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Topics for today

Discrete-time signals (again)
Discrete-time filters
- / transform (cf. Laplace transform)

Example: Multirate processing
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Discrete-time signals
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Discrete vs continuous

» Sampling gives discrete-time version of
continuous-time signal

» |dentical values at sequence of time
Instances

» |deally, instances are uniformly spaced

» One-to-one correspondence possible for
band-limited continuous-time signal

* Nyquist criterion
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Continuous-time filters

Linear, time-invariant (LTIl) systems

Described by system of differential-
algebraic equations (DAEs)

Define LTI relation between output(s) and
input(s)

» Time or frequency domain (equivalent)

- Time: convolve w/ impulse response

Frequency: multiply with transfer function
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Restrictions

Lumped components
R, L, C, gains

Then, limited-order differential equations

Example: first-order DE for simple RC link

Then, frequency domain representation is
rational function of same order

Poles, zeroes defined by two polynomials

181210 LJS 6



Discrete-time filters

 Similar to continuous-time filters...
... If you sample fast enough...

- / transform replaces the Laplace transform
iIn the sampled domain

»  Simple rules for constructing transforms,
as in Laplace case

» Used also for digital filters (after
quantization)
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/ vs. Laplace

Laplace:

* s~1 means integration

» Transfer functions rational in s: Z(s) / P(s)
s /:

» z-1 means delay by one sample interval

» Transfer functions rational in z: Z(z) / P(2)
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Simple filter in z domain
X O Y
> 71 + >
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¢« Y=Xz1-X=X(z"1-1) o8
s Y/ X=@Z"-1)=(1-2)/z

 Poles? Zeros?
» DC gain?
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* Y/ X=(1-2)/z
 DCgain=0meansazeroatz="1

« Poleatz=0



Simple filter in z domain (2)
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+ Y=Xz1+X=X(z"+1) o8
c Y/ X=@Z"+1)=(1+2)/2z

 Poles? Zeros?
+ DCgain? Gainatf=1/(2 Ts) ?
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* Y/ X=(1+2)/z
« Poleatz=0

» Zeroatz=-1meansgain=0at Fs/2
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Simple filter in z domain (3)

X G Y
+ > 71 >

T a //@/;72‘

« Y=2z1(X+ aY)

Y/ X=z1/(1—-az")=1/(z- a)
» Poles? Zeros?

»  Stability?
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- Poleatz=a

- Stable for |a| < 1 (in general, stable if poles inside
unit circle)
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Freguency response
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» Move along unit circle, evaluate xfer func

» Corresponds to moving along imag. axis

IN s plane

» Note: xfer func values repeat! Aliasing!
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2Nnd order

Z—1

-
="
-

-...
~
~

X @_} .

a_

d

« Y=z1721(X+ a2Y) =z2(X + a2Y)

A
Il

« Y/X=z2/(1-a%z2) =1/(z2-a? =

=1/(z + a) (z- a))

-
-—“
-



Xé;

Complex poles
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P-Z placement symmetric around real axis
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Design method re-use

» Continuous-time design re-usable in
discrete time!

 (Cf. re-use of LP design for HP, etc.
» “Map” s-plane on z-plane
Poles appear also in z-plane

Find mapping which preserves desirable
properties
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Desirable properties

1. Stable in CT should be stable in DT
Map LHP on inside of unit circle
2. CT lowpass should yield DT lowpass, etc
» Origin should map to 1
3. Other filter properties should be preserved
» Attenuation in pass- and stopband
Flatness in pass- or stopband é\(\cf’
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Practical DT filter design

Select transfer function

Classical (Butterworth, etc) or purpose-built
Select implementation style

Parameter sensitivity in passband vs stopband etc
Select “good-enough” circuit implementation

Consider inaccuracies

Very similar to CT filter design!
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DT analog vs digital®?

May any digital filter be transferred to DT-
analog?

Well, yes. However:
TF zeros require good matching

Low-frequency TF poles require low-
leakage integrators

Noise and distortion differ @
X
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DT filtering
application:
Multirate processing



Problem

Have signal sampled at foq, Nneed signal
sampled at fhew. HOW?

Common practical problem!

- Example: DAT audio (48 kHz) to CD audio
(44.1 kHz)

» Typical requirements;
Signal of interest must be retained

 Noise etc should not increase
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1. Integer rate reduction
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frew = fold / N (here N = 2): drop some
samples!

When no loss of information?

181210 LJS 24



Rate reduction conditions

Nyquist conditions must be valid for new
sample rate!

No signal components above fhew / 2

» Signal of interest: OK. But what about
noise?
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Noise folding / aliasing
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fnew/ 2 fold/ 2

» Signal-of-interest unchanged (Nyquist

fulfilled)

« All noise below foiq / 2 folded into frew / 2

Reduce by filtering before rate change
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Optimization

 Single-rate filtering: calculate one new
sample for each old sample

» Sliding average (FIR filter)
* Recursive definition (lIR filter)

Rate reduction: N-1 out of N samples will
be dropped immediately

Don’t ever calculate them!

May save factor N of calculations &
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2. Integer rate Increase

 fhew = foid + N (@gain, here, N = 2)

Interpolate for new samples

 Calculate new samples from old

How estimate performance?
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Interpolation
V A
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Originally used to find values for intermediate values
in tables

Linear (2 original values — first-order expression)

Polynomial (N values, N-1-order expression)
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Filtering S,

View interpolation as filtering! /776//7
1. Insert intermediate samples with value =0
2. Run resulting sequence through low-pass filter

New sample values derived from old values
(inserted ones are 0)

Filter performance determines accuracy

Again, don’t calculate unless necessary
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Frequency domain
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fold / 2 fold T
fnew/ 2 fnew

Mirror images in continuous-time spectrum
Must be suppressed by filter

Filter specs derived from allowable error
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Rational rate change

—1 N —r—fiter —f fiter—/— |M [—

° fnew=fold' N/ M
 |Increase + decrease

« Combine filters
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Implementation

» Some ratios require large N, M

Large N means high intermediate sample
rate

High dynamic power!
May be better to use several steps
* fhew = foia - (N1 / M1) - (N2 / My) - ...

« Co-optimize with filter cost...
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DT filter summary

“Same” theory as for digital filters

» Theory similar to that of CT filters
» Transfer functions, impulse response, etc
» / transform rather than Laplace transform

» CT filter designs can be reused to certain
extent

Map s plane to z plane
» Sample rate change involves DT filtering
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