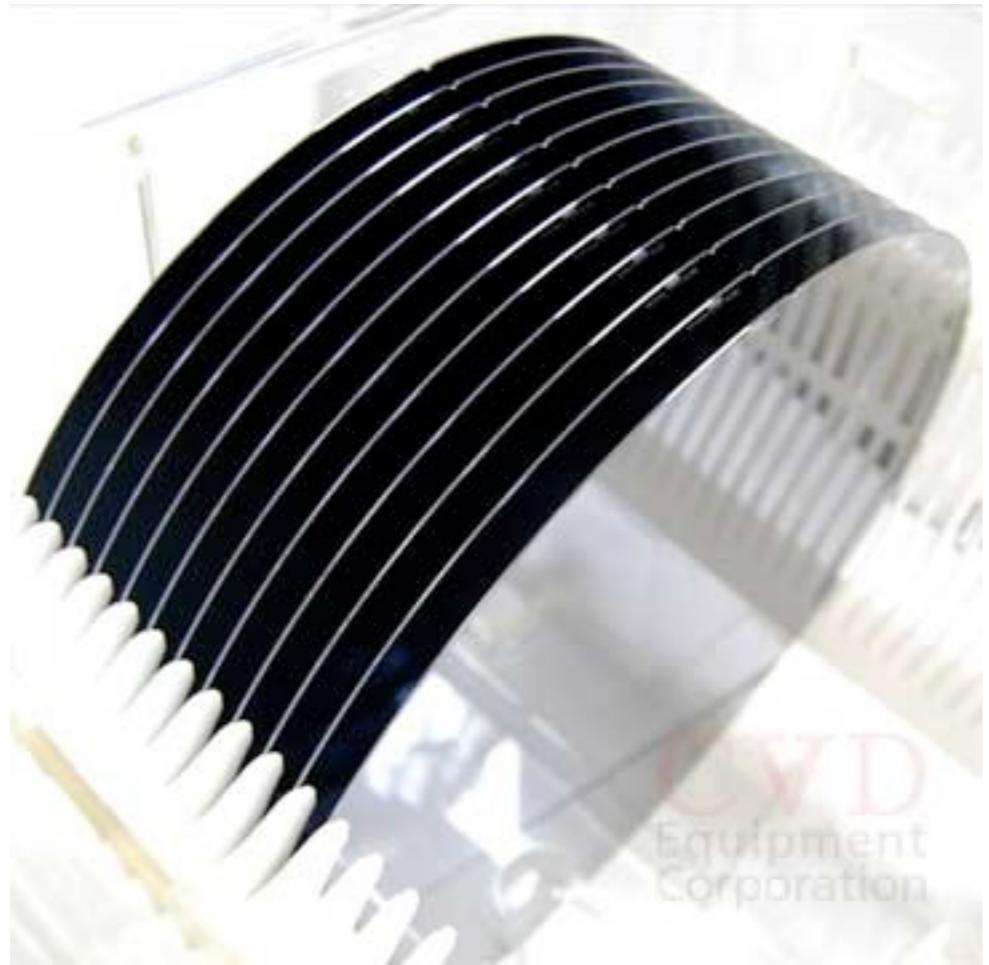
- Two devices, nominally identical, come out differently
 - Random + predictable
 - Note: more insights move more of variations from **r** to **p**
 - What is knowable in principle may still be efficiently handled by statistical methods

Chips are fabricated on wafers



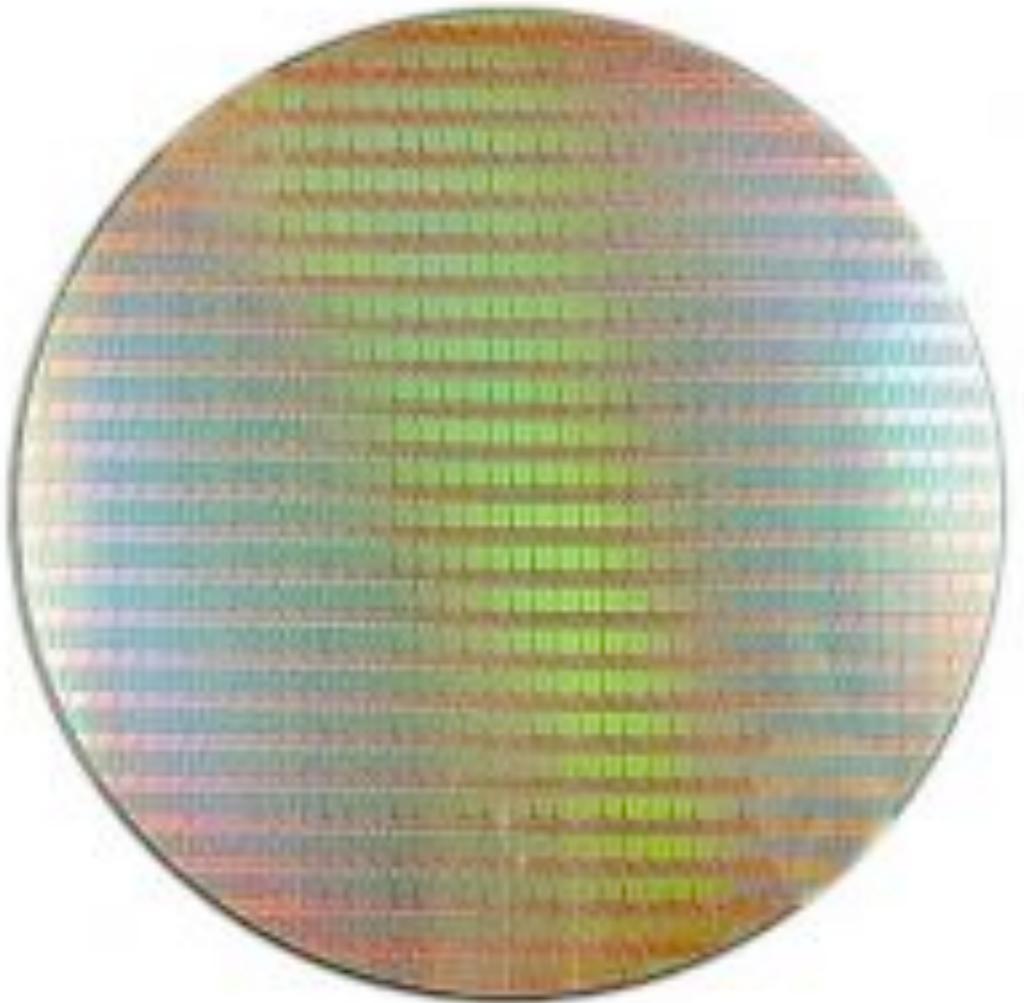
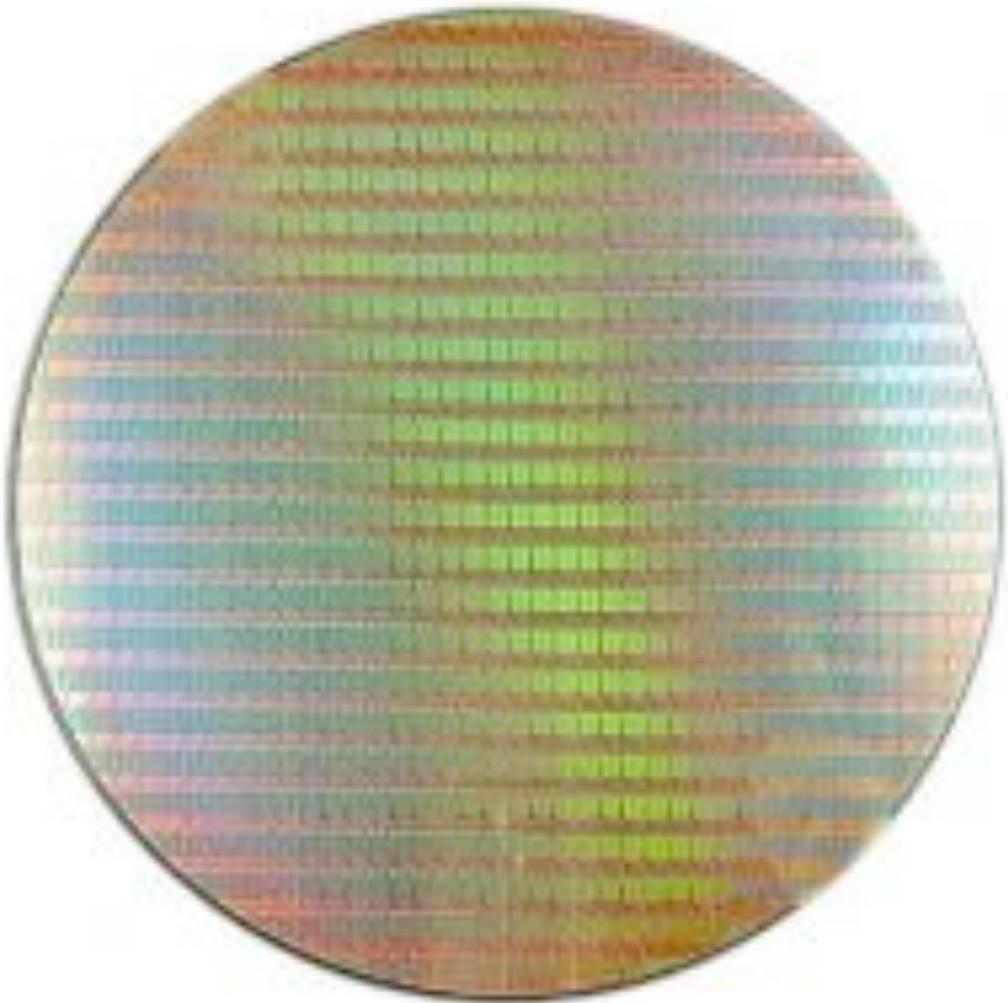
Current Intel 300-mm wafer (photo from Intel)

