

Discrete-time filters

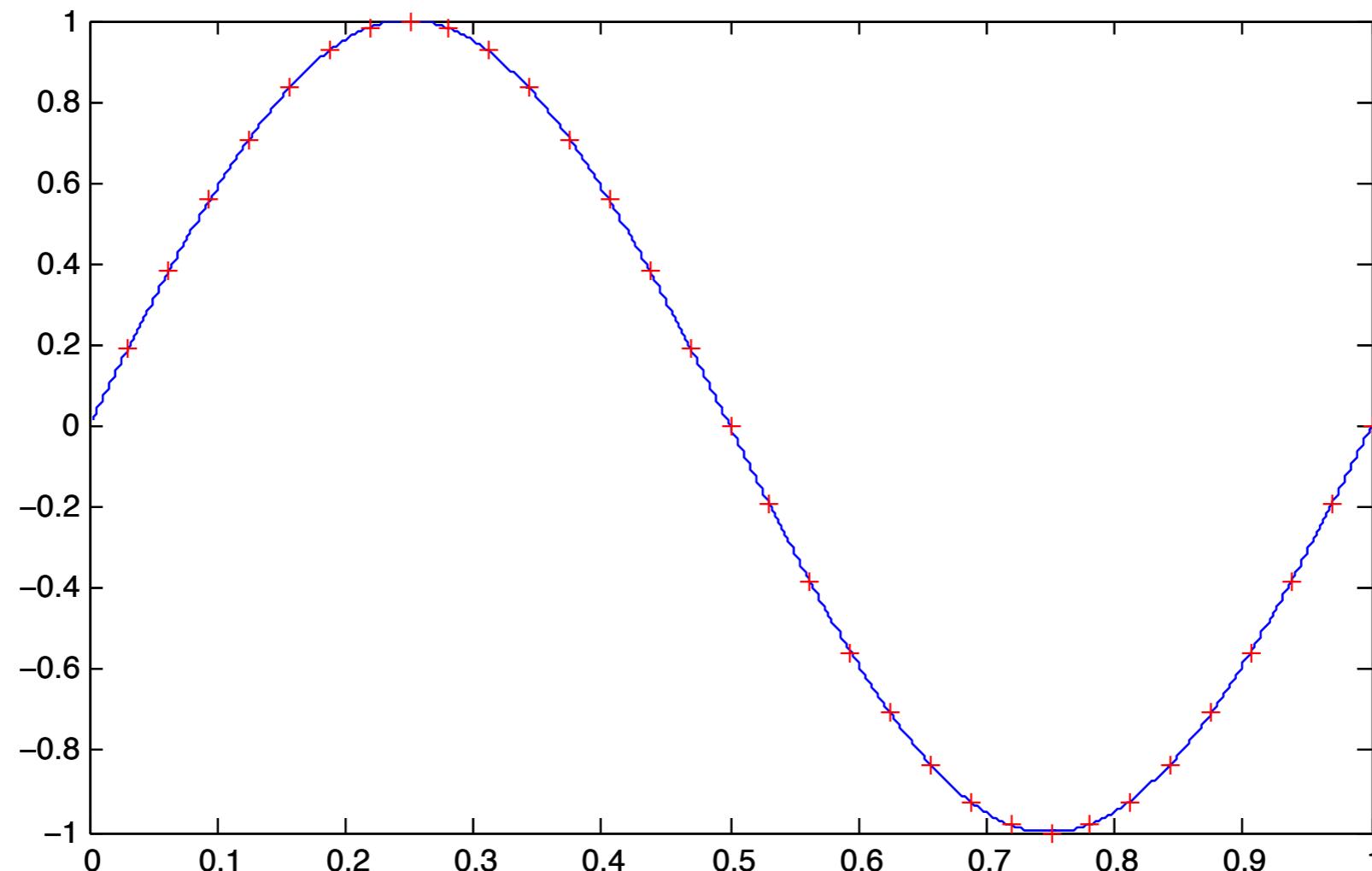
DAT116, Dec 10 2018

larssv@chalmers.se

Topics for today

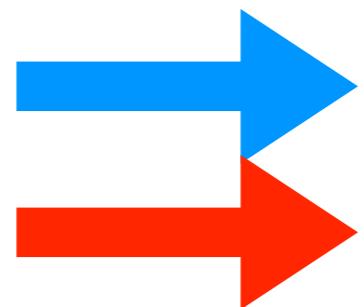
- Discrete-time signals (again)
- Discrete-time filters
 - Z transform (cf. Laplace transform)
- Example: Multirate processing

Discrete-time signals



recap
slide

$f_s = 32$



$$y = \sin(2\pi \cdot t), 0 < t \leq 1$$

$$y = \sin(2\pi \cdot t_k), t_k = (k / f_s)$$

Discrete vs continuous

- Sampling gives discrete-time version of continuous-time signal
- Identical values at sequence of time instances
 - Ideally, instances are uniformly spaced
 - One-to-one correspondence possible for band-limited continuous-time signal
 - Nyquist criterion

Continuous-time filters

- Linear, time-invariant (LTI) systems
 - Described by system of differential-algebraic equations (DAEs)
 - Define LTI relation between output(s) and input(s)
 - Time or frequency domain (equivalent)
 - Time: convolve w/ impulse response
 - Frequency: multiply with transfer function

Restrictions

- Lumped components
 - R, L, C, gains
- Then, limited-order differential equations
 - Example: first-order DE for simple RC link
 - Then, frequency domain representation is rational function of same order
 - Poles, zeroes defined by two polynomials

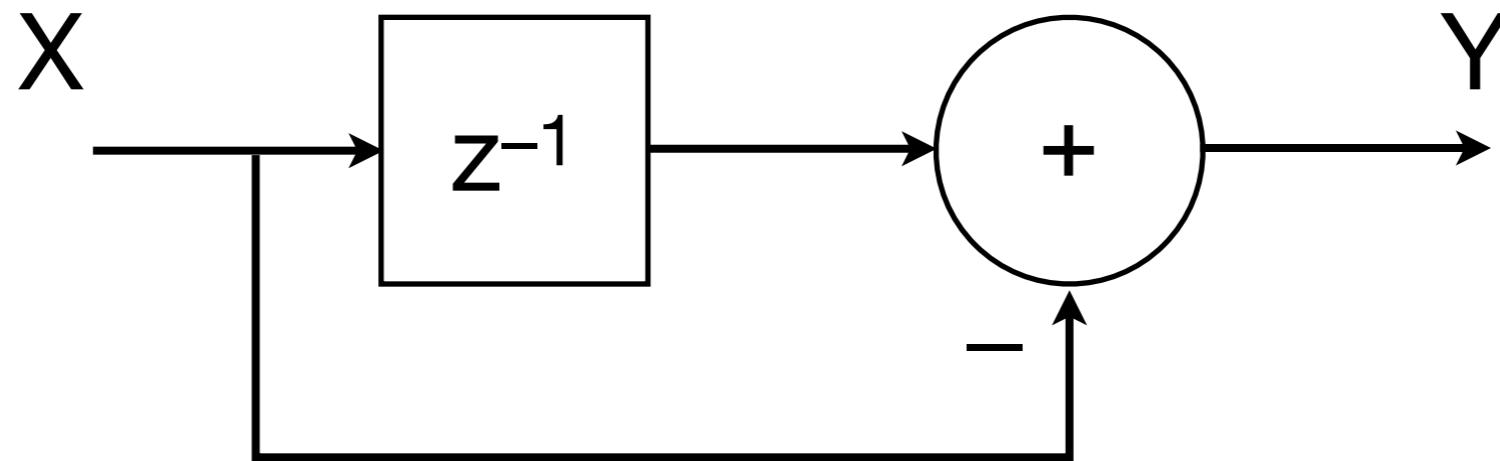
Discrete-time filters

- Similar to continuous-time filters...
 - ... if you sample fast enough...
- Z transform replaces the Laplace transform in the sampled domain
 - Simple rules for constructing transforms, as in Laplace case
 - Used also for digital filters (after quantization)

