
DAT116 (Mixed-signal system design)
Lab 5: Nonlinearities in continuous-time circuits

Lars Svensson
larssv@chalmers.se

Version 1.9, December 10, 2018

1 Introduction

In this lab, we will tie the Cadence system and MATLAB together more inti-
mately than before: we will use MATLAB to post-process the data produced by
Cadence simulations. The integration is by no means perfect, but instead offers
an example of how different tools may be stitched together to solve tasks neither
tool would easily tackle on its own. (Some of the operations performed here may
in fact be carried out using the Cadence Calculator instead; but MATLAB offers
all the freedom of a programming language designed for general-purpose numer-
ical computation and display, which will be utilized at the end of the session.)

This integration will require you to run MATLAB on heffalump rather than on
your local machine. The MATLAB windows will appear in the VNC desktop.

2 Preparation

As this lab builds on the previous labs, it is assumed that you have worked
through those.

3 Setup

Before launching MATLAB, it is necessary to set some environment variables in
order to access the routines used to read Cadence simulation results into MAT-

1



DAT116, Lab 5, Version 1.9 2

LAB.

• If you use bash as your login shell, give the command

source /usr/local/cad/course/DAT116/Y2018/cm.bash

If you use csh or tcsh, change the last suffix to .csh .

4 Cadence-MATLAB data transfer

The first task is to transfer the result of a transient simulation from the Cadence
system to MATLAB. We will use the simple inverting amplifier stage which we
already studied in Lab 2.

• Launch Cadence and open the Library Manager tool.

• Make a copy1 of the cell lab2 from a few weeks ago and call it lab5. Verify
that the copy includes both the schematic and config views.

• Open the schematic and config views of lab5. Verify that its schematic
connectivity corresponds to the figure below.

1Right-click on the cell name in Library Manager; select Copy. . . ; enter the new cell name
in the To pane; check the box Update instances:; and change the pulldown from Of Entire
Library to Of New Copies Only.



DAT116, Lab 5, Version 1.9 3

• Open the properties panel of the sinewave source. Set the frequency to
10 kHz and the amplitude2 to the variable ampl. Click OK to close the
panel.

• Check and save the schematic view.

• Launch ADE L in the same way as in previous labs, and set the simulator
to ams in accordance with the pop-up reminder.

• Before closing the dialog, make note of the Project Directory. All simu-
lation files will be created in subdirectories of the project directory.

• Set up a transient analysis with a duration of 1 ms. Use the conservative

accuracy defaults to instruct the simulator to prefer accuracy over simula-
tion speed.

• Copy variables from the cellview into ADE L, and set the value of ampl
to 0.1.

• Select the nodes at the sinewave source and the opamp output for voltage
plotting.

• Choose Simulation→Netlist and Run to produce the input file for the
simulator and to run it. A log file window opens to allow you to follow
simulation progress. Verify the result in the graph window that pops up
when simulation is complete. Do not dismiss the log file window yet.

The results of the simulation are now stored in the Cadence design database to-
gether with simulation parameter values etc. Special-purpose MATLAB routines
are available to access the database; the routines need to be pointed to the right
place in the filesystem though.

• Starting from the project directory that you made note of above, explore
the directory structure of the results files. Descend into directories named
after your top-level cell and after the simulator used; stop when you find a
directory called psf.

• Make note of the whole directory path (starting with “/”) leading to this
directory; example: /a/b/c/simulation/optest/ams/config/psf .

The MATLAB utility files which you can find on PingPong are also available on
heffalump and have been added to the MATLAB search path. One function,

2A reminder: there is both an AC magnitude field and an Amplitude field. The former value
is used only in AC simulations. Here, you need to set the latter one!



DAT116, Lab 5, Version 1.9 4

cds2sig.m, will convert voltage waveforms generated by Cadence simulations to
the format expected by sigview etc.

• Launch MATLAB from the command line in a shell window where you
sourced the setup file according to instructions in Section 3 above. Select
a working directory for this lab.