Source 1



- 2 “boats” (wafer batches) will differ
 - Equipment may have changed

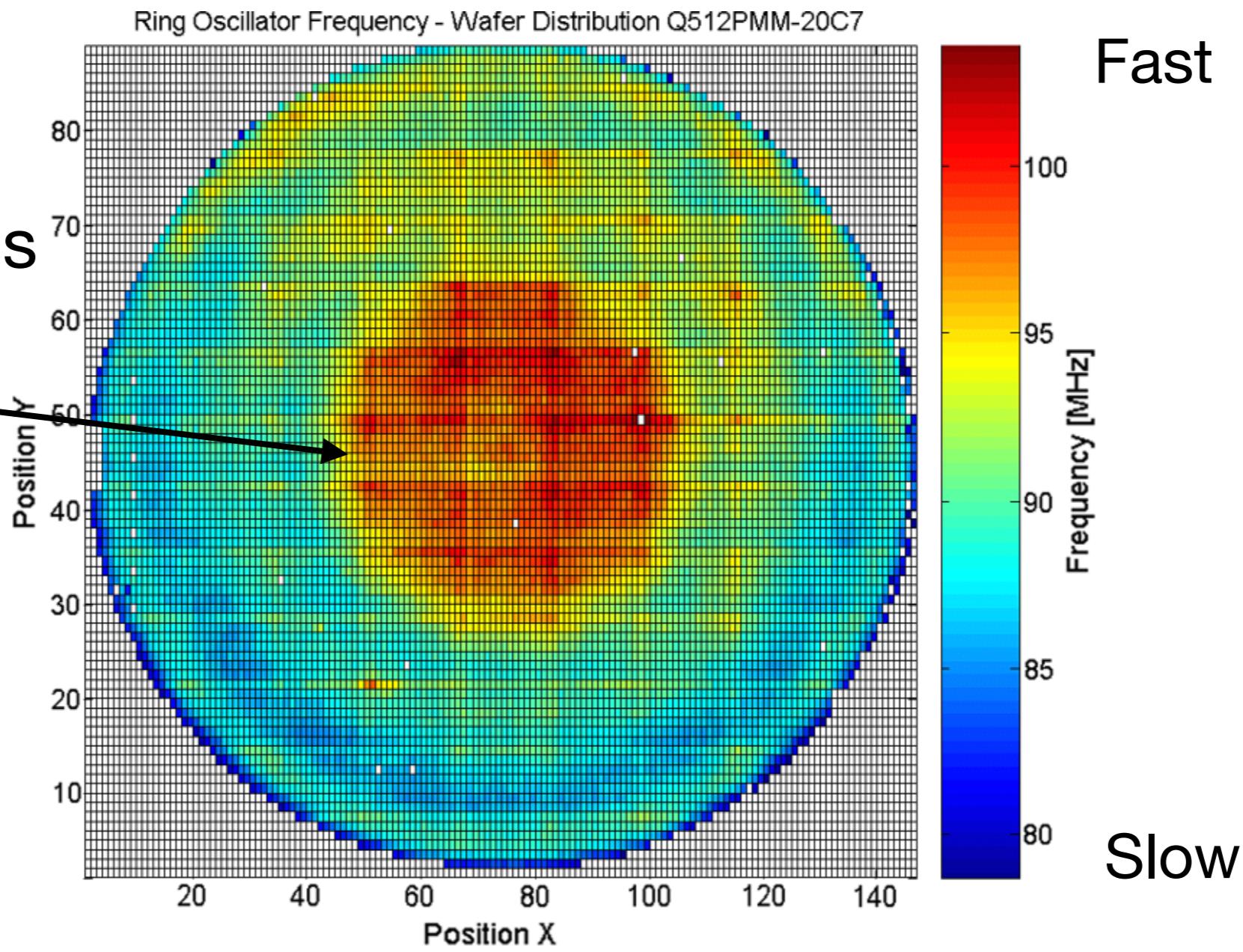
Source 2



- Wafers from same boat will differ
 - Slight differences in processing steps

Source 3

Each square is
one chip



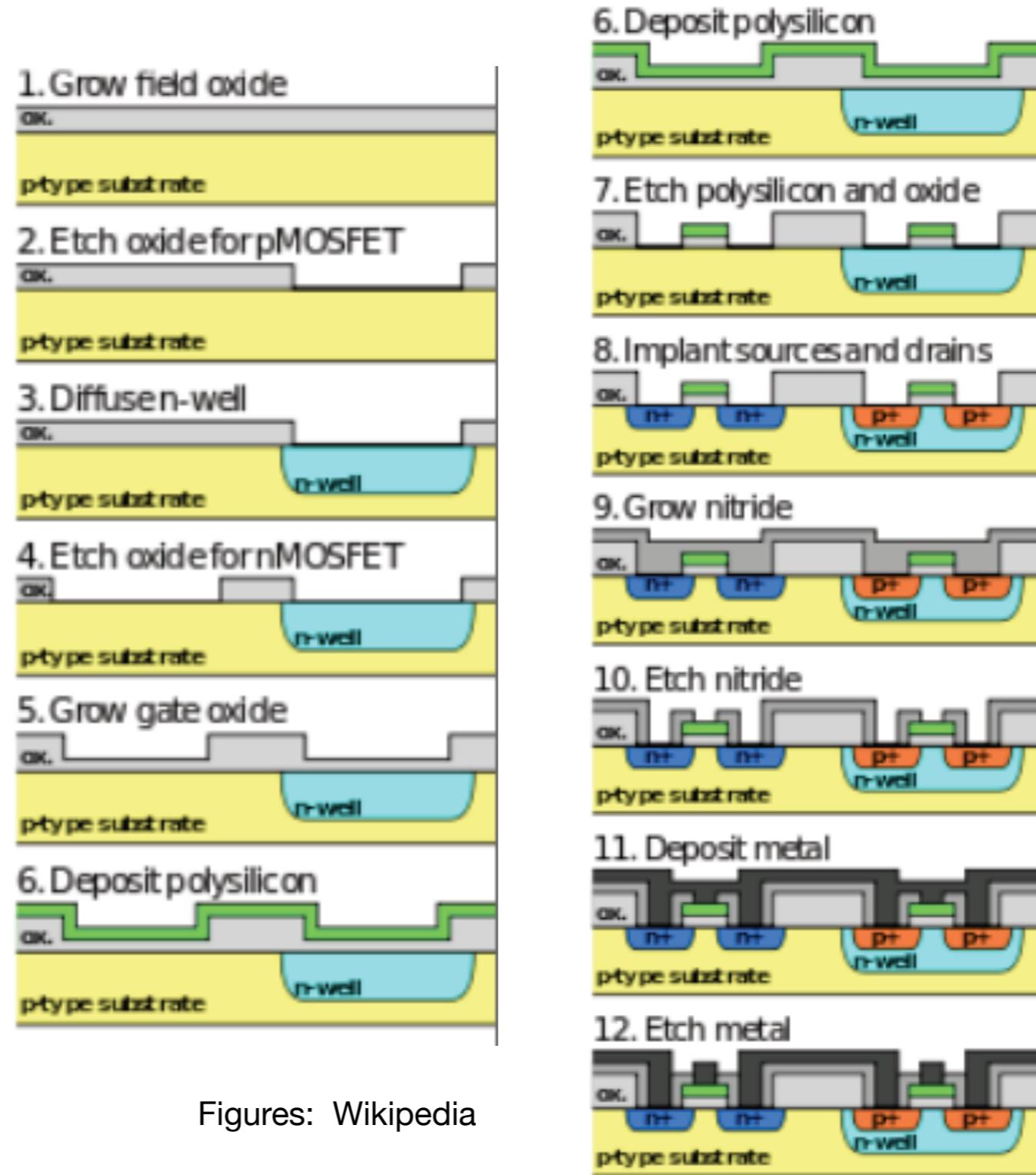
- Chips from same wafer will differ

Source: Pelgrom: Analog-to-Digital Conversion 2010. Springer. Fig. 11.4

CMOS fabrication steps

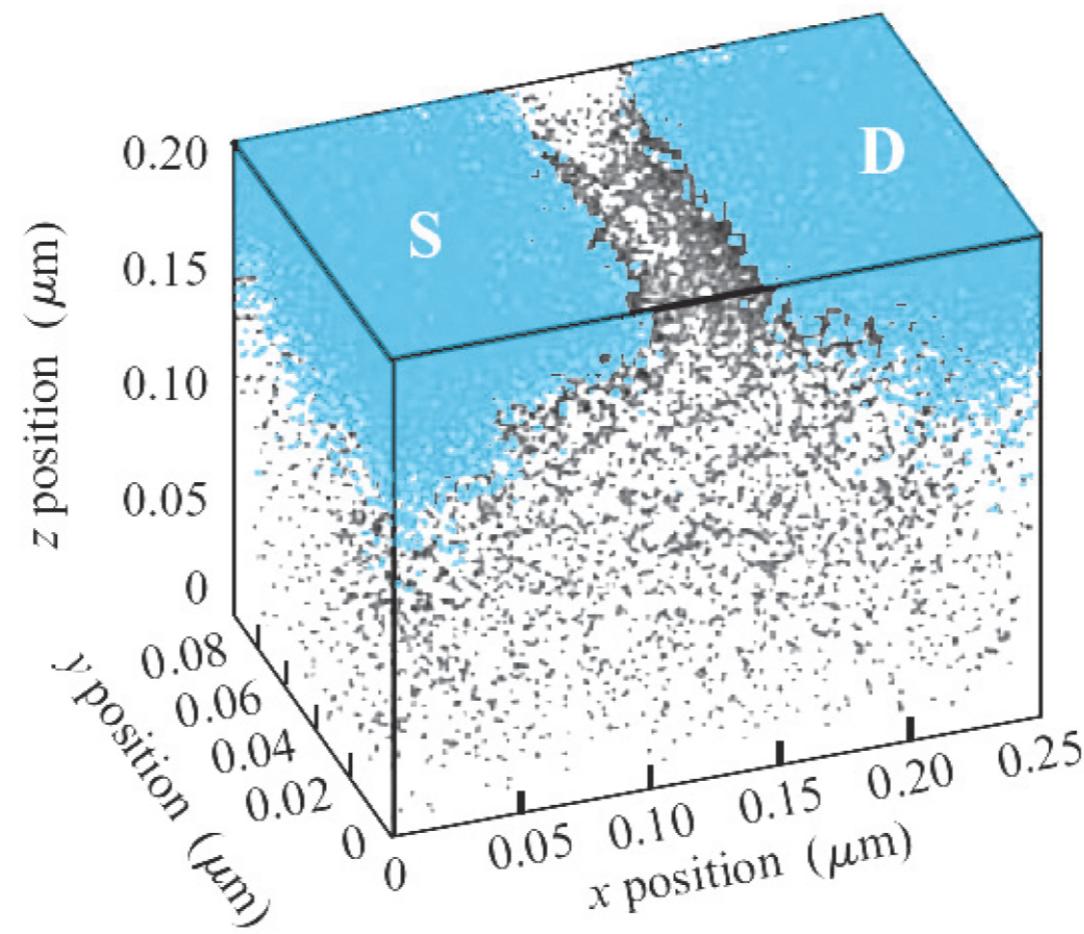
Grow
Etch
Diffuse
Etch
Grow
Deposit
Etch
Implant
Grow
Etch
Deposit
Etch

...