Z vs. Laplace

- Laplace:
 - s^{-1} means integration
 - Transfer functions rational in s : $Z(s) / P(s)$
- Z:
 - z^{-1} means delay by one sample interval
 - Transfer functions rational in z : $Z(z) / P(z)$

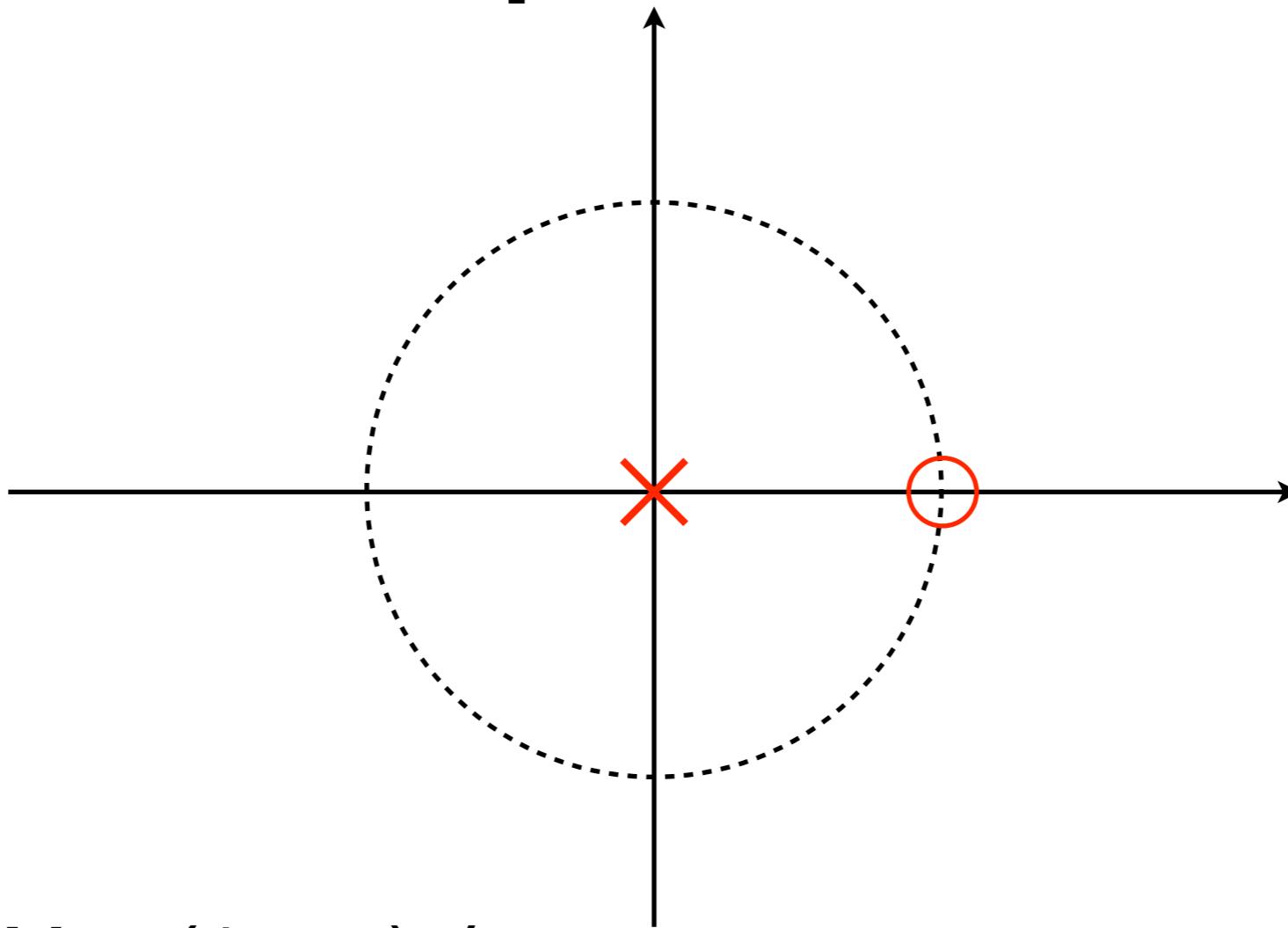
Simple filter in z domain



FIR filter
Highpass

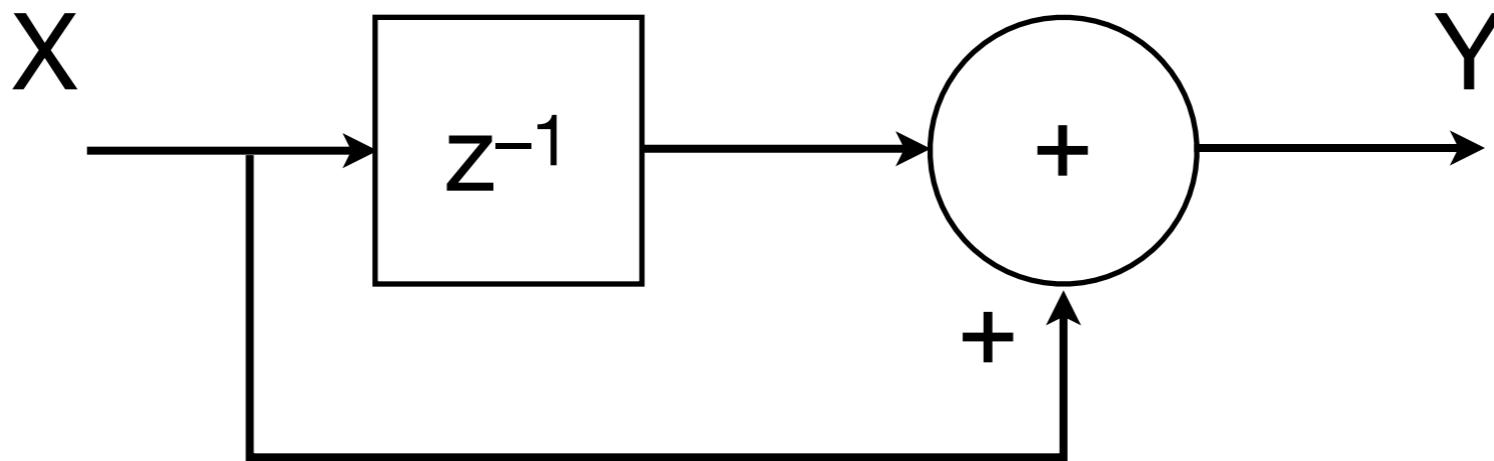
- $Y = X z^{-1} - X = X (z^{-1} - 1)$
- $Y / X = (z^{-1} - 1) = (1 - z) / z$
- Poles? Zeros?
- DC gain?