• If you ran the setup script correctly (as described in Section 3), you should
now have access to a MATLAB function called cds srr. Verify that this
is so by typing the function name at the MATLAB command line. An
undefined function or variable message means that you don’t have
access.

• In MATLAB, give the command cds srr with one string argument enclosed
in single quotes: the directory path you made note of above. (Make sure
to specify a complete path that starts with a /, not with a . or a ∼.)
Example:

cds_srr(’/a/b/c/simulation/optest/ams/config/psf’)

The command returns labels for all the data available at the indicated point
in the database. Note that ’tran-tran’ is one of these labels.

• Give the same command again, but add ’tran-tran’ as a second string
argument. Example:

cds_srr(’/a/b/c/simulation/optest/ams/config/psf’, ...

’tran-tran’)

Again labels for the available data are returned; these labels include the
names of the circuit waveforms which were saved during your simulations.

• Give the same command a third time, but add the name of the output
signal as a third string argument. Example:

cds_srr(’/a/b/c/simulation/optest/ams/config/psf’, ...

’tran-tran’, ’optest.net010’)

A structure is returned which includes arrays of time and signal values.

• Assign the result of the last cds srr command to a MATLAB variable
name, such as foo.



DAT116, Lab 5, Version 1.9 5

The simulation waveform has now been imported into MATLAB. A quick plot
acts as a sanity check.

• Plot the just-imported signal:

plot(foo.time, foo.V) ;

Verify that the signal has the same amplitude and frequency as in the
Cadence plot window.

To be able to use sigspectrum on the imported signal, we must adapt its format
to what sigspectrum expects. The routine cds2sig performs the conversion3.
In order to do so, it needs two extra parameters: the duration of the time win-
dow to convert, and the number of sample intervals in that time window. The
duration should be equal to a number of full cycles of the original signal; just
like sigspectrum, the conversion routine selects the trailing end of the signal for
conversion, in order to avoid any initial transient.

The number of sample intervals in the window should be a power of two, as that
is what sigspectrum expects. Increasing this parameter far beyond the number
of points in the signal you just imported will not improve accuracy or resolution.

• Create a signal bar from foo, using 1024 points distributed across the 8
last cycles of the signal:

bar = cds2sig(foo, 0.8e-3, 1024) ;

• Call sigview with bar as an argument. Verify the frequency and the num-
ber of cycles included.

• Call sigspectrum with bar as an argument. Inspect the plot window. Does
it correspond to your expectations?

Compared with previous spectra seen during the labs, you may find that the
“noise floor” is unexpectedly high. Circuit simulators such as Spectre (which does
the actual calculations during the ams simulations here) use tolerance parameters

3It should be noted here that the signal produced by the Cadence simulation is almost
universally not uniformly sampled. To be accepted by sigspectrum, the signal must therefore
be interpolated: new values are computed for a set of uniformly spaced times. This operation
has limited accuracy and may affect the spectrum noise floor.



DAT116, Lab 5, Version 1.9 6

to control the tradeoff between accuracy and simulation speed. Smaller tolerances
improve accuracy at an execution-time cost and typically produce more time
points.

• Inspect the simulation log file window that was mentioned on page 3. Go
to the bottom of the window and make note of the "Number of accepted

tran steps" and the CPU time in "Intrinsic tran analysis time".
Dismiss the log window.

• In ADE L, select Simulation→Options→Analog(Spectre)... A pa-
rameter dialog window opens. Find the options reltol and vabstol and
give each of them the new value of 1e-9. Click OK to accept the change
and dismiss the window.

• Run the simulation again. Make note of the timestep count and the CPU
analysis time as before.

• Read the opamp output node waveform into MATLAB as before. Save the
converted version of the waveform in another variable:

baz = cds2sig(foo, 0.8e-3, 1024) ;

• Plot spectra of both bar and baz in the same sigspectrum window:

sigspectrum(bar, baz) ;

Save the plot for your report.

