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Why?

» Implementation insight helps understand
limitations

» True for all technologies, not only
electronic circuits!

« Switched-capacitor circuits and dual-rail
signalling are ubiquitous in integrated
filters

« ...and in ADCs, DACs

» Learn to recognize some simple forms
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Outline

» Basic switched-capacitor (SC) circuits

» Some sources of performance
limitations

» A few examples

» Dual-rail signalling: benefits + drawbacks
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Discrete-time signals
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y=sin(2mr-t),0<t<1
y = Sin(21t- tk), tk = (K / fs)
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A switched capacitor

AQ
V1 e Vo

Csj_f

AQ = (V1 — VO) Cs



“Resistor”
fs

Vo I V+
T

« AQ = (Vo—-V4) Cs

| = AQ- fs — (VO = V‘I)’ fsCs

... SO, a “resistor” from Voto Vi; R =1/ fsCs

Note: R controlled by fs !
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SUSTORA

If the condenser is now removed, aund a resislancs coil substi-
Luled for it, wid adjusted GIL the steady cuvrent thirough the
golvanomncter produces Lhe snme doflexion as the succeasion of
discharges, and il [T s the resmstance of the whule cireuit when
(hay 13 Lho cose, i  eliC

?T:'; _717"; (‘)
1
or Il = éé' (2)

[James Clerk Maxwell. A Treatise on Electricity and Magnetism. 1873.]

|IC applications came later.
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Simple Iow pass link

f
Csé__Ci
RS

 Time constant given by R - Ci = Gi / (fs- Cs)
Depends on
» capacitance ratio (accurate)

» frequency (accurate and controllable)
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Opamp circuits

o N
Ci = 7 C :é

< » Integrator: Vout == (Ci/ Cio ) - | Vin dt)
* |Inverting amplifier

» Reset integrator after each cycle!

« Gain: - Gi/ Cw

181213 LJS 9




181213 LJS

Comparator

—

VA \1 Vin—
|| A
y \ | \ Y
B out
2 Ci /

Phase 1: switches 1 and 3 clz)sed, switch 2 open

Vout, Vin- Close 1o O
~ Vaacross G
Phase 2: switches 1 and 3 open, switch 2 closed
Still ~ Vaacross C;
Vin- = Vg = Va

Vout SWINGs to maximum or minimum voltage
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Non-idealities

- Significant sources of deviations from
iIdeal behavior:

» Stray capacitances

» Charge injection

» Offset voltages
Limited gain

 Settling time
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“#— . Stray caps

L)

JITRK
-

k. SNy

G =
VO i V1 2 \@1 \l&% E /
i:: C J7 é/ Vin2

— [Maloberti, fig 6.28]

Integrated capacitors suffer from stray capacitances

-  Asymmetrical (most from bottom plate)

- Simple SC R still sensitive to top-plate stray capacitances!
- Standard circuit solution exists

Bonus: switch control allows “free” signal inversion
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Charge injection

Vo |
1 ::::::"ié:::::: ¢
i \
Cs = \ \ — =~
5 1/ .
Non-linear couples edge from V; to

Non-linear — step depends on . distortion!

Introduce bottom-plate sampling

Isolate charge on Cs with /. (no voltage
dependence); then disconnect from Vi, with Vo
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/

Offset voltage

}_/
N

Offset: voltage difference at inputs for Vout = 0

- Conventionally represented as voltage source in
series with positive input

- Small value (ideally =0), but worse with
increasing circuit variations (theme 2!)

Reset phase sets output, negative input to = Vo !

« O/w, Vot would be amplified at output...
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Limited gain
pQ=VoG ()

Cib

o ——y LN
Cig: 7

Negative input not pulled all the way to ground
- Charge transfer incomplete

» QOutput settles to “wrong” value
« Worse with lower gain

- Compare with CT case: discrepancy D = AB/ (1 + AB)
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130 n |
—
= Linear settling
%; 90 // A
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o : :
§ 50 — 1 /tau
§ 30
—_——e >
10 \
~10 N\ 5
1 10 100 1k 10k 100k 1M 10M 100M :
FREQUENCY - Hz tau k
t

TPC 16. Open-Loop Gain vs. |
Frequency

« OP-amp with one dominant pole is first-order system

« Step response is a damped exponential

« Feedback moves pole!