z plane



- $Y / X = (1 - z) / z$
- DC gain = 0 means a zero at $z = 1$
- Pole at $z = 0$

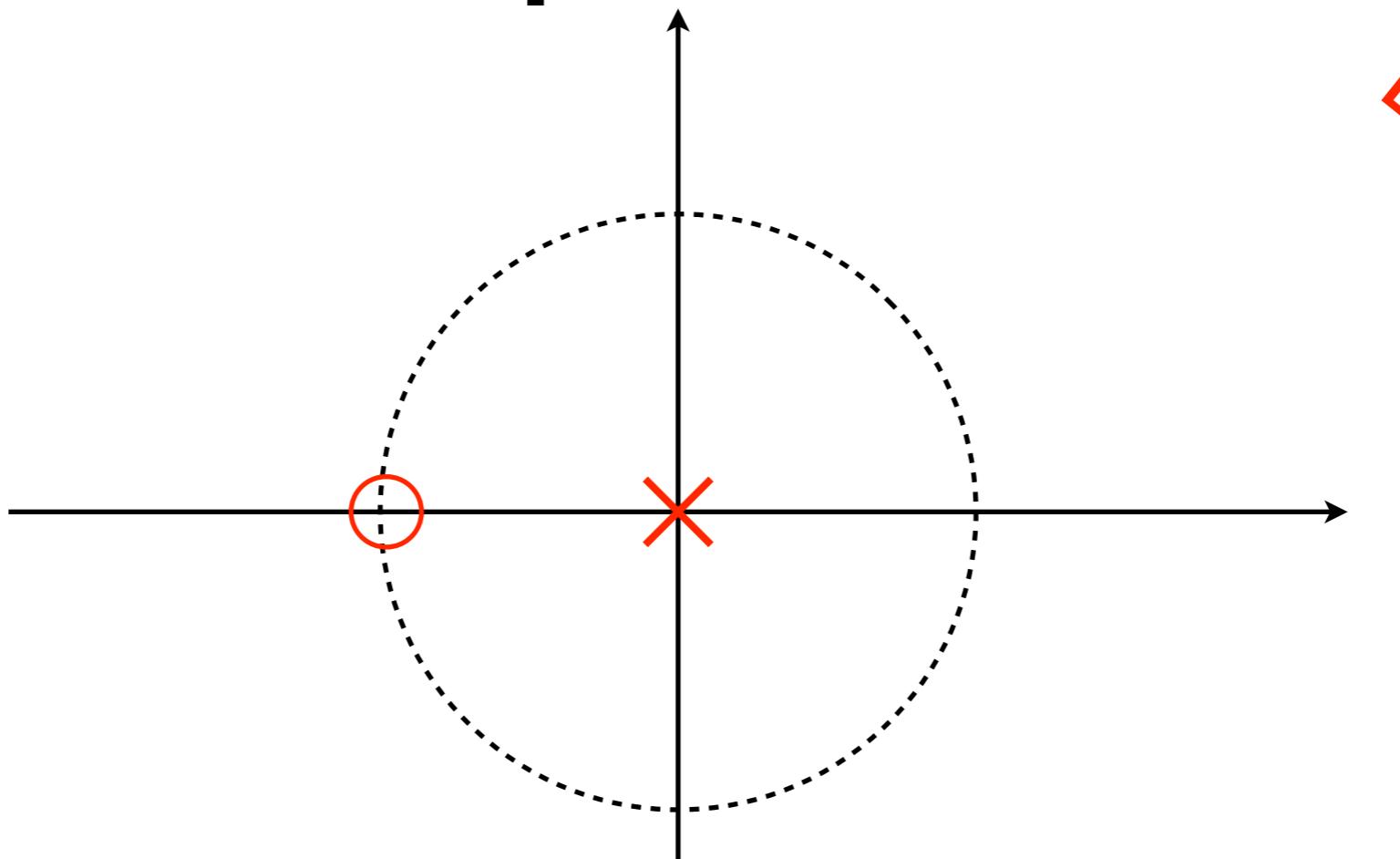
Simple filter in z domain (2)



FIR filter
Lowpass

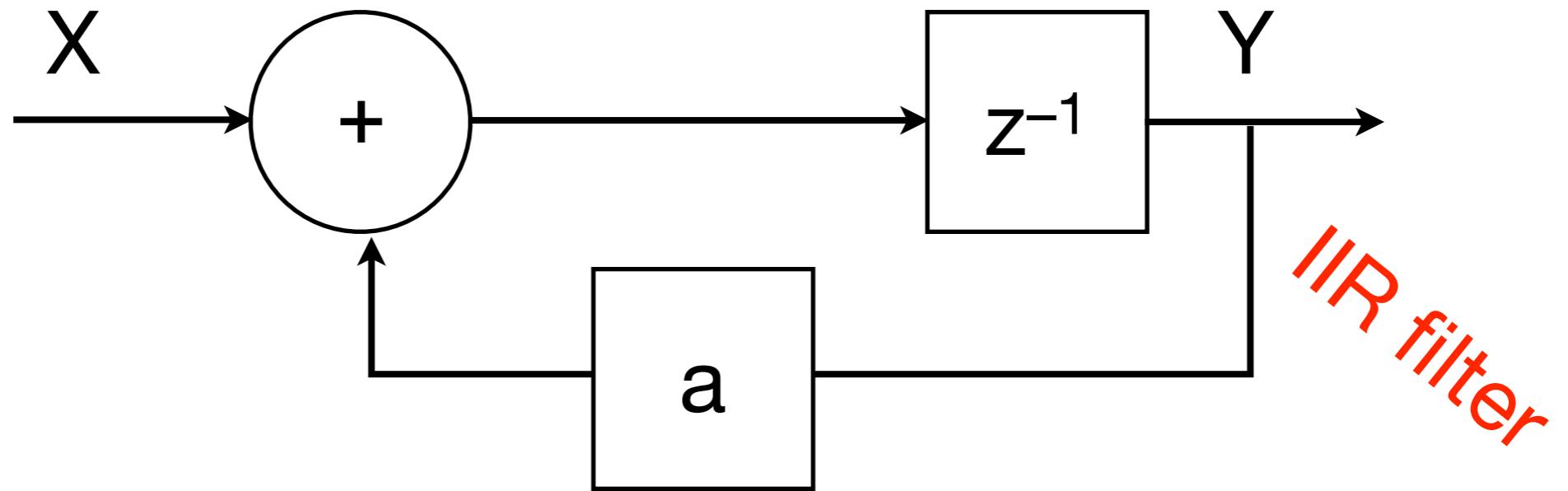
- $Y = X z^{-1} + X = X (z^{-1} + 1)$
- $Y / X = (z^{-1} + 1) = (1 + z) / z$
- Poles? Zeros?
- DC gain? Gain at $f = 1 / (2 T_s)$?