What has happened to the “noise floor”?

What has happened to the simulation time and to the length of the result vector?

• Use sigspectrum to extract the numerical component values for the bar

and baz spectra. Calculate SNRs based on these values as you did in Lab
1. Do the SNR values agree with the shifted noise floor?

• Use the special argument ’linf’ to make sigspectrum use a linear fre-
quency scale. It is now possible to see the component at frequency 0, that
is, the output DC offset voltage4. How does the magnitude of the DC
component compare to the rest of the noise floor?

4The output DC offset voltage is caused by the opamp input bias currents, which are drawn
from different source resistances (ground, i.e. 0, and R0//R1).



DAT116, Lab 5, Version 1.9 7

• Recompute the SNR values for the two cases, this time ignoring the DC
component. You may have to take care not to lose too much precision when
calculating the SNR! Comment on the correspondence with the noise floors
in the two cases.

Does the higher accuracy make a practical difference in these SNR calculations?

Continue to use the tighter tolerances for the rest of this lab session.

5 SNR as function of input level

In most circuits and systems, the signal-to-noise ratio depends on the signal level.
It is therefore important to be able to estimate the SNR as a function of the input
signal level. We will now run a series of transient simulations while sweeping the
input amplitude, and calculate the SNR based on each of these simulations.

• In the ADE L window, select Tools→Parametric analysis... A Para-
metric Analysis window appears as in Lab 2, allowing you to specify a
variable to sweep and what values it should take.

• In the Variable Name box, enter the name of the variable that controls the
input amplitude (ampl in this case).

• Enter a variable range from 1e-3 to 10 to sweep the amplitude from 1 mV
to 10 V. Use a logarithmic sweep with a total of 20 steps.

• Select Analysis→Start All. Simulation progress is tracked with a sta-
tus bar. When all simulations have been completed, all output waveforms
are plotted in the Cadence waveform window (which is likely to be very
crowded. . . ).

What happens to the output signal at high input levels? What is the maximum
value you see at the output?

• Go back to the schematic window in Cadence. Select the opamp and open
its property window (Edit→Properties→Object, or [q]). The VLIMN

and VLIMP properties set the maximum and minimum output voltages
reachable with ±15 V supplies. Verify that these values correspond to
the extreme values seen in the plot. Do not change the values; just close
the property window.



DAT116, Lab 5, Version 1.9 8

• In MATLAB, repeat the call to cds srr to read in the Cadence waveforms.

Note that time and V are now two-dimensional arrays rather than the vectors re-
turned in the non-parameterized case. An extra vector containing the parameter
values is also returned.

• Inspect the contents of the extra vector in MATLAB. Make a copy of this
vector; a good name for the copy might be ampl.

• In MATLAB, repeat the call to cds2sig with the just-read waveforms as
an argument.

• Repeat the call to sigspectrum in the same way as before, with the result
of the cds2sig as an argument. A colorful plotted figure appears with
spectra for all simulation runs.

• Repeat the sigspectrum call again and assign its output to a variable. As
with the voltage waveforms, the result is a two-dimensional array, where
each column contains the spectral values for one of the simulations.

Calculation of SNR values for each column value is simplifed by the behavior of
the MATLAB functions max and sum: with a two-dimensional array argument,
they produce a vector containing the results for each column, that is, for each
separate spectrum. Thus, the following expression returns a vector of SNR values
for the spectrum array arf:

10*(log10(max(arf)) - log10(sum(arf) - max(arf)))

• Extract the SNR values as above.

• Open a new figure window in MATLAB (with the command figure). Plot
the SNR values as a function of the parameter value vector ampl which
you saved above. Use the function semilogx rather than plot to get a
logarithmic axis for the parameter values, and give the extra argument
’-+’ to highlight the discrete values. Save the plot for your report.

What happens to the SNR when the output signal enters the clipping region?

