

Variability and feedback

DAT116, Nov 15 2018

Lena Peterson
Lars Svensson

But first a review
about matching

From MUD cards

- Could not understand the problem.
- What is variance?
- What is the relation between difference and sigma?
- Is it $\sigma(\Delta VT)$ or $\sigma_{\Delta VT}$?
- Why does 3σ mean $\Delta VT/3$?
- The way we have multiplication of Fourier transform
- Good: example, but maybe unnecessary? Cleared up some problem with standard deviation
- Forgot to ask to clarify the difference between the formulas for absolute and relative variations.

The problem

- It is a problem that components are not exactly the same.
- Example: Resistor chain

Why is it a problem?

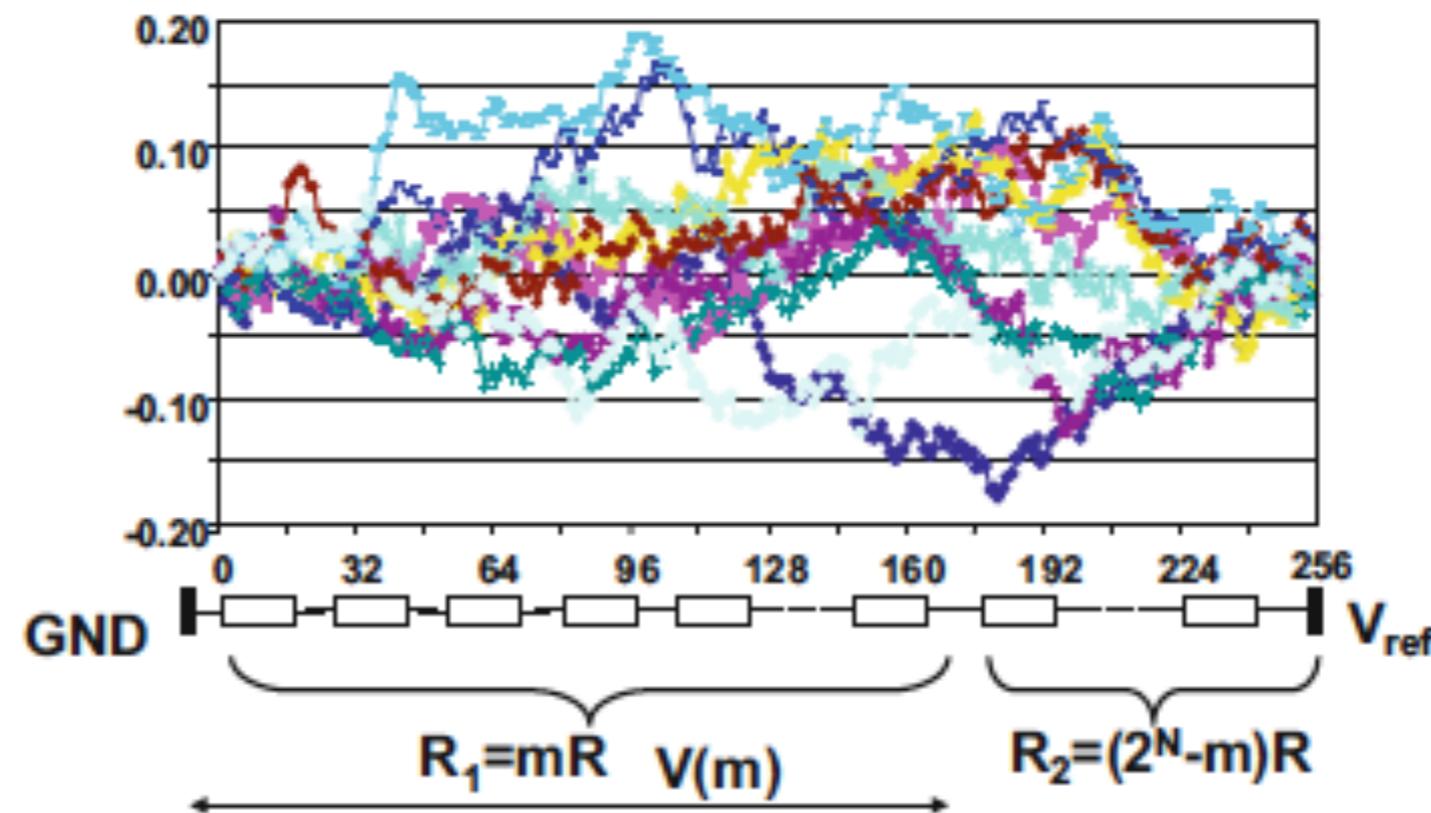


Fig. 7.16 A resistor string is connected between a reference voltage and ground. The simulation shows ten instances of the effect of $\sigma_R/R = 1\%$ mismatch. In this 256 devices ladder the maximum deviation is $\pm 20\%$

The problem

- We can make everything as similar as possible to make components equal (size, orientation, surrounding, etc)
- The remaining random variations we can decrease by making components physically larger.
- But, how large should we make them to make the error “small enough”? $\sigma_{\Delta P}^2 = \frac{A_P^2}{WL}$
- What is “small enough” depends on the application and other errors in the system.
- Don’t overengineer! It costs money and often power and speed too.