z plane



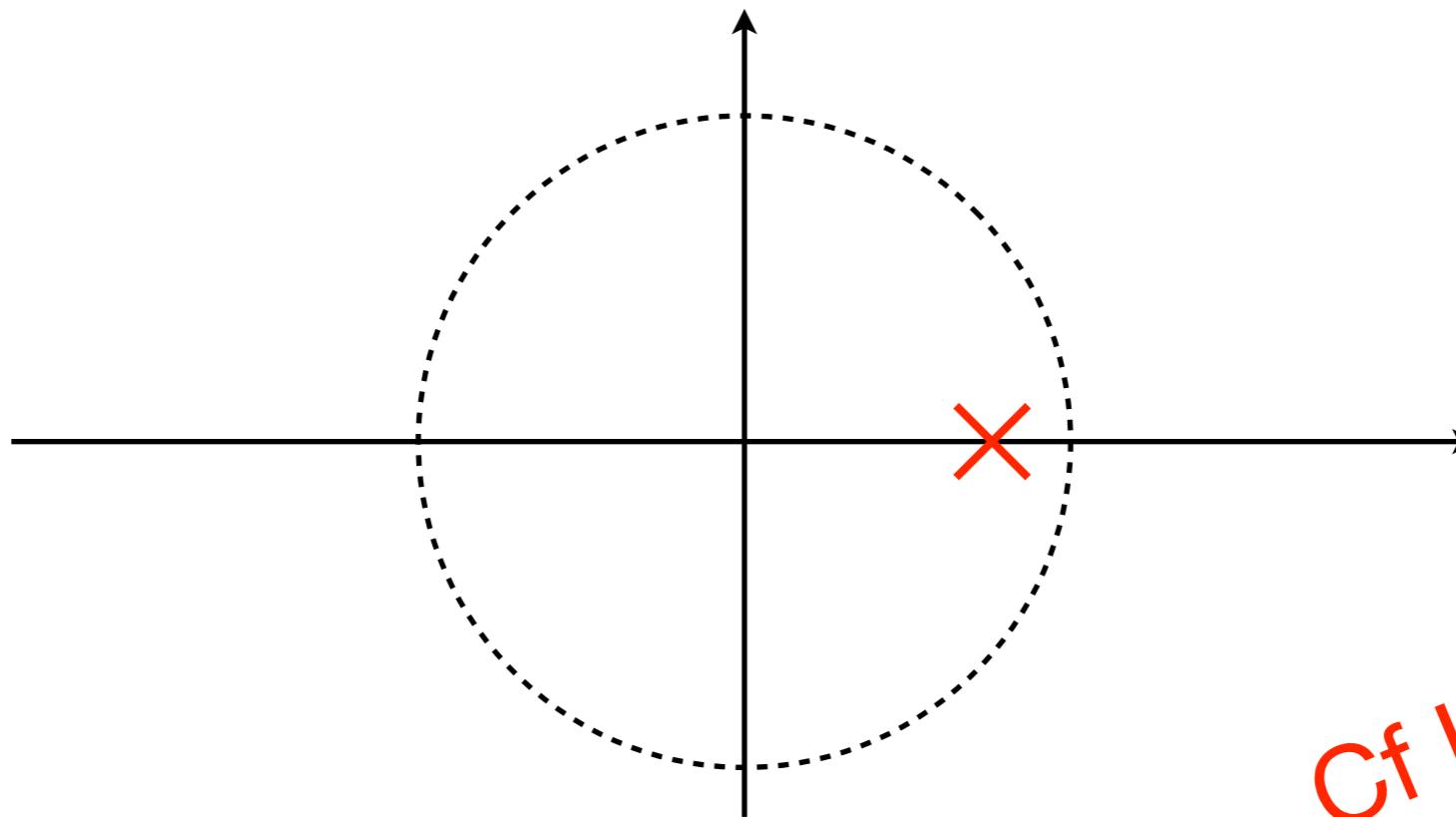
- $Y / X = (1 + z) / z$
- Pole at $z = 0$
- Zero at $z = -1$ means gain = 0 at $F_s / 2$

Simple filter in z domain (3)



- $Y = z^{-1} (X + aY)$
- $Y / X = z^{-1} / (1 - az^{-1}) = 1 / (z - a)$
- Poles? Zeros?
- Stability?