Figures: Wikipedia

Source 5

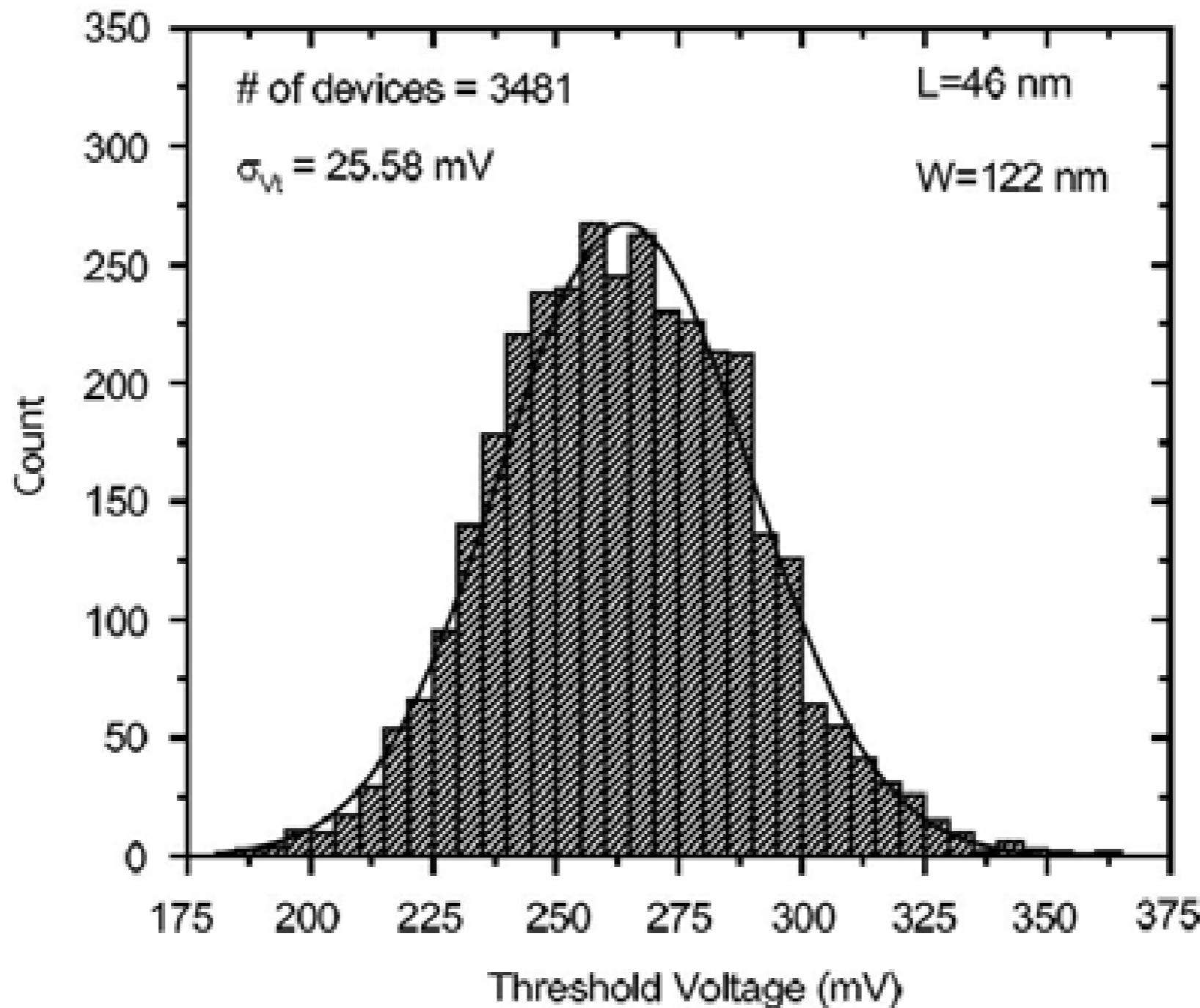


- Pure random variations
 - i.e. what is still unpredictable ...

How handle?

- Designs should depend on **ratios**, not on absolute values
 - Usually means selecting different circuit topology.
- **Matching rules:**
 - Use identical sizes
 - Minimize predictable/controllable differences
 - Increase device size to reduce random differences

Matching example V_T



Parameter fluctuation (1)

- Parameter P describes physical property of device
 - Deterministic + random function
 - Different values at different locations on wafer (x,y) : $P(x,y)$

Parameter fluctuation (2)

Describe the **difference** in P between two points, ΔP , mathematically:

$$\Delta P(x_{12}, y_{12}) = P(x_1, y_1) - P(x_2, y_2)$$

which can also be written as:

$$\Delta P(x_{12}, y_{12}) = \frac{1}{\text{area}} \left[\iint_{\text{area}(x_1, y_1)} P(x', y') dx' dy' - \iint_{\text{area}(x_2, y_2)} P(x', y') dx' dy' \right]$$

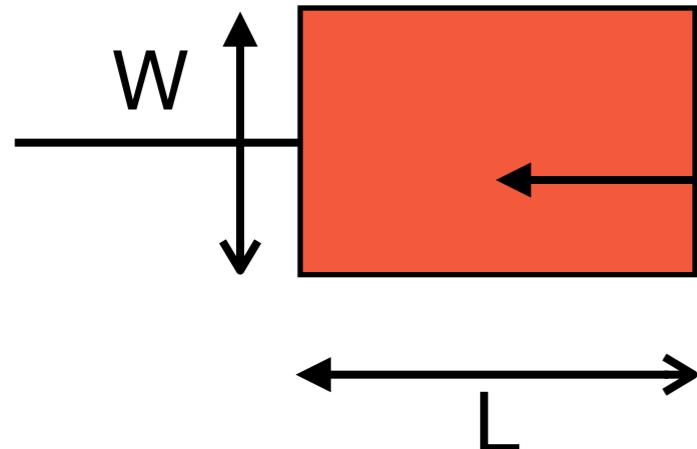
In the Fourier domain this convolution becomes a multiplication:

$$\Delta \mathcal{P}(\omega_x, \omega_y) = \mathcal{G}(\omega_x, \omega_y) \mathcal{P}(\omega_x, \omega_y)$$

Can analyze **geometry** and **mismatch generating source** separately!

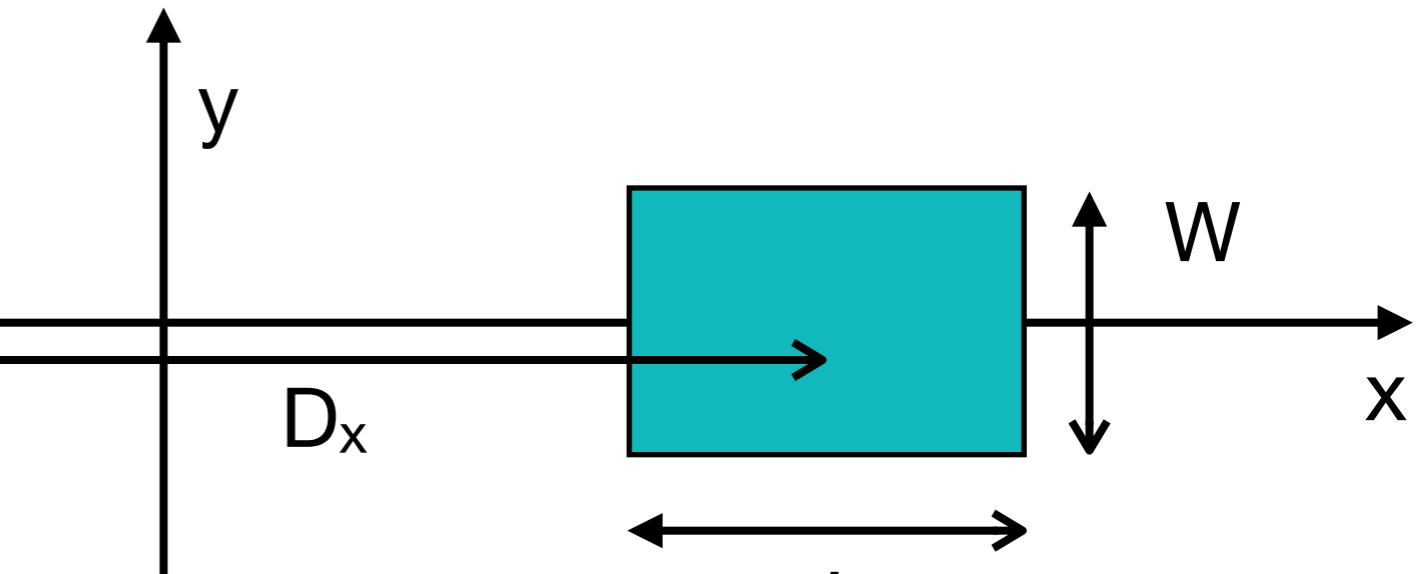
Geometry function in x,y plane

geometry function : $h(x,y)$:



$$= -1/WL$$

for all (x,y)
within red box



$$= 0$$

everywhere
else

$$= 1/WL$$

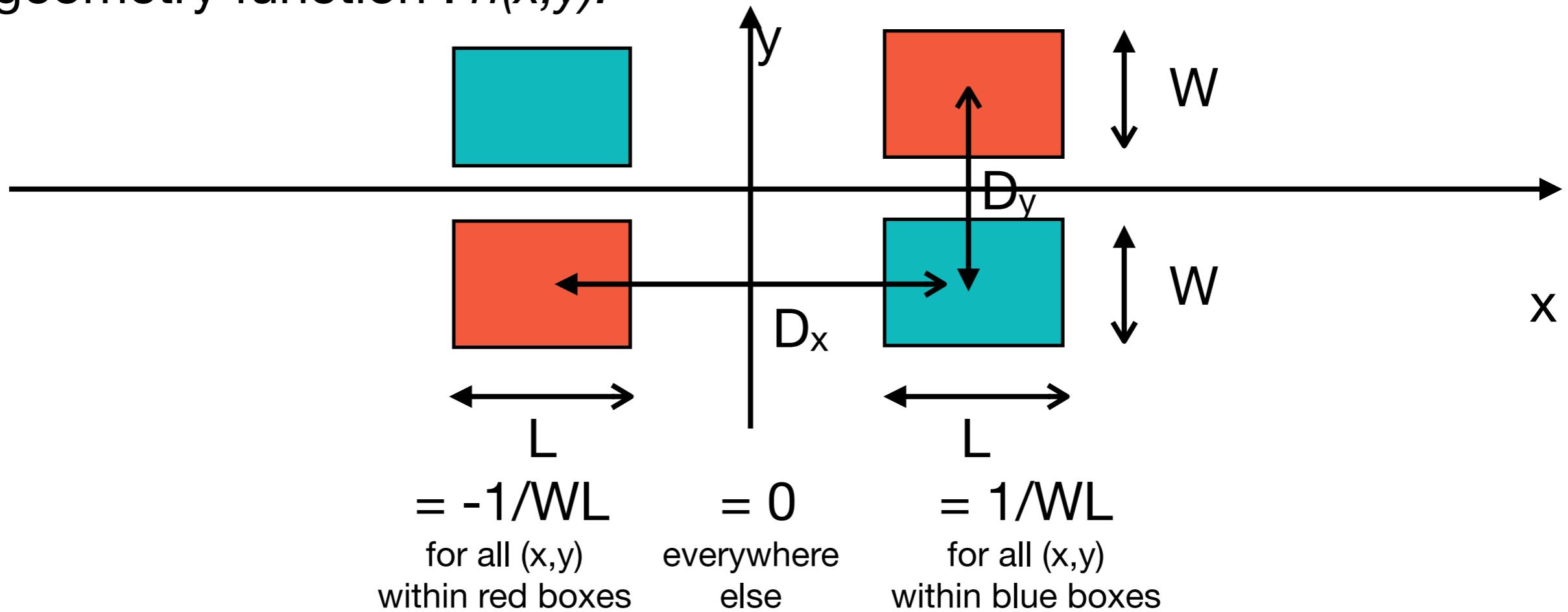
for all (x,y)
within blue box

Fourier transform (after some manipulation):

$$\mathcal{G}(\omega_x, \omega_y) = \frac{\sin(\omega_x \frac{L}{2})}{\omega_x \frac{L}{2}} \frac{\sin(\omega_y \frac{W}{2})}{\omega_y \frac{W}{2}} \left[2 \sin(\omega_x \frac{D_x}{2}) \right]$$