6 Soft nonlinearity

As you saw above, hard signal clipping causes severe SNR degradation when the
levels of several harmonics rise and approach the level of the fundamental tone;



DAT116, Lab 5, Version 1.9 9

compare with quantizer clipping in Lab 3! This mode of operation is therefore
generally avoided5, but subtler nonlinearities can still affect the SNR of an am-
plifier. In this next experiment, you will replace the op1 amplifier with its sibling
op2, which includes a gradual nonlinearity (implemented with a tanh function).

• In the lab5 schematics window, select the opamp component and open its
properties window (using [q]). Change the contents of the Cell Name field
from op1 to op2. Accept the changes and close the window by clicking OK.

• Check and save the schematic view.

• To generate a netlist (without running a single analysis according to the
listing in ADE L), select Simulation→Netlist→Create.

• Go back to the Parametric Analysis window. Reduce the upper limit of
the sweep range to 2.5 to avoid clipping, start the analysis, and wait for it
to complete.

• Generate an SNR diagram as in the previous section, and include it in your
lab report.

How does the SNR depend on the signal level when the amplifier has a soft
nonlinearity such as this one? Compare and contrast with the previous diagram.

A non-linearity affects the harmonic content of the signal; the level of each har-
monic depends on the signal level. We will now plot the powers of the funda-
mental and the first nine harmonics separately, as functions of the input level.
Still another MATLAB function, sigharms.m, is provided for this purpose. It
takes three arguments: an array of spectral component powers as provided by
sigspectrum; the number of full cycles of the fundamental included in the spec-
tal analysis; and an array of the parameter values used in sweeping (which will
be used on the X axis of the plot).

• Assuming that the spectrum component array which you produced with
sigspectrum above is called arf, give the following MATLAB command:

sigharms(arf, 8, foo.ampl) ;

A plot window opens and shows the levels of fundamental and harmonics
as a function of the sweep parameter (the input amplitude in this case).
You need this plot for your report!

5The most common exception seems to be guitar amplifers. . .



DAT116, Lab 5, Version 1.9 10

Which one is the dominating harmonic in the diagram? What does that obser-
vation tell you about the nonlinearity?

Compare the rate of increase of the harmonic levels with the input amplitude.
Do higher-order harmonics rise faster or slower with the amplitude? Why?

As a final experiment, we will reduce the open-loop gain of the opamp and observe
the effect on the SNR and on the levels of the harmonics.

• Again, select the opamp component in the schematic window and open
its properties window. Reduce the open-loop gain parameter AOLDC to 20
dB. Accept the change, save the schematic, generate a netlist, and run the
parametric simulation as before.

• Read the simulation results into MATLAB, convert the waveforms to the
sigspectrum format, generate an array of spectral components, and create
a plot of the harmonic levels as functions of the input level. Save the plot
for your report.

What has happened to the levels of the harmonics when the open-loop gain
changed? Why?

• Generate a plot of the SNR values as a function of the input level, as before.

How has the SNR level changed? Why?

7 Wrap-up

After completing this lab session, you should be able to do the following:

• Set up a parametric simulation of a circuit including macro models in Ca-
dence.

• Transfer the results of transient simulations from Cadence to MATLAB for
further analysis.

• Extract data for and produce plots which show the SNR and the harmonic
levels as functions of the input level of a circuit.

• Qualitatively describe typical SNR and harmonic-level diagrams as func-
tions of signal level.



DAT116, Lab 5, Version 1.9 11

Reflection questions

• You have seen that non-linearities of active components will generate har-
monics when a single-tone sinewave is applied to the component. You have
also seen that the harmonics depend on the signal level.

Consider the implications of these observations on the problem of active-
filter design, as studied in Lab 4. The filters studied there were implemented
as cascade sequences of second-order sections; but no time was spent on
deciding the place in the sequence of each section (first, second, etc). Given
what you have seen here, how can the choice of the sequence affect the
overall filter SNR?

• In one reflection question in Lab 2, you were asked to consider using several
amplifier stages to reach a specific gain accuracy. Is there a similar case to
be made for distortion? Discuss.