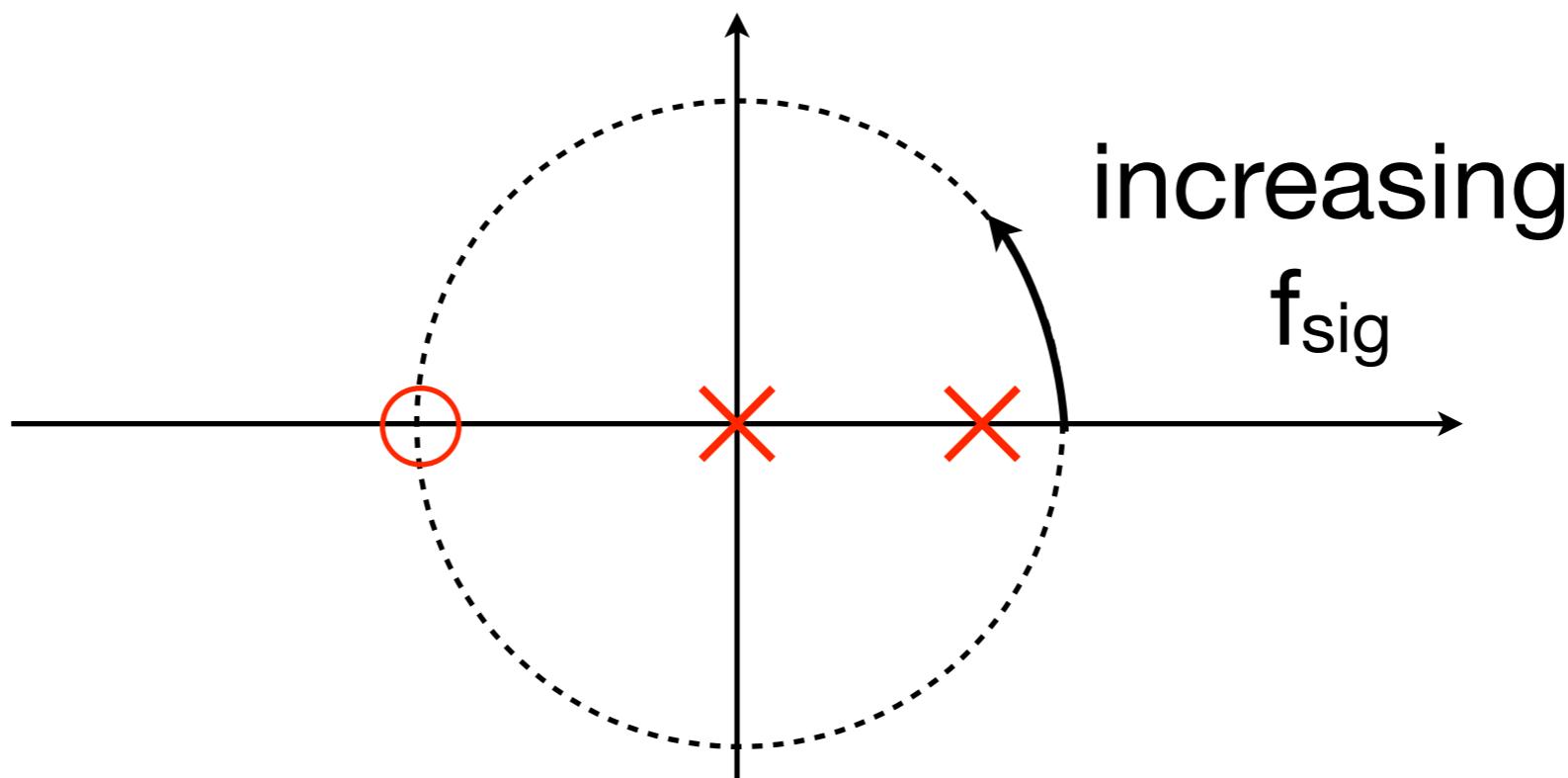
z plane



Cf Laplace:
poles in LHP

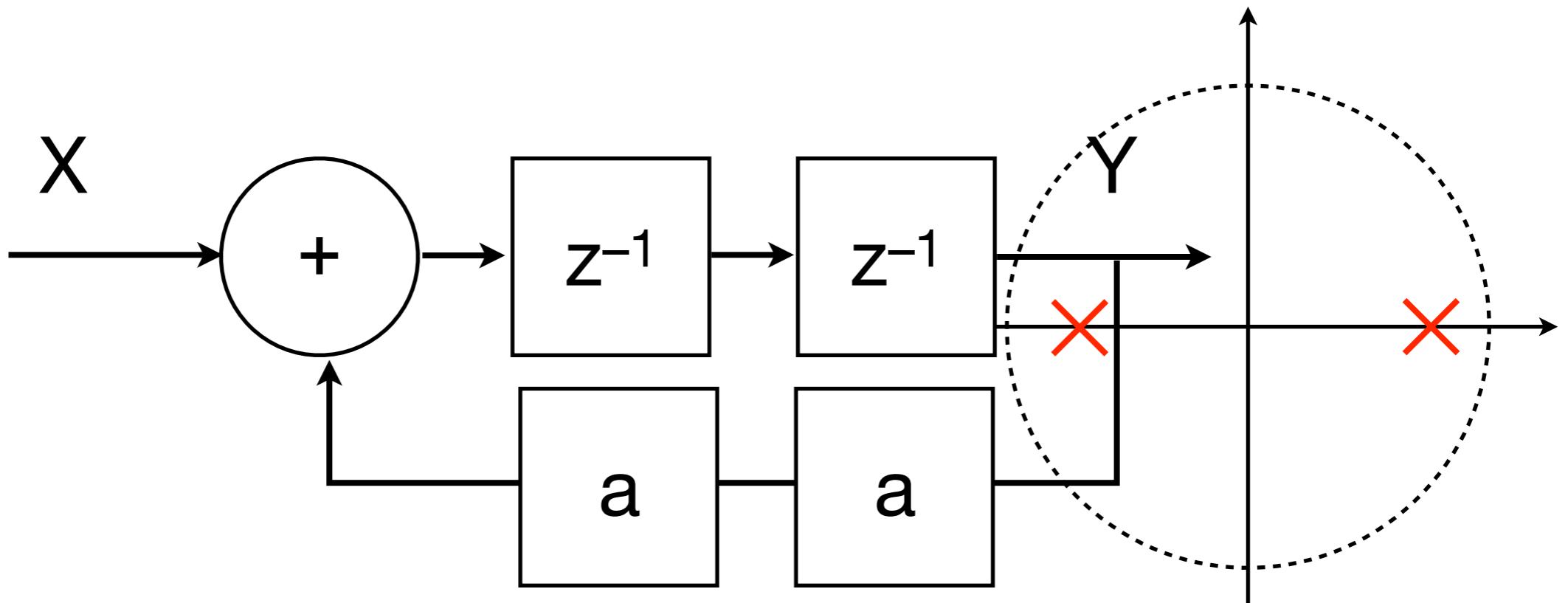
- $Y / X = 1 / (z - a)$
- Pole at $z = a$
- Stable for $|a| < 1$ (in general, stable if poles inside unit circle)

Frequency response



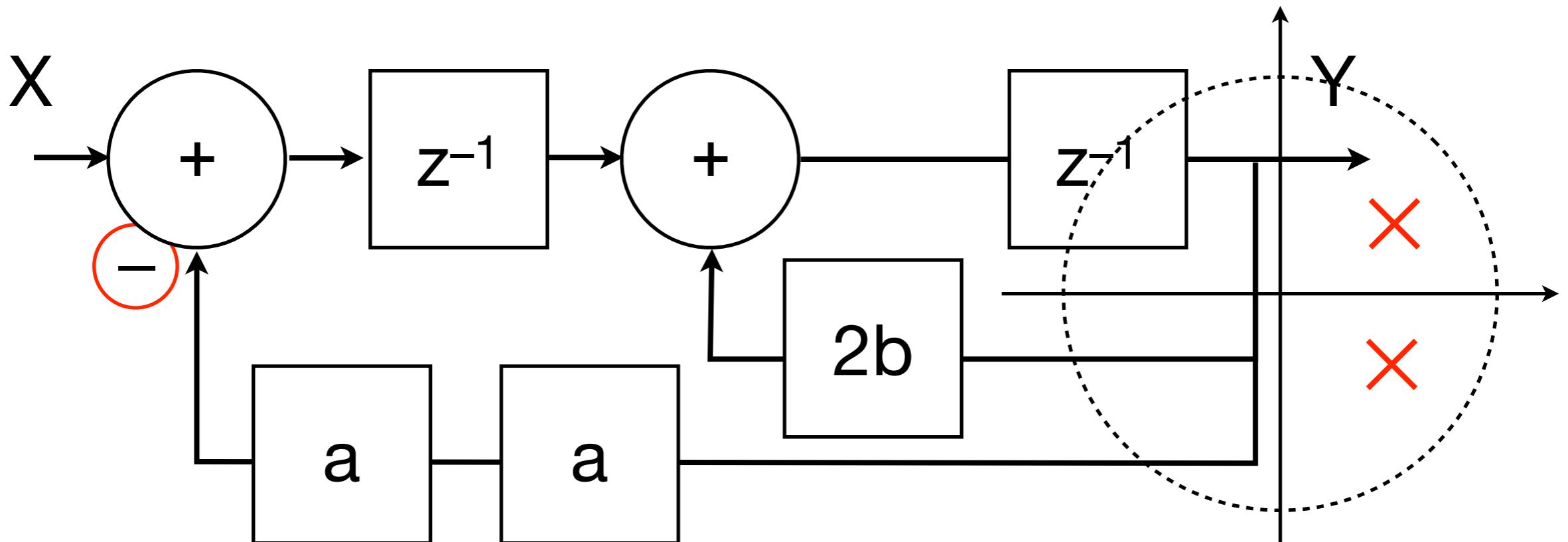
- Move along unit circle, evaluate xfer func
- Corresponds to moving along imag. axis in s plane
- Note: xfer func values repeat! Aliasing!

2nd order



- $Y = z^{-1} z^{-1} (X + a^2 Y) = z^{-2} (X + a^2 Y)$
- $Y / X = z^{-2} / (1 - a^2 z^{-2}) = 1 / (z^2 - a^2) =$
 $= 1 / ((z + a) (z - a))$

Complex poles



- $Y = z^{-1} 2bY + z^{-2} (X - a^2Y)$
- $Y / X = z^{-2} / (1 - 2bz^{-1} + a^2z^{-2}) =$
 $= 1 / (z^2 - 2bz + a^2)$
- P-Z placement symmetric around real axis

Poles complex
if $a > b$

Design method re-use

- Continuous-time design re-usable in discrete time!
 - Cf. re-use of LP design for HP, etc.
 - “Map” s-plane on z-plane
 - Poles appear also in z-plane
 - Find mapping which preserves desirable properties

Desirable properties

1. Stable in CT should be stable in DT
 - Map LHP on inside of unit circle
2. CT lowpass should yield DT lowpass, etc
 - Origin should map to 1
3. Other filter properties should be preserved
 - Attenuation in pass- and stopband
 - Flatness in pass- or stopband

Such mappings exist.