Another geometry function in x,y

geometry function : $h(x,y)$:



Fourier transform (after some more manipulations):

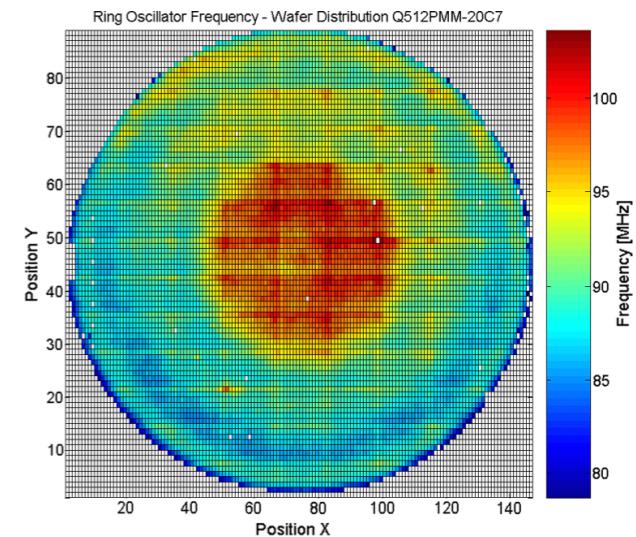
$$\mathcal{G}(\omega_x, \omega_y) = \frac{\sin(\omega_x \frac{L}{2})}{\omega_x \frac{L}{2}} \frac{\sin(\omega_y \frac{W}{2})}{\omega_y \frac{W}{2}} \left[\cos(\omega_x \frac{D_x}{2}) - \cos(\omega_y \frac{D_y}{2}) \right]$$

Mismatch generation source: $P(x,y)$

- $P(x,y)$ of “class 1”:
 - Total mismatch of parameter P is due to mutually independent events
 - Effects on the parameter are so small that contributions are linear
 - The correlation distance between events is small compared to device size
- Result is a Possion process which converges to Gaussian with 0 mean.
- Corresponds to spatial “white noise”. Characterized by **one constant** for all spatial frequencies.

Mismatch generation source $P(x,y)$

- $P(x,y)$ of “class 2”:
 - Total mismatch of parameter P is due to mutually independent events
 - Effects on the parameter are so small that contributions are linear
 - The correlation distance between events is **large** compared to device size



Finding the power (= variance) of ΔP

Sum the power contributions =
Integrate the squares over all spatial frequencies:

$$\sigma^2(\Delta P) = \frac{1}{4\pi^2} \int_{\omega_y=-\infty}^{\infty} \int_{\omega_x=-\infty}^{\infty} |\mathcal{G}(\omega_x, \omega_y)|^2 |\mathcal{P}(\omega_x, \omega_y)|^2 d\omega_x d\omega_y$$

With two rectangular devices and
a mismatch generation source of class 1 we get:

$$\sigma_{\Delta P}^2 = \frac{A_P^2}{WL}$$

Here A_P is the proportionality constant for parameter ΔP

Average (relative) or absolute quantity?

This relation holds for *averaged* or *relative* values of parameter P (for example threshold voltage of MOS transistor):

$$\sigma_{\Delta P}^2 = \frac{A_P^2}{WL}$$

Absolute number of events are proportional to WL (for example number of charges in MOS transistor channel). The relation is then:

$$\sigma^2(\Delta P) = A_P^2 WL$$

Conclusion of derivation

Variability example: OP27

OP27—SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

(@ $V_S = \pm 15$ V, $T_A = 25^\circ\text{C}$, unless otherwise noted.)

Parameter	Symbol	Conditions	OP27A/E			OP27F			OP27C/G			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
INPUT OFFSET VOLTAGE ¹	V_{OS}			10	25		20	60		30	100	μV
LONG-TERM V_{OS} STABILITY ^{2, 3}	V_{OS}/Time			0.2	1.0		0.3	1.5		0.4	2.0	$\mu\text{V}/M_O$
INPUT OFFSET CURRENT	I_{OS}			7	35		9	50		12	75	nA
INPUT BIAS CURRENT	I_B			± 10	± 40		± 12	± 55		± 15	± 80	nA
INPUT NOISE VOLTAGE ^{3, 4}	$e_{n\text{ p-p}}$	0.1 Hz to 10 Hz		0.08	0.18		0.08	0.18		0.09	0.25	$\mu\text{V p-p}$
INPUT NOISE Voltage Density ³	e_n	$f_O = 10$ Hz		3.5	5.5		3.5	5.5		3.8	8.0	$\text{nV}/\sqrt{\text{Hz}}$
		$f_O = 30$ Hz		3.1	4.5		3.1	4.5		3.3	5.6	$\text{nV}/\sqrt{\text{Hz}}$
		$f_O = 1000$ Hz		3.0	3.8		3.0	3.8		3.2	4.5	$\text{nV}/\sqrt{\text{Hz}}$
INPUT NOISE Current Density ^{3, 5}	i_n	$f_O = 10$ Hz		1.7	4.0		1.7	4.0		1.7		$\text{pA}/\sqrt{\text{Hz}}$
		$f_O = 30$ Hz		1.0	2.3		1.0	2.3		1.0		$\text{pA}/\sqrt{\text{Hz}}$
		$f_O = 1000$ Hz		0.4	0.6		0.4	0.6		0.4	0.6	$\text{pA}/\sqrt{\text{Hz}}$
INPUT RESISTANCE				29								
DAT116 Nov 12 2018 LP				1.3	6		0.04	5		0.7	4	$M\Omega$
Differential Input				1.3	6		0.04	5		0.7	4	$M\Omega$

MOS transistor matching

$$I_{DSAT} = \beta (V_{DD} - V_T)^2$$

where $\beta = \mu C_{ox} \frac{W}{L}$

Threshold voltage
matching - absolute
(since averaged quantity)

$$\sigma_{\Delta VT}^2 = \frac{A_{VT}^2}{WL}$$

Current factor
matching - relative
(since absolute quantity)