» Time constant tau determines settling speed
« 3-tauto 95%:; 5 - tauto 99%: 9 - tau t0 99.9%; etc
+ Select GBW for desired accuracy (tradeoff: $, W)
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Nonlinear settling (slewing)

Vout

|deally, settling error shrinks exponentially with time

Remaining final error (%) at time tx depends only on
amplifier gain and on time spent vs pole position

If limited max current lout, error also depends on level

» Worse at high amplitudes! Non-linear! Distortion!
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How size capacitances”?

Small C brings high speed

Small C brings low power

Small C brings matching problems

Best matching for small-integer ratios (2, 3, 4, 5,
etc)

Does not fit Butterworth etc. poles :-(
Small C brings fundamental noise problems
Noise power: kT / C
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SC drawbacks

» Sampling brings aliasing problems

« Will need CT anti-alias pre-sampling

filter

Need a GBW ~5x the clock frequency, so
10x highest signal frequency

» Worse than BW margin for continuous-

time implementations

High GBW costs power!



Example: SC ladder filter

Ks.:Cs
11

-1}

K. C Ks.sCs

1] .
1] LA

Ko.Ci==

» CT filter design styles re-usable in DT!
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Amplitude (dB)

Performance
example
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Frequency (MHz)

« 6-order filter, 176 MHz clock, < 100 mW,
0.35um CMOS
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TABLE 1
SUMMARY OF THE MEASURED RESULTS OF THE OPAMP

Parameters Results
Technology 0.35um CMOS
Supply Voltage 3V
Low-Frequency Gain 56 dB
Unity-Gain Frequency 600 MHz
Phase Margin 50°

Power Consumption 30.8 mW
Single-Ended Output Swing 0.9 Vpp

0.1% Settling Time @ 1.5pF <5ns

.E. —
A A
60 65

Parameters This design J. Silva- R. F. Neves [13]
Martinez [12]

Technology 0.35-um CMOS | 0.35-um CMOS | 0.8-um CMOS

Supply voltage 3V 3v 5V

Power consumption | 92.7 mW 54mW 125mW

Sampling frequency | 176MHz 68MHz 100MHz

No. of Clock phases | 3 < 42

Orders of filter 6 6 N/A

Q 7 32 7.5

Center frequency 44MHz 10.7MHz 37.5MHz

Vin @ IM3 = 3% 0.893Vp-p N/A

Total output noise 383.0 uVrms N/A N/A

Dynamic range ( 3% | 58.3 dB 58 dB (SNR) 34dB SNDR with

IM3) Vout = 0dBm

Active area 0.52mm?* 0.84mm° 7.27mm’

[Ng et al, IEEE Journal of Solid-State Circuits, March 2005]




Other SC Circuits: DAC

2NC
1
2N-1G 2C C \T
T % f /2 clock phases
| | ||

« Offset cancellation

« Good for ~7 bits
T (cap ratios)

eCOnd
@Xamp/e lat - Similar to R-based
or DAC!
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Dual-ralil signalling



Dual-rall signalling

»  Almost universal in on-chip analog
circuits

Not only in DT filters

 CT filters from theme 4!