Rectangular function

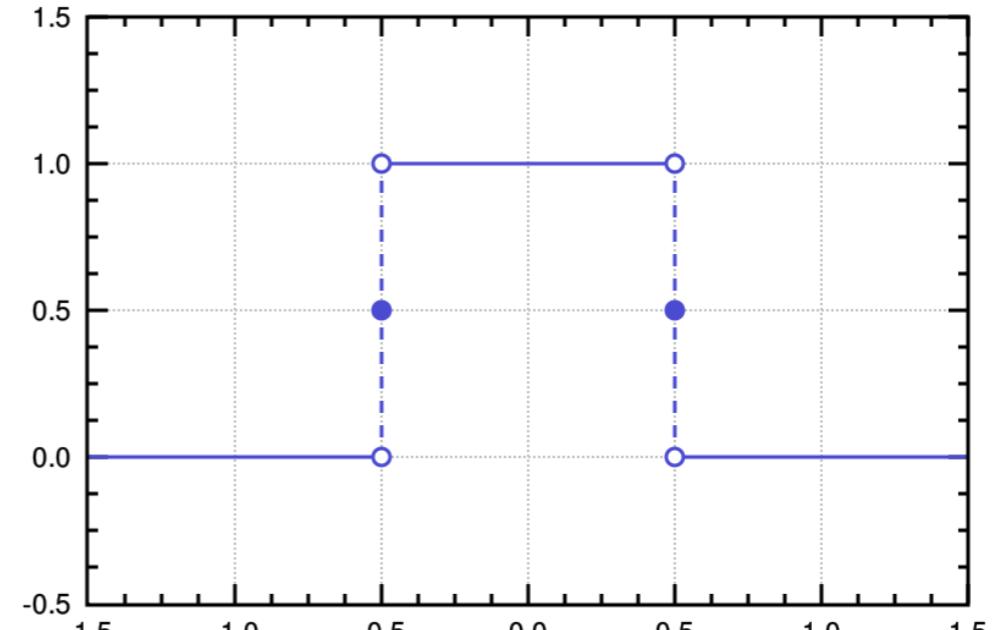
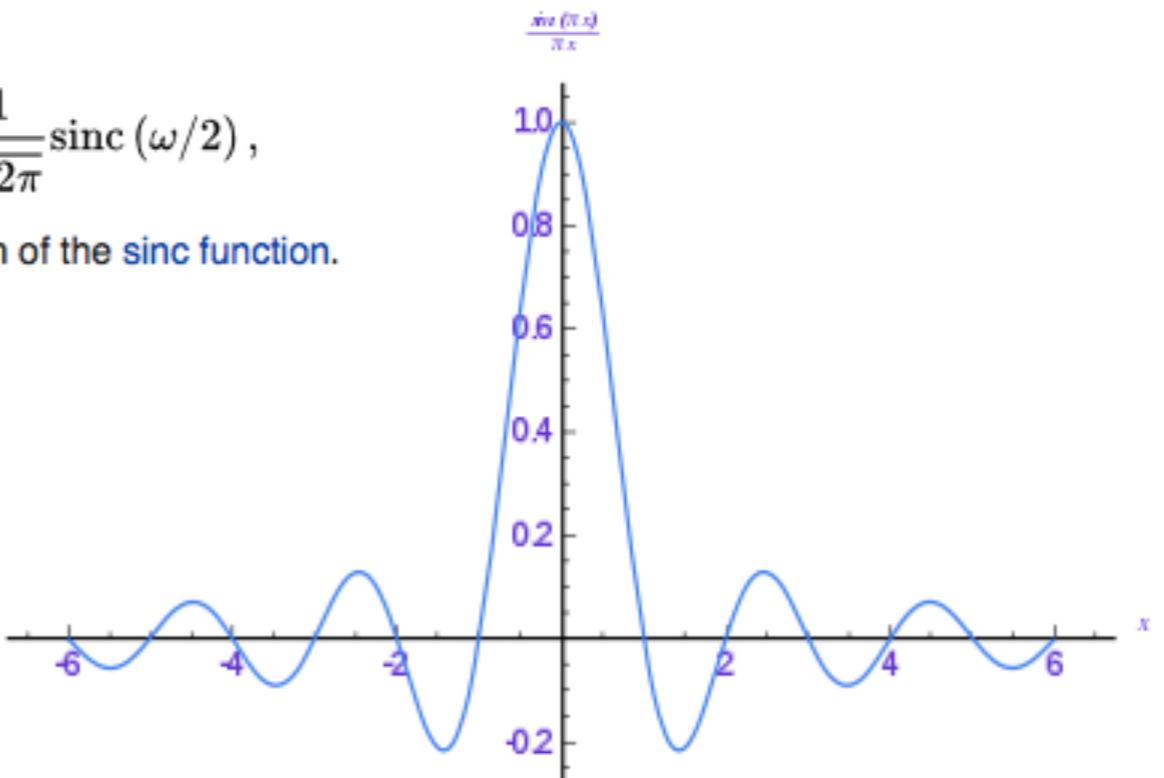
The [unitary Fourier transforms](#) of the rectangular function are^[1]

$$\int_{-\infty}^{\infty} \text{rect}(t) \cdot e^{-i2\pi ft} dt = \frac{\sin(\pi f)}{\pi f} = \text{sinc}(f),$$

using ordinary frequency f , and

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \text{rect}(t) \cdot e^{-i\omega t} dt = \frac{1}{\sqrt{2\pi}} \cdot \frac{\sin(\omega/2)}{\omega/2} = \frac{1}{\sqrt{2\pi}} \text{sinc}(\omega/2),$$

using angular frequency ω , where [sinc](#) is the unnormalized form of the [sinc function](#).