$$\frac{\sigma_{\Delta \beta}^2}{\beta^2} \approx \frac{A_{\beta}^2}{WL}$$

Has to analyze
contributions
from μ , C_{ox} , W and L

Finding proportionality constant A_{VT} from measurements

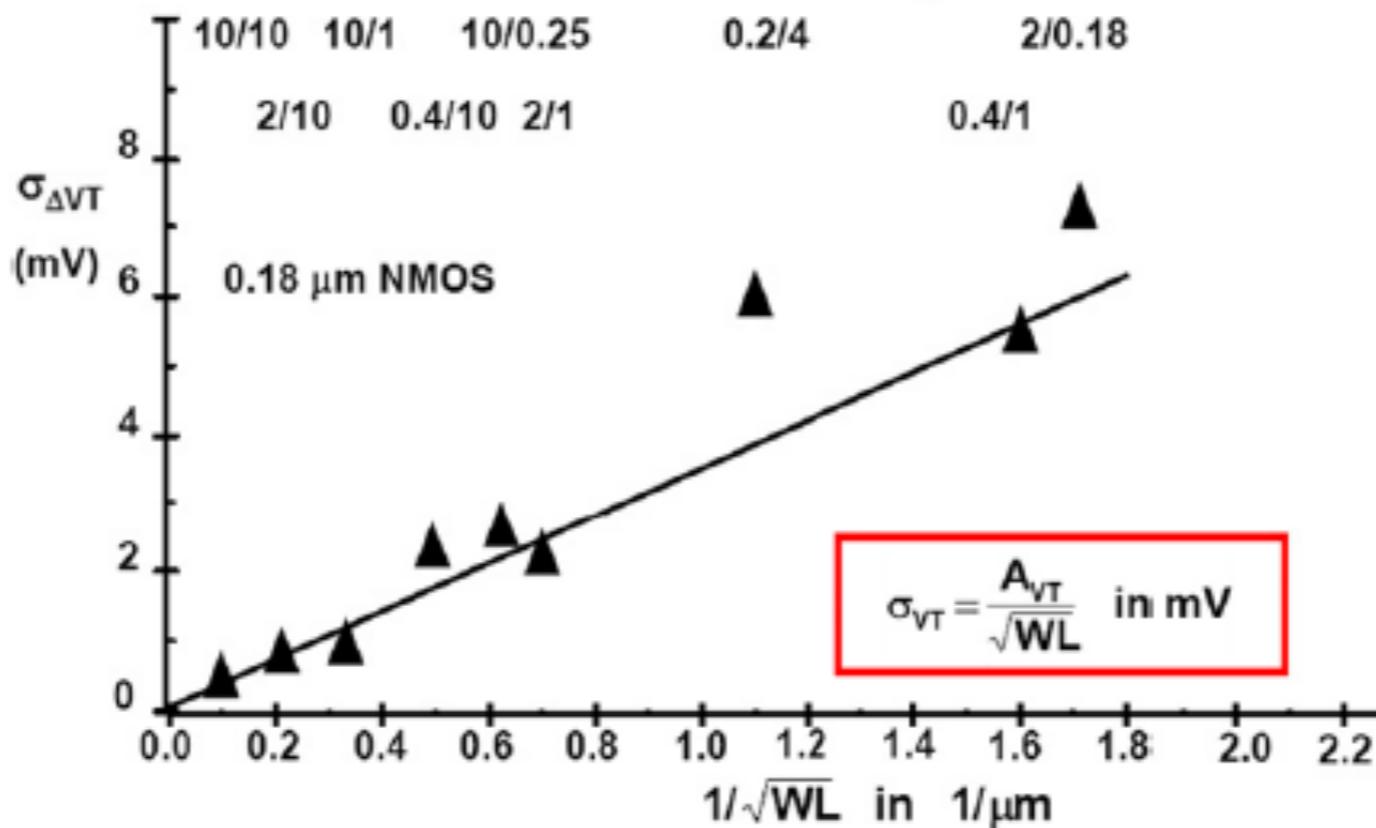
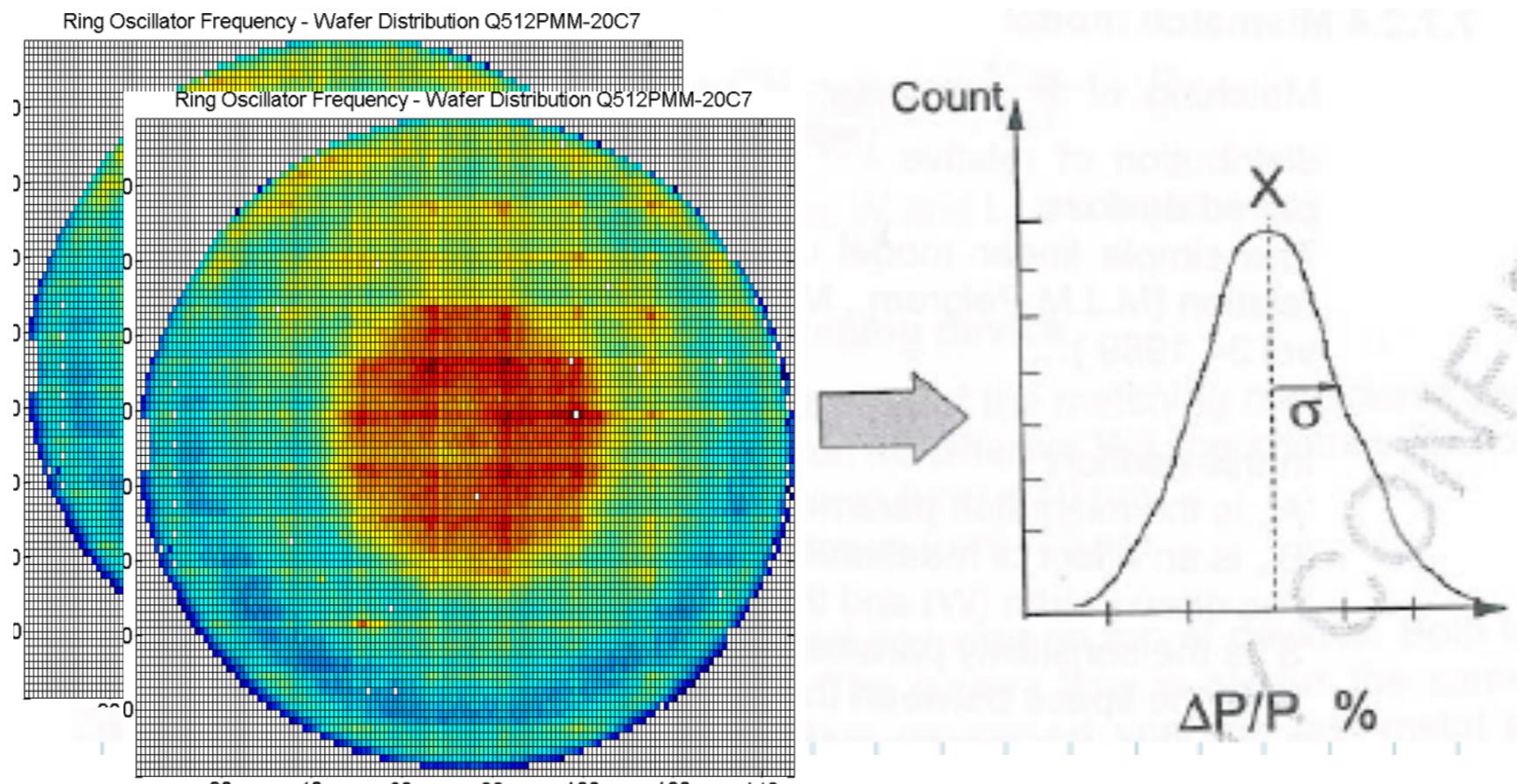


Fig. 11.18 The standard deviation of the NMOS threshold and the relative current factor versus the inverse square root of the area, for a $0.18 \mu\text{m}$ CMOS process

Can also calculate from first principles

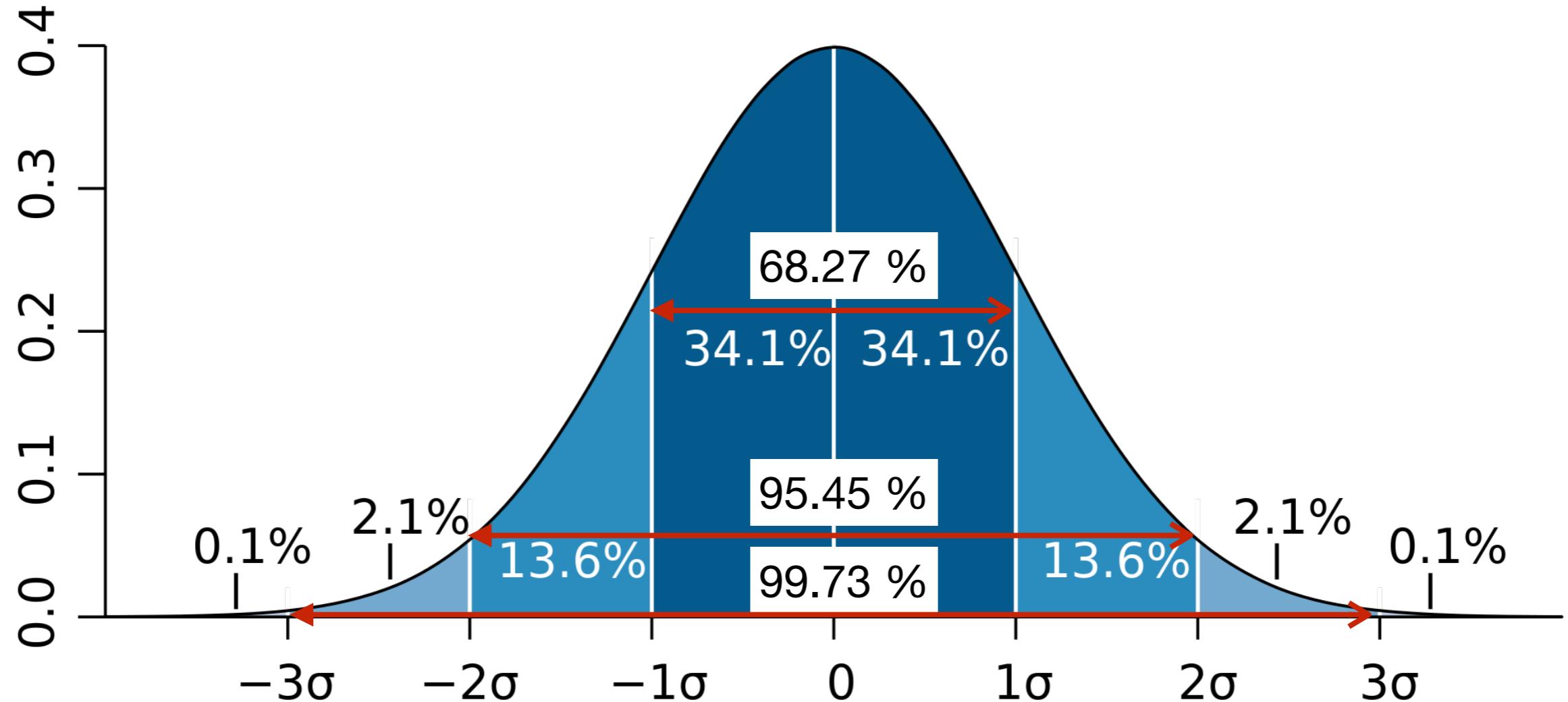
From Pelgrom 2010

From measurements to statistics



Measured mismatch translated into statistical model
Assumption: Gaussian distribution

Translation continued



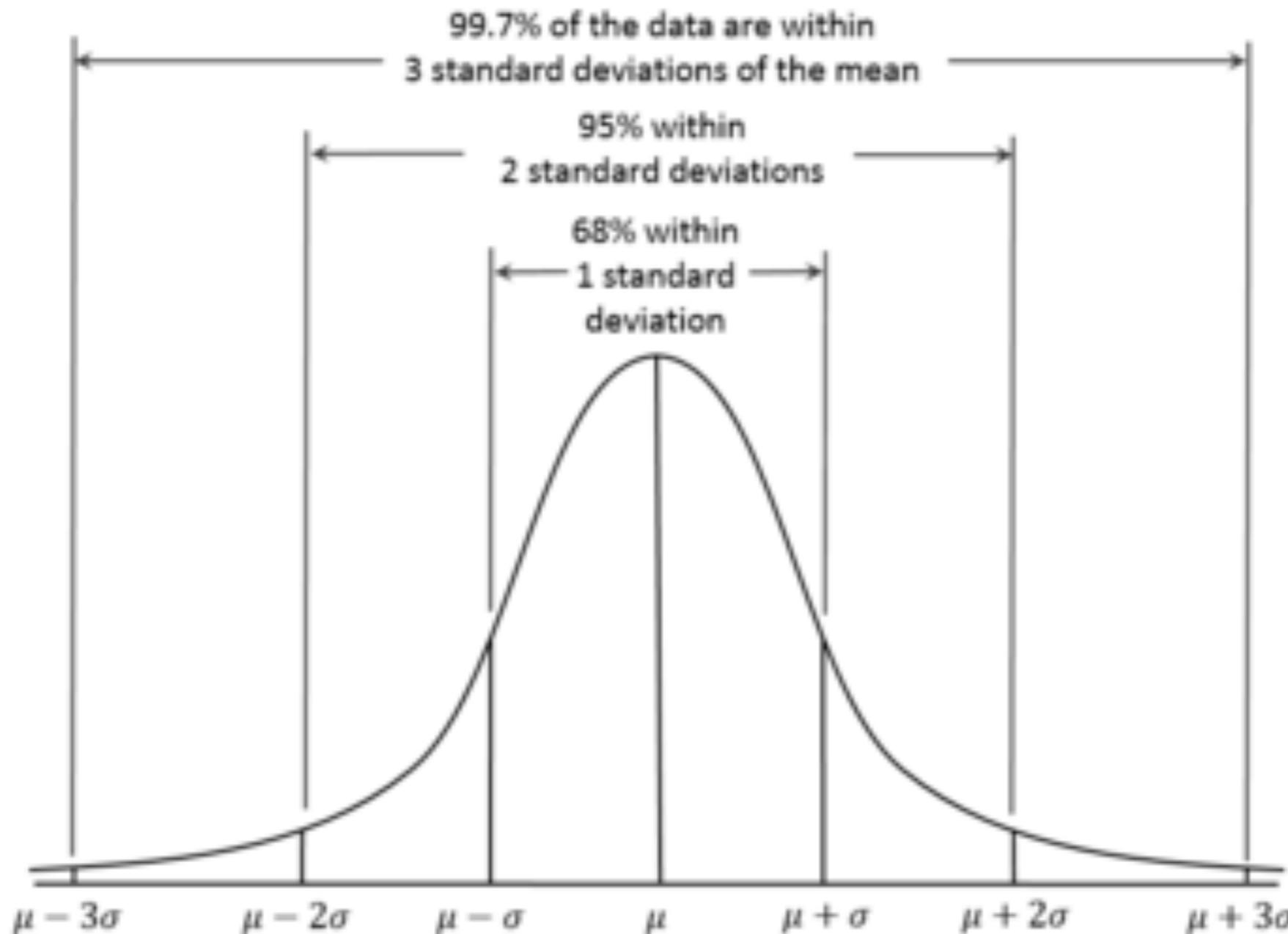
The percentage of chips that are within the limit of acceptance, depending on the number of standard deviations the variations are kept within.