Practical DT filter design

- Select transfer function
 - Classical (Butterworth, etc) or purpose-built
- Select implementation style
 - Parameter sensitivity in passband vs stopband etc
- Select “good-enough” circuit implementation
 - Consider inaccuracies
- Very similar to CT filter design!

DT analog vs digital?

- May any digital filter be transferred to DT-analog?
- Well, yes. However:
 - TF zeros require good matching
 - Low-frequency TF poles require low-leakage integrators
 - Noise and distortion differ
 - ...

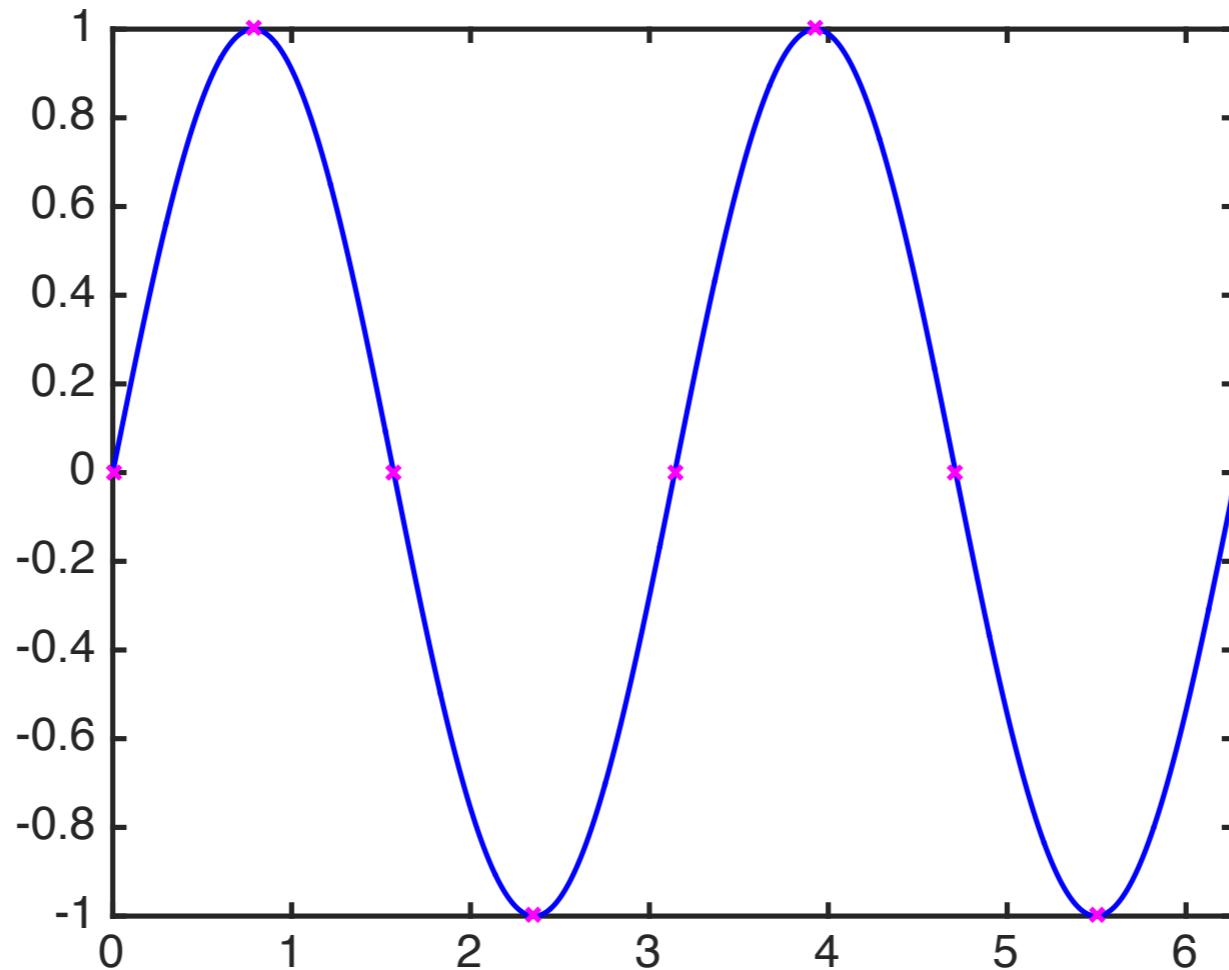
Different tradeoffs
→
different solutions

DT filtering application: Multirate processing

Problem

- Have signal sampled at f_{old} , need signal sampled at f_{new} . How?
- Common practical problem!
 - Example: DAT audio (48 kHz) to CD audio (44.1 kHz)
 - Typical requirements:
 - Signal of interest must be retained
 - Noise etc should not increase