Convolution theorem

Fourier transform

$$\mathcal{F}\{g * f\} = \mathcal{F}\{g\} \cdot \mathcal{F}\{f\}$$

Convolution Pointwise multiplication

Works also the other way around

$$\mathcal{F}\{g \cdot f\} = \mathcal{F}\{g\} * \mathcal{F}\{f\}$$

Pointwise
multiplication

Convolution

We EE people
are most used to
convolutions of functions of time,
but it works for functions of space too

Very short

$$\Delta P(x_{12}, y_{12}) = P(x_1, y_1) - P(x_2, y_2)$$

same as

$$\Delta P(x_{12}, y_{12}) = \frac{1}{\text{area}} \left[\iint_{\text{area}(x_1, y_1)} P(x', y') dx' dy' - \iint_{\text{area}(x_2, y_2)} P(x', y') dx' dy' \right]$$

Take Fourier transform and use convolution theorem

$$\Delta \mathcal{P}(\omega_x, \omega_y) = \mathcal{G}(\omega_x, \omega_y) \mathcal{P}(\omega_x, \omega_y)$$

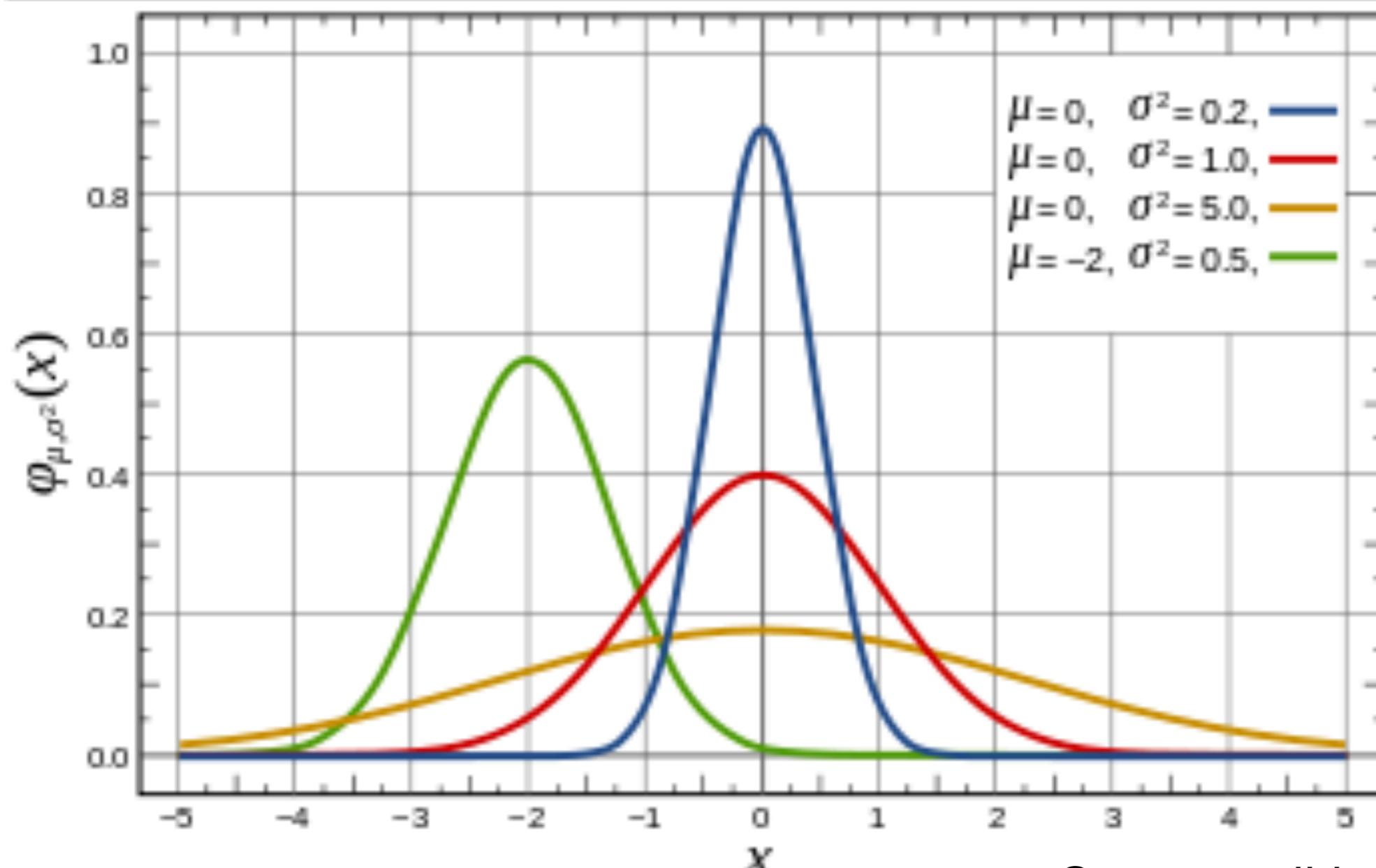
sinc-y function constant

Sum the power contributions =

Integrate the squares over all spatial frequencies:

$$\sigma^2(\Delta P) = \frac{1}{4\pi^2} \int_{\omega_y=-\infty}^{\infty} \int_{\omega_x=-\infty}^{\infty} |\mathcal{G}(\omega_x, \omega_y)|^2 |\mathcal{P}(\omega_x, \omega_y)|^2 d\omega_x d\omega_y$$

Normal distributions



Source: wikipedia

Example

- Samples: 1, 4, -2, 0, -3
- Mean?
- Variance?
- Standard deviation?

In conclusion

- Do all to ensure similarity among matched components.
- Choose components large enough to ensure good enough matching!
- But don't overengineer because it is expensive!
 - Can even make other requirements unachievable.

Over to feedback!

How bad is it?