Source: Wikipedia

An example

- We want to match V_T of two nMOS transistors in the 65 nm process:
 - The difference in V_T should be at most 10 mV and we know that $A_{V_T} = 5.4 [mV\mu m]$
 - How wide do we have to make them?
 - Assume the length $L = 1 \mu m$
 - Assume that we do all the layout perfect.
 - Assume that staying within 3σ is “enough”.

Is 1, 2 or 3 stdv or more enough?



MOS transistor as current source revisited

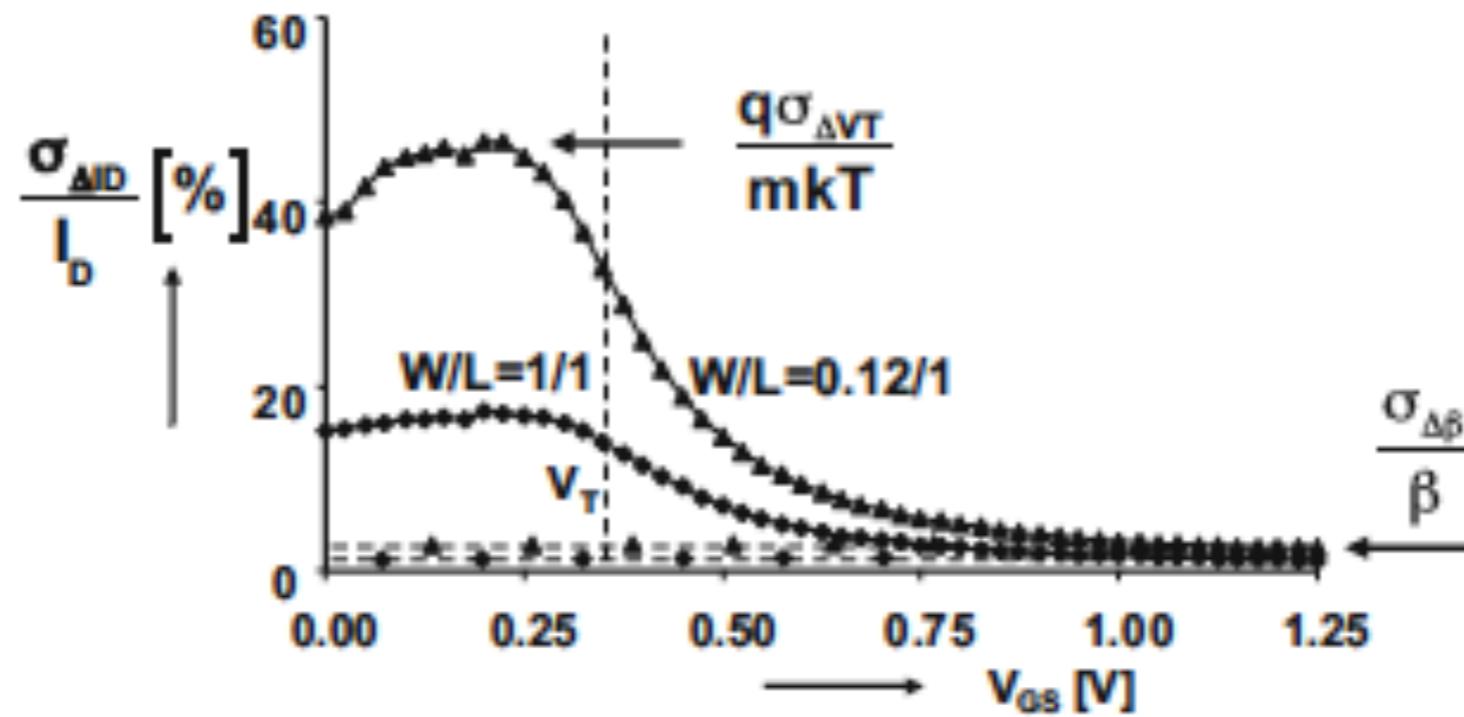


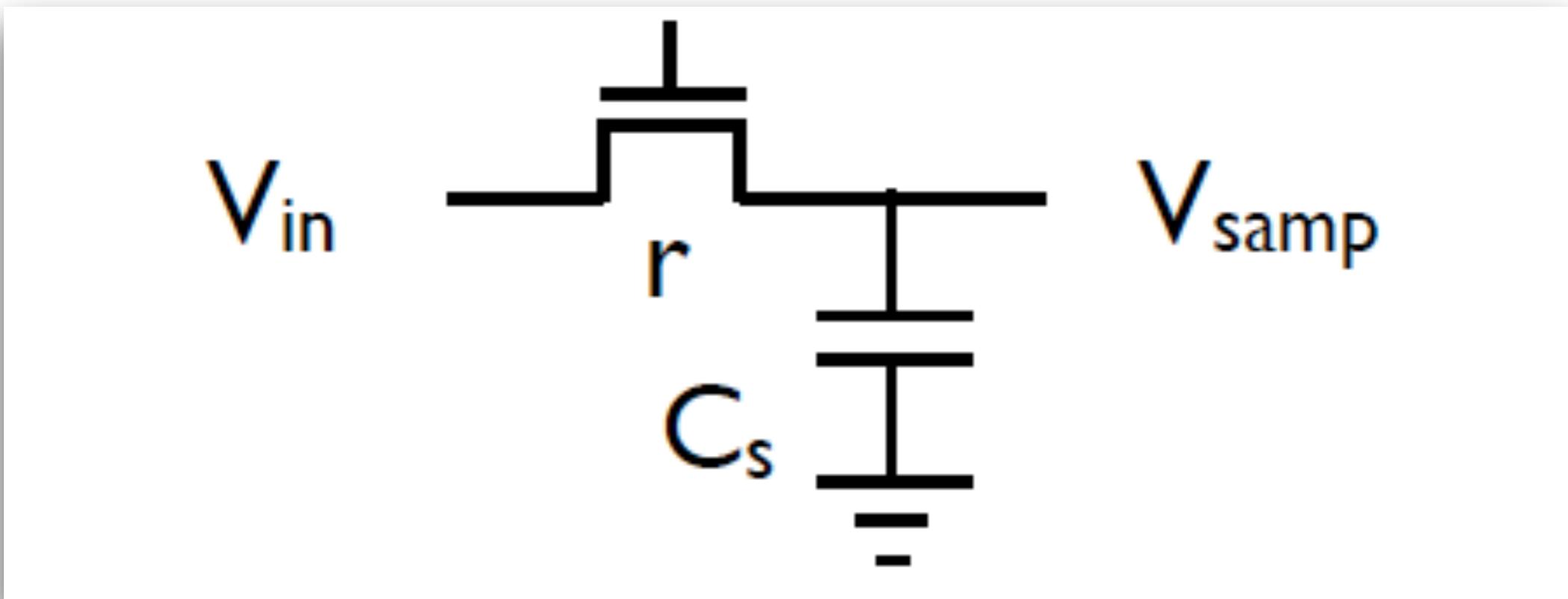
Fig. 5.36 The relative current mismatch for two 65-nm technology transistor geometries swept over the full voltage range. Measurements by N. Wils/H. Tuinhout

Note that one reason that the relative mismatch is lower around and below V_T is that the current is much lower!

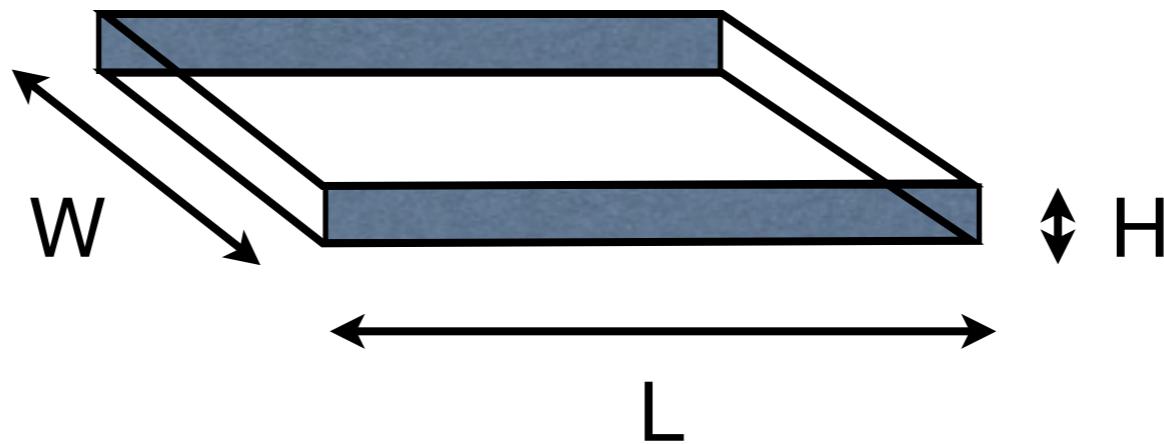
Passive components

- Better matching than for transistors
 - When setting gain!
 - => Feedback and variability next time.
 - Also used in DAC and ADCs
 - R2R or C2C ladders, for example.

