Noise shaping

DAT116, 20181217
larssv@chalmers.se

181217 LJS I


mailto:larssv@chalmers.se

What"?

* Improve SNDR beyond 6.02 N + 1.76 dB

How?

* Force errors out of band-of-interest; filter
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Quantization with Nyquist sampling
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SNR =6.02 N + 1.76 dB (full-scale sinewave input)

Noise power independent of sample rate
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Oversample by factor 2
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- Same total noise power (A2/12), but twice the frequency bins
Post-sampling low-pass DT filter; removes half the noise power
« Then downsample by 2x by dropping every other sample

Improve SNR by 3dB per factor 2 of oversampling! Yay!
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Relation with resolution

voltage
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* Intuitively:
 Filter by (1 + z1) / 2 [simplest LP]
» “New” “levels” introduced

 Reduced A, so reduced noise!
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|l iInear converter model
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» Quantization is a non-linear process
- May be modelled as noise addition
» Linear system!

 Assume added noise Is white and
uncorrelated with signal

» OK if resolution is high
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Noise shaping

ldea: use oversampling and push more of the
noise out of signal band!

Feedback loop w/ linear filter

Use digital post-filter (DT!) to suppress out-of-
band noise

More noise removed than with “straight”
oversampling

« SNR improves more than 3dB per x2 !

More effective for larger oversampling ratios



Simple example (in;tegratcr)
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* Linear model: superposition, transfer functions
» Xto Y (Signal Transfer Function, STF)
« QtoY (Noise Transfer Function, NTF)

 Use z transform
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Simple example (in;cegrator)

integrator
b
X —)@—i@— -1 ><-E > Y

integrator: b=z1(@+b);b(1-z1)=az"
Hz)=b/a=z1/(1 -2z1)

Y=Q+X-=-Y)z1/(1-2z7) STF: Z_1de\a\[

Y=Q+Xz'/(1-zY-Yz'/(1 -2z

Y=(1-z1)Q+z1X NTF: (1 -2

nionP 3>
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NTF plots
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Total noise power Is increased!
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...but filtering saves us
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« Small X: sin X = X; Sin2 X = X2

» [ x2 dx ~ x3 ; remaining noise ~ OSR-3
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SNR vs oversampling ratio?
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» Assume OSR is M (reasonably large)
« Then part of noise which falls in passband is (2 / 3) M-3

- 9 dB SNR improvement for each doubling of OSR
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Q errors ©
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Additional quantizer errors (INL, DNL)
indistinguishable from “ideal” quantization
noise

Will be shaped out of band of interest

Low-precision quantizer usable!
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DAC errors

H(z)
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ADC

DAC

» DAC errors indistinguishable from input

« DAC precision critical!



) A\ features

+ Possible to improve SNR beyond quantizer capabilities
Get away with lower-precision quantizer for given SNR

Easy to implement in standard CMOS

— Low signal bandwidth
— High-speed circuits needed

— Higher latency due to feedback loop

+ No direct relation between input and output
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Extreme ) A: 1-bit quantizer

- Logical extreme &

« No DAC, ADC nonlinearity to worry about

- Needs large OSR for useful performance

- “Base” SNR is less than 8dB!

- Some assumptions violated!

» Linear model not dependable

181217 LJS 16



One-bit block diagram

CT:DT
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- Integrator, comparator, 1-bit D/A

D/A

» Error is integrated, compensated for

* Very simple hardware!
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Time-domain behavior
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Frequency-domain behavior
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» Obvious high-pass noise character!

»  Approximates first-order characteristics
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S, N, SNR vs input level
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« Here, OSR =16 = 24 Input level
« Theoretically6 +2-5+4-9dB =39dB

- Worse In practice
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Artifacts
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« SNR starts falling before input reaches full scale
- Extra noise at low input levels
 Limit-cycle “tones” (as will be seen in lab)
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Higher loop orders

Q

X—>@ ’H(z)—'é

 Integrator = first order H(z)
» Possible to use higher-order H(z)

 Push out more of the noise!
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2nd-order ) A loop

* Y =X2z22+Q(1-z1)72

* Note squares!

» Simple loop structure; many alternatives exist
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ldeal noise shaping
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» Better suppression of in-band noise, steeper rise
» Higher total noise gain than for 1st order ngher

» 15dB SNR improvement per doubling of OSR
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Digital-filter steepness?
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Noise rises by 20 dB / decade per loop order

Filter must suppress noise at least as steeply!

» >1st order filter for 1st order loop, etc
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Sample rate reduction

» After low-pass filtering, typically reduce
sample rate to Nyquist rate

For OSR = N, drop N-1 out of N samples

... or rather: don’t even compute them in
filter ...

Word length increase in filter
* Averaging!

Longer words needed to support SNR
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>\ design space

» Three ways to increase SNR:;:
» Higher “core quantizer” resolution

» Higher OSR

 Better loop filter (higher order, better
pole/zero placement)

- Stability issues for filter orders > 2

» Possible to manage
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When useful?
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- Magenta dots for oversampled ADCs
- High SNDRs, not the very best FoMs

* ... and obviously not the highest signal bandwidths...
181217 LJS ’g [Murmann data]
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In ADC, green parts analog

- What if digital (high-resolution) instead?

Loop still works!

Full theory still applicable!
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Pre-processing for lower-precision DAC

« X higher resolution than Y

* Y at higher sample rate
+ Quantization now corresponds to rounding / truncation
» Y may be a 1-bit signal (much upsampling needed)
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Summary

Noise shaping + filtering enables higher SNR
than quantizer alone could give

High-pass noise filter not the only option!
Simpler analog at cost of higher sample rate
Feedback loop neutralizes (most...) errors

DT lowpass filter (digital) for downsampling /
reconstruction

Also useful as pre-processing for low-resolution
DACs

181217 LJS 31