OP27—SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

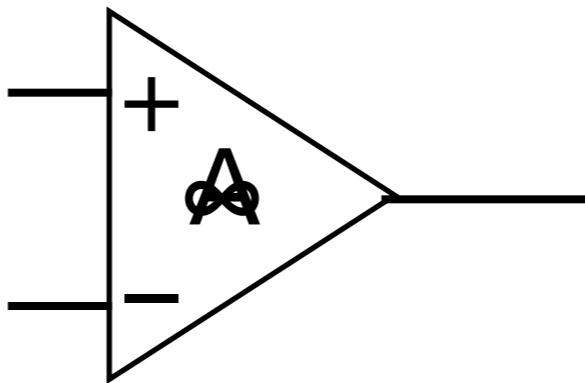
(@ $V_s = \pm 15$ V, $T_A = 25^\circ\text{C}$, unless otherwise noted.)

Parameter	Symbol	Conditions	OP27A/E			OP27F			OP27C/G			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
INPUT OFFSET VOLTAGE ¹	V_{OS}		10	25		20	60		30	100		μV
LONG-TERM V_{OS} STABILITY ^{2, 3}	V_{OS}/Time		0.2	1.0		0.3	1.5		0.4	2.0		$\mu\text{V}/M_O$
INPUT OFFSET CURRENT	I_{OS}		7	35		9	50		12	75		nA
INPUT BIAS CURRENT	I_B		± 10	± 40		± 12	± 55		± 15	± 80		nA
INPUT NOISE VOLTAGE ^{3, 4}	$e_{n\text{ p-p}}$	0.1 Hz to 10 Hz	0.08	0.18		0.08	0.18		0.09	0.25		$\mu\text{V p-p}$
INPUT NOISE Voltage Density ³	e_n	$f_O = 10$ Hz $f_O = 30$ Hz $f_O = 1000$ Hz	3.5 3.1 3.0	5.5 4.5 3.8		3.5 3.1 3.0	5.5 4.5 3.8		3.8 3.3 3.2	8.0 5.6 4.5		$\text{nV}/\sqrt{\text{Hz}}$ $\text{nV}/\sqrt{\text{Hz}}$ $\text{nV}/\sqrt{\text{Hz}}$
INPUT NOISE Current Density ^{3, 5}	i_n	$f_O = 10$ Hz $f_O = 30$ Hz $f_O = 1000$ Hz	1.7 1.0 0.4	4.0 2.3 0.6		1.7 1.0 0.4	4.0 2.3 0.6		1.7 1.0 0.4	$\text{pA}/\sqrt{\text{Hz}}$ $\text{pA}/\sqrt{\text{Hz}}$ $\text{pA}/\sqrt{\text{Hz}}$		
INPUT RESISTANCE	DATA 16 Nov 15 2018	LP										MΩ
Differential Input Impedance			1.3	6		0.94	5		0.7	4		

Accuracy by feedback!

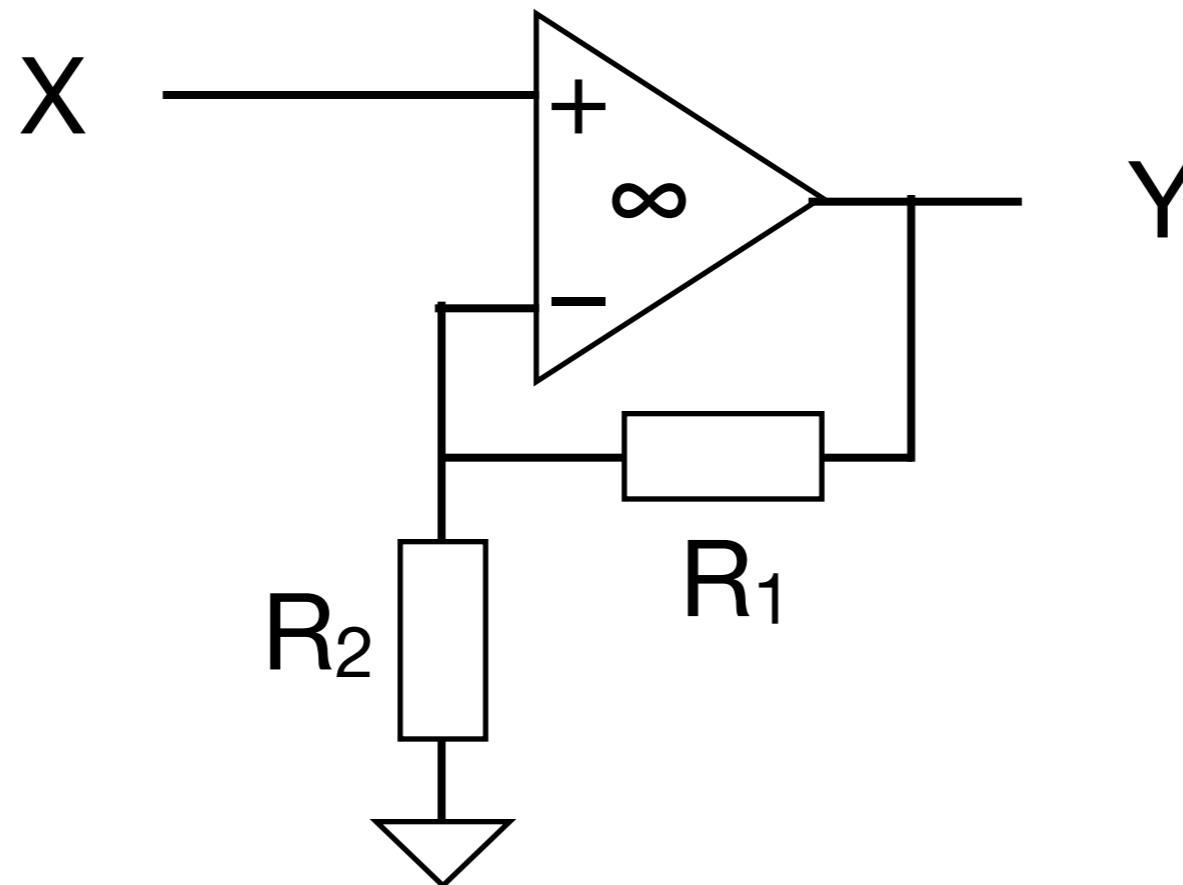
- Derive gain accuracy from **passive** components (R or C)
 - Much more precise than **active** components (transistors)
- Pay with gain magnitude for improved accuracy
 - That is: accurate but lower gain!
 - Another issue: stability in feedback systems; not really dealt with in this course