Increased complexity
Benefits outweigh costs

+ Often ignored for simpler drawings :-/
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|
|
~— \ V B ™ B +> T V
Vin Vout n + + = - out

» Signhals maintained as voltage differences

«  Symmetrical circuits
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Dual-rail + and —

. Twice the swing
. Improved SNR

. Common-mode

coupled noise
eliminated

. BEven-order

harmonics cancel
out

26

. Twice the

hardware

. Twice the power

. Relies on

symmetry

. CMEB circuitry

needed



1. Twice the swing

If single-rail swing from -1 to +1, then
dual-rail swing is from (-1) - (+1) = -2 to
(+1) - (-1) =2

Important at low supply voltages in
modern processes
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2. Improved SNR

- Signal voltage amplitude doubled
 Signal power up by 4x (6dB)

« Uncorrelated random noise at both rails

adds as powers

Noise power up by 2x (3dB)

« 3dB SNR improvement!
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3. Coupled-noise reduction

Externally-generated noise (from
supplies, substrate, capacitive coupling)
tends to be highly correlated

If identical (ideal case), does not affect
output at all!

Even better SNR improvement
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4. Harmonic reduction

 Even-order nonlinearities are cancelled

» Consider DR circuit with slight nonlinearity h
Inputs: X+ = a sin (wt) ; Xx- = —a sin (wt)

« Qutputs: y+ = h(a sin (wt)) ; y- = h(— a sin (wt))

» Taylor expansion: h(x) = ho + h1 X + ha x2 + ...

« But x2n = (-x)2n, so no even harmonics in (y+ — y-)
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1. Twice the hardware

» Twice as many capacitors
» Twice as many switches

» Twice as many wires

- Affordable with present-day
miniaturization
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2. Twice the power

» Twice the capacitive load driven to the
same swing as before

« Twice the number of switches to control

May be traded for the 3dB SNR
improvement...
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3. Relies on symmetry

Benefits assume that all paths are
symmetricall

» Example: harmonics won’t cancel
perfectly if one capacitive load is larger!

« Symmetry is never perfect
- Layouts

» Variability
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4. CMFB circuits needed

> 32 o
b= O(\/ \& °
- / $ 6((\@'
O

Common-mode feedback circuits needed to
control average output voltages

Extra input (here) or added to both DM inputs
Extra feedback loop! Stability issue!
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Two combined
examples



Successive approximation

O
X
Q\QO. ég >
q}\ time

Simple Finite State Machine sets bits in sequence from
MSB downwards, depending on previous decisions

Search by interval halving / bisection
One full conversion in N cycles
No subtractions or other analog processing
— DAC needs to be good to N bits!
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DAC + Comparator

refp

Sl AL

_2m~ Lc, 2m~ 2Cu |2C. |Cu
\V4 —o/o—c ° o o
P +J_ To SAR logic
V, —0— o—e¢ ? ® ® —
_2m~ e, 2m~ 2Cu |2C. |Cu
SWn—1,b SWn.,b
- T T ] °
Viefo .

- DAC capacitors also work as ADC sample cap!

- Capture value on caps, then switch back plates
to zero out difference by binary scaling

*  Principle used for lowest-FoM ADCs today!
» Also for high speed (next week!)

181213 LJS 37 [Victor Aberg]



Forward-looking example

L

Ll

1

2

Y
VDD——"> VDD——"
vb2 vb1
/ i
C1 C C C
U = *%| >;><\] s1n I% T><1p > >|3 o \] sZn IEE T><2p
D1 - ¥ - fp2 - F !
icm Loy A> pl \''/ p2 icm o A>
v-—p'] + = x v-—p2 + = x
SSBM TR U UL S BT D W1
& Yy 1\ P o x1n - o /l s2p o X2n
vDD——L7—q - VDD—— —1o—) i
C4
\ \/J
VSS - — VSS——
vb1 V]
» Two-integrator filter
» Part of Sigma-Delta ADC (also next week!)
181213 LJS 38

i

I

»\

vb1

vb2

»CKV

[Pavan, Schreier, Temes: Understanding Delta-Sigma Data Converters, 2017]



Summary

« SC circuits allow high-performance
analog circuits on silicon

- Good accuracy
 Controllability

» Dual-rall signalling ubiquitous in on-chip
analog and mixed-signal circuits

» May be used even if not shown In
schematics!
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