From last week - sampling



On-chip resistor (ideal)



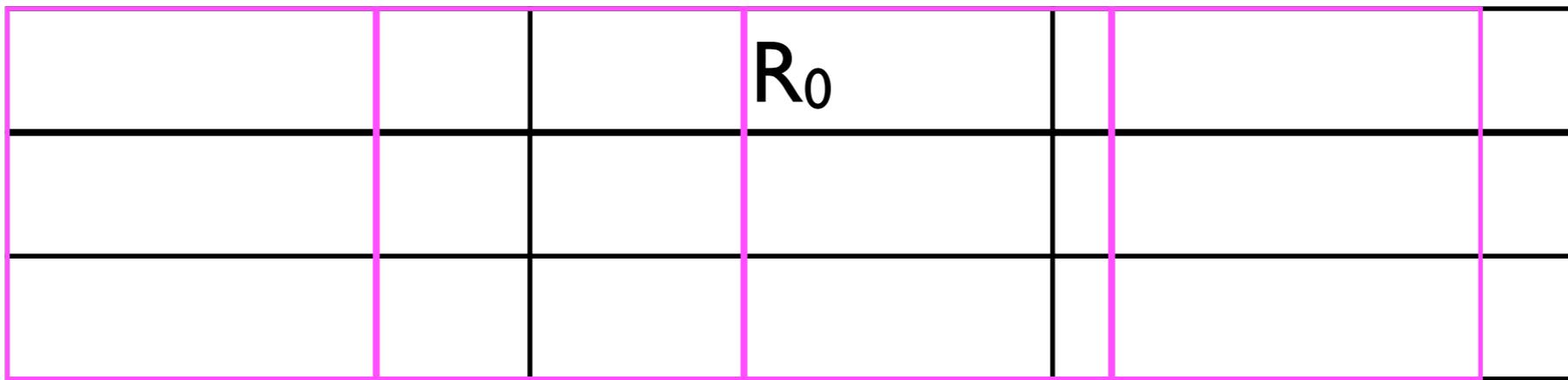
- Rectangular slab of some material

$$R = \rho \cdot L / (W \cdot H)$$

- Height given by process
- Value determined by length and width

Top view

direction of current



- Nominal resistance set by aspect ratio, L / W
- $R = r \cdot L / (W \cdot H) = (r / H) \cdot (L / W)$

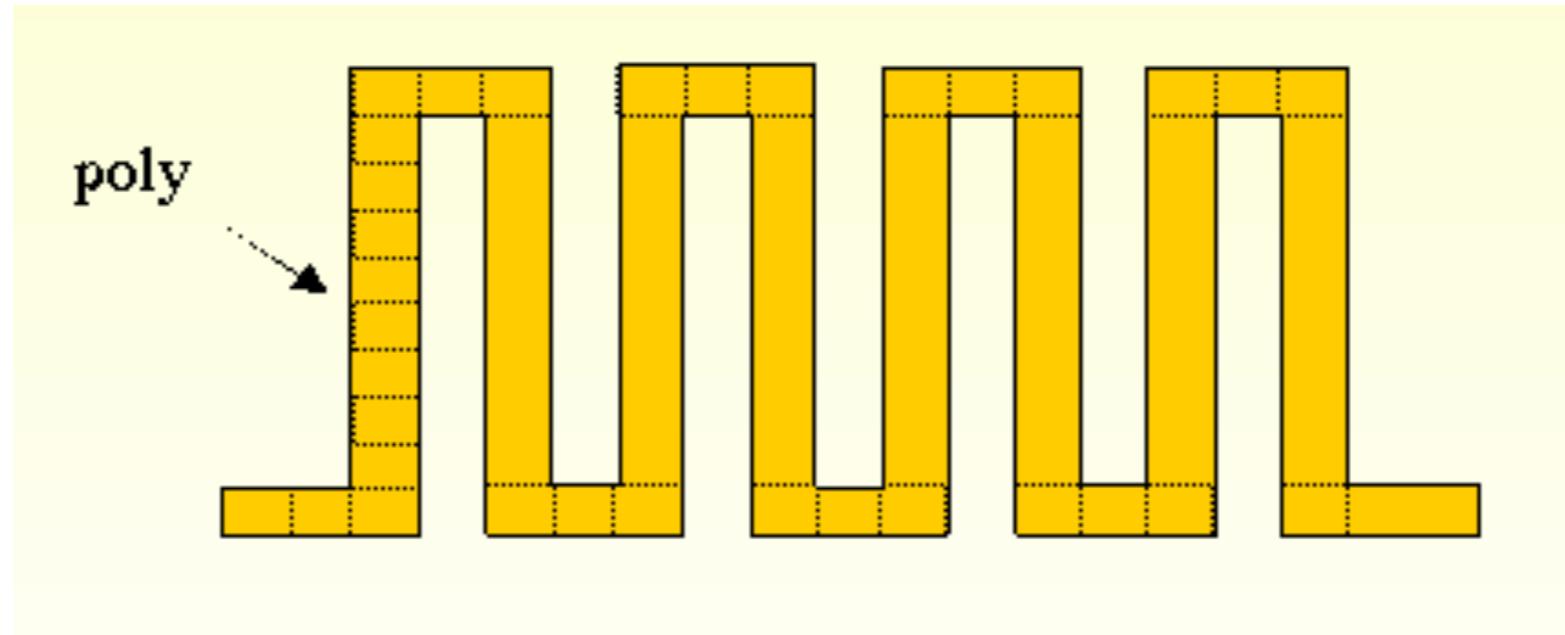
resistivity per square

Small values?

contact

- Inaccuracies at ends

Large values?



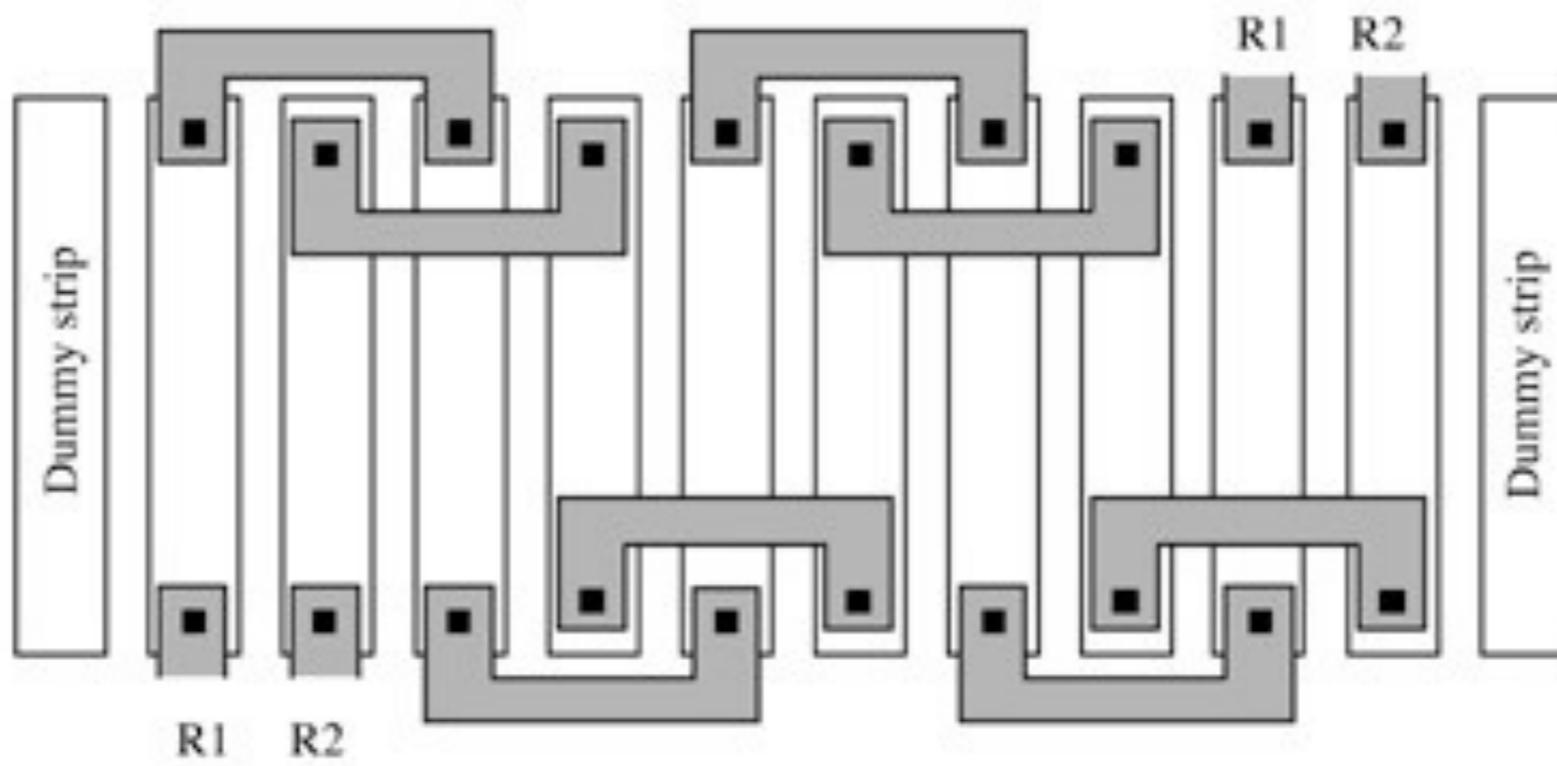
- Need large L / W
- Minimum W set by process design rules
- L is “only” parameter!
- Long and narrow...

Corners count for 0.5 square

Accuracy?

- $R = (r / H) \cdot (L / W)$
- r : material property
- H : set by process for each layer
- Geometrical inaccuracies affect mostly W
 - Predictable error + random variations
 - Large W is better (at an area cost...)

Relative accuracy?



- Affected by environment
- For close matching, strive for identical environments!

Resistance values?