Ideal amplifier model



- Output takes any voltage, sinks/sources any current
- No current into inputs, no voltage across
- Gain A towards ∞

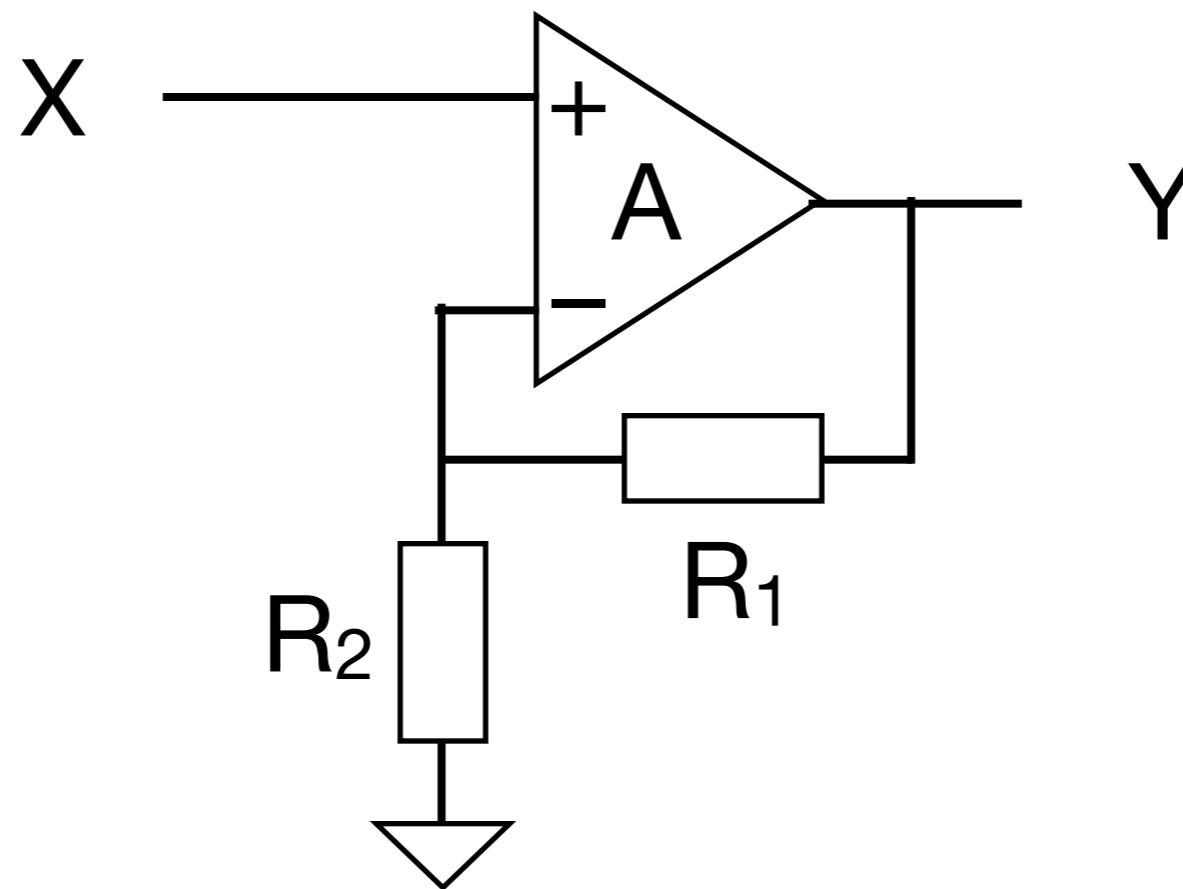
Example: voltage amplifier



- Voltage divider + amplifier!

$$X = Y \frac{R_2}{R_1 + R_2} \Rightarrow \frac{Y}{X} = \frac{R_1 + R_2}{R_2}$$

Example: voltage amplifier



$$Y = A(X - Y \frac{R_2}{R_1 + R_2})$$

$$Y + AY \frac{R_2}{R_1 + R_2} = AX \quad \Rightarrow$$

$$Y = \frac{AX}{1 + \frac{AR_2}{R_1 + R_2}}$$

Let A grow large

- Let $R_2 / (R_1 + R_2) = \beta$
- $Y = X \cdot A / (1 + AR_2 / (R_1 + R_2)) =$

$$X \cdot A / (1 + A\beta) \approx$$

$$\approx X \cdot A / (A\beta) =$$

$$= X / \beta$$

- When is “ \approx ” allowed?
- Error magnitude?