1. Integer rate reduction

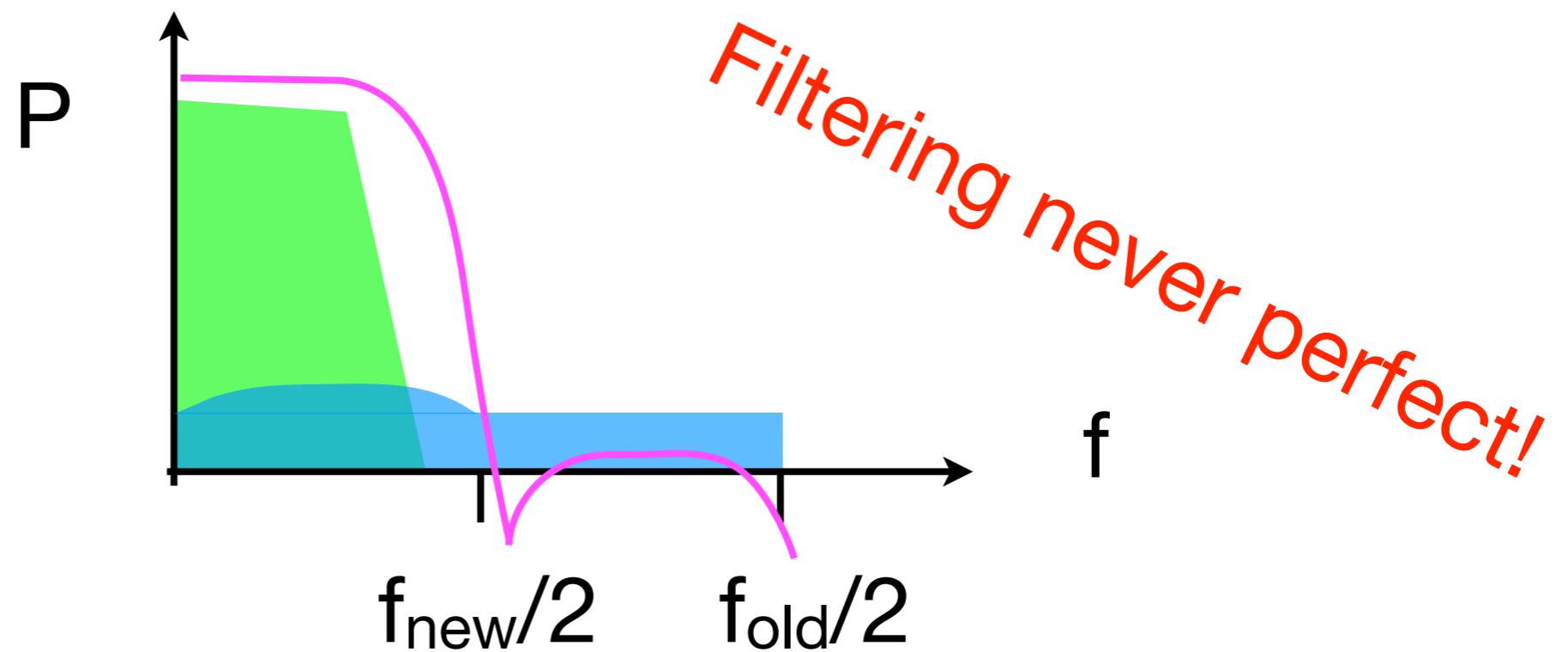


- $f_{\text{new}} = f_{\text{old}} / N$ (here $N = 2$): drop some samples!
 - When no loss of information?

Rate reduction conditions

- Nyquist conditions must be valid for new sample rate!
 - No signal components above $f_{\text{new}} / 2$
 - Signal of interest: OK. But what about noise?

Noise folding / aliasing

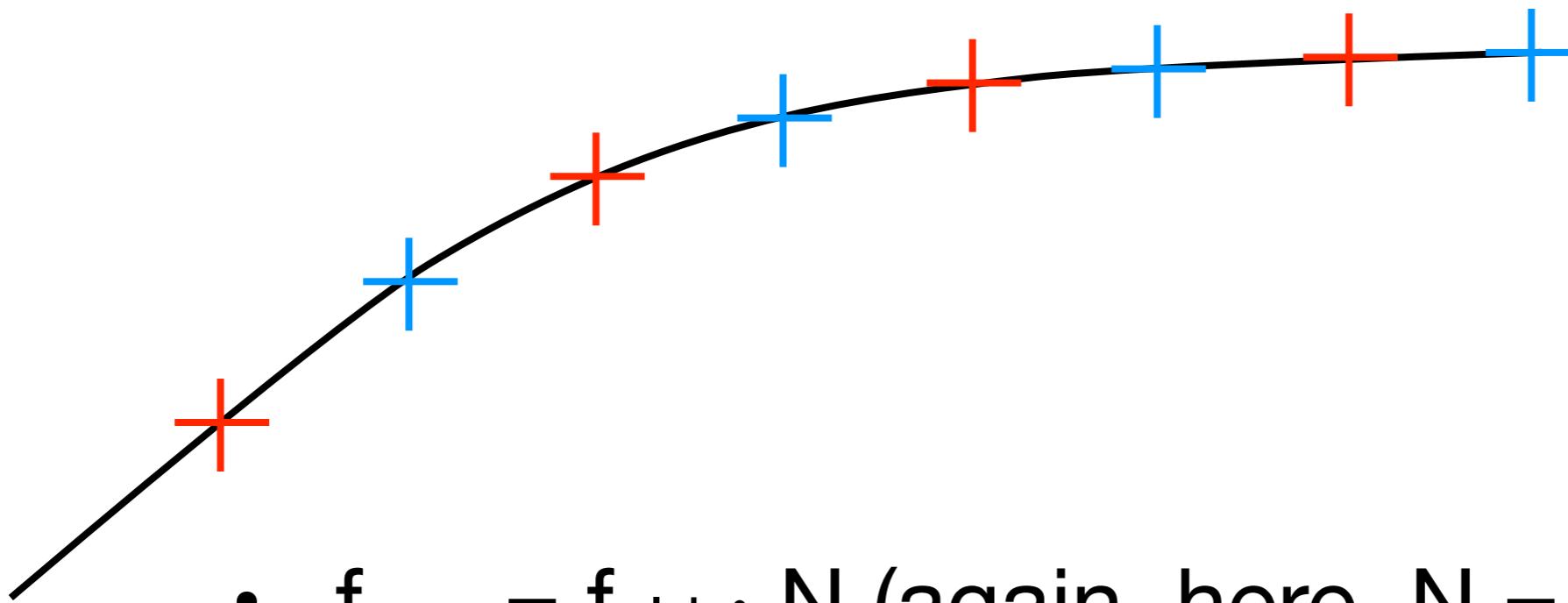


- Signal-of-interest unchanged (Nyquist fulfilled)
- All noise below $f_{\text{old}} / 2$ folded into $f_{\text{new}} / 2$
 - Reduce by filtering before rate change

Optimization

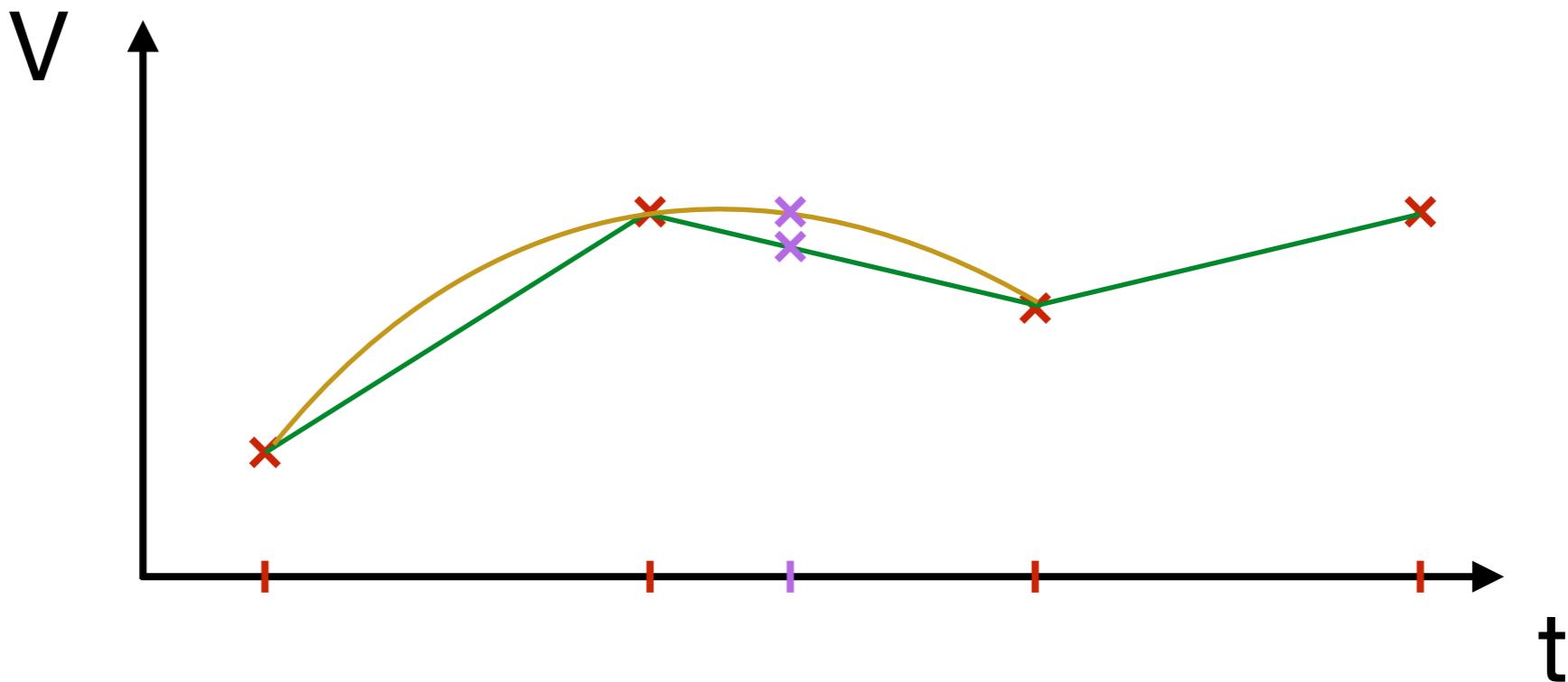
- Single-rate filtering: calculate one new sample for each old sample
 - Sliding average (FIR filter)
 - Recursive definition (IIR filter)
- Rate reduction: $N-1$ out of N samples will be dropped immediately
 - Don't ever calculate them!
 - May save factor N of calculations 😊

