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Topics for today 

• Discrete-time signals (again)


• Discrete-time filters


• Z transform (cf. Laplace transform) 


• Example: Multirate processing
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Discrete-time signals
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y = sin(2π· t), 0 < t ≤ 1
y = sin(2π· tk), tk = (k / fs) 

fs = 32
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Discrete vs continuous
• Sampling gives discrete-time version of 

continuous-time signal 


• Identical values at sequence of time 
instances 


• Ideally, instances are uniformly spaced 


• One-to-one correspondence possible for 
band-limited continuous-time signal 


• Nyquist criterion 
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Continuous-time filters
• Linear, time-invariant (LTI) systems 


• Described by system of differential-
algebraic equations (DAEs)


• Define LTI relation between output(s) and 
input(s)


• Time or frequency domain (equivalent) 


• Time: convolve w/ impulse response


• Frequency: multiply with transfer function 
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Restrictions
• Lumped components 


• R, L, C, gains 


• Then, limited-order differential equations


• Example: first-order DE for simple RC link  


• Then, frequency domain representation is 
rational function of same order


• Poles, zeroes defined by two polynomials
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Discrete-time filters 
• Similar to continuous-time filters… 


• … if you sample fast enough…


• Z transform replaces the Laplace transform 
in the sampled domain 


• Simple rules for constructing transforms, 
as in Laplace case 


• Used also for digital filters (after 
quantization)
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Z vs. Laplace
• Laplace: 


• s–1 means integration 


• Transfer functions rational in s:  Z(s) / P(s) 


• Z: 


• z–1 means delay by one sample interval


• Transfer functions rational in z:  Z(z) / P(z)
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Simple filter in z domain

• Y = X z–1 – X = X (z–1 – 1) 


• Y / X = (z–1 – 1) = (1 – z) / z 


• Poles?  Zeros?  


• DC gain?  

z–1 +

–

YX
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z plane

• Y / X = (1 – z) / z 


• DC gain = 0 means a zero at z = 1


• Pole at z = 0
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Simple filter in z domain (2)

• Y = X z–1 + X = X (z–1 + 1) 


• Y / X = (z–1 + 1) = (1 + z) / z 


• Poles?  Zeros?  


• DC gain?  Gain at f = 1 / (2 TS) ? 

z–1 +
YX
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z plane

• Y / X = (1 + z) / z 


• Pole at z = 0


• Zero at z = –1 means gain = 0 at FS / 2
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Simple filter in z domain (3)

• Y = z–1 (X + aY) 


• Y / X = z–1 / (1– az–1) = 1 / (z – a) 


• Poles?  Zeros?  


• Stability? 

z–1+

a

YX
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z plane

• Y / X = 1 / (z – a) 


• Pole at z = a 


• Stable for |a| < 1 (in general, stable if poles inside 
unit circle)

Cf Laplace: 


poles in LHP
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Frequency response

• Move along unit circle, evaluate xfer func


• Corresponds to moving along imag. axis 
in s plane 


• Note: xfer func values repeat!  Aliasing!

increasing

fsig
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2nd order

• Y = z–1 z–1 (X + a2Y) = z–2 (X + a2Y)


• Y / X = z–2 / (1– a2z–2) = 1 / (z2 – a2) = 


         = 1 / ((z + a) (z – a))

z–1+

a

z–1

a

YX
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Complex poles 

• Y = z–1 2bY + z–2 (X – a2Y) 


• Y / X = z–2 / (1– 2bz–1 + a2z–2) = 


         = 1 / (z2 – 2bz + a2)


• P-Z placement symmetric around real axis

Poles complex 


if  a > b

z–1+

a

z–1

a

+

2b
–

YX
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Design method re-use
• Continuous-time design re-usable in 

discrete time! 


• Cf. re-use of LP design for HP, etc.  


• “Map” s-plane on z-plane 


• Poles appear also in z-plane 


• Find mapping which preserves desirable 
properties

 18



181210 LJS

Desirable properties
1. Stable in CT should be stable in DT 


• Map LHP on inside of unit circle 

2. CT lowpass should yield DT lowpass, etc


• Origin should map to 1

3. Other filter properties should be preserved


• Attenuation in pass- and stopband

• Flatness in pass- or stopband 

Such mappings exist. 
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Practical DT filter design
• Select transfer function 


• Classical (Butterworth, etc) or purpose-built 


• Select implementation style 


• Parameter sensitivity in passband vs stopband etc


• Select “good-enough” circuit implementation


• Consider inaccuracies 


• Very similar to CT filter design!
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DT analog vs digital?
• May any digital filter be transferred to DT-

analog? 


• Well, yes. However:


• TF zeros require good matching 


• Low-frequency TF poles require low-
leakage integrators 


• Noise and distortion differ 


• …
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DT filtering 
application:  

Multirate processing
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Problem
• Have signal sampled at fold, need signal 

sampled at fnew.  How? 


• Common practical problem!


• Example: DAT audio (48 kHz) to CD audio 
(44.1 kHz) 


• Typical requirements: 


• Signal of interest must be retained 


• Noise etc should not increase 
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1. Integer rate reduction

• fnew = fold / N (here N = 2):  drop some 
samples!  


• When no loss of information? 
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Rate reduction conditions 

• Nyquist conditions must be valid for new 
sample rate!  


• No signal components above fnew / 2


• Signal of interest: OK. But what about 
noise? 
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Noise folding / aliasing

• Signal-of-interest unchanged (Nyquist 
fulfilled)


• All noise below fold / 2 folded into fnew / 2


• Reduce by filtering before rate change
 26
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Optimization
• Single-rate filtering: calculate one new 

sample for each old sample 

• Sliding average (FIR filter) 

• Recursive definition (IIR filter)


• Rate reduction: N–1 out of N samples will 
be dropped immediately

• Don’t ever calculate them!

• May save factor N of calculations 😀 
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2. Integer rate increase

• fnew = fold · N (again, here, N = 2)


• Interpolate for new samples


• Calculate new samples from old 


• How estimate performance?
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Interpolation

• Originally used to find values for intermediate values 
in tables 


• Linear (2 original values → first-order expression)


• Square (3 values, 2nd-order expression)


• Polynomial (N values, N–1-order expression)
 29
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Filtering
• View interpolation as filtering!  


1. Insert intermediate samples with value = 0 

2. Run resulting sequence through low-pass filter 


• New sample values derived from old values 
(inserted ones are 0) 


• Filter performance determines accuracy


• Again, don’t calculate unless necessary
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Frequency domain

• Mirror images in continuous-time spectrum 


• Must be suppressed by filter 


• Filter specs derived from allowable error
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Rational rate change

• fnew = fold · N / M 


• Increase + decrease 


• Combine filters 
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Implementation
• Some ratios require large N, M 


• Large N means high intermediate sample 
rate 


• High dynamic power! 


• May be better to use several steps 


• fnew = fold · (N1 / M1) · (N2 / M2) · …


• Co-optimize with filter cost…  
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DT filter summary
• “Same” theory as for digital filters

• Theory similar to that of CT filters 

• Transfer functions, impulse response, etc 

• Z transform rather than Laplace transform


• CT filter designs can be reused to certain 
extent 

• Map s plane to z plane  


• Sample rate change involves DT filtering 
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