Discrepancy

Deviation from “ideal” ($A = \infty$) performance

$$\frac{Y}{X} = \frac{A}{1 + A\beta} \approx \frac{1}{\beta}$$

Clearly, for approximation to hold, $A\beta \gg 1$

Discrepancy:

$$D = \frac{A}{1 + A\beta} / \frac{1}{\beta} = \frac{A\beta}{1 + A\beta}$$

$D < 1$; but close to 1 when $A\beta \gg 1$

Example

We wish $Y / X = 100$

Use $\beta = 1 / 100 = 0.01$

We wish gain error to be $< 1\%$

Requirement is $D > 0.99$

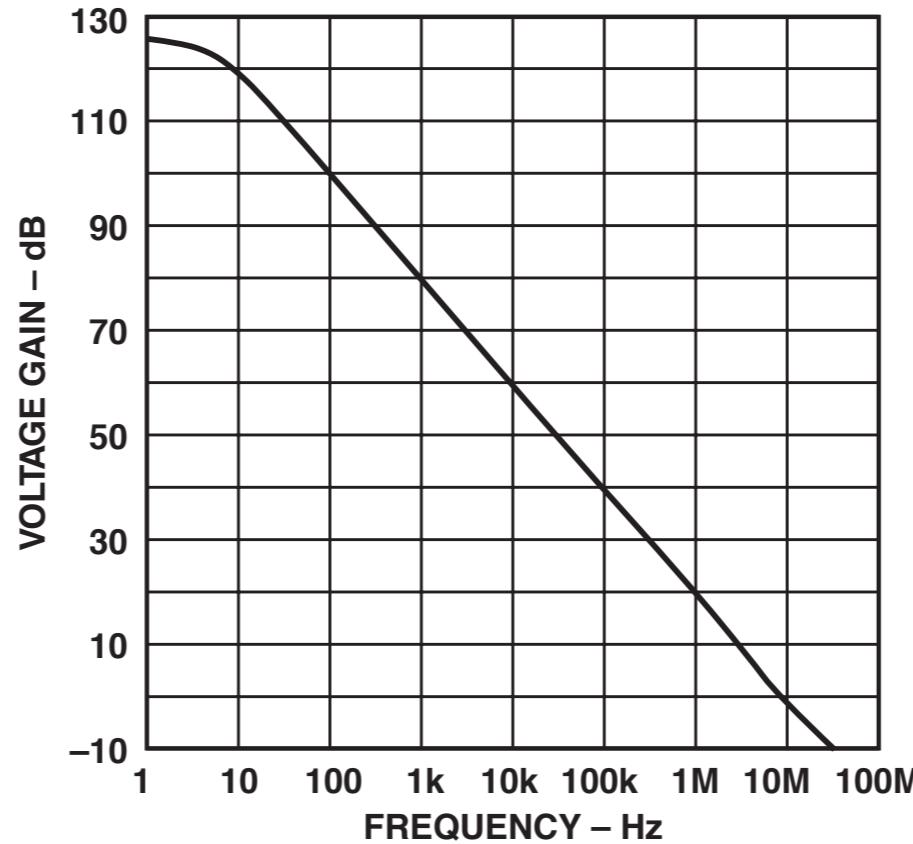
$$D = A\beta / (1 + A\beta)$$

What is required A ?

$$A = D / (\beta(1 - D)) \approx 10^2 \cdot 10^2 = 10^4$$

... or 80 dB

Dominant pole

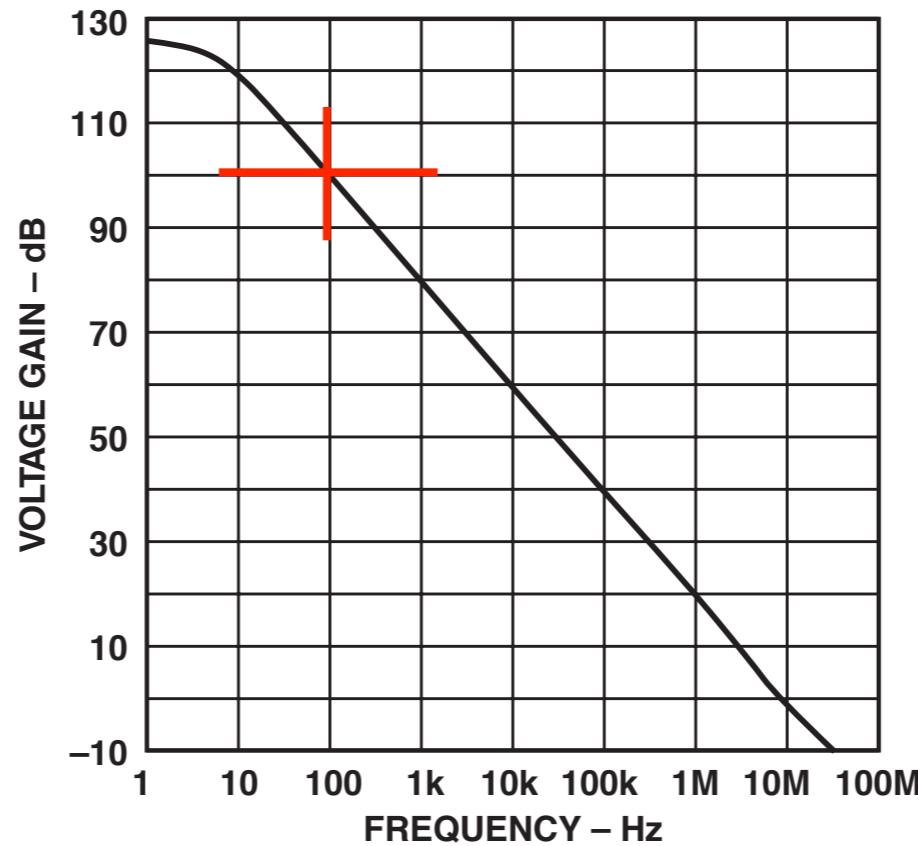


*TPC 16. Open-Loop Gain vs.
Frequency*

- “Standard” op-amp transfer function
Bode plot

[OP27]