- 65 nm process (typical values):
 - P+ diff: $R_{SH} = 244 \Omega/\square$
 - N+ diff: $R_{SH} = 130 \Omega/\square$
 - P+ poly: $R_{SH} = 712 \Omega/\square$
 - N+ poly: $R_{SH} = 180 \Omega/\square$
 - High-res P+ poly: $R_{SH} = 6 \text{ k}\Omega/\square$

*High resistance requires
special layer*

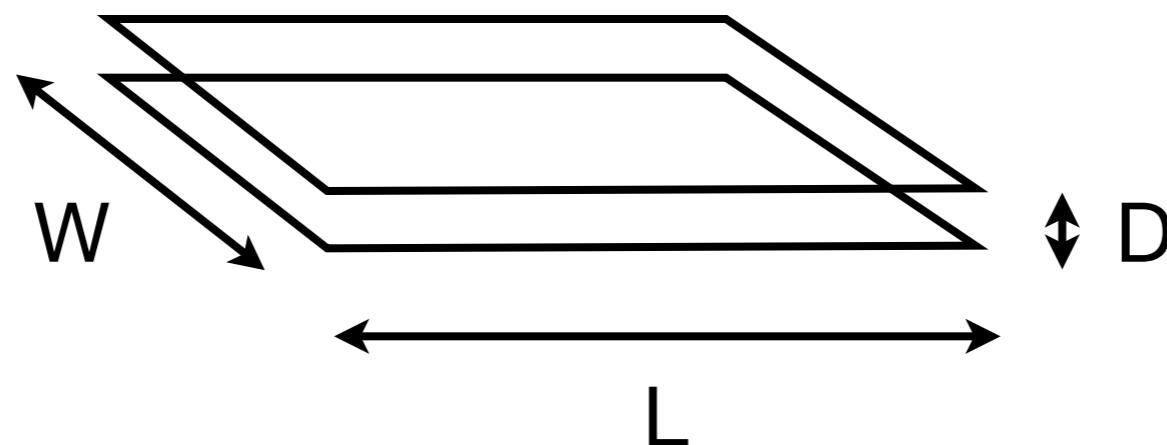
Resistance matching

$$\frac{\sigma_{\Delta R}^2}{R^2} \approx \frac{A_R^2}{WL}$$

For diffused/poly resistors typical values:

$$A_R = 0.5/5 \% \mu m$$

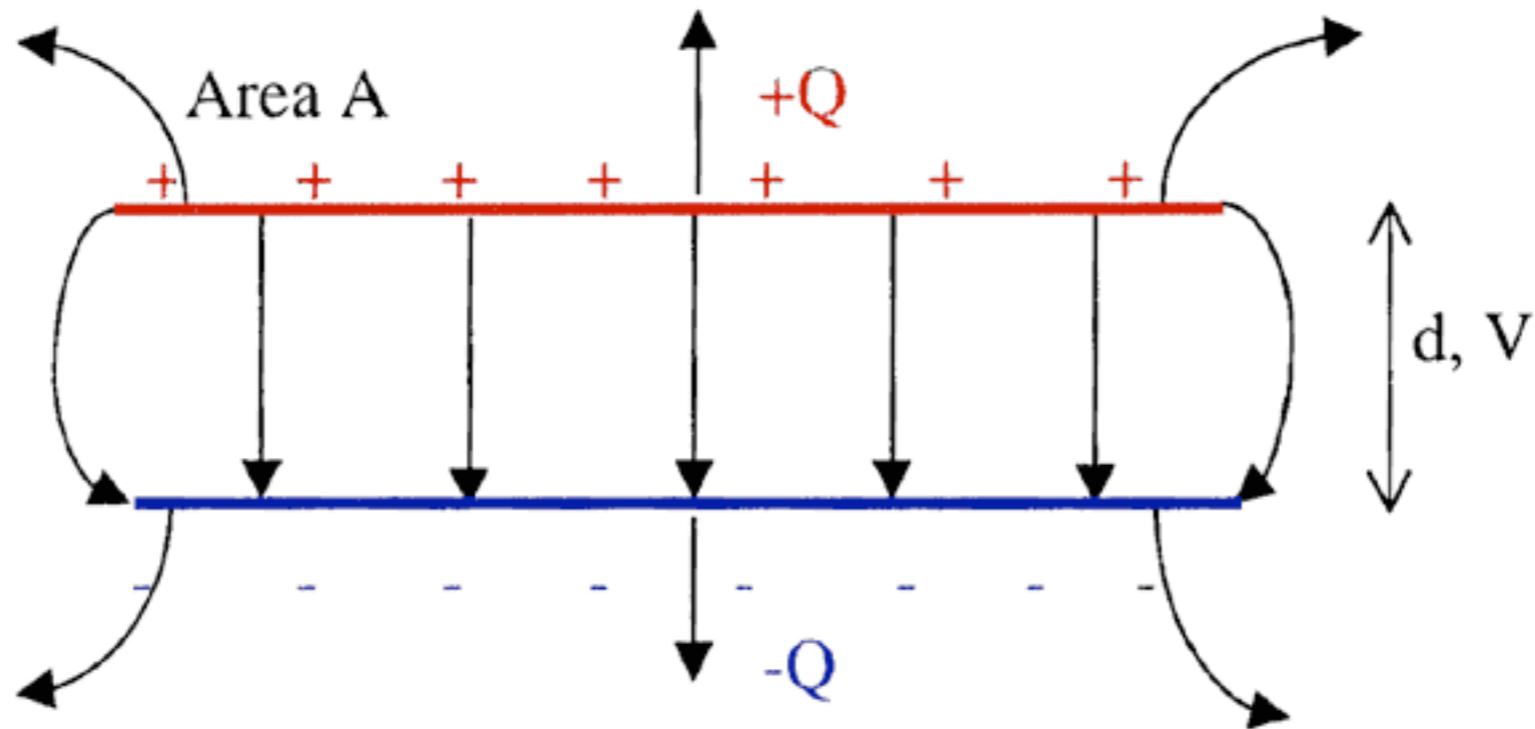
On-chip capacitors



- Two conductor sheets
- One isolator sheet
- D given by process; W, L set by designer
- $C = c \cdot W \cdot L / D = (c / D) \cdot (WL)$

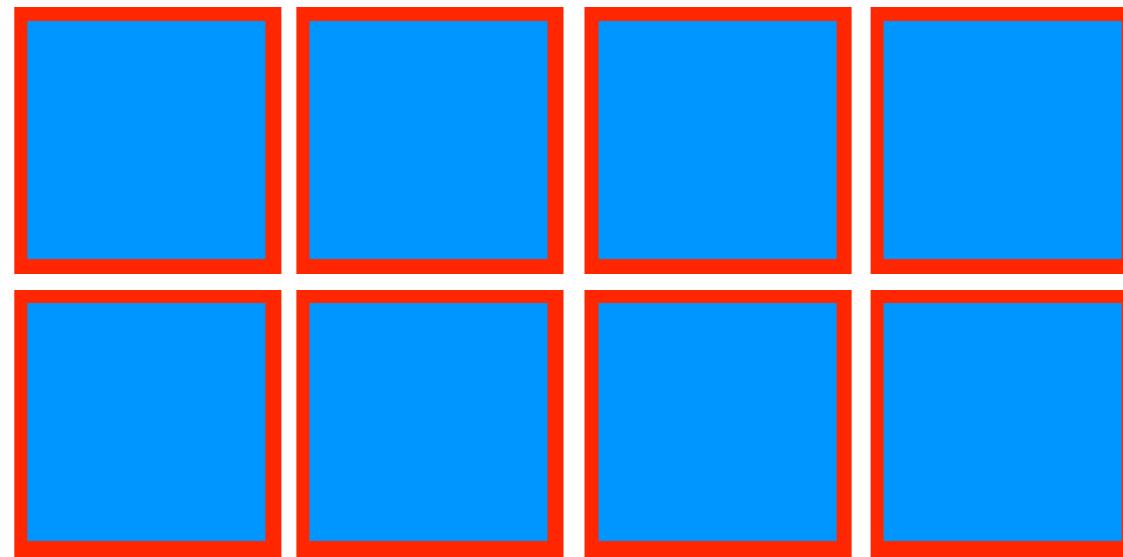
Area

Accuracy?



- Simple equation assumes uniform field
 - Edge fields unaccounted for!
 - Better absolute accuracy: use less edge
 - Better relative accuracy: use constant edge per area

Best relative accuracy



- Repeat unit capacitance
- Dummies around edges

Capacitance values?

- 65 nm process: no extra layer for capacitors
 - Fringe capacitor: $1.6 \text{ fF}/\mu\text{m}^2$
 - Striped stacked M1-M5 capacitor: $0.75 \text{ fF}/\mu\text{m}^2$

Capacitance matching

$$\frac{\sigma_{\Delta C}^2}{C^2} = \frac{A_C^2}{WL}$$

Assuming capacitors large enough that area effects dominate

But since the capacitance is always proportional to the capacitor area we can also express the matching as

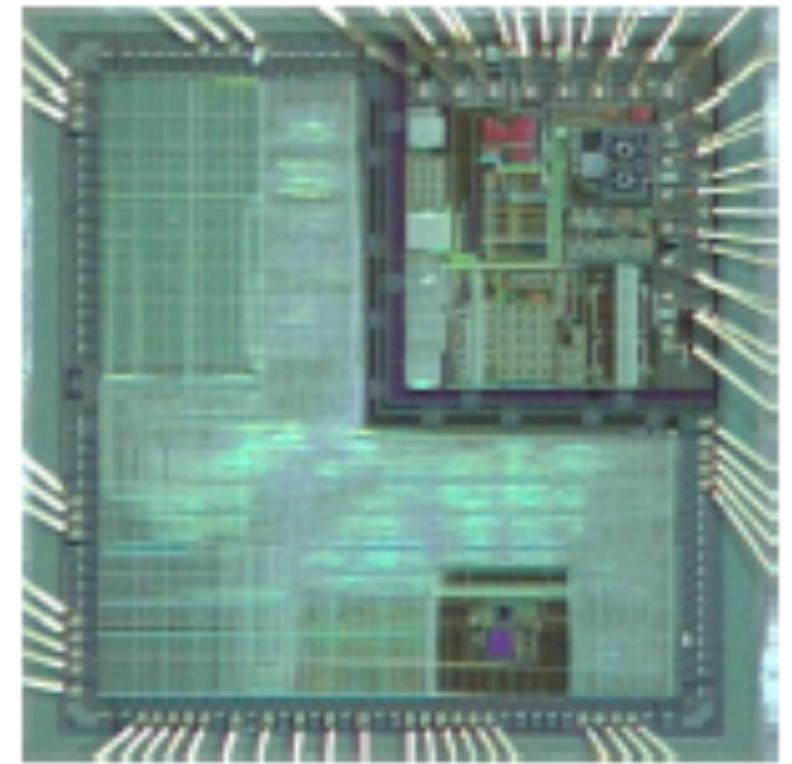
$$\frac{\sigma_{\Delta C}^2}{C^2} = \frac{A_C^2}{C}$$

$$\frac{\sigma_{\Delta C}}{C} = \frac{A_C}{\sqrt{C}}$$

$$A_C = 0.3 \% \sqrt{fF}$$

Physical separation in mixed-mode system

- Example:
- Single-chip bluetooth transceiver Ericsson 2001
- 25% is RF part 75% is digital electronics
- Keep them apart!
- Use separate supplies.



Example due to
Sven Mattisson Ericsson research

Summary

- Passives:
- Pick C over R for on-chip use
 - Less bias current, less edge uncertainty
- Absolute component precision on chip abysmal ($\pm 20\%$, etc)
 - Relative precision not so bad
 - $\pm 1\%$ “easily” attainable

Summary, cont.

- Precision difficult for extreme values
- Large values and high relative precision cost area => \$ and also W
- Mixed-mode systems: Separate analog and digital parts on the same chip as much as possible
- Clocked analog systems a problem!

Thursday

- Variability & feedback