2. Integer rate increase



- $f_{\text{new}} = f_{\text{old}} \cdot N$ (again, here, $N = 2$)
- Interpolate for new samples
- Calculate new samples from old
- How estimate performance?

Interpolation



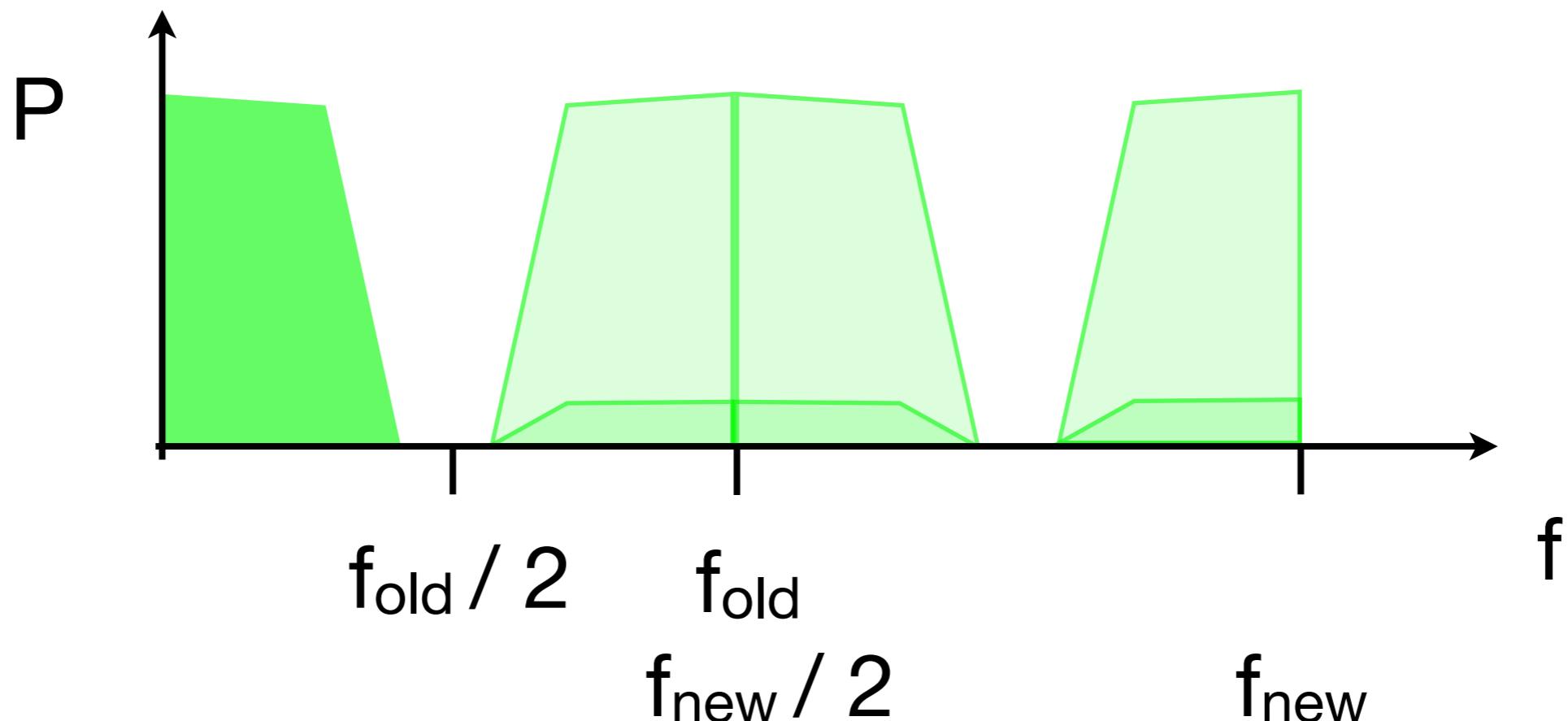
- Originally used to find values for intermediate values in tables
 - Linear (2 original values → first-order expression)
 - Square (3 values, 2nd-order expression)
 - Polynomial (N values, N-1-order expression)

Filtering

*Frequency domain
vs time domain*

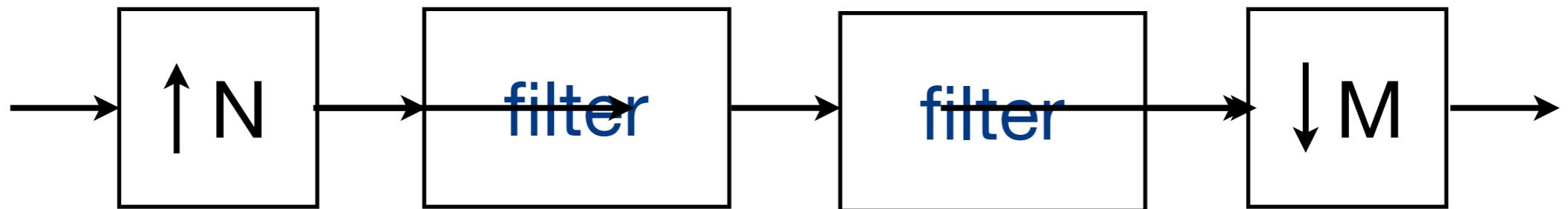
- View interpolation as filtering!
 1. Insert intermediate samples with value = 0
 2. Run resulting sequence through low-pass filter
- New sample values derived from old values (inserted ones are 0)
- Filter performance determines accuracy
- Again, don't calculate unless necessary

Frequency domain



- Mirror images in continuous-time spectrum
- Must be suppressed by filter
 - Filter specs derived from allowable error

Rational rate change



- $f_{\text{new}} = f_{\text{old}} \cdot N / M$
- Increase + decrease
- Combine filters

Implementation

- Some ratios require large N, M
- Large N means high intermediate sample rate
 - High dynamic power!
- May be better to use several steps
 - $f_{\text{new}} = f_{\text{old}} \cdot (N_1 / M_1) \cdot (N_2 / M_2) \cdot \dots$
 - Co-optimize with filter cost...

DT filter summary

- “Same” theory as for digital filters
- Theory similar to that of CT filters
 - Transfer functions, impulse response, etc
 - Z transform rather than Laplace transform
- CT filter designs can be reused to certain extent
 - Map s plane to z plane
 - Sample rate change involves DT filtering