GBW = gain-bandwidth product

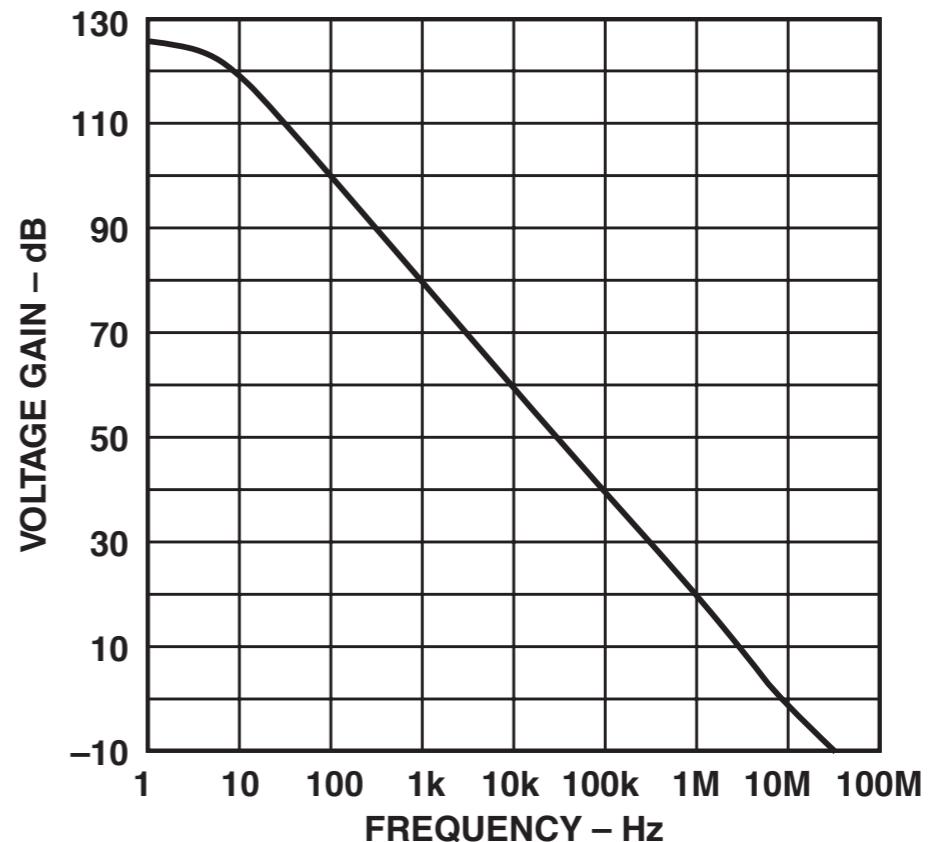


*TPC 16. Open-Loop Gain vs.
Frequency*

- Standard parameter
 - Constant regardless of β

Limitations

- Corrective power as function of frequency?
- Best at low frequencies, since higher gain!
- 80 dB only up to 1kHz!
 - Can't get $Y / X = 100 \pm 1\%$ at higher frequencies with OP27!



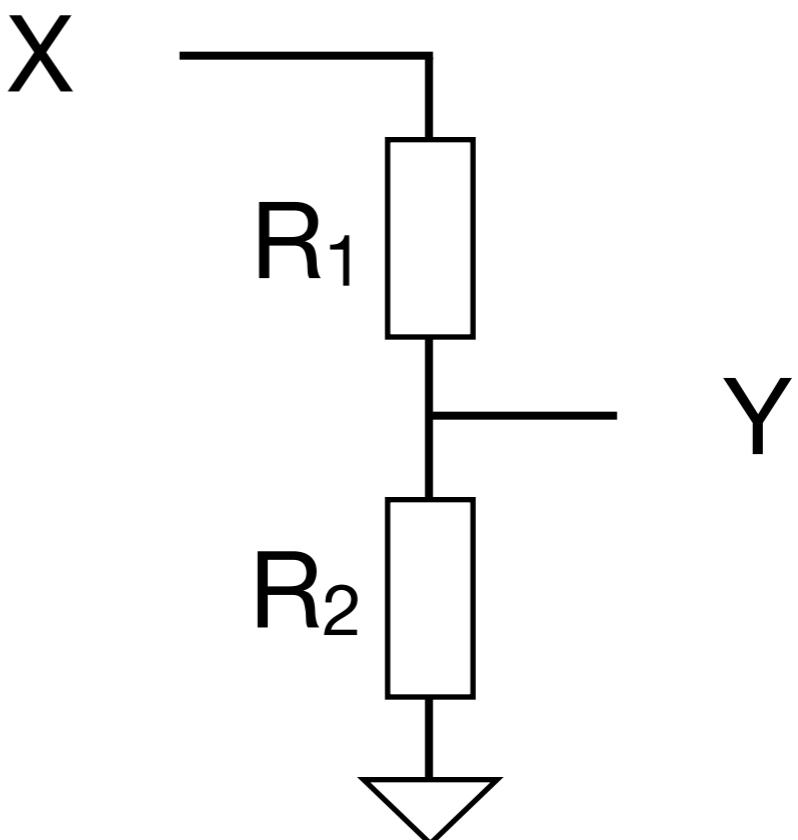
TPC 16. Open-Loop Gain vs. Frequency

What about the Rs?

- Voltage divider

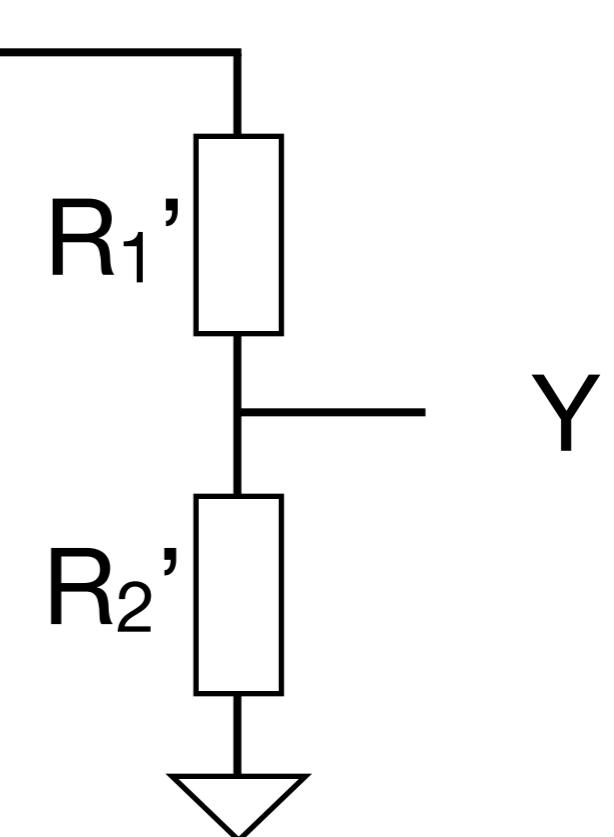
$$\frac{Y}{X} = \frac{R_2}{R_1 + R_2}$$

- Transfer set by ratio of resistors
 - Ratios more accurate than single values!



Mismatch influence?

- We wish $\frac{Y}{X} = \frac{R_2}{R_1 + R_2} = \frac{1}{r}$
 - so $R_1 = (r - 1) R_2$
- Assume worst-case deviation d :
 - $R_1' = (1 - d) R_1$
 - $R_2' = (1 + d) R_2$
- Then:
$$\begin{aligned} \frac{Y}{X} &= \frac{R_2'}{R_1' + R_2'} = \frac{R_2}{\frac{1-d}{1+d}R_1 + R_2} \\ &= \frac{1}{\frac{(1-d)(r-1)}{1+d} + 1} \approx \frac{1}{\frac{r-1}{1-2d} + 1} \end{aligned}$$
- For large r , a $\pm 1\%$ tolerance can affect ratio by $\pm 2\%$



Example, again

- We wish $Y / X = 100$
 - $\beta = 1 / 100 = 0.01$
- We wish gain error to be $< 1\%$
 - ...
 - 80 dB gain up to max frequency
- But also errors in β due to passives!
 - Distribute error budget
 - 0.5% + 0.5%, or cheaper alternative

Reflection...

- How design to a given performance ...
 - ... with a given precision?
- Start with feedback network
 - Design/select amplifier that is “good enough”
 - If not possible / affordable, split into several stages
 - Easier to provide $2 \cdot 10x$ than $100x$

Sources of variability

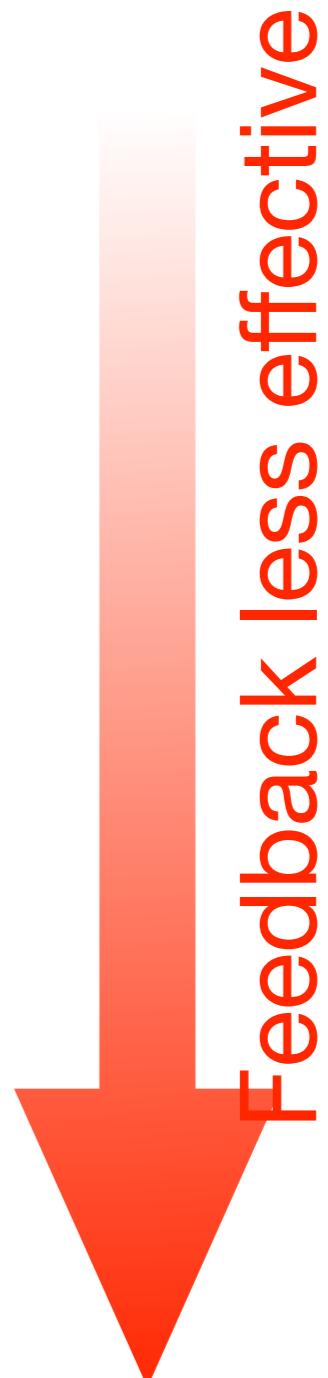
- “PVT”:
 - Process (addressed through matching)
 - Voltage
 - Temperature
 - “All” these affect active circuits more than passive ones
 - Ratios of passives especially stable

Other performance measures

- Voltage gain may be stabilized with passive feedback
- Current gain: other topologies, similar calculations
- Frequency-dependent gain: no simple ratios (how match R vs C?)
 - Week 4.
- Input/output impedances?
 - Also possible with two feedback loops

Time scales

- Static / years
 - Process corners, lithography, dopants
- Seconds
 - Supplies, temperature, 1/f noise
- Microseconds
 - IR drops, temperature gradients
- Picoseconds
 - IR drops, jitter, thermal noise



Summary

- Use feedback to control variability
 - Hide variations in active parts
 - Improvement set by gain given up
- Use ratios of passives to determine performance whenever possible
- Design feedback network first
 - Then select or design active parts:
 - How high open-loop gain and at what frequencies?
 - May have to split in more stages if